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Abstract: Quantum computing (QC) has opened the door to advancements in machine learning
(ML) tasks that are currently implemented in the classical domain. Convolutional neural networks
(CNN:s) are classical ML architectures that exploit data locality and possess a simpler structure than a
fully connected multi-layer perceptrons (MLPs) without compromising the accuracy of classification.
However, the concept of preserving data locality is usually overlooked in the existing quantum
counterparts of CNNs, particularly for extracting multifeatures in multidimensional data. In this
paper, we present an multidimensional quantum convolutional classifier (MQCC) that performs
multidimensional and multifeature quantum convolution with average and Euclidean pooling, thus
adapting the CNN structure to a variational quantum algorithm (VQA). The experimental work was
conducted using multidimensional data to validate the correctness and demonstrate the scalability of
the proposed method utilizing both noisy and noise-free quantum simulations. We evaluated the
MQCC model with reference to reported work on state-of-the-art quantum simulators from IBM
Quantum and Xanadu using a variety of standard ML datasets. The experimental results show the
favorable characteristics of our proposed techniques compared with existing work with respect to
a number of quantitative metrics, such as the number of training parameters, cross-entropy loss,
classification accuracy, circuit depth, and quantum gate count.

Keywords: convolutional neural networks; quantum computing; variational quantum algorithms;

quantum machine learning

1. Introduction

The choice of an appropriate machine learning model for specific applications requires
consideration of the size of the model since it is linked to the performance [1]. Consid-
ering the aforementioned factor, convolutional neural networks (CNNSs)s are preferable
to multi-layer perceptrons (MLPs)s because of their smaller size and reduced training
time while maintaining high accuracy [2,3]. Preserving the spatiotemporal locality of data
allows CNNs to reduce unnecessary data connections and therefore reduces their memory
requirements [2,3]. This phenomenon reduces the number of required training parameters
and thus incurs less training time [2,3].

In the context of quantum computing, great emphasis has been given to quantum-
based machine learning, and, in recent years, various techniques have been devised to
develop this field [4]. The contemporary quantum machine learning (QML) techniques
can be considered as hybrid quantum-classical variational algorithms [5-9]. Generally,
variational quantum algorithms (VQAs) utilizes parameterized rotation gates in fixed quan-
tum circuit structures, usually called ansatz, and is optimized using classical techniques
like gradient descent [5-9]. However, like MLPs, preserving data locality is challenging
for QML algorithms. For instance, the multidimensionality of input datasets is ignored
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in contemporary QML algorithms and are flattened into one-dimensional arrays [5-9].
Furthermore, the absence of a generalizable technique for quantum convolution limits the
capability of QML algorithms to directly adapt CNN structures.

In this work, we present an multidimensional quantum convolutional classifier
(MQCC) to address the shortcomings of the existing CNN implementations in recon-
ciling the locality of multidimensional input data. The proposed VQA technique leverages
quantum computing to reduce the number of training parameters and time complexity
compared with classical CNN models. Similar to the CNN structures, MQCC contains a
sequence of convolution and pooling layers for multifeature extraction from multidimen-
sional input data and a fully connected layer for classification.

The subsequent sections of this paper are organized in the following structure. Section 2
discusses fundamental background information regarding different basic and complex
quantum operations. Section 3 highlights existing works that are related to the proposed
techniques. The proposed methodology is introduced in Section 4 with details given to the
constituent parts. The experimental results and the explanation of the used verification
metrics are presented in Section 5. Further discussion about the obtained results is provided
in Section 6. Finally, Section 7 concludes this work with potential future directions.

2. Background

In this section, we present background information pertaining to quantum computing
and quantum machine learning. Here, we present the quantum gates and operations that
are utilized in the proposed multidimensional quantum convolutional classifier (MQCC). In
addition, interested readers may find fundamental details related to quantum information
and computing in Appendix A.

2.1. Quantum Measurement and Reset

The quantum measurement operation of a qubit is usually and informally referred
to as a measurement “gate”. The measurement gate is a nonunitary operation that can
project the quantum state of a qubit |¢) to the |0) or |1) basis states [10]. The likelihood
of measuring any basis state can be obtained by taking the squared magnitude of their
corresponding basis state coefficient. For an n-qubit register |¢) with 2" possible basis states,
the probability of measuring each qubit in any particular basis state |j), where 0 < j < 2"
is given by }c]-‘z [11]. The classical output of n-qubit amplitude-encoded [12] data can be
decoded as tpélggggeaé_ data- This classical output vector can be reconstructed by the square
root of the probability distribution \/P(|¢)), as shown in (1), (2), and Figure 1. When
amplitude-encoding [12] is used for encoding positive real classical data, the coefficients of
the corresponding quantum pure state [10] [¢) are also positive real, i.e., ¢; € R*, where
0 <j < 2" Thus, the amplitudes of |i) are numerically equal in values to the coefficients

of lpéfcssggé_ datar 1-€ [P) = ¢g§§g§f‘;‘é_ data- Therefore, the quantum state |) can be completely
determined from the measurement probability distribution such that [¢) = /P(|¢)) only

when the amplitudes of the quantum state are all of positive real values. Moreover, the
probability distribution P(|)) can be reconstructed by repeatedly measuring (sampling)
the quantum state |¢p). In general, an order of 2" measurements is required to accurately
reconstruct the probability distribution. In order to reduce the effects of quantum statistical
noise, it is recommended to gather as many circuit samples (shots) [13] as possible.
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Figure 1. Full quantum state measurement diagram.

The reset operation sets the state of qubits to |0). This operation consists of a midcircuit
measurement gate followed by a conditional X gate [14,15] such that the bit-flip operation
is applied when the measured qubit is in state |1). The reset gate and its equivalent circuit
are both shown in Figure 2 [15].

1 —— AP
|0> — Ttrue

Figure 2. Reset gate and equivalent circuit.

2.2. Classical-to-Quantum (C2Q)

There are a number of quantum data encoding techniques [12,16], each of which
uses different methods to initialize quantum circuits from the ground state. Among
the many methods, this work leverages the classical-to-quantum (C2Q) arbitrary state
synthesis [12,16] operation to perform amplitude encoding and initialize an n-qubit state
|$0), see Figure 3. The C2Q operation employs a pyramidal structure of multiplexed R,
and R; gates. It should be noted that the R, gates are only required for positive real data.
Thus, for positive real data, the circuit depth is 2 - 2" — n — 2, while for complex data, the
circuit depth is 3 - 2" —n — 4 [12].
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Figure 3. The quantum circuit for classical-to-quantum (C2Q) arbitrary state synthesis [16].

2.3. Convolutional Neural Networks (CNNs)

CNNs are one of the most widely used types of deep neural networks for image
classification [17]. It consists of convolutional, pooling, and fully connected layers. The
convolutional layer applies multiple filters to the input to create feature maps. The pooling
layer reduces the dimensionality of each feature map but retains the most important in-
formation. Some of the most important pooling techniques include max-pooling, average
pooling, and sum pooling. Fully connected layers are in the last layers of the CNN network,
and their inputs correspond to the flattened one-dimensional matrix generated by the last
pooling layer. Activation functions, which are essential for handling complex patterns, are
used throughout the network. Finally, a softmax prediction layer is used to generate proba-
bility values for each of the possible output labels. The label with the highest probability is
selected as the final prediction.

2.4. Quantum Machine Learning with Variational Algorithms

Variational quantum algorithms are a type of quantum—classical technique that fa-
cilitates the implementations of machine learning on noisy intermediate-scale quantum
(NISQ) machines [5,7]. Current quantum devices are not able to maintain coherent states for
sufficient periods, preventing current algorithms from performing meaningful optimization
on the machine learning model. Thus, VQAs combine classical optimization algorithms
with parameterized quantum circuits, or ansatz. Here, the ansatz takes on the role of the
model [5]. One specific type of VQA is the variational quantum classifier (VQC), which is
used for classification problems. Existing VQCs [6,8,9] have been shown to be effective
for classifying datasets with high accuracy and few training parameters in both simulation
and current quantum processors.

3. Related Work

In this section, we discuss the existing related works with an emphasis on quantum
machine learning. Our discussion focuses on commonly used data encoding techniques,
existing implementations of the convolution and quantum convolution algorithms, and
related quantum machine learning (QML) algorithms. Moreover, we also discuss existing
quantum convolutional classification algorithms that leverage data locality.

3.1. Data Encoding

For encoding classical image data into the quantum domain, the commonly used
methods are Flexible Representation of Quantum Images (FRQI) [18] and Novel Enhanced
Quantum Representation (NEQR) [19]. In FRQI, positional and color information is en-
coded as amplitude encoding and angle encoding, respectively. In NEQR, positions of
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the pixels are encoded using amplitude encoding but color information is encoded using
basis encoding, where g represents the number of bits/qubits allocated for color data. For
N = 2" data points, in terms of circuit width and depth, FRQI incurs n + 1 and O(4"),
respectively, while NEQR incurs n + q and O(gn2"), respectively [20]. Although these tech-
niques are employed in the existing quantum convolution techniques, their disadvantages
are discussed below.

3.2. Convolution

We now discuss existing implementations of convolution and discuss their associ-
ated time complexity. These implementations consist of various classical and quantum
techniques. In addition, we consider the shortcomings of existing quantum convolution
methods.

3.2.1. Classical Convolution

Classical implementations of convolution are usually implemented directly, through
general matrix multiplication (GEMM) or through the Fast Fourier transform (FFT). A data
size N, running the direct implementation on CPUs, has complexity O(N?) [21], while
the complexity of an FFT-based implementation is O(Nlog N) [21]. On GPUs, FFT-based
convolution incurs a similar O (N log N) complexity [22], while the direct approach requires
O(NgN) FLOPS [23,24], where N is the filter size.

3.2.2. Quantum Convolution

The existing quantum convolution techniques [25-29] rely on fixed filter sizes and
support only specific filters at a time, e.g., edge detection. They do not contain methods for
implementing a general filter. Additionally, these techniques have a quadratic circuit depth,
ie., O(n?), where n = [log, N is the number of qubits and N is the size of the input data.
While these methods appear to show quantum advantage, these results do not include
overhead incurred from data encoding. The related methods employ the FRQI and NEQR
data encoding methods, leading to inferior performance compared with classical methods
once the additional overhead is factored in.

The authors in [30] propose an edge-detection technique based on quantum wavelet
transform QWT and amplitude encoding, named quantum Hadamard edge detection
(QHED), which is not generalizable for multiple convolution kernels or multidimensional
data. Thus, their algorithm loses parallelism, increases circuit depth, and is difficult to
generalize beyond capturing 1-D features. In [20], the authors have developed a quantum
convolution algorithm that supports single feature/kernel and multidimensional data. In

this work, we leverage the convolution method from [20] and generalize it to support
multiple features/kernels in our proposed MQCC framework.

3.3. Quantum Machine Learning

There exist two primary techniques for quantum convolutional classification that
may leverage data locality through convolution: quantum convolutional neural network
(QCNN)s [31] and quanvolutional neural networks [32]. QCNNSs are inspired by classical
convolutional neural networks, employing quantum circuits to perform convolutions,
and quanvolutional neural networks replace classical convolutional layers with quantum
convolutional (or quanvolutional) layers.

3.3.1. Quantum Convolutional Neural Networks

The QCNN [31] and our proposed multidimensional quantum convolutional classifier
(MQCC) are both VQAs models with structures inspired by CNNs. However, QCNNs
borrow the superficial structure of CNNs without considering the underlying purpose.
Specifically, the QCNN’s quantum ansatz is designed so that its “convolution” and “pooling”
operations exploit the locality of qubits in the circuit (rather than the locality of data).
However, unlike data locality, qubit locality does not have a practical purpose for machine
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learning in terms of isolating relevant input features. Moreover, by considering input data
as 1-D, QCNNSs do not leverage the dimensionality of datasets, which constitute a primary
advantage of CNNs. MQCC, on the other hand, faithfully implements CNN operations in
quantum circuits, offering performance improvements in circuit execution time (based on
circuit depth) classification accuracy over contemporary implementations of QCNNs on
classical computers.

3.3.2. Quanvolutional Neural Networks

Quanvolutional neural networks [32] are a hybrid quantum-—classical algorithm named
eponymously after the quanvolutional layer added to a conventional CNN. These quan-
volutional layers serve to decimate a 2D image, which is then sequentially fed into a
quantum device. In this manner, the quanvolutional layer effectively exploits data locality.
Yet, the model’s dependency on classical operations, specifically the decimation of input
data and the repeated serial data I/O transfer, vastly increases compute time. In contrast,
the required convolution operation is incorporated into our proposed MQCC, reducing
classical-quantum data transfer. Moreover, MQCC takes advantage of parallelism inherent
to quantum computers, while quanvolutional neural networks do not. Together, this allows
the MQCC to apply convolutional filters to window data in parallel.

4. Materials and Methods

In this section, we describe the materials and methods associated with the proposed
multidimensional quantum convolutional classifier (MQCC). The proposed method mainly
uses generalized quantum convolution, quantum pooling based on the quantum Haar
transform (QHT) and partial measurement [11], and a quantum fully connected layer that
is illustrated in this section. To the best of our knowledge, this work is the first to carry out
the following:

¢ Develop a generalizable quantum convolution algorithm for a quantum-convolution-
based classifier that supports multiple features/kernels.

*  Design a scalable MQCC that uses multidimensional quantum convolution and pool-
ing based on the QHT. This technique reduces training parameters and time complex-
ity compared with other classical and quantum implementations.

e Evaluate the MQCC model in a state-of-the-art QML simulator from Xanadu using a
variety of datasets.

4.1. Quantum Fully Connected Layer

A fully connected classical neural network constitutes a collection of layers that each
perform a linear transformation on Nj, input features x € RN to generate No-feature
outputy € RNew [2,3]. Each layer can be represented in terms of a multiply-and-accumulate
(MAC) operation and an addition operation, as shown in (3), where W € RNout*Nin and
b € RNout represent the trainable weight and bias parameters, respectively. Here, we use
bold symbols to represent classical quantities, e.g., vectors, while the Dirac notation to
represent their quantum counterparts.

y=Wix+b (3)

The particular weights and biases that generate the j feature of the output, yj, can be
isolated by taking the j column of W, wj, and the j term of b, bj, as shown in (4), which
can be directly implemented using quantum circuits. Section 4.1.1 discusses the quantum
circuits for a single-feature output, and Section 4.1.2 generalizes the proposed technique
for an arbitrary amount of features in the output.

y; = (wj-x) +bj, where 0 < j < Nout 4)
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4.1.1. Single-Feature Output

For a single-feature output neural network, the weight parameters can be represented
as a vector w € RNin, Here, w can be expressed as a quantum state |w), as shown in (5),
similar to the process of C2Q data encoding; see Section 2.2.

W iNin
1 |0 .
|w) = Wil : 2" where nj, = [log, Nip | 5)
0

Similarly, for a single-feature output, Dirac notation of the MAC operation follows
from (4), as shown in (6), where |ip) corresponds to the input data.

y—b=(wy) (6)

However, it is necessary to obtain a quantum operator to perform a parameterized
unitary linear transformation from the weights vector |w) on the input data |i) using an
inverse C2Q operation as shown in Figure 4 and described by (7).

|w)
Umac(|w)) = ‘i(> 2'in )
%)
= Ulyo(|w))

Multiply-and-Accumulate (MAC)

——
|

An;,—2 T

<

q1

90

SLimEE

Figure 4. Quantum multiply-and-accumulate (MAC) operation using inverse arbitrary state synthesis.

4.1.2. Multifeature Output

A multifeature output can be implemented in a naive approach using Single-Feature
Output (7) for an Nyyi-feature output, where Noyt < Njn, which can be obtained by
encoding each weight vector w; : 0 < j < Nout as a normalized row in Uyac. However,
the result might yield a nonunitary operator as the weight vectors can be arbitrary. Uyac
is unitary when each row is orthogonal to all other rows in the matrix, mathematically,
(Wi|[Wj) = jj : Vi,j € [0, Nout). As described in Appendix A.4, independently defined
weights can be supported for each feature of the output by multiplexing Upac. Now,
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the generic fully connected operation, Upc, can be generated as shown in (8), where
Nout = |—10g2 Nout—| .

Umac (|wo))
Ugc = - ®)
Unmac ([wzmou—1))

By generating Noy: replicas of the initial state, |i), the operation can be parallelized,
i.e.,, Umac(|wo)) - - . Upmac (|wonou —1)) transformations from (8).

Replication:

To replicate the initial state, |(p) nout qubits, which extends the state vector to a total
size of 2"inTMout gee (9) and Figure 5.

[tho)] T2"n
0
[ih1) = 0)"out @ |ipg) = : oMin+lout ©)
0
Fully-Connected Layer
Inintriqe-1 = |0} E E
gt ring-2 = |0} E |-|-|
o = 10) *
a g —1
Anin—2
o) [ - e
q1 h 4
LN qo

¥ ¥a) ¥a) o)
Figure 5. Quantum fully connected layer with an Nyy¢-feature output.

By applying an nou-qubit Hadamard (see Appendix A.3) operation to the relevant
qubits the replicas can be obtained through superposition (see (10) and Figure 5), which
generates the desired replicas scaled by a factor of —-—— to maintain normalization

(2]th2) = 1.
. o) ] J2"in
o) = (H M @ IF)|gr) = —= | 1 | 1|20 (10)
2”011{ .
o) | T2"n
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Applying the Ugc Filter:

Ugc can perform the MAC operation for the entire Ny¢-feature output in parallel with
the set of replicas of |¢p); see (11) and Figure 5.

Umac(lwo)) o) 7 32"
|l/)3> = UFC|TP2> = UMAC(|w]>)|1IJ()> Iz”in 2Min+Mout

[ Uniac (0270 1)) I0) ] 127
(wo o)

2Min

(11)
— 2Min 2"in+nout
<w2"out -1 | l/)O>

X
2MNin

Data Rearrangement:

The data rearrangement operation can be performed by applying perfect-shuffle gates;
see Appendix A.6. It simplifies the output-feature extraction by gathering them into Nyt
data points at the top of the state vector; see (12) and Figure 5.

(wolo)
- <wji¢’o> 2Mout
lips) = g (RoL(nirl + flout — 1) @ I®i> 3 = <w2”m;_1|¢0> intiout (12
x
L x i

It is worth mentioning that instead of applying the auxiliary qubits at the most sig-
nificant position, as shown in the decomposed and simplified fully connected circuit in
Figure 6, auxiliary qubits can be applied at the least significant position to avoid perfect-
shuffle permutations.

4.1.3. Circuit Depth of the Quantum Fully Connected Layer

As discussed in Section 2.2, Upac operation is implemented by applying the C2Q/
arbitrary state synthesis operation with a depth of (3 - 2"in — n;,, — 4) fundamental single-
qubit and CNOT gates. The depth is expected to increase by a factor of 2"out when multi-
plexing Upiac to implement an Nyy¢-feature output [33], see (13).
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Auge (Min, Mout) = 2" - Ay, (i)
— Mout (3. 2Min — py — 4) (13)
— O(z”in+nout)

Fully-Connected Layer
T R ——
Anintnow—2 | RIIJ
Ini, — | R,
Tin Y|
Qnou+1 — |
Qnow — |
-1 = 0) ——
T2 = 0) ——
0=10) —— B+ +{ (-

Figure 6. Decomposed and simplified quantum fully connected layer.

4.2. Generalized Quantum Convolution

The most significant part of the MQCC framework is the generalized quantum con-
volution operation with support for arbitrary, parameterized filters. Compared with the
classical convolution operation, the convolution operation in the quantum domain achieves
exponential improvement in time complexity due to its innate parallelism. The convo-
lution operation consists of stride, data rearrangement, and multiply-and-accumulate
(MAC) operations.

Stride:

The first step of quantum convolution is generating shifted replicas of the input data.
Quantum decrementers controlled by additional qubits, called “filter” qubits are used for
this purpose. The Usihlift operator shown in Figure A8b shifts the replica by a single stride.

The stride operation, U4, is composed of controlled quantum decrementers, where
each U;}llift operation has a quadratic depth complexity; see (A15). Thus, the depth of the
controlled quantum decrementer can be derived according to (14), where n corresponds
to the number of qubits the decrementer is applied to and c reflects the number of control
qubits.
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n+c—1
A Ul (I’Z,C) = Z AMCX(i)

shift

n+c—1

= ) (48i—196)

i=c
el (14)
) 48i+48c — 196n
i=0
= 2412 + 48¢ — 220n

= O(n’c) for large n

Multiply-and-Accumulate (MAC):

Kernels are applied to the strided replicas of the input data in parallel using the MAC
operation; see Figure 4. In the MAC operations, kernels are applied to the contiguous set of
data with the help of the inverse arbitrary state synthesis operation. One benefit achieved
by using this MAC operation is the superposition of multiple kernels. The superposition of
the kernel can be helpful for the classification of multiple features.

Data Rearrangement:

Data rearrangement is required to coalesce the output pieces of the MAC steps and cre-
ate one contiguous piece of output. This step is performed using perfect shuffle permutation
(PSP) operations described in Appendix A.6.

4.2.1. One-Dimensional Multifeature Quantum Convolution

The one-dimensional quantum convolution operation, with a kernel of size Nk terms,
requires generating N replicas of the input data in a range of possible strides between
0 < k < Nk. Therefore, a total of NxN terms need to be encoded into a quantum circuit,
including the 1, = [log, Nx | additional auxiliary qubits, denoted as “kernel” qubits, which
are allocated the most significant qubits to maintain data contiguity.

Necessary Nk replicas of the input vector are created by using Hadamard gates;
see Figure 7. Convolution kernels can be implemented using multiply-and-accumulate
(MAC) operations; as such, it is possible to leverage Upac, as defined in Section 4.1, for
implementing quantum convolution kernels. Given a kernel K € RNk, the corresponding
kernel operation Uk can be constructed from the normalized kernel |K), as shown in (15).

K

Uk = Umac(|K)), where [K) = K = T

(15)

When applied to the 1, lower qubits of the state vector, Ux applies the kernel K to all
data windows in parallel. However, in CNNs, convolution layers typically must support
multiple convolution kernels/features. Fortunately, one major advantage of the proposed
quantum convolution technique is that multiple features can be supported by multiplexing
only the MAC operations—the stride and data rearrangement operations do not need to
be multiplexed; see Figure 7. Accordingly, for N features, ny = [log, Nr| must be added
to the circuit and placed in superposition using Hadamard gates, similar to the process
in (9). Thus, the depth complexity of Ug;qe can be expressed in terms of A Ul (n—j,c),
as described by (16), where ¢ = 1 for all 0 < j < ny; see Figure 7. Similarly, the depth

complexity of Uk can be expressed by (17). Finally, The depth of the proposed multifeature
1D quantum convolution can be obtained as (18).
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Vlkfl nkfl

Buiggo () = Y0 Ayr (n=j1) = ) [24(n— j)? +48 = 220(n — j)]
j=0 j=0

2 2 3 2 (16)

< 24mn® — 24nin — 196mn + 8ny. — 98ny. — 58ny

= (’)(nknz - n,%n + ni) for large n > ny

Auy (1) = 2 - Buygac (ng)
< 2" (3.2 — py — 4) (17)
= O(2"1*"™) for large n, ny

MD conv (1, g, 1) = A + By (1, 11) + Ay (ng, nf) + Aswap
= 1+ 24mn® — 24n3n — 196mn + 8nj — 98n% — 58n;
+2" (32— —4)+3

=0 (nkn2 - n%n + 2"f+”k), where n > ALY

One-Dimensional Quantum Convolution
H
joyen : Uk
H
0% {_ He J;
ny
( —_—
: : 1 Uit
W’O) _4 Us;ift
L S N N
L —

Figure 7. One-dimensional quantum convolution circuit.

4.2.2. Multidimensional Multifeature Quantum Convolution

Multidimensional quantum convolution can be implemented by stacking multiple one-
dimensional quantum circuits, as shown in Figure 8. A d-dimensional quantum convolution
circuit can be constructed with a stacked kernel of 1-dimensional convolution circuits only
when the multidimensional kernels are outer products of d instances of 1-dimensional
kernels. The depth of d-D quantum convolution can be obtained as (19).

_ 2 2 ni+n
AiD conv(,np,np) = O (nkmxnmax — M Mmax + 2" f), where
d-1 d-1 (19)
Nmax = maox(n,-), Mo = maox(nki), and fmax > 1, N
i= i=

max
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Figure 8. Multidimensional quantum convolution circuit.

4.3. Quantum Pooling

A critical part of CNNss is the pooling operation or downsampling of the feature maps.
One widely used method is average pooling, where only the average of the adjacent pixels
in the feature map is preserved, creating a smoothing effect [34].

4.3.1. Quantum Average Pooling using Quantum Haar Transform

The average pooling operation can be implemented using the quantum wavelet
transform (QWT) [11], which has the advantage of preserving data locality using wavelet
transform decomposition. It is a commonly used technique for dimension reduction in
image processing [11]. In this work, we utilize the simplest and first wavelet transform,
quantum Haar transform (QHT) [11] to implement quantum pooling operation. This
operation is executed in two steps: the Haar wavelet operation and data rearrangement.

Haar Wavelet Operation:

For separating the high- and low-frequency components from the input data, H gates
are applied in parallel. The number of H gates applied in QHT is equal to the levels of
decomposition.

Data Rearrangement:

After separating the high- and low-frequency components, quantum rotate-right (RoR)
operations are applied to group them accordingly. As mentioned before, the proposed
framework is highly parallelizable regardless of the dimensions of the data, as the QHT
operation can be applied to multiple dimensions of data in parallel.

As shown in Figure 9a, for a single-level of decomposition, H gates are applied on one
qubit (the least significant qubit) per dimension, and for ¢-level decomposition, shown in
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Figure 9b, I number of H gates are applied per dimension. Each level of decomposition
reduces the size of the corresponding dimension by a factor of 2.

Qn-1 : 'y Gn-1 . . B
Gn-t-1
' . [Yout) o)
o : s — il
q0—1 H
@ H <

[Ym) & )
(a) (b)

Figure 9. Quantum Haar transform circuits: (a) single-level One-dimensional (1-D) QHT circuit;
(b) multilevel One-dimensional (1-D) QHT circuit.

4.3.2. Quantum Euclidean Pooling using Partial Measurement

In machine learning applications, the average and maximum (max) pooling [34] are
the most commonly used pooling schemes for dimension reduction. The two schemes
differ in the sharpness of data features. On one hand, max pooling yields a sharper
definition of input features, which makes it preferable for edge detection and certain
classification applications [34]. On the other hand, average pooling offers a smoother
dimension reduction that may be preferred in other workloads [34]. Thus, to accompany
our implementation of quantum averaging pooling using QHT (see Section 4.3.1), it would
be beneficial to have an implementation of quantum max pooling. However, such an
operation would be nonunitary, creating difficulty for the implementation of quantum max
pooling [35]. Therefore, instead of max pooling, we utilize an alternative pooling technique
we denote as quantum Euclidean pooling.

Mathematically, average and Euclidean pooling are special cases of the p-norm [36],
where for a vector of size N elements, the p-norm or ¢” norm of a vector x € CN is given
by (20) for p € Z [36]. The average pooling occurs for the 1-norm (p = 1) and Euclidean
pooling occurs for the 2-norm (p = 2). A notable benefit of the Euclidean pooling technique
is its zero-depth circuit implementation by leveraging partial measurement [35].

NoO\7
Ix[l, = { Y «f (20)
i=0
This work leverages the multilevel, d-dimensional quantum Euclidean pooling cir-

cuit presented in [35]; see Figure 10. Here, for each dimension i, ¢; is the number of
decomposition levels for dimension where 0 < i < d [35].

4.4. Multidimensional Quantum Convolutional Classifier

The proposed multidimensional quantum convolution classifier framework, see Figure 11,
resembles a CNN [2] structures. After a sequence of convolution pooling (CP) pairs, the
model is finally connected to a fully connected layer, see Figures 6 and 11. The total number
of layers in the proposed model can be expressed in terms of CP pairs as 2A 4 1, where A is
the number of CP pairs.
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Figure 10. Multilevel, d-D Euclidean pooling circuit.

.....

........

MQCC Layer A — 1

Convolution

Layer

......

Pooling

Layer

Convolution

Layer

A Fully-Connected
Pooling

s Layer

Figure 11. High-level overview of the MQCC architecture.

It is worth mentioning that there is no advantage in changing the number of fea-
tures among convolution/pooling layers in the MQCC because of the implementation
constraints. Therefore, the total number of kernel features can be estimated globally instead

of layer-by-layer.

The circuit width of the MQCC (21) can be derived from the number of convolution
layers, pooling layers, and the fully connected layer. Input data are encoded using n
qubits, and each convolution operation adds ny = [log, N | qubits for Nf features and
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n, = [log, Nk qubits per layer for kernels. In addition, the fully connected operation
contributes 1. = [log, Nc| qubits to encode N¢ output features/classes. On the other
hand, each Euclidean pooling layer frees ¢ qubits, which can then be reused by other layers.

A
”MV(%CC =n+ng+Ang+ne 1)
nEpSEdean — y 4 ¢+ my + max(0, (A — 1)mg — AL+ nc)

The MQCC can be further parallelized in terms of circuit depth between the interlayer
convolution/fully connected layers. This parallelism can be achieved by performing
(multiplexed) MAC operations from the quantum convolution and fully connected layers
in parallel with the stride operation from the previous layer(s) of quantum convolution.
The circuit depth of MQCC can be derived as shown in (22).

d—1
AMQCC = I?:;‘l:a()x AUstride (1’1,’, nki) + )L(AH + ASWAP)
A=2 -1
+ Z max (I‘{I_aOX AUstride(ni — jgi/ nk;)/AUK (ﬂk, ﬂf)) (22)
j=0 -

+ max (AUFC (n— (A =1)0,nc), Ay (ng, nf))

4.5. Optimized MQCC

Figure 12 presents a width-optimized implementation of MQCC, which we refer to as
Quantum-Optimized Multidimensional Quantum Convolutional Classifier (MQCC Opti-
mized). To reduce the required number of qubits, the convolution and pooling operations
are swapped, which allows kernel qubits to be trimmed for each convolution layer, see
Section 4.2. To achieve higher processing efficiency, trimmed qubits are reassigned to later
layers of dimension reduction and run in parallel. Furthermore, only Euclidean pooling
with partial measurements is used because of the inherent circuit depth efficiency. The
circuit width of MQCC Optimized is shown in (23), where 7 is the number of qubits corre-
sponding to the data size, 1y is the number of qubits corresponding to the features, and
n. is the number of qubits corresponding to the classes. If necessary, additional pooling
operations can be applied to keep the circuit width at or below the absolute minimum
number of qubits n by excluding qubits dedicated to features and classes. It should be
noted that reordering convolution and pooling operations reduces the maximum number
of convolution operations by 1.

NMQCC Optimized = 1 + 1§ + ¢ (23)

Accordingly, the depth of MQCC Optimized can be expressed as shown in (24).

t d—1
ANiace = MaX Ay, (1 = by i) + A(Br + Dswar)

A—1
-1 ,

+ ) max <I§LaOX AU e (15— jli, 1k,), Dy (11, nf)) (24)

= -

-+ max (AUFC (n— AL, ne), Ay (ng, ”f))

To further reduce the depth of MQCC Optimized, we investigated replacing inverse-
C2Q operations for MAC operations with different parameterized ansatz. More specifically,
a common ansatz in QML, namely NLocal operationin Qiskit [37] or BasicEntangler-
Layer in Pennylane [38], was utilized; see Figure 13. The depth of this ansatz is linear
with respect to the data qubits (see (25)), which is a significant improvement over arbitrary
state synthesis, which has a circuit depth of O(2") for an n-qubit state. Although the
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ansatz could potentially reduce circuit depth, its structure lacks theoretical motivation or
guarantees for high fidelity when modeling convolution kernels.

Ag(n,t) =C-n+1 (25)
Quantum-Optimized Multidimensional Quantum Convolutional Classifier
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Figure 12. Quantum-Optimized Multidimensional Quantum Convolutional Classifier (MQCC Optimized).

Multiply-and-Accumulate (MAC) Ansatz
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Repeated Layers of Rotation Gates and CNOT Rings
Figure 13. Alternate ansatz (Uansatz) option, distinct from Upac-

5. Experimental Work

In this section, we first detail our experimental setup, followed by the results for
the proposed MQCC technique. Experiments were conducted using real-world, multi-
dimensional image data to test both the individual and composite components of our
techniques.

5.1. Experimental Setup

The MQCC methodology was validated by first evaluating its most important com-
ponent, namely convolution using the metric of fidelity and then evaluating the complete
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technique, i.e., MQCC and MQCC optimized by conducting classifications experiments
using 1D, 2D, and 3D datasets.

For the convolution experiments on 1D data, we used audio material published by the
European Broadcasting Union for sound quality assessment [39]. Using a preprocessing
step, the data were converted into a single channel, with the data size varying from 28 data
points to 220 data points, sampled at a rate of 44.1 kHz.

For conducting 2D convolution experiments, we used 2D images that are either black
and white or color Jayhawks [40], as shown in Figure 14. These images range in size
from (8 x 8) pixels to (512 x 512 x 3) pixels. For the 3D image experiments, we used
hyperspectral images from the Kennedy Space Center (KSC) dataset [41]. The images were
preprocessed and resized, with the sizes ranging from (8 x 8 x 8) pixels to (128 x 128 x 128)
pixels. Simulations of quantum convolution operation were run using Qiskit SDK (v0.45.0)
from IBM Quantum [13] over the given data. To demonstrate the effect of statistical noise on
the fidelity (26), both noise-free and noisy (with 1,000,000 circuit samples/shots) simulation
environments were evaluated.

c g1 X, Y
Fidelity(X,Y) = ||X<||F ||Y>||F (26)

(b) (c)

Figure 14. High-resolution , multidimensional, real-world input data used in experimental trials:
(a) 2D B/W image [40]; (b) 3D RGB image [40]; (c) 3D hyperspectral image [41].

To evaluate the performance of the complete MQCC and the MQCC-optimized tech-
nique, they were tested against CNNs, QCNNSs, and quanvolutional neural networks
by their capabilities of binary classification on real-world datasets, such as MNIST [42],
FashionMNIST [43], and CIFAR10 [44]. The classical components in these trials were run
using PyTorch (v2.1.0) [45], while the quantum circuits used Pennylane (v0.32.0), a Xanadu
OML-focused framework [46].

The experiments were performed on a cluster node at the University of Kansas [47].
The node consisted of a 48-Core Intel Xeon Gold 6342 CPU, three NVIDIA A100 80 GB
GPUs (CUDA version 11.7) with PCle 4.0 connectivity and 256 GB of 3200 MHz DDR4 RAM.
To account for initial parameter variance in ML or noise in noisy simulations, experiments
were repeated for 10 trials, with the median being displayed in graphs.

5.2. Configuration of ML Models

The different techniques fundamentally being ML models meant that they could share
some parameters and metrics during their testing. For example, the log loss and the Adam
optimizer [48] were shared by all the techniques, and the “feature-count” metric was shared
between the CNN and MQCC, which have 4 features per convolution layer. The parameters
that were unique to each model are discussed next.

Convolutional Neural Networks: In Figure 15, we show the classification accuracy
of the CNN model on (16 x 16) and (28 x 28) FashionMNIST datasets, using average
pooling, max pooling, and Euclidean pooling. The plots show the obtained accuracy with
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and without ReLU [49], which is an optional layer that can be appended to each pooling
layer in a CNN. Based on the results, which show Max Pooling without ReLU to be the
configuration with the best accuracy, we chose it to be the baseline configuration for CNN
in our tests.

Classification accuracy of CNN

configs on the (16x16) FashionMNIST dataset
100% 100%

95% 6 E 95%

90%

Classification accuracy of CNN
configs on the (28x28) FashionMNIST dataset

©
o
®

5‘ ~8— Max Pooling 5‘ ~8— Max Pooling
o —&— Max Pooling, ReLU o —8— Max Pooling (ReLU)
3 85% ~8— Euclidean Pooling 3 85% / ~&— Euclidean Pooling (ReLU)
2 ~&— Euclidean Pooling, ReLU 2 =&~ Euclidean Pooling
Avg Pooling, ReLU Avg Pooling (ReLU)
s0% ~o— Avg Pooling 80% —@~— Avg Pooling
. o— i —
75% 75%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Epoch Epoch
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Figure 15. Classification accuracy of convolutional neural network (CNN) configurations on the
FashionMNIST dataset: (a) (16 x 16) dataset; (b) (28 x 28) dataset.

Quanvolutional Neural Networks: While quanvolutional neural networks were ini-
tially introduced without a trainable random quantum circuit in the quanvolutional layer,
later work has suggested implementing parameterized and trainable quanvolutional layers.
We, therefore, test both the trainable and nontrainable quanvolutional techniques, and
Figure 16 demonstrates that the trainable variant outperforms the other method in the
(16 x 16) FashionMNIST dataset, although the differences are negligible on the (28 x 28)
dataset. This is used as evidence behind our decision to use the trainable variant of the
quanvolutional neural network as the baseline for comparison with the other models.

Classification accuracy of Quanvolution
configs on the (16x16) FashionMNIST dataset

Classification accuracy of Quanvolution
configs on the (28x28) FashionMNIST dataset

99% 99%
98% 98%
>
D 7% D 7%
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94% 94%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Epoch Epoch
(a) (b)

Figure 16. Classification accuracy of quanvolution neural network configurations on the FashionM-
NIST dataset: (a) (16 x 16) dataset; (b) (28 x 28) dataset.

Quantum Convolutional Neural Networks: We based our implementation of the
QCNN on [50]; however, some modifications were made to the technique to work around
limitations present in the data encoding method. When encoding data that are not of size
2" in each dimension, the original method flattens (vectorizes) the input before padding
with zeros, as opposed to padding each dimension. However, this sacrifices the advantage
of multidimensional encoding, where each dimension is mapped to a region of qubits. To
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ensure a level field between QCNN and MQCC, the (16 x 16) and (28 x 28) FashionMNIST
datasets were tested both for the original (1D) and a corrected (2D) data encoding configu-
ration of the QCNN, the results of which are shown in Figure 17. As expected, we see a
clear improvement on the (28 x 28) dataset, and based on this, we chose the corrected (2D)
data encoding method as our baseline QCNN for comparison against other ML models.

Classification accuracy of QCNN Classification accuracy of QCNN
configs on the (16x16) FashionMNIST dataset configs on the (28x28) FashionMNIST dataset
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Figure 17. Classification accuracy of quantum convolutional neural network (QCNN) configurations
on the FashionMNIST dataset: (a) (16 x 16) dataset; (b) (28 x 28) dataset.
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5.3. Results and Analysis

We first present the results of the quantum convolution operations on data with vary-
ing dimensionalities. Then, we compare the fidelity results of the quantum convolution
under a noisy simulation environment with reference to classical convolution implementa-
tion. Finally, we present the results for MQCC.

Quantum Convolution Results

The fidelity of the quantum convolution technique was tested in both a noise-free and
noisy environment against a classical implementation using common (3 x 3) and (5 x 5)
filter kernels. These kernels, as described in (27)—(33), include the Averaging Favg, Gaussian
blur Ky, Sobel edge-detection Fsx/Fsy, and Laplacian of Gaussian blur (Laplacian) F
filters. To enable a quantum implementation of these kernels, a classical preprocessing step
zero-padded each kernel until the dimensions were an integer power of two. As negative
values may occur in classical convolution, the magnitudes of the output values were cast
into a single-byte range [0,255] in a classical postprocessing step.

11111
11111
111 1
1 5x5 _

Bo-lh 11, @ By=s(1 1111 @
9 11111
111

11111
1 4 7 4 1
L2 L4 16 26 16 4
Fiw=1012 4 2|, @9 Bl =257 26 41 26 7| (30)
121 4 16 26 16 4
1 4 7 4 1
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A 1D averaging kernel of sizes (1 x 3) and (1 x 5) was applied to audio files after
preprocessing, described in Section 5.1, with data size ranging from 28 t0 220 data points.
Table 1 presents the reconstructed output data of this operation, with Figure 18 displaying
the associated calculated fidelity.

Fidelity of 1-D Averaging Filter on
1-D Audio Data (Unity Stride, 1,000,000 shots)

100%
90% +
80% +
70% +

2 60% ¢

% 50% +

W 40% +
30% +
20% | —e=Average (3)
10% f| <e=Average (5)

0%

= 2 2 s % i) %
‘%‘ 97 ‘96’ % 9&7 ,‘%’ <) %&

Audio/Data Size (datapoints)

Figure 18. Fidelity of 1D convolution (averaging) filters with unity stride on 1D audio data (sampled
with 1,000,000 shots).

The 2D averaging, Gaussian blur, Sobel edge-detection, and Laplacian kernels were
applied to 2D black-and-white (B/W) and 3D RGB Jayhawk images, see Figure 14, ranging
from (8 x 8) to (512 x 512) pixels and (8 x 8 x 3) pixels to (512 x 512 x 3) pixels, respectively.

The reconstruction from convolution operations in classical, noise-free, and noisy envi-
ronments on (128 x 128)- and (128 x 128 x 3)-pixel input images can be seen in Tables 2 and 3,
respectively.

Finally, a 3D averaging kernel of sizes (3 x 3 x 3) and (5 x 5 x 5) was applied to
hyperspectral images from the KSC dataset [41]. The images were preprocessed and
resized to a power of two, ranging from (8 x 8 x 8) pixels to (128 x 128 x 128) pixels in size.
Table 4 shows the reconstructed output images from convolution operations in classical,
noise-free, and noisy environments.

Table 1. The 1D convolution (averaging) filters applied to 1D audio samples [39].

Data Size (3) Averaging (3) Averaging (5) Averaging (5) Averaging
(No. of Sample Classical/ Noisy Classical/ Noisy
Points) Noise-Free (10° Shots) Noise-Free (10° Shots)

| - (- % | {\M
256 ‘W\«“ J\/LW W\»{‘/\/\M{\/M W\U\/\’\N J N‘J\/\/\N |
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Table 1. Cont.

Data Size (3) Averaging (3) Averaging (5) Averaging (5) Averaging
(No. of Sample Classical/ Noisy Classical/ Noisy
Points) Noise-Free (10° Shots) Noise-Free (10° Shots)

65,536

| J

Table 2. Two-dimensional convolution kernels applied to a (128 x 128) black-and-white (B/W)

image [40].
(3 X 3) Kernel (3 X 3) Kernel (5 X 5) Kernel (5 X 5) Kernel
Kernel Classical/Noise- Noisy Classical/Noise- Noisy
Free (10° Shots) Free (10° Shots)
Average
Gaussian
Sobel-X

Sobel-Y
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Table 2. Cont.

(3 X 3) Kernel (3 X 3) Kernel (5 X 5) Kernel (5 X 5) Kernel
Kernel Classical/Noise- Noisy Classical/Noise- Noisy
Free (10° Shots) Free (10° Shots)

Laplacian

Table 3. Two-dimensional convolution kernels applied to a (128 x 128 x 3) color (RGB) image [40].

(3 X 3) Kernel (3 X 3) Kernel (5 X 5) Kernel (5 X 5) Kernel
Kernel Classical/Noise- Noisy Classical/Noise- Noisy
Free (10° Shots) Free (10° Shots)

Average

Gaussian

Sobel-X

Sobel-Y

Laplacian
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Table 4. The 3D convolution (averaging) filters applied to 3D hyperspectral images (bands 0, 1,

and 2) [41].
Data Size (8 x3x3) (3 x3x3) (5x5Xx5) 5 x5 X 5)
(N, X Averaging Averaging Averaging Averaging
N ;m; ) Classical/ Noisy Classical/ Noisy
cols 7 Thands Noise-Free (10° Shots) Noise-Free (10° Shots)

(8 x 8x8)

(16 x 16 x 16)

(32 x 32 x 32)

(64 x 64 x 64)

(128 x 128 x 128)

Compared with the expected, classically generated results, the noise-free quantum
results tested at 100% fidelity across all trials. Therefore, in a noise-free environment, given
the same inputs, the proposed convolution techniques have no degradation compared with
classical convolution. The fidelity of noisy simulations using 1D audio, 2D B/W, 2D RGB,
and 3D hyperspectral data are presented in Figures 18, 19, 20, and 21, respectively. The
fidelity degradation in these figures is due to the statistical noise where the constant shot
count (number of circuit samples) becomes less and less sufficient to describe the increasing
data size. We could improve this reduction from noise by increasing the number of shots,
but our experiments were limited to 1,000,000 shots in simulation, which is the maximum
number of shots allowed by the simulator.
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Figure 19. Fidelity of 2D convolution filters with unity stride on 2D B/W data (sampled with

1,000,000 shots).
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Figure 20. Fidelity of 2D convolution filters with unity stride on 3D RGB data (sampled with

1,000,000 shots).

Fidelity of 3-D Averaging Filter on Hyperspectral
Images (Unity Stride, 1,000,000 shots)
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Figure 21. Fidelity of 3D convolution (averaging) filters with unity stride on 3D hyperspectral data

(sampled with 1,000,000 shots).
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6. Discussion

In this section, we discuss the results of our experiments with MQCC and compare
them against the other models in terms of the number of required training parameters,
the accuracy of the model, and the circuit depth of the implemented model. The number
of qubits required by MQCC can be easily calculated using (23). The number of qubits
required for data encoding and filter implementation can be obtained from the dimensions
of the data and filter respectively, i.e., n = [log, 128] + [log, 128] + [log, 3] = 16 for
(128 x 128 x 3) data, ny = [log, 4| = 2 qubits for four features. Similarly, the number of
qubits required for feature classes can be calculated as, for example, . = [log, 2| = 1 for
2 classes. All together, for input data encoded into n qubits, the optimized MQCC requires
n+ng+ne =19 qubits.

6.1. Number of Parameters

Among the classical ML models evaluated, MQCC had the fewest trainable parameters;
see Figure 22. This implies potential advantages such as reduced memory usage and faster
performance when using classical gradient descent. Although the reduction in parameter
decreases from (MLP to CNN) and then further from (CNN to MQCC), parameter reduction
diminishes from (MLP to CNN) and further from (CNN to MQCC), and there is still a
significant 83.62% decrease in parameter count.

Number of training parameters for ML models

for tested data sizes
1008

10B MLP

CNN
Quanvolution
QCNN

MQcc

1B

100M

10M

MQCC Optimized
100k
10k
1000
| lnllmil
OIIIII SRR RE

16x16 16%x16x3 28x28 32x32x3
Data Size

Number of training parameters
g

o
o

Figure 22. Number of training parameters for ML models for tested data sizes.

6.2. Loss History and Accuracy

ML-based classifiers aim to maximize the accuracy of their classifications, measured
by a loss function during training to estimate the accuracy that may be exhibited when
deployed. Hence, Figures 23 and 24 depict the performance of the ML models across the
experimental datasets in their plotting of log-loss history and classification accuracy. The
MNIST [42] dataset is not complex enough to effectively distinguish models; however,
differences begin to emerge in the FashionMNIST [43] and CIFAR10 [44] datasets. MLP
consistently achieves the highest accuracy across trials due to its larger parameter count,
allowing for greater flexibility in adapting to nuances in input. The CNN showcases its
ability to select relevant input features using convolution and data locality, demonstrating
the second-highest accuracy. Among the tested models, QCNN generally performs the
poorest, displaying its inability to properly leverage data locality. However, comparing the
accuracy of MQCC and quanvolutional neural networks is inconclusive. Quanvolutional
neural networks performed better on FashionMNIST, whereas MQCC performed better on
CIFAR10.
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Figure 23. Loss history of ML models on various datasets: (a) MNIST (16 x 16); (b) MNIST (28 x 28)
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Accuracy

Classification accuracy of MNIST dataset
with resolution of (16x16) pixels

99%
98%
97%
96%
95%
~&— MLP
94% —%- CNN
~4~ Quanvolution
93% —4— QCNN
—e- Macc
92% ~e— MQCC Optimized
9%
1 2 3 4 5 6 7 8

Figure 24. Cont.

Accuracy

Classification accuracy of MNIST dataset
with resolution of (28x28) pixels

100%
—
99%
98%
97%
96%
95%
~&— MLP
94% —%- CNN
~4~ Quanvolution
93% —4— QCNN
—e- Macc
92% ~e— MQCC Optimized
9%
1 2 3 4 5 6 7 8



Entropy 2024, 26, 461

28 of 38

Classification accuracy of FashionMNIST dataset Classification accuracy of FashionMNIST dataset
with resolution of (16x16) pixels with resolution of (28x28) pixels
100% 100%
oo w—" oe% W
96% 96%
> 9% o 9%
e e
3 92% 3 92%
2 - MLP 2 - MLP
%0% ~#- CNN %0% ~#- CNN
&~ Quanvolution &~ Quanvolution
~&— QCNN ~&— QCNN
aex —e- Macc aex —e- Macc
~&— MQCC Optimized ~&— MQCC Optimized
86% 86%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Epoch Epoch
(9) (d)
Classification accuracy of CIFAR10 dataset Classification accuracy of CIFAR10 dataset
with resolution of (16x16x3) pixels with resolution of (32x32x3) pixels
90% 90%

e

oy oy
8 7o% 8 7o%
3 3
8 8
< <
0% - MLP 0% - MLP
~#- CNN ~#- CNN
4~ Quanvolution 4~ Quanvolution
~#— QCNN ~#— QCNN
50% —e- Macc 50% —e- Macc
~&— MQCC Optimized ~&— MQCC Optimized
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Epoch Epoch
(e) ()

Figure 24. Classification accuracy of ML models on various datasets: (a) MNIST (16 x 16); (b) MNIST
(28 x 28); (c) FashionMNIST (16 x 16); (d) FashionMNIST (28 x 28); (e) CIFAR10 (16 x 16 x 3);
(f) CIFAR10 (32 x 32 x 3).

6.3. Gate Count and Circuit Depth

Although comparing MQCC, MQCC Optimized, and QCNN with quantum metrics
like gate count and circuit depth is viable, see Figure 25, it is challenging to include quan-
volutional neural networks in the comparison due to their significant differences from
the other models. These differences are due to the quantum component within quanvo-
lutional neural networks constituting a small fraction of the entire algorithm, bringing
it closer to a classical algorithm than a quantum algorithm. Meanwhile, comparing the
techniques of MQCC and QCNN in Figure 25 highlights the rationale behind developing
MQCC Optimized. Initially, MQCC performed worse than QCNN in gate count and circuit
depth. However, after optimizations, MQCC matched the performance of QCNN and even
outperformed it in the best-case scenarios. While the QCNN architecture appears more
suitable for shallower quantum circuits than MQCG, it is because the high parallelization
of each QCNN layer halves the active qubits.

Despite QCNN using half the active qubits per layer than MQCC, MQCC utilizes the
extra qubits for weights and features, with each pooling layer reducing the qubit count
by a constant amount, 1. However, as QCNN structures are motivated by the classical
convolution operation, they usually need more complex and deeper “convolution” and
“pooling” ansatz to attain a higher accuracy.
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Figure 25. Gate count and circuit depth of MQCC vs. QCNN: (a) gate count; (b) circuit depth.

6.4. Complexity Comparison with Classical Models

The proposed method can also be compared with the classical models in terms of
temporal complexity. The temporal/depth complexity of MQCC Optimized can be easily
derived using Figures 11 and 12, as well as (24), as shown in (35), where Og,5, and Oy,
are combined to obtain Oyp.

O?\Zécc(nr N, nf/ nC) - Ostride (7’1 - 6/ nk) + OUk (nk/ nf) + OFC(n - AZ/ nC)

(35)
= Oconv(n, n, nf) + Opc(n— M, n¢)

For a MAC-based fully connected layer, we can consider Ugc = Upmac to obtain
the complexity using (13) and (35), as shown in (36). Similarly, for an ansatz-based fully
connected layer, we can consider Upc = Uangat to obtain the complexity using (25) and (35),
as shown in (37).

O?\/I;éCCMAC = O(nknz - n%n + 2”k+nf) —+ (’)(zn‘ﬂ’lc*)\f) (36)
= 0(r?) + 0(2") = O(2") = O(N) = Oc
opt o > 5 e
OMQCCMW = O(mn” —nn 4+ 2" + O(n) -

= O(nz) + O(Tl) = O((logz N)z) ~ Oconv

The general expression for calculating the temporal complexity of classical CNNs is
shown in (38). It can be broadly divided into three parts: the complexity of the convolutional
layers, the complexity of the pooling layers, and the complexity of the fully connected
layers. The complexity of the combined layers of convolution and pooling is primarily
determined by the number of filters, the size of the filters, and the dimensions of the input
feature maps, while the complexity of fully connected layers depends on the number of
neurons in the layers. It is worth mentioning that in classical CNNs, convolutional layers
dominate both the pooling and fully connected layers in the overall execution time, as
expressed by (38).

Classical __ ~
OCI\%\SIIC[Z = Oconv + Opooling + Ofully?connected?layer ~ Oconv (38)

A comparison of the depth/temporal complexity of MQCC Optimized against the
classical method is shown in Table 5. It details the depth complexities of C2Q data encoding
(I/O overhead), two variants of MQCC Optimized, i.e., MAC-based fully connected layer
and ansatz-based fully connected layer, and three variants of classical CNN implementation.
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Among the classical CNN variants, i.e., Direct (CPU), FFT (CPU/GPU), and GEMM (GPU),
we consider the Direct (CPU) case as the worst case and GEMM (GPU) as the best case.
The MQCC-optimized algorithm with a MAC-based fully connected layer matches the
best case. Considering the depth of the I/O circuit, which, in this case, is the depth of the
C2Q method, the overall complexity of MQCC is still better than the worst case in classical
methods. The MQCC-optimized algorithm, with an ansatz-based fully connected layer,
has the least complexity among all the compared models. Although the I/O overhead
represents the worst-case scenario for our proposed technique (see Table 5), the complexity
of our proposed MQCC technique, including the I/O overhead, matches the best case in
classical methods. It is worth emphasizing that the I/O overhead is not intrinsic to our
proposed technique; rather, it is a general consideration for any data-intensive quantum
application like quantum machine learning (QML) classification. Moreover, our proposed
MQCC method provides two additional advantages over classical CNNs, being highly
parallelizable and requiring fewer training parameters, see Figure 22, which ultimately
leads to fewer resource requirements than classical CNNs.

Table 5. Comparison of depth/time complexity of proposed MQCC-optimized against classical CNN.

a Depth complexity of C2Q [12] data encoding (I/O) technique

0,