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Abstract: Convolutional neural networks (CNNs) have proven to be a very efficient class of machine
learning (ML) architectures for handling multidimensional data by maintaining data locality, espe-
cially in the field of computer vision. Data pooling, a major component of CNNs, plays a crucial role
in extracting important features of the input data and downsampling its dimensionality. Multidi-
mensional pooling, however, is not efficiently implemented in existing ML algorithms. In particular,
quantum machine learning (QML) algorithms have a tendency to ignore data locality for higher
dimensions by representing/flattening multidimensional data as simple one-dimensional data. In this
work, we propose using the quantum Haar transform (QHT) and quantum partial measurement for
performing generalized pooling operations on multidimensional data. We present the corresponding
decoherence-optimized quantum circuits for the proposed techniques along with their theoretical
circuit depth analysis. Our experimental work was conducted using multidimensional data, ranging
from 1-D audio data to 2-D image data to 3-D hyperspectral data, to demonstrate the scalability of the
proposed methods. In our experiments, we utilized both noisy and noise-free quantum simulations
on a state-of-the-art quantum simulator from IBM Quantum. We also show the efficiency of our
proposed techniques for multidimensional data by reporting the fidelity of results.

Keywords: quantum computing; convolutional neural networks; quantum machine learning;
pooling layers

1. Introduction

For performing machine learning (ML) tasks on multidimensional data, convolutional
neural networks (CNNs) often outperform other techniques, such as multi-layer percep-
trons (MLPs), with smaller model sizes, shorter training times, and higher accuracies [1,2].
One factor that contributes to the benefits of CNNs is the conservation of spatio—temporal
data locality, allowing them to preserve only relevant data connections and remove extra-
neous ones [1,2]. CNNs are constructed using a sequence of convolution and pooling pairs
followed by a fully connected layer [1]. In the convolution layer, filters are applied to input
data for specific applications, and the pooling layers reduce the spatial dimensions in the
generated feature maps [3]. The reduced spatial dimensions generated from the pooling
layers reduce memory requirements, which is a major concern for resource-constrained
devices [4,5].

Exploiting data locality in pooling could be beneficial in fields such as quantum-to-
classical (Q2C) data decoding [6], audio—visual data compression [7,8], and, in particular,
quantum machine learning (QML) [1]. However, most QML algorithms do not consider the
multidimensionality or data locality of input datasets by converting them into flattened 1-D
arrays [9,10]. Nevertheless, quantum computing has shown great potential to outperform
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traditional, classical computing for specific machine learning tasks [11]. By exploiting
quantum parallelism, superposition, and entanglement, quantum computers can accelerate
certain computation tasks with exponential speedups. However, in the current era of noisy
intermediate-scale quantum (NISQ) devices, the implementation of quantum algorithms is
constrained by the number of quantum bits (qubits) and fidelity of quantum gates [12]. For
contemporary QML techniques, this problem is addressed by a hybrid approach where
only the highly parallel and computationally intensive part of the algorithm is executed in
quantum hardware, and the remaining parts are executed using classical computers [13].
Such methods, known as variational quantum algorithms (VQAs), exploit a fixed quantum
circuit structure with parameterized rotation gates, denoted as ansatz, whose parameters
are optimized using classical backpropagation techniques such as gradient descent [13].

In this work, we propose two generalized techniques for efficient pooling operations
in QML, namely, the quantum Haar transform (QHT) for quantum average pooling and
partial quantum measurements for two-norm/Euclidean pooling.

We characterize their fidelity to the corresponding classical pooling operations using a
state-of-the-art quantum simulator from IBM Quantum for a wide variety of real-world,
high-resolution, multidimensional data.

The rest of the paper is organized as follows. Section 2 covers necessary background
information, including various quantum operations. Section 3 discusses existing related
work. Section 4 introduces our proposed methodology, with great detail given to the
constituent parts along with spatial complexity (depth) analysis of the corresponding
circuits. Section 5 presents our experimental results, with an explanation of our verification
metrics. Finally, Section 6 concludes our work and projects potential future directions.

2. Background

In this section, we provide information about quantum computing (QC), which is
essential for understanding the proposed quantum pooling techniques.

2.1. Quantum Bits and States

A quantum bit (qubit) is the most fundamental unit of quantum information. Qubits
can be physically realized with a number of hardware technologies, such as photonic chips
and superconducting circuits [14]. Mathematically, the quantum wave function or the
pure state of a qubit can be represented by a normalized state vector |¢p), in Dirac (Bra-Ket)
notation [14], with N = 2! elements (1).

C
[$) = co[0) +c1]1) = m where |co|* 4 |c1* = 1 1)

For an n-qubit state, the state vector |¢) grows to a length of N = 2". As shown in (2),
each element ¢; € C of ) represents the amplitude/coefficient of j entry in [¢), or the
basis state |j) [14].

e ]
C1
N-1 : N-1
[p) = Zc]-~|j): ¢j |, where Z|cj|2:1,and0§j<(N:2”) ()
=0 . =0
CN-—2
_CN_l_

2.2. Quantum Gates

Operations on qubits are called quantum gates and can be represented mathematically
by unitary matrix operations. Serial and parallel composite operations can be constructed
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using matrix multiplications and tensor products, respectively [14,15]. In this section, we
will present a number of relevant single- and multi-qubit gates for the proposed quantum
pooling techniques.

2.2.1. Hadamard Gate

The Hadamard gate is a single-qubit gate that puts a qubit into superposition; see (3)
and Figure 1 [14].

1 (1 1
H-Gh v

+

Figure 1. Hadamard gate diagram.

Parallel quantum operations acting on a different set of qubits can be combined
using the tensor product [15]. For example, parallel single-qubit Hadamard gates can be
represented by a unitary matrix, where each term in the resultant matrix can be directly
calculated using the Walsh function [16]; see (4).

1

H®" e su(2") : (H®") :ﬁWm(i),where
W) : N = {-1,1} = TT(~1) ([E15]), and @)
k=0

0< (m,i) < 2"

2.2.2. Controlled-NOT (CNOT) Gate

The controlled-NOT, or CNOT, gate is a two-qubit gate, see (5) and Figure 2, that
facilitates multi-qubit entanglement [17]. In this work, we will provide a complexity (depth)
analysis of the proposed circuits in terms of the critical path of consecutive single-qubit
gates and two-qubit CNOT gates [17].

100 0
0100

CNOT_0001 ()
0010

Figure 2. Controlled-NOT gate diagram.

2.2.3. SWAP Gate

The SWAP gate is a two-qubit gate that swaps the positions of the input qubits [14].
Each SWAP operation can be decomposed into three controlled-NOT (CNOT) gates [14], as
shown in (6) and Figure 3.

SWAP = (6)

o O O
o= OO
o O = O
— O O O
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Figure 3. Diagram of swap gate and its decomposition.

2.2.4. Quantum Perfect Shuffle Permutation (PSP)

The quantum perfect shuffle permutation (PSP) is an operation that leverages SWAP
gates to perform a cyclical rotation of the input qubits. The quantum PSP rotate-left (RoL)
and rotate-right (RoR) operations [6] are shown in Figure 4. Each PSP operation requires
(n — 1) SWAP operations or, equivalently, 3(n — 1) CNOT operations; see (6) and Figure 4.

In-1 In-1 I In-l — In-1 I
In-2 qn—2 I n2 — 1 qn-2 :[
qn-3 qn-3 T o3 —— n-3 T

92 92 :|/ Q@ — 92

Q qQ I L — Q1 I

0 2 90 I L]
(@) RoL|gn—19n—2---q0) = [qn-2---q09n-1)  (b)RoR|gy_1...q190) = [q0qn—1---q1)

Figure 4. Rotate-left and rotate-right operations.

2.2.5. Quantum Measurement

Although colloquially denoted as a measurement “gate”, the measurement or obser-
vation of a qubit is an irreversible non-unitary operation that projects a qubit’s quantum
state |i) to one of its |0) or |1) basis states [14]. The probability of either basis state being
measured is directly determined by the square of the magnitude of each corresponding
basis state coefficient, i.e., pg = |co|> and p; = |c1/|?; see (7) [6]. Here, we use the vector
lpfllea‘fgicfg}l_ data- tO Tefer to the measured/decoded output classical data, assuming amplitude
encoding [18], resulting from the measurement of the quantum state |¢); see (8). We also
adhere to the Dirac (Bra-Ket) notation [14] to only represent quantum states and wave
functions, e.g., |). More specifically, lpéfgsg:é_ data’ without using the Dirac (Bra-Ket) nota-
tion, is a vector that represents the decoded/extracted classical data after measurement, as
denoted in Figure 5 by the double-line rail carrying classical bit values [14], rather than a
quantum state or a quantum wave function. It is also worth mentioning that |¢) is assumed

to be a pure state, as defined by (2) and (9) [14].

P(p)) = [’”0] = ['Cﬂ ”

p1 lc1)?

PG data = / P([¥) = HE?H o

|1/)> A — dciliizsafiic:cloded

Figure 5. Single-qubit measurement diagram.

In general, an n-qubit quantum state |¢) has 2" possible basis states/measurement
outcomes, as shown in (9).



Algorithms 2024, 17, 82 50f 26

o
1

l$) = | ¢j |, where0 <j<N,and N =2" C)

c

[Cn-1]

N-2

Accordingly, given the full measurement of a quantum state vector, the probability of
finding the qubits in any particular state |j), where 0 < j < 2", is given by ]c]- }2 [6]. The
overall probability distribution P(|i)) can thus be expressed according to (10). Similar to
single qubit measurement, the amplitude-encoded [18] output classical data lpflleacsgilc:cll- data
resulting from the measurement of the n-qubit quantum state |i) can be calculated from
the square root of the probability distribution \/P(|¢)), as shown in (11) and Figure 6. Ad-
ditionally, |¢) is assumed to be a pure state [14]. Furthermore, when the encoded classical
data are positive real, the amplitudes/coefficients of the corresponding quantum state are

accordingly positive real, i.e., cj € Z, where 0 < j < 2", This results in the amplitudes of |)

being numerically equal in values to the coefficients of wglé‘csgif:é_ datar 1-€ [§) = lpélg‘jg(if:é_ data-

In other words, the quantum state |¢) can be completely determined from the measure-
ment probability distribution such that |¢) = \/P(|¢)) only when the amplitudes of the
quantum state are all of positive real values. It is also worth mentioning that, in order
to reconstruct the probability distribution P(|¢)), it is necessary to repeatedly measure
(sample) the quantum state |i) to the order of 2" measurements (samples) where # is the
number of qubits. Experimentally, the number of repeated measurements (samples) used
for reconstructing the probability distribution P(|¢)), and, consequently, to decode/extract
the amplitude-encoded classical data waleasggjé data- 18 usually referred to as the quantum
circuit samples or shots [19]. It is recommended to repeat as many measurements and
collect as many quantum circuit samples (shots) as possible to minimize the effects of
quantum statistical noise [19]. In our experimental work, we used up to 1,000,000 circuit
samples/shots to decode/extract the output classical data; see Section 5 for more details.

[ po i [ ‘COE 1
p1 e
P(|lp)) = p.j = |c]-|2 , where p; = ‘c]- 2 and 0 < i< (N=2" (10
Pn-a ‘cNlez
Pyl ey [P
[ Jeo| ]
|c1
P data = VPP = | el (11)
‘CN—2’
_|CN—1’_

lassical
|1/"> A - "pdcaztl:?lcfecoded

n

Figure 6. Multi-qubit measurement diagram.
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3. Related Work

Convolutional neural networks (CNNs) [20] represent a specialized type of neural net-
work that consists of convolutional layers, pooling layers, and fully connected layers. The
convolutional layer extracts characteristic features from an image, while the pooling layer
down-scales the extracted features to a smaller data size by considering specific segments of
data, often referred to as “windows” [1,20]. Pooling also enhances the network’s robustness
to input translations and helps prevent overfitting [1]. For classical implementations on
GPUgs, pooling is usually limited to 3-D data [21,22], with a time complexity of O(N) [23],
where N is the data size.

Quantum convolutional neural networks (QCNNSs), as proposed by [10], explored
the feasibility of extending the primary features and structures of conventional CNNs
to quantum computers. However, translating the entire CNN model onto the presently
available noisy intermediate-scale quantum (NISQ) devices is not practical due to limited
qubit count [18], low decoherence time [24], and high gate errors [25]. To attain quantum
advantage amid the constraints of NISQ devices, it is essential to develop depth-optimized
convolution and pooling circuits that generate high-fidelity outputs. Most implementations
of quantum pooling [9,12,26-28] leverage parameterized quantum circuits (PQCs) and mid-
circuit measurement as originally proposed in Ref. [10]. These techniques, however, do not
perform the classical pooling operation as used in CNNs and thus do not gain the associated
benefits from exploiting data locality. Moreover, PQC-based implementations of pooling
increase the number of training parameters, which makes the classical optimization step
more computationally intensive. The authors in Ref. [29] implemented quantum pooling by
omitting measurement gates on a subset of qubits. However, the authors do not generalize
their technique for varying window sizes, levels of decomposition, or data dimensions.

In this work, we propose a quantum average pooling technique based on the quantum
Haar transform (QHT) [25] and a quantum Euclidean pooling technique utilizing partial
measurement of quantum circuits. These techniques are generalizable for arbitrary window
size and arbitrary data dimension. We have also provided the generalizable circuits for
both techniques. The proposed methods have been validated with respect to their classical-
implementation counterparts, and the quality of their results has been demonstrated by
reporting the metric of quantum fidelity.

4. Materials and Methods

In this section, we discuss the proposed quantum pooling methods. Pooling, or
downsampling, is a critical component of CNNs that consolidates similar features into
one [2]. The most commonly used pooling schemes are average and maximum (max)
pooling [30], where the two differ in terms of the sharpness of the defined input features.
Max pooling typically offers a sharper definition of input features while average pooling
offers a smoother definition of input features [30]. Depending on the desired application or
dataset, one pooling technique may be preferable over the other [30].

Average and max pooling can be represented as special cases of calculating the p-norm
or £F norm [31], where the p-norm of a vector x € CN of size N elements is given by (12) for
p € Z[31]. More specifically, average and max pooling can be defined as the 1-norm and co-
norm, respectively; see (13) and (14). Since max pooling (p = o) is difficult to implement as
a quantum (unitary) operation, a pooling scheme defined by the p-norm where 1 < p < co
could establish a balance between the average and max pooling schemes. Therefore, we
introduce an intermediate pooling technique based on the 2-norm/Euclidean norm named
as the quantum Euclidean pooling technique; see (15). The proposed Euclidean pooling
technique is limited to processing positive real data and is only compatible with the 2-norm,
as norms for p > 2 suffer from some similar challenges to max pooling in terms of being
non-unitary and thus unwieldy to implement in a quantum context.

No1 O\ b
x|l = (Z x?’) (12)
i=0
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x= Il 13)
max (x) = ||X|| (14)

1

e(x) 7 X2 (15)

In this work, we propose quantum pooling techniques for average pooling (p = 1)
and Euclidean pooling (p = 2). We implement average pooling using the QHT, a highly
parallelizable quantum algorithm for performing multilevel decomposition/reduction
in multidimensional data. For the implementation of Euclidean pooling, we employ
partial measurement to perform dimension reduction with zero circuit depth. The average
and Euclidean pooling techniques are described in greater detail in Sections 4.1 and 4.2,
respectively. As detailed further in Section 5, we validated our proposed quantum pooling
techniques using 1-D audio data [32], 2-D black-and-white (B/W) images [33], 3-D color
(RGB) images [33], and 3-D hyperspectral images [34].

4.1. Quantum Average Pooling via Quantum Haar Transform

Our first proposed quantum pooling technique implements average pooling on quan-
tum devices using the quantum wavelet transform (QWT). A wavelet transform decom-
poses the input data into low- and high-frequency components, where in the case of
pooling, the low-frequency components represent the desired downsampled data [6]. For
our proposed technique, we leverage the quantum variant of the first and simplest wavelet
transform, the quantum Haar transform (QHT) [6]. The execution of the pooling operation
using the QHT involves two main steps:

¢ Haar Wavelet Operation: By applying Hadamard (H) gates (see Section 2.2.1) in paral-
lel, the high- and low-frequency components are decomposed from the input data.

e Data Rearrangement: By applying quantum rotate-right (RoR) operations (see
Section 2.2.4), the high- and low-frequency components are grouped into contigu-
ous regions.

We outline (in order) the following sections as follows, the quantum circuits and
corresponding circuit depths of a single-level decomposition, the 1-D QHT, the ¢-level 1-D
QHT, and the ¢-level d-D QHT, respectively, where / is the number of decomposition levels
and d is the dimensionality of the QHT operation.

4.1.1. Single-Level One-Dimensional Quantum Haar Transform

For the single-level one-dimensional (1-D) QHT, we will assume a 1-D input data of
size N data points. The aforementioned data would be encoded into the quantum circuit
using amplitude encoding [18] as an n-qubit quantum state |¢p), where n = [log, N1.

The quantum circuit for single-level decomposition of the 1-D QHT is shown in
Figure 7, where |{p) represents the quantum state after the wavelet operation and |(out)
represents the quantum state after data rearrangement.
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In-1 A 7
>_ |"/’out>
q1
90 H ~
|Ym)

Figure 7. Single-level 1-D QHT circuit.

Haar Wavelet Operation on Single-Level One-Dimensional Data

The Haar wavelet is performed using the H gate; see Figure 7. For example, a single-
level decomposition of the 1-D QHT can be performed on a state vector |¢) as described
by (2) by applying a single H gate to the least-significant qubit of |i), designated go in
Figure 7. This operation replaces the data value of the pairs (Czj, Cy) 1) 0<j< % with
their sum and difference, as shown in (16). It is worth mentioning that the sum terms
represent the low-frequency terms and the difference terms represent the high-frequency
terms for a single level of decomposition.

co +C1
co—~C1

] 1 ¢, +ec,. N
) = (I*""'oH = —| ¥ ¥ | where0<j< — (16)
) = ( Jlv) =5 o <5

Cnyo2 Ty

[Cn2 — €

N-14

Data Rearrangement Operation

The data rearrangement operation congregates the low- or high-frequency fragmented
terms after decomposition. For instance, the low- and high-frequency terms are segregated
after wavelet decomposition, as expressed in (16). The low- and high-frequency terms exist
at the even indices (|g,—1...41)|q0 = 0)) and odd indices (|g,—1...q1)|q0 = 1)), respec-
tively. Ideally, the state vector is formed in a way such that the low-frequency terms should
be merged into a contiguous half of the overall state vector (|go = 0)|g,—1...41)), while
the rest of the state vector consists of the high-frequency terms (|g0 = 1)|g,—1--.41))- This
data rearrangement operation can be performed using the qubit rotation |g;,,—1 ... q140) =
|909n—1 - - . g1) using a RoR operation; see Figure 7 and (17).

co + C1

n—1
Coi T Coq 2

|pout) = rotate-right (RoR)|ypy) = L jenatons

N
", wh <j<—= @17
VAR 2", w ereO_]<2 (17)

_ n—1
2j C2j+l 2

LCn—2 — Cn1d
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Circuit Depth

The depth of the single-level 1-D QHT operation can be considered in terms of 1 H
gate and 1 perfect-shuffle (RoR) gate. An RoR gate can be decomposed into (1 — 1) SWAP
gates or 3(n — 1) controlled-NOT (CNOT) gates. Accordingly, the total circuit depth can be
expressed in terms of the number of consecutive single-qubit and CNOT gates, as shown
in (18).

Al_DQHT(Vl,E = 1) = AH + AROR(VI) =1+ 3(1’[ — 1) =3n—-2
(18)
=O(n)

In many common quantum computing libraries, including Qiskit [19], it is possible
to leverage arbitrary mapping of quantum registers to classical registers [35] to perform
data rearrangement during quantum-to-classical (Q2C) data decoding without increasing
circuit depth. Accordingly, the circuit depth of the optimized single-level 1-D QHT circuit
can be expressed as shown in (19).

AT orr(m 0 =1) = Ay =1

19
o) (19)

4.1.2. Multilevel One-Dimensional Quantum Haar Transform

In this section, we discuss how multiple levels (¢) of decomposition can be applied to
further reduce the final data size. Given the initial data are set up in the same manner as in

N
o
quantum circuit for the multilevel 1-D QHT is shown in Figure 8. For the interested reader,
more details about the multilevel 1-D QHT can be found in [6].

the single-level variant, the final data size can be expressed as [ w . The corresponding

Gn-1 ; A A I
qn—¢—1
>_|'¢’tmt>
q-1— H
g — H - -
)

Figure 8. Multilevel One-dimensional (1-D) QHT circuit.

Haar Wavelet Operation on Multilevel One-Dimensional Data

To perform multiple levels of decomposition, additional Hadamard gates are applied
on the ¢ least-significant qubits of |¢), as shown in Figure 8. The multilevel 1-D wavelet
operation divides |) into 2" ¢ groups of 2¢ terms and replaces them with the appropriately
decomposed values according to the Walsh function [16]; see (20).
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o)

1 .
Ulinaly) = (1" B )ly) = = | [¢5) |, where

|[Pon-t_1)
[ o Woli)e,., ]
i=0 ' lj+ (20)
0—10-1 ‘ o . : .
|¢]> = 20 ;)Wm(l)cemw] +i) = | L Wm(l)cé;‘+i ,
m=0 i= .

_Zf;(} Wi1 (i)cmz‘_

0<j< {%W and W, (i) = ﬁ(_l)(UJMJ)

Data Rearrangement Operation

Multiple levels of 1-D decomposition can be implemented using ¢ serialized RoR oper-
ations; see (21) and Figure 8. However, parallelization of the data rearrangement operation
across multiple levels of decomposition can be achieved by overlapping/interleaving the
RoR operations into SWAP gates and fundamental two-qubit gates.

0

Ul}é}ajrrar\gement = H ROR(”) (1)
j==1

Circuit Depth

The inherent parallelizability of the wavelet and data rearrangement steps of the QHT
can be used to reduce the circuit depth. In the wavelet step, all £ levels of decomposition
can be performed by ¢ parallel Hadamard gates (H @), In the data rearrangement step,
the decomposition and interleaving of RoR operations can be used to reduce the depth
penalty incurred by multilevel decomposition to just 2 SWAP gates, or 6 CNOT gates, per
decomposition level; see (22).

A1pour(n, f) = Au + Aror (1) +3(2(€ — 1))
=1+3(n—1)+3(2(0—1)) = 3(n +20) — 8 (22)
=0mn+1)

Additionally, if the deferral of data rearrangement is permitted, the circuit depth of
the multilevel 1-D QHT can be shown to be constant (requiring just 1 Hadamard gate of
depth); see (23).

ATS our(0) =AM =1

23
_oq) (23)

4.1.3. Multilevel Multidimensional Quantum Haar Transform

For the multidimensional QHT, we can assume the input data are d-dimensional,
where each dimension has a data size of N; : 0 < i < d for a total data size of N = H;tol N;.
We can denote the largest dimension of data as Npmax = max?;o1 N;, where it is encoded
by nmax qubits. Similarly, the smallest dimension of data is denoted as Nyjn = min?;ol n;
and is encoded by 7,y qubits. Similar to the 1-D case, the data are encoded as an n-qubit
quantum state |¢f), such that each dimension i of data requires n; = [log, N;] qubits and ¢;

decomposition levels. It is worth mentioning that the total number of required qubits is

n=y%1y qubits and the final size of each data dimension i is Nt
i=0 2[!
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Based on the nature of the encoding scheme (amplitude encoding) and quantum
circuit structures, the multidimensional QHT can be performed by parallel application of
d 1-D QHT circuits. Thus, the transformation of each data dimension can be performed
independently of the other data dimensions. More specifically, using a column-major
vectorization of the multidimensional data, the it dimension of the data is represented by
the contiguous region of qubits qu-;(l) " to I8 g1 In other words, the multidimensional

d-D QHT can be performed by stacking d 1-D QHT circuits in parallel, each of which
performs the transformation on the respective contiguous region/data dimension, as shown

in Figure 9. For the interested reader, more details about the multilevel multidimensional
(d-D) QHT can be found in [6].

Haar Wavelet Operation on Multidimensional Data

Exploiting the parallelization offered by stacking, the multilevel 4-D QHT wavelet
operation can also be performed with constant circuit depth; see (24) and Figure 9.

0
Ui = & (1°" " @ H") (24)
i=d—1

Data Rearrangement Operation

The multilevel d-D QHT data rearrangement operation is given by (25) and shown in
Figure 9.

0 0
-
Ureelljrrangement = ® H ROR(ni) (25)
i=d—1j=t;i—1

Circuit Depth

Since the multidimensional QHT can be parallelized across dimensions, the circuit
depth is determined by the dimension with the largest total data size and number of
decomposition levels, as shown in (26).

i1
Agp qur (1, €) = max(Ay + Aror (1) +3(2(¢: — 1))

=14 3(tmax — 1) +32(fmax — 1)) = 3(imax + 20max) — 8 20)

= O(”max + gmax)

If data rearrangement can be performed in the classical post-processing of Q2C data
decoding, as discussed in Section 4.1.1, the wavelet operation is completely parallelized
for the multilevel multidimensional QHT, resulting in an optimal, constant circuit depth;
see (27).

d—1
8D qrr = max(Ay) = 1 -
=0()
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qn—-1

An—ty_1-1

q2d72 nj+Lly_1—-1

j=0

qzdfz

j=0"j

q2§:0 nj—1

qz§=0 nj—£;—1

Iyizin+t-1

i-1
qz}:o nj

qng—1

qng—Lo—1

qrp—1

q0

Dimension (d-1)

Dimension i

B
i

Dimension 0

@
=

}—nd—l

-

Figure 9. Multilevel Multidimensional (d-D) QHT circuit.
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4.2. Quantum Euclidean Pooling Using Partial Measurement

Our second proposed quantum pooling technique applies the 2-norm or Euclidean
norm over a given window of positive real data. We implement the proposed Euclidean
pooling technique using partial quantum measurement, which can be expressed mathemat-
ically either using conditional probabilities or partial traces of the density operator/ma-
trix [14,15].

As discussed in Section 2.2.5 and expressed in (10), full measurement of an n-qubit
quantum state has 2" possible outcomes, one for each basis state, where the probability of
each outcome can be derived from the corresponding state vector |i). A subset of m qubits
would only have 2" possible outcomes, where m < n. Thus, the probability distribution
of the partial measurement can be derived from the probability distribution of the full
measurement using conditional probability, where each qubit of the unmeasured qubits
could arbitrarily be in either a |0) or |1) state [6]. For example, if the least-significant
qubit qg is excluded from the measurements of the quantum state [¢), the conditional
probability distribution P(|¢)|qo) for the partial measurements can be derived as shown
in (28). Accordingly, the decoded output classical data wélg‘csgff:é_data resulting from the
partial measurement of the n-qubit quantum state |¢) can be experimentally calculated
from the square root of the conditional probability distribution \/P(|#) | go), as shown
in (11). Here, we would like to mention, as discussed in Section 2.2.5, that the quantum state
|p) is assumed to be a pure state [14], amplitude encoding [18] is used, and the encoded
classical data are of positive real values; please refer to Section 2.2.5 for more details.

P([$) [ q0) = P(I¢) [ g0 = Oorgo = 1) = P(|) | q0 = 0) + P(|) [ q0 = 1)

[ Poige 1 [ oo+ aaf?
. 2 ' 2
= Pilqo = ’Czj‘ +|02]~+1| , where 28)
—p%*l‘qo— -’CN—2|2 + ’CN—1|2—

2, and 0 S ] < <§ = 2(“*1))

P(1g) =J 1 40) = pjigy =

In general, the probability distribution P(|¢) | gs_1, -+ ,4o) of a partial measurement
of the most significant (n — ¢) qubits out of n qubits, where ¢ is the number of unmeasured
least significant qubits, can be derived from the diagonal elements of the reduced density
operator/matrix p(,_ (partial trace of the density operator/matrix p,) [14,15]. More
specifically, P(|$) | q¢—1,- -+ ,qo) can be calculated using the partial trace, as shown in
(29)-(32).

(2"-1) (2"-1) (2"-1) (2"-1)
on = [P)¢| = ( )y Ci|i>)( )y C}‘<J’) = Zé Z;) (ci - cj)IiNj
i= j=

i=0 j=0
RGECEY _@one-y (29)

Z ZPnll Z Z (ilouli))1iN]

where Pn(l/]) = (ilpnlj) =ci- ¢}
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O(n—0) = (g1, g0) (Pn)

P([$) | 01,

(2 0-1) (2" 1 -1) (2 0-1) (2" -1)

= L L oG- XX ({Glow—e) 1)) X1
- 5 L

- )<z<" 0-1) @)

= y gpn(rzuk,fzuk)lo(jl

i=0 j=0
~0-1) (20-0-1) (2'=1)

- ¥ 2 2<z.zf+k

0
() —

On

j2" k)i

NII

(2= ><2<" O-1) (2!-1)

= 2 Z 2 ¢ (i-20+k) ]2/+k)| ><]|

i=0
(2/-1)
where p(,_1) (i, ) = (ilo(n-1)lj) = Z on(i-2" +kj-2 +k) and

on(i-20+kj-20 +k) = <i 20 k‘Pn‘] 2! +k> = Cial4k) 'Cz}.zuk)

@0-0-1) (2001
A= X gl = L (llewli) 1)
j=0 j=0

(20-1) (2’1

- ¥ Z (j-2'+k
]‘_ S—

(2(1=0 1) (2f-1)

= 2% 2: Catak) (ot )
j=

Pn

j-2" +K)lj)

o(n—t) _ 1)2[1

P9) | qe1, -+ q0) = Z L jarsn| 1)

(30)

(31)
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P(l¢) | ge-1,--+ ,q0) = Pjl (qe-1,--0) = <j|P(n_e) 17

POl (@r1re) | [ (Olo(n—e)|0)

-p(z("%—l).| (9e-1,--40) ] _<2<n7€) - 1‘P(n;/z) )2<"4’) - 1>_

_ 1) -
L (klpnlk)
k=0
2-1)
= ) <j-zf+kpnj-2f+k>
k=0
(32)
@'-1)
3 <2"—2f+k 0|27 —2”+k>
L k=0 |
o @-1 1
E el
k=0
-1 2 - i
= P(|¢) | g0-1,--- ,90) = IEO ‘C(j-zhrk)‘ 200 where 0 < j < 2070
(2'-1) 2
2 fo-eo,

4.2.1. Single-Level One-Dimensional Quantum Euclidean Pooling

For single-level one-dimensional Euclidean pooling, we will assume the input data x is
1-D with a data size of N, in terms of the number of data points. The input data are encoded
using amplitude encoding [18] as an n-qubit quantum state |¢p), where n = [log, N1.

lassical
Paecoded-data = \/ P([¥) | 90)
Vel + et
: (33)
= ¢ : + [Cy 2 21 where 0 < j< on-1
2 2
L |62”72| + C2n71| d

After applying one level of 1-D Euclidean pooling to the positive real quantum state
|), the resultant classical state wélé"csng:é_ data €@N be expressed as shown in (33) as derived
from (32) when ¢ = 1. As discussed previously, it is possible to extract this partial quantum

p Y 1% P q
state using partial measurement, as shown in (28), as long as the quantum state encodes
positive real data; see Section 2.2.5. The corresponding quantum circuit for the single-level

1-D Euclidean pooling operation is presented in Figure 10.
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H lassical
: decnda-data= VP (1¥)90)

) N

QO ——————————

Figure 10. Single-level 1-D Euclidean pooling circuit.

4.2.2. Multilevel One-Dimensional Quantum Euclidean Pooling

In multilevel 1-D decomposition on positive real data, as shown in Figure 11, the
Euclidean norm (2-norm) of |i) is taken with a window of 2!, where the number of
decomposition levels is /; see (34) and Figure 11.

f an-1

: H lassical
] | geacssficead—data: P (|¢>|‘N—17 cee 7‘10)
qe

qe-1

L

Figure 11. Multilevel 1-D Euclidean pooling circuit.

lassical
PR e = /PUW) [ 91, 40)
Z%:()l |Ck|

‘2 (34)

= Zii_ol ‘C(Zi,]‘+k) 2(1=0) \where 0 < j< 2(n=0)

201 2
_\/Zk:() ‘C(2”72Z+k)‘

The change in normalization for 1-D pooling can be generalized with the correspond-
ing increase in window size for the Euclidean norm, to ﬁ, as shown in (35).

1 lassical
Xout = —F—= wc - (35)
\/? decoded-data

4.2.3. Multilevel Multidimensional Quantum Euclidean Pooling

The multilevel d-dimensional quantum Euclidean pooling circuit is illustrated in
Figure 12, where /¢; is the number of decomposition levels for dimension i and 0 < i < d.
Similar to the multilevel multidimensional QHT circuit discussed in Section 4.1.3, par-
allelization can be also applied to Euclidean pooling across dimensions using a stacked
quantum circuit.
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Figure 12. Multilevel decomposition d-dimensional Euclidean pooling circuit.

5. Experimental Work

Dimension (d — 1)

A

A

Dimension 2

A

= Nd-1

A

Dimension 0

A

A

—J

In this section, we discuss our experimental setup and results. Experiments were
conducted using real-world, high-resolution data, using both the quantum average and
Euclidean pooling techniques. Section 5.1 delves into further detail on the experimental

setup while Section 5.2 analyzes the obtained results.

5.1. Experimental Setup

The efficacy of the two proposed pooling methods was examined through tests using
real-world, high-resolution data of varying dimensions and data sizes. One-dimensional
pooling was performed on selected publicly available sound quality assessment material
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published by the European Broadcasting Union, which was pre-processed into a single
channel with data sizes ranging from 2% data points to 2% data points when sampled at
44.1 kHz [32]. Two-dimensional pooling was evaluated on black-and-white (B/W) and
color (RGB) images of Jayhawks [33], as shown in Figure 13, sized from (8 x 8) pixels to
(512 x 512 x 3) pixels. Additionally, 3-D pooling was performed on hyperspectral images
from the Kennedy Space Center (KSC) dataset (see [34]) after pre-processing and resizing,
with sizes ranging from (8 x 8 x 8) pixels to (128 x 128 x 128) pixels.

(b) ()

Figure 13. Real-world, high-resolution, multidimensional input data used in experimental trials:
(a) 2-D B/W image [33], (b) 3-D RGB image [33], and (c) 3-D hyperspectral image [34].

To validate the accuracy of the proposed pooling techniques, fidelity was measured
over multiple levels of decomposition. The metric of data fidelity (see (36)) is used to
measure the similarity of the quantum-pooled data X compared to the classically pooled
data Y [36]. As expressed during testing, pooling was performed on all tested dimensions
until one dimension could not be further decomposed. For example, for a hyperspectral
image of (128 x 128 x 128) pixels, £ was varied from 1 to [log, min(128,128,128)] = 7,
ie., ¢ =1,2,3,4,56, and 7.

Classical average and Euclidean pooling were performed using the PyWavelets li-
brary [37]. Using the Qiskit SDK (v0.45.0) from IBM Quantum [19], simulations were
run with the quantum average and Euclidean pooling circuits over the given data in both
noise-free and noisy (with 32,000 and 1,000,000 circuit samples/shots) environments to
display the effect of quantum statistical noise on the fidelity of the results. The experiments
were performed at the University of Kansas on a computer cluster node [38] populated
with a 48-Core Intel Xeon Gold 6342 CPU, 3xNVIDIA A100 80 GB GPUs (CUDA version
11.7), 256 GB of 3200 MHz DDR4 RAM, and PCle 4.0 connectivity.

X,Y)

(36)

5.2. Results and Analysis

Across all our experiments, the noise-free quantum results showed 100% fidelity
compared to the corresponding classical results, validating the correctness and theoretical
soundness of our proposed quantum average and Euclidean pooling methods. However,
for practical quantum environments, we observe measurement and statistical errors that
are intrinsic to noisy quantum hardware, which results in a decrease in fidelity. Sample
average and Euclidean pooling results are presented in Tables 1-4 for 1-D audio data, 2-D
B/W images, 3-D RGB images, and 3-D hyperspectral images, respectively, for noisy trials
of 32,000 and 1,000,000 circuit samples (shots).
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Table 1. Noisy simulation outputs for 1-D average and Euclidean pooling on audio (1-D) data [32]
with 1,048,576 audio samples.

Levels of Average Pooling Average Pooling Euclidean Pooling Euclidean Pooling
Decomposition (32,000 Shots) (1,000,000 Shots) (32,000 Shots) (1,000,000 Shots)
‘ :
| ;
‘ i ‘
2 Levels
4 Levels
8 Levels
Table 2. Noisy simulation outputs for 2-D average and Euclidean pooling on B/W (2-D) data of size
(512 x 512) pixels.
Levels of Average Pooling Average Pooling Euclidean Pooling Euclidean Pooling
Decomposition (32,000 Shots) (1,000,000 Shots) (32,000 Shots) (1,000,000 Shots)
1 Level
2 Levels
4 Levels

8 Levels
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Table 3. Noisy simulation outputs for 2-D average and Euclidean pooling on RGB (3-D) data of size
(512 x 512 x 3) pixels.

Levels of Average Pooling Average Pooling Euclidean Pooling Euclidean Pooling
Decomposition (32,000 Shots) (1,000,000 Shots) (32,000 Shots) (1,000,000 Shots)
1 Level
2 Levels
4 Levels
8 Levels
Table 4. Noisy simulation outputs for 3-D average and Euclidean pooling on hyperspectral (3-D)
data of size (128 x 128 x 128) pixels.
Levels of Average Pooling Average Pooling Euclidean Pooling Euclidean Pooling
Decomposition (32,000 Shots) (1,000,000 Shots) (32,000 Shots) (1,000,000 Shots)
1 Level
2 Levels
4 Levels
7 Levels

The presented results in Figures 14-21 report the fidelity of the quantum-pooled data
using our proposed quantum average and quantum Euclidean pooling techniques with
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respect to the corresponding classically pooled data in terms of the data size indicated by the
number of required qubits n for different levels of decomposition ¢. The one-dimensional
audio data results are shown in Figures 14 and 18 for 32,000 and 1,000,000 shots, respectively,
while results for the 2-D B/W images are shown in Figures 15 and 19. In a similar fashion,
results for the 3-D RGB images are shown in Figures 16 and 20, and, finally, results for the

3-D hyperspectral data are shown in Figures 17 and 21, all for 32,000 and 1,000,000 shots,
respectively.

:i::::: —o— 1-level —o—2-level
o 3-level —o—4-level

e T e N\
—o—10level —o—9level  —o—10-evel
—e—12-level —o—11-level —o—12-level
—o—14-level —o—13-level —o—14-level
—e— 16-level —o—15-level —o— 16-level
o 18-level —e—17-level —o—18-level
= 20-level —o—19-level — = 20-level

(a) Average Pooling (b) Euclidean Pooling

Figure 14. Fidelity of 1-D pooling on 1-D audio data (32,000 shots).

—eo—1-level —e—2-level —o—3-level

—o—1-level —@—2-level —o—3-level
—e—4-level —o—5-level —e—6-level

—o—7-level —e—8-level — —9-level

—e—7-level —@—8-level — —O-level

(a) Average Pooling (b) Euclidean Pooling

Figure 15. Fidelity of 2-D pooling on 2-D B/W images (32,000 shots).

pad

—o—1-level —e—2-level —o—3-level

—o—1level —e—2level —o—3-level

—e—4-level —e—S-level —e—6-level —e—a4-level —e—5-level —e—G-level
—e—7-level level — —9-level

—o—7-level 8-level — —9-level

(a) Average Pooling (b) Euclidean Pooling

Figure 16. Fidelity of 2-D pooling on 3-D RGB images (32,000 shots).
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—o—1-level —@—2-level —o—3-level

—o—7-level

(a) Average Pooling

—e—1-level —e—2-level —o—3-level
—o—4-level —e—5-level —e—6-level

—a—7-level

(b) Euclidean Pooling
Figure 17. Fidelity of 3-D pooling on hyperspectral images (32,000 shots).
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Figure 18.

(a) Average Pooling
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—o—13level  —o—14-level
—e—15-level —e—16-level
—e—17-level  —o—18-level

—e—19-level  — —20-level

(b) Euclidean Pooling
Fidelity of 1-D Pooling on 1-D Audio data (1,000,000 shots).

—o—1-level —@—2-level —o—3-level

—e—4-level —e—5-level —e—6-level
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(a) Average Pooling
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—e—d-level —e—5-level —e—6-level

—e—7-level —@—8-level — —9-level

(b) Euclidean Pooling
Figure 19. Fidelity of 2-D Pooling on 2-D B/W Images (1,000,000 shots).
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Fidelity of 2-D Euclidean Pooling
on RGB (3-D) Data for Multiple Levels of
Wavelet Decomposition (1,000,000 shots)

Fidelity of 2-D Average Pooling
on RGB (3-D) Data for Multiple Levels of

Wavelet Decomposition (1,000,000 shots)
100% 100%

99% \\\ 99% \\
2 osx £ o
K} o
5 3
@ &
97% 97%
—o—1-level —o—2-level 3-level Tievel Flevel Sevel
96% 1| —o—dlevel —o—5-level —e—6-level 9% T e tevel —o—Sevel —o—Glevel
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95% 95%
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Number of Qubits (n) Number of Qubits (n)

(a) Average Pooling (b) Euclidean Pooling

Figure 20. Fidelity of 2-D Pooling on 3-D RGB Images (1,000,000 shots).

Fidelity of 3-D Average Pooling on
Hyperspectral (3-D) Data for Multiple Levels
of Wavelet Decomposition (1,000,000 shots)

Fidelity of 3-D Euclidean Pooling on
Hyperspectral (3-D) Data for Multiple Levels
of Wavelet Decomposition (1,000,000 shots)
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98% \ 99%
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Figure 21. Fidelity of 3-D Pooling on 3-D Hyperspectral Images (1,000,000 shots).

From Figures 14-21, it can be easily observed that fidelity monotonically decreases
with respect to data size (number of qubits) for a given decomposition level. In contrast,
a monotonic increase in fidelity with respect to the number of decomposition levels for a
given data size is observed; see Figures 14-21. As the data size increases, the size of the
corresponding quantum state also increases, which leads to statistical undersampling [6],
a phenomenon that occurs when the number of measurement shots is insufficient to
accurately characterize the measured quantum state. In quantum Euclidean pooling, partial
measurement helps mitigate undersampling because the increase in decomposition levels
reduces the number of qubits being measured, resulting in reduced effects of statistical
undersampling/noise. A similar behavior occurs with quantum average pooling since
the high-frequency terms are sparse and/or close to 0. Nevertheless, quantum Euclidean
pooling tends to achieve a slightly higher fidelity compared to quantum average pooling;
see Figures 14-21.

Table 5 compares the time complexity and generalizability of our proposed quantum
pooling techniques to the existing classical and quantum pooling techniques. Compared
to classical pooling techniques, our methods of average and Euclidean pooling can be
performed in constant time for arbitrary data dimension and arbitrary pooling window
size. The PQC-based techniques used in QCNNSs [10], and their derivatives [9,12,26-28],
are difficult to compare to other techniques since they do not perform the same pooling
operation. We can determine, however, that the additional ansatz for the PQC-based
techniques would cause deeper quantum circuits compared to our proposed techniques.
Finally, the measurement-based technique proposed in [29] is similar to our technique of
single-level decomposition of 2-D Euclidean pooling (although their work inaccurately
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claims to perform average pooling). However, our work is more generalizable for arbitrary
window sizes and data dimensions without compromising performance.

Table 5. Comparison of Related Work to Proposed Methods.

Classical PQC-Based Measurement- Proposed
[21-23] [10] Based [29] P
. . . Average,
Pooling Method Arbitrary N/A Euclidean Fuclidean
Time n
Complexity 0@") o) o) o)
Data Dimension 2-D, 3-D N/A 2-D Arbitrary
Window Size Arbitrary N/A (2 x2) Arbitrary

6. Conclusions

In this work, we proposed efficient quantum average and Euclidean pooling methods
for multidimensional data that can be used in quantum machine learning (QML). Compared
to existing classical and quantum techniques of pooling, our proposed techniques are
highly generalizable for any dimensionality of data or levels of decomposition. Moreover,
compared to the existing classical pooling techniques on GPUs, our proposed techniques
can achieve significant speedup—from O(N) to O(1) for a data size of N values. We
experimentally validated the correctness of our proposed quantum pooling techniques
against the corresponding classical pooling techniques on 1-D audio data, 2-D image data,
and 3-D hyperspectral data in a noise-free quantum simulator. We also presented results
illustrating the effect on fidelity due to statistical and measurement errors using noisy
quantum simulation. In future work, we will explore applications of the proposed pooling
layers in QML algorithms.
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