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Abstract

One of the challenges facing current Noisy-Intermediate-Scale-Quantum devices
(NISQ) is achieving efficient quantum circuit measurement or readout. The
process of extracting classical data from the quantum domain, termed in this
work as quantum-to-classical (Q2C) data decoding, generally incurs signifi-
cant overhead, since the quantum circuit needs to be sampled repeatedly to
obtain useful data readout. In this paper, we propose and evaluate time-efficient
and depth-optimized Q2C methods based on the multidimensional, multilevel-
decomposable, quantum wavelet transform (QWT) whose packet and pyramidal
forms are leveraged and optimized. We also propose a zero-depth technique that
uses selective placement of measurement gates to perform the QWT operation. To
demonstrate their efficiency, the proposed techniques are quantitatively evaluated
in terms of their temporal complexity (circuit depth and execution time), spatial
complexity (total gate count), and accuracy (fidelity/similarity) in comparison to
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existing Q2C techniques. Experimental evaluations of the proposed Q2C meth-
ods are performed on a 27-qubit state-of-the-art quantum computing device from
IBM Quantum using real high-resolution multispectral images. The proposed
QHT-based Q2C method achieved up to 15× higher space efficiency than the
QFT-based Q2C method, while the proposed zero-depth method achieved up to
14% and 78% improvements in execution time compared to conventional Q2C
and QFT-based Q2C, respectively.

Keywords: Quantum Computing, Quantum Algorithms, Quantum State Preparation
and Measurement

1 Introduction

Quantum computers can take advantage of unique quantum mechanical properties,
i.e., superposition and entanglement, to achieve speedup in computation [1] over
classical computers for specific problems such as large integer factorization and
unstructured database search [2, 3]. Nevertheless, existing noisy intermediate-scale
quantum (NISQ) devices have limited practical applications [4] due to critical chal-
lenges [5], such as decoding meaningful classical data from the quantum domain. For
example, in applications like quantum image processing, where information is usually
encoded as quantum state amplitudes [6], repeated sampling of the quantum circuit
is required to generate a probability distribution from which the processed image
data can be recovered [7]. The process of obtaining data from the quantum domain,
henceforth called quantum-to-classical (Q2C) data decoding, introduces significant
overhead in the circuit execution time, necessitating further investigation of time-
efficient data decoding methods.

The main contributions of this paper are summarized as follows:

• We propose and evaluate techniques for efficient Q2C data decoding based on the
multidimensional, multilevel-decomposable quantum wavelet transform (QWT) [8,
9, 10, 11].

• We investigate and optimize the quantum Haar transform (QHT) for perform-
ing multidimensional and multilevel decomposition in either packet or pyramidal
form. Multilevel-decomposable QHT has been proven to be effective for reducing
the dimensionality of high-resolution spatio-spectral data while maintaining spatial
and temporal locality [12]. It is also reported that sampling a lower-dimensional
space reduces execution time, thus improving the Q2C decoding process [8]. By
applying QHT to the output of a quantum circuit, we show that the resulting quan-
tum state can be represented with fewer qubits, reducing dimensionality from a
higher-dimensional space to a lower-dimensional space.

• We also present the quantum circuits and accompanying circuit depth analysis cor-
responding to the proposed QHT-based approach, demonstrating its space and time
efficiency.
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• We introduce a highly depth-optimized technique, called ’measurement-based’
QHT decomposition, which eliminates the need for a supplementary quantum cir-
cuit. In this approach, the measurement of select qubits allows us to sample the
representative output data in a lower-dimensional space.

• We evaluate the proposed quantum methods and circuits for Q2C on the Qiskit

SDK from IBM Quantum [13] using their general-purpose Aer simulator and
ibmq toronto quantum device. By experimentally determining circuit depth, calcu-
lating data correlation, and measuring execution time, a quantitative comparison
of the proposed Q2C methods with state-of-the-art techniques is presented. Addi-
tionally, the proposed Q2C methods are compared with a reported Q2C readout
technique based on the quantum Fourier transform (QFT) [14]. The experimental
results show that our proposed methods are more time and space efficient compared
to existing methods.

The rest of the paper is organized as follows. Section 2 discusses background con-
cepts and related work. Section 3 presents the proposed method and quantum circuits.
Section 4 shows the experimental work and results with accompanying analysis.
Finally, Section 5 concludes our work and discusses potential future work.

2 Background and Related Work

In this section, we discuss basic quantum concepts in addition to the fundamental
quantum gates used for Q2C data decoding. Related work will also be discussed.

In this paper, we will utilize the following mathematical notation to describe lever-
aged quantum concepts. An n-qubit quantum state |ψn〉 can be represented by a
normalized statevector of N = 2n complex state amplitudes/coefficients cj ∈ C where
0 ≤ j < N , as shown in (1). When encoding d-dimensional data of a total size N data
points, each dimension i requires ni = �log2 Ni� qubits to encode Ni data points of
dimension i, where 0 ≤ i < d.

|ψn〉 =
N−1∑
j=0

cj |j〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
...
cj
...

c
N−2

c
N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where 〈ψn|ψn〉 =

N−1∑
j=0

|cj |2 = 1, and 0 ≤ j < N (1)

2.1 Quantum Gates

This subsection details the function, matrix representation, and gate representation
for the various quantum gates that are used in our proposed circuits.
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Hadamard Gate

The Hadamard gate [14] is a single-qubit gate, as described by (2), that can be used
to create a superposition of the |0〉 and |1〉 basis states.

H ≡ 1√
2

[
1 1
1 −1

]
= (2)

SWAP Gate

The SWAP gate is a two-qubit quantum gate, as described by (3), that exchanges the
states of the two input qubits, e.g., applying the SWAP operation on the |q1q0〉 state
would result in the state |q0q1〉.

SWAP ≡

⎡
⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ = (3)

Quantum Rotate-Left (RoL) and Rotate-Right (RoR) Operations

We define the Rotate-Left (RoL) and Rotate-Right (RoR) gates as specialized per-
mutation operations that perform a cyclic rotation, i.e., perfect-shuffle, of the input
qubits, as shown in Fig. 1. Each gate can be constructed of SWAP gates, where a
perfect-shuffle operation over n qubits necessitates n − 1 SWAP gates in series, see
Fig. 1.

RoL(|qn−1qn−2 . . . q0〉) = |qn−2 . . . q0qn−1〉 RoR(|qn−1 . . . q1q0〉) = |q0qn−1 . . . q1〉

Fig. 1: Rotate-Left (RoL) and Rotate-Right (RoR) gates

Measurement Gate

Measuring (observing) qubits is a non-unitary (irreversible) operation. A measurement
(readout) gate is a single qubit operation that observes a quantum state |ψ1〉 with
respect to a computational basis [14] and assigns the corresponding single value to
a classical register. In other words, a measurement gate projects the quantum state
to one of its basis states, i.e., |0〉 or |1〉 for a single-qubit state, with a probability
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equal to the square of the magnitude of the basis state coefficient, i.e., p0 = |c0|2, and
p1 = |c1|2, see (4).

P (ψ1) =

[
p0
p1

]
=

[|c0|2
|c1|2

]
= (4)

In general, when all qubits of a quantum state |ψn〉 in an n-qubit quantum circuit
are fully measured, the probability of finding the qubits in a given state |j〉 is given by
|cj |2, and the full-measurement probability distribution of finding the qubits in all pos-
sible states can be expressed as P (ψn), see (5a) and Fig. 2a. When excluding a partial
subset m qubits of the n qubits from measurements, the partial-measurement proba-
bility distribution can be expressed as a conditional probability P (ψn−m | qm−1...q0),
where each qubit of the unmeasured m qubits could arbitrarily be in either a 0 or
1 state. In other words, |qm−1...q0〉 could be in any one of the possible 2m states.
Equation (5b) and Fig. 2b show an example of one qubit, i.e., the least-significant
qubit q0, being excluded from the partial-measurement of the remaining n− 1 qubits.
It is worth mentioning that for every m qubits that are excluded from the partial-
measurements, the number of measured basis states and consequently the size of the
partial-measurement probability distribution is reduced by a factor of 2m, i.e., being
equal to N/2m = 2(n−m) = 2k where k = n − m is the number of measured qubits,
see (5b) and Fig. 2b.

P (ψn) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0
p1
...
pj
...

p
N−2

p
N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|c0|2
|c1|2
...

|cj |2
...∣∣c

N−2

∣∣2∣∣c
N−1

∣∣2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where P (ψn = j) = pj = |cj |2, and 0 ≤ j < N (5a)

P (ψn−1 | q0) ≡ P (ψn−1 | q0 = 0 or q0 = 1) ≡ P (ψn−1 | q0 = 0) + P (ψn−1 | q0 = 1)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

p0|q0
...

pj|q0
...

p
N
2

−1
|q0

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

|c0|2 + |c1|2
...

|c2j |2 + |c2j+1|2
...∣∣c

N−2

∣∣2 + ∣∣c
N−1

∣∣2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, where

P (ψn−1 = j | q0) = pj|q0 = |c2j |2 + |c2j+1|2, and 0 ≤ j <
N

2
(5b)
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(a) Full-measurement of n qubits (b) Partial-measurement of n− 1 qubits

Fig. 2: Measurements of an n-qubit quantum state |ψn〉

2.2 Circuit Depth

The depth of a quantum circuit is calculated from the critical path that has the
largest propagation delay accumulated from cascaded gates through the circuit [15].
Quantum circuits also accumulate gate errors throughout their runtime [16] which
compound with deeper circuits. Therefore, circuit depth determines the total execution
time of the quantum circuit on a physical device and is often used as a metric for
quantitatively evaluating the speed and performance of quantum circuits. In addition,
it could be utilized as a useful indication for the quality of results (fidelity) of quantum
circuits. Therefore, minimizing/optimizing circuit depth would result in performance
and fidelity improvements [16]. However, the magnitude of gate delay and error vary
depending on the type of gate operation, e.g., H, SWAP, etc. Thus, without considering
those differences, depth alone can only provide a speculative analysis of a circuit’s
execution time and result fidelity.

In a previous work [11], we described how to use circuit depth analysis to calculate
the expected execution time on a physical quantum device. In this work, we extend
our analysis to further optimize the depth of the proposed circuits where different
operations are executed in parallel on the same circuit layer.

2.3 Wavelet Transforms

In the classical domain, a wavelet transform decomposes signals/data into its spatio-
temporal spectral components using non-sinusoidal functions called mother wavelets
[17]. Unlike other transforms, the wavelet transform preserves the spatial locality of
the data, i.e., the transformed data provides time and frequency information about
the input data. Wavelet transforms in general perform computationally better than
other transforms [17] and therefore, are popular in image processing applications. The
general expression for a continuous wavelet transform is given by (6), where, Ψ is the
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(a) 1-level
decomposition
(scaled-up)

(b) 3-level
decomposition
(scaled-up)

(c) 5-level
decomposition
(scaled-up)

(d) 7-level
decomposition
(scaled-up)

(e) 1-level
reconstruction

(f) 3-level
reconstruction

(g) 5-level
reconstruction

(h) 7-level
reconstruction

Fig. 3: Decomposition and reconstruction of a (4096× 4096× 3) image using the 2D
Haar wavelet transform

mother wavelet function in complex conjugate form, and a, b are the time dilation and
displacement factors.

F (a, b) =
1√
a

∫ ∞

−∞
f(t)Ψ∗

a,b

( t− b

a

)
dt (6)

Wavelet transforms can be of continuous and/or discrete forms. For the purposes
of this paper, we will discuss the discrete wavelet transform (DWT), specifically the
Haar transform, which is the first and simplest DWT. Haar transform utilizes a mother
wavelet that can be constructed using a basic unit step function u(t) [11]. The Haar
transform can be performed in either packet decomposition or pyramidal decomposi-
tion form, differentiated by how multiple levels of decomposition are performed. After
the initial level of decomposition, packet decomposition performs subsequent levels
of decomposition on both the low-frequency and high-frequency components, while
pyramidal decomposition restricts further decomposition to only the low-frequency
components [17, 18]. The Haar transform can be applied to perform dimension reduc-
tion, as shown in Fig. 3, by separating multidimensional data into its low-frequency
and high-frequency components [17, 19]. The isolated low-frequency terms are usually
used to represent a compressed/decomposed output where the size of each dimension
of the output data is reduced by a factor of 2�, where � is the number of decomposi-
tion levels [19]. If the high-frequency terms are preserved, a complete reconstruction
of the original input can be accomplished via the inverse operation, see Fig. 3.
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Similar to the classical Haar transform, quantum circuits can be developed to
perform the so-called quantum Haar transform (QHT) [9, 10, 11]. For QHT circuits,
the input data samples are generally encoded as the amplitudes of a superimposed
input n-qubit quantum state |ψn〉, as shown in (7a). The Haar function is then applied
on the state amplitudes, resulting in the state |ψn〉QHT represented by (7b), where
ΨD is the discrete Haar mother wavelet [11], Δt is the sampling period, K is the Haar
window size in samples, and N is the number of data samples. The specific quantum
circuits are discussed in further detail in Section 3.2.

|ψn〉 =
N−1∑
q=0

f(q ·Δt) |q〉 , where
N−1∑
q=0

|f(q.Δt)|2 = 1 (7a)

|ψn〉QHT =
1√
N

N−1∑
i=0

N−1∑
q=0

f(q ·Δt)ΨD

(
q − j

K

)
|i〉 (7b)

2.4 Related Work

Conventional quantum-to-classical (Q2C) data decoding for a given quantum circuit,
as shown in Fig. 4, obtains the complete quantum state of a circuit by perform-
ing repeated circuit sampling, also known as ‘shots’. The measurements are used to
construct a probability distribution of the possible discrete basis states, where the
normalized frequency of measurements represent the square of the magnitudes of the
output quantum state coefficients. The number of repeated measurements correlates
with the accuracy of the data relative to the expected output quantum state. Gener-
ally, a large number of repeated circuit sampling is required to improve the accuracy
of measurements and minimize the effects of statistical noise, which adds a significant
overhead to the total circuit execution time.

Fig. 4: Procedure for conventional Q2C data decoding

To minimize the overhead of repeated circuit sampling, algorithms can be appended
to a circuit immediately prior to measurement, which typically will attempt to decrease
either the number of measured qubits or the number of required shots to sample the
quantum state. In [14], the authors proposed a Q2C data decoding technique leverag-
ing the quantum Fourier transform (QFT) algorithm to sample the quantum circuit
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Fig. 5: Procedure for QFT-based Q2C data decoding

output in the Fourier basis and extract a collective property of the amplitude data,
see Fig. 5. The QFT-based technique uses fewer circuit samples than the conven-
tional approach, since a comprehensive probability distribution is not reconstructed
but only the Fourier basis states are measured. Data decoding using QFT is partic-
ularly relevant for image or audio processing applications, where spectral bandwidth,
as an example of a collective property, is useful for analyzing the output data [14].
However, a drawback of the technique is that it does not decode the actual data from
its quantum state and only reveals the sought collective property or feature of data.
Moreover, the complexity and poor parallelism of the QFT algorithm also results in
deep circuits and large overall timing overhead in the circuit.

In our previous work [8], we introduced packet and pyramidal decomposable quan-
tum Haar transform (QHT) circuits for performing quantum-to-classical (Q2C) data
decoding. By applying multilevel-decomposable QHT, data represented by n qubits
can be transformed to a form represented by a fewer number of qubits k = n− (� · d),
where 0 ≤ k ≤ n, 0 ≤ � ≤ (n/d) is the number of decomposition levels, and d ≥ 1 is
the dimensionality of the data. For example, d = 1 for 1-D data of N0 data points,
d = 2 for 2-D data of (N0×N1) data points, and d = 3 for 3-D data of (N0×N1×N2)
data points, etc. In this work, we extend and optimize the packet and pyramidal cir-
cuits and propose a new measurement-based decomposable QHT technique of zero
gate depth. We also present comprehensive experimental evaluations of all proposed
quantum circuits using real, high-resolution RGB images. In addition, we apply multi-
level inverse QHT to reconstruct the decomposed data and evaluate the result fidelity
of the Q2C methods in terms of similarity metrics such as data correlation.

3 Proposed Methodology and Circuits

This section outlines our proposed and optimized QHT-based methods and circuits for
data decoding in context of the general Q2C approach discussed previously. We first
describe the basic QHT circuit for single-level, d-dimensional decomposition. Following
that, we present three methods that extend the single-level operation over multiple
decomposition levels and discuss their corresponding quantum circuits.

3.1 Methodology

The quantum Haar transform (QHT) provides a number of benefits for our quantum-
to-classical (Q2C) data decoding method. More specifically, QHT preserves the spatial
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and temporal locality of data such that the decomposed data possesses a spatial and
temporal resemblance to the original data [17]. Additionally, QHT is generalizable
for multidimensional data, decomposable for multiple levels, and can be implemented
with relatively shallow and parallel circuits.

By leveraging multidimensional multilevel-decomposable QHT, we can inherently
perform dimension reduction (decompression) of data while preserving its general
spatial and temporal characteristics. In other words, QHT allows us to decode data
at a decreased qubit cost/count from n qubits to k = n − (� · d) qubits, where 0 ≤
k ≤ n, 0 ≤ � ≤ (n/d) is the number of decomposition levels, and d ≥ 1 is the
dimensionality of the data. Reducing the number of qubits used in data representation
will subsequently reduce the measurement and data decoding time. The proposed
methodology for QHT-based Q2C data decoding is shown in Fig. 6.

Fig. 6: Procedure for QHT-based Q2C data decoding

3.2 Proposed Quantum Circuits

The QHT algorithm can be represented by a generalized d-dimensional operation
denoted as Ud−D−QHT henceforth, as depicted in Fig. 7. When encoding multidi-
mensional data as the state amplitudes, a contiguous subset of ni qubits is used to
represent the ith dimension of data, where 0 ≤ i < d. As shown in Fig. 7, Ud−D−QHT

performs a single level of decomposition over all d dimensions in parallel. It applies a
Hadamard (H) gate at the least-significant qubit of every dimension to extract both the
low-frequency (slow-changing) and high-frequency (fast-changing) components of the
input data followed by a RoR (perfect-shuffle) operation to spatially separate the low-
frequency components from the high-frequency components [8]. It is worth mentioning
that the low-frequency components constitute a compressed and an approximate ver-
sion of the original data represented at a lower-resolution, i.e., using less number of
data samples. To decode both the low-frequency and high-frequency components of
data, all n qubits must be fully-measured. However, the low-frequency components
are usually desired and it is sufficient to partially-measure only the ni − 1 least sig-
nificant qubits for each dimension, which now contain the low-frequency components
after the perfect-shuffle operation, see Fig. 7.

As shown in Fig. 7, every contiguous ni qubits, that are used for encoding the
ith data dimension, contain one H gate followed in series by ni − 1 SWAP gates that
perform the RoR gate. Therefore, the depth δ of the Ud−D−QHT operation can be
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Fig. 7: Single-level decomposition of d-dimensional QHT

determined by the depth of the critical path across all dimensions, as shown in (8a).
The execution time t of the Ud−D−QHT operation on a physical quantum hardware
can be estimated using the gate delays τH and τSWAP of the H and SWAP gates,
respectively, as expressed by (8b). As a metric for space complexity (cost) of our
proposed circuits, the total gate count γ can be derived from Fig. 7 and expressed as
shown in (9).

δ = max {1 + (ni − 1) : i ∈ Z, 0 ≤ i < d} = nmax (8a)

t = τH + (δ − 1) · τSWAP (8b)

γ =

d−1∑
i=0

(1 H-gate + (ni − 1) SWAP-gate)

= d H-gate + (n− d) SWAP-gate = n gates

(9)
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It is useful to determine the maximum number of levels �max of lossless decomposi-
tion. Assuming that decomposition is symmetrically performed on all data dimensions,
�max is bound by the number of qubits nmin that are used to encode the data dimension
of the least amount of data samples, see (10).

�max = nmin ≡ min {ni : i ∈ Z, 0 ≤ i < d} (10)

3.2.1 Interleaved Packet Decomposition

The multilevel packet decomposition variant of QHT repeatedly applies the
Ud−D−QHT operation over all qubits for each level of decomposition, as shown in Fig.
8. Here, we leverage and extend our previous work [8, 11] where we presented equations
for deriving the circuit depth and the hardware execution time of the packet decom-
position circuit when the Ud−D−QHT operations are applied in series. However, it is
possible to further minimize the circuit depth by interleaving the Ud−D−QHT opera-
tions, i.e., overlapping the H and SWAP gates among multiple decomposition levels,
which enables concurrent execution of these gates resulting in reduced overall circuit
depth. The optimized circuit for packet decomposition incurs only two additional lay-
ers of SWAP gates for every additional interleaved level of decomposition, which is
reflected in the expressions of (11a) and (11b) for the circuit depth and execution time,
respectively. The total gate count γpkt for the multilevel packet decomposition QHT
circuit is derived from Equation (9) and Fig. 8 to be given by the expression in (12).

δpkt = nmax + 2(�− 1) (11a)

tpkt = τH + (nmax + �− 2) · τSWAP + (�− 1) ·max (τH, τSWAP)

= τH + (δpkt − 1) · τSWAP

(11b)

γpkt = n · � (12)

3.2.2 Interleaved Pyramidal Decomposition

In pyramidal decomposition, Ud−D−QHT is applied on d fewer data qubits (1 qubit per
each dimension) for every level of decomposition, as shown in Fig. 9a. While reducing
the size of Ud−D−QHT would present tangible benefits to overall circuit size and depth
compared to packet decomposition, additional interlevel permutations are required to
preserve data locality among the different levels of decomposition, see Fig. 9b.

Similar to packet decomposition as discussed in Section 3.2.1, we could interleave
(overlap) the operations of pyramidal decomposition. When interleaved, the second
level of decomposition, i.e., � = 2, adds n− nmax − d+ 2 additional gate layers to the
depth of the first level of decomposition that is comprised of the Ud−D−QHT operation
and the first set of interlevel permutations. Each following level of decomposition,
i.e., � > 2, adds an additional d gate layers to the overall circuit depth. It is worth
mentioning that for one level of decomposition, i.e., � = 1, the circuit for pyramidal
decomposition is identical to the circuit for packet decomposition. In other words, the
circuit depth δpyr = δpkt = nmax when � = 1, see (11a). Accordingly, the total depth
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Fig. 8: �-level, d-dimensional packet decomposition

of the interleaved pyramidal QHT decomposition could be expressed by (13a), and
consequently the execution time is given by (13b).

δpyr =

{
nmax, � = 1

n+ d(�− 1)− 2(d− 1), � > 1
(13a)

tpyr = τH + (δpyr − 1) · τSWAP (13b)

The total gate count γpyr for the multilevel pyramidal decomposition circuit is
derived from Fig. 9 and is given by the expression in (14a), where n0 is the number
of qubits required to represent the first dimension. While the pyramidal structure
reduces the gate count needed for the packet decomposition circuit by a factor of∑l−1

i=0(d · i) = d·l·(l−1)
2 , as shown in Fig. 9a, it requires additional gates for interlevel

permutations as shown in Fig. 9b and expressed by (14b).

γpyr = γpkt + γpyr−perm − d · l · (l − 1)

2
, where (14a)
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γpyr−perm =
d · (l − 1)

2

(
n− n0 − l · (d− 1)

2

)
(14b)

3.2.3 Measurement-based Decomposition

The packet and pyramidal circuits are well-optimized for performing a generalized
QHT operation: decomposing and spatially separating low-frequency and high-
frequency components of multidimensional data as an inherent quantum operation. In
the broader context of QHT-based Q2C data decoding, however, additional optimiza-
tions are also feasible, and hence we propose our measurement-based decomposition
technique.

As discussed in Section 3.2, the RoR (perfect-shuffle) operation in Ud−D−QHT is
useful for spatially separating the low-frequency from high-frequency components in
the decomposed quantum state while preserving the data locality. After applying the
Hadamard (H) gate in the Ud−D−QHT operation, see Fig. 7, the state amplitudes alter-
nate between low-frequency (even indices) and high-frequency (odd indices) terms.
Right-rotating (RoR) the qubits for every dimension, i.e., moving the least-significant
qubit to the most-significant qubit as shown in Fig. 7, spatially combines/clusters
similar frequency terms together during measurements. Therefore, optimizing out all
perfect-shuffle gates would not affect the overall data transformation. However, it
reduces the overall depth of the packet and pyramidal QHT circuits resulting in the
circuit shown in Fig. 10a. The resulting circuit is composed of � · d parallel H gates
spanning the � least-significant qubits in each dimension for an �-level, d-dimensional
decomposition. The simplified circuit is noteworthy for having a constant circuit depth
of 1 H gate independent of the number of decomposition levels.

As shown in Fig. 11a, when an H gate is applied to the least-significant qubit of an
n-qubit state |ψn〉 as described by (1), the the resultant state could be represented by∣∣ψH

n

〉
whose full-measurement probability distribution P (ψH

n ) is given in (15b). Fur-
thermore, (15c) and Fig. 11b display the partial-measurement conditional probability
distribution of

∣∣ψH
n

〉
when the least-significant qubit q0 is excluded from measurements

after applying the H gate.

∣∣ψH
n

〉
=

(
I⊗n−1 ⊗H

) · |ψn〉 = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|c0 + c1|
|c0 − c1|

...∣∣c
2j
+ c

2j+1

∣∣∣∣c2j − c2j+1

∣∣
...∣∣c

N−2
+ c

N−1

∣∣∣∣c
N−2

− c
N−1

∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where 0 ≤ j <

N

2
(15a)
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(a) Structure of pyramidal decomposition

(b) Interlevel permutations

Fig. 9: �-level, d-dimensional pyramidal decomposition
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(a) Single-gate depth with H gates (b) Zero-depth circuit

Fig. 10: �-level, d-dimensional measurement-based decomposition

P
(
ψH
n

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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...
p2j

p2j+1

...
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N−2

p
N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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N−1

∣∣2∣∣c
N−2

− c
N−1

∣∣2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where

P (ψH
n = 2j) = p2j =

1

2

∣∣c2j + c2j+1

∣∣2,
P (ψH

n = 2j + 1) = p2j+1 =
1

2

∣∣c2j − c2j+1

∣∣2, and 0 ≤ j <
N

2

(15b)
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P (ψH
n−1 = j | q0) = pj|q0 = |c2j |2 + |c2j+1|2, and 0 ≤ j <

N

2
(15c)

(a) Full-measurement of n qubits (b) Partial-measurement of n− 1 qubits

Fig. 11: Measurements of the n-qubit quantum state
∣∣ψH

n

〉

It could be concluded based on (15c) and (5b), that the circuits shown in Fig. 11b
and Fig. 2b are equivalent where the H gate is effectively non-existent. As such, when
performing QHT-based Q2C data decoding and only measuring the low-frequency
qubits, it is possible to ignore the H gates and create a circuit that can perform
decomposition using only measurement gates as shown in Fig. 10b. Therefore, such
a zero-depth circuit allows us to perform dimensionally-reduced Q2C data decoding
using �-level, d-dimensional QHT by conducting partial-measurements while excluding
the � least-significant qubits per every d dimension of the data, see Fig. 10b.
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Note, however, that the zero-depth circuit is restricted only to decomposition, i.e.,
partially-measuring k qubits from an n-qubit state, where 0 ≤ k ≤ n. When performing
reconstruction via inverse-QHT, the Hadamard gates will be necessary to restore the
high-frequency components in accurate and full data reconstruction/recovery.

4 Experimental Results

The efficacy of our proposed QHT-based Q2C data decoding methods was verified
by encoding various sizes of 3D data (RGB images) on both quantum simulators and
actual quantum hardware followed by applying QHT for various levels of decomposi-
tion. The circuits ranged in size from 8 qubits to 26 qubits to encode multispectral,
high-resolution images of (8× 8× 3) to (4096× 4096× 3) pixels. The QHT operation
was restricted to two dimensions (length and width) to facilitate the maximum pos-
sible number of decomposition levels, see (10). In other words, QHT was performed
only on the spatial dimensions of the images, not the color bands. Note that with only
three color bands (red, green, blue), the statevector was padded with zeroes to com-
prise a fourth color band, since 2 qubits were required to represent the color dimension,
i.e., n2 = �log2 3� = 2. The QHT-based Q2C methods were evaluated for their circuit
depth and execution time as reported by the Qiskit SDK from IBM Quantum [13, 15].
The Pearson correlation coefficient ρ [20] is then used to compare the original images
x with the reconstructed images y (reconstructed from the decomposed images using
inverse-QHT), see (16), where x̄ and ȳ are the mean values of x and y, respectively.

ρ(x, y) =

∑N
i=0(xi − x̄)(yi − ȳ)√∑N

i=0(xi − x̄)2
∑N

i=0(yi − ȳ)2
(16)

In addition, experiments using conventional and QFT-based Q2C data decoding
were performed on the same dataset for comparison against the QHT-based techniques.
Conventional Q2C data decoding was implemented by measuring all qubits in each
circuit and was evaluated in terms of Pearson correlation and hardware execution
time, see Figs. 15 to 18. Using the QFT implementation built into Qiskit [21], we
were able to evaluate QFT-based Q2C in terms of circuit depth, see Tables 1 and 2,
execution time, see Fig. 17, and total gate count, see Tables 3 and 4.

All Q2C methods were implemented on Qiskit version 0.39.4 [13]. Simulation
results were collected using the Aer simulator on a dedicated node of a high-
performance computing (HPC) cluster at the University of Kansas (KU). The cluster
node used for our experiments is configured with two 12-core Intel Xeon E5-2680 v3
CPUs operating at a base clock of 2.50GHz, PCIe Gen 3.0 connectivity, and 503GB
of available memory configured as 8×64GB physical DDR4 DIMMs operating at
2,133MHz. Experiments on actual quantum hardware were performed on ibmq toronto,
an IBM Quantum Falcon r4 processor equipped with 27 qubits [22]. The quantum
device has a median CNOT error of 1.065×10−2, median readout error of 2.360×10−2,
median T1 of 105.97 μs, and median T2 of 101.9 μs [22].
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(a) 1-level
decomposition
(scaled-up)

(b) 3-level
decomposition
(scaled-up)

(c) 5-level
decomposition
(scaled-up)

(d) 7-level
decomposition
(scaled-up)

(e) 1-level
reconstruction

(f) 3-level
reconstruction

(g) 5-level
reconstruction

(h) 7-level
reconstruction

Fig. 12: Simulated 2D-QHT decomposition and reconstruction of a (4096× 4096× 3)
image (32,000 shots)

4.1 Accuracy of Quantum Haar Transform

During decomposition, information degradation arises from the loss of high-frequency
components after each level of QHT, compounded by additional losses due to typical
gate noise and statistical errors of quantum circuits. Experimental correlation results
were gathered to quantify information loss for 32, 000 shots (the maximum available
on ibmq toronto) and 1, 000, 000 shots (the maximum available for simulation), see
Figs. 12 and 13, respectively. The decomposed images were reconstructed to calculate
their correlation with the original images at the same resolution. Reconstruction was
performed classically using a kernel-based method of inverse 2D-QHT to mitigate
the introduction of further errors. As such, execution times are not considered for
reconstruction.

Differences in correlation among the QHT-based techniques, i.e., packet, pyrami-
dal, and measurement-based, were negligible and therefore they were represented as
‘QHT-based Q2C’ in Figs. 14 and 15. Two additional plots were included to distinguish
between two sources of information loss in QHT-based Q2C: a) sampling/statistical
errors and b) errors from data compression and/or partial measurement. First, we
plotted the correlation from conventional Q2C, see Fig. 4, to represent the effect of
sampling error alone. Next, we repeated these experiments on a classical computer
using the classical Haar wavelet transform to represent the information loss due to
algorithmic data compression. Pearson correlation, as a metric for similarity, could
not be calculated for QFT-based Q2C data decoding due to the fact that QFT does
not preserve the spatial and/or temporal locality of the data.
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(a) 1-level
decomposition
(scaled-up)

(b) 3-level
decomposition
(scaled-up)

(c) 5-level
decomposition
(scaled-up)

(d) 7-level
decomposition
(scaled-up)

(e) 1-level
reconstruction

(f) 3-level
reconstruction

(g) 5-level
reconstruction

(h) 7-level
reconstruction

Fig. 13: Simulated 2D-QHT decomposition and reconstruction of a (4096× 4096× 3)
image (1,000,000 shots)

For conventional Q2C, the correlation coefficient monotonically decreases as the
number of states increases and the number of shots is fixed, see Figs. 14 and 15.
For a given number of states, there exists a threshold where the number of shots
is sufficient to characterize the quantum state and taking additional samples has a
negligible impact on similarity, as shown in Figs. 14a and 15a when N ≤ 212, where
increasing the number of shots from 32, 000 to 1, 000, 000 only marginally affects the
value of correlation coefficient. ‘Undersampling’ is observed when the number of shots
is insufficient to sample a quantum state, which can be visually seen in Figs. 12 and
13 when the measured image appears black. Note how at � = 3 in Figs. 12b and 12f
(sampled with 32, 000 shots), the state is undersampled, but increasing the number of
shots to 1, 000, 000 in Figs. 13b and 13f is able to properly sample the quantum state.

The behavior of classical Haar DWT, see Figs. 14 and 15, shows a monotonic
increase with respect to the number of states and a monotonic decrease with the num-
ber of decomposition levels. From Figs. 14a and 15a, it is evident that performing
decomposition on a smaller images has a greater impact on the change of the corre-
lation coefficient than performing decomposition on a larger images. As it could be
seen in Figs. 14b and 15b, the information loss, represented by decreasing values of
the correlation coefficient, becomes larger as the number of levels of decomposition
increases, where each level of decomposition decreases the resultant image size.

From Figs. 14a and 15a, as the image/data size increases for a fixed number of
decompositions, we observe that the correlation coefficient of QHT-based Q2C closely
aligns with the classical wavelet plot, demonstrating how the algorithmic component
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(a) 1-level decomposition (b) 26-qubit state

Fig. 14: Correlation of reconstructed 2D-QHT images on Aer simulator with 32,000
shots

(a) 1-level decomposition (b) 26-qubit state

Fig. 15: Correlation of reconstructed 2D-QHT images on Aer simulator with 1,000,000
shots

of information loss dominates for small data size. The information loss from sampling
a larger image/data dramatically outweighs the relative gain in correlation from per-
forming the Haar transform on a larger image. Similar behavior extends to applying
different levels of decomposition to fixed-size images as shown in Figs. 14b and 15b.
Beyond a certain number of decomposition levels, only few qubits are being measured
such that the correlation aligns with the expected behavior from the classical Haar
transform. However, for lower levels of decomposition, the comparatively small infor-
mation loss from the Haar transform helps ameliorate the dramatic information loss
from measuring large images.
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Given a large enough image for a fixed number of shots, the QHT-based Q2C
method can outperform conventional Q2C data decoding in terms of the qual-
ity/similarity of results (fidelity) using the correlation coefficient as a metric. Fig.
16 reflects the improvement in terms of the correlation difference Δρ (in percentage)
between the QHT-based and conventional Q2C methods, see (17). It is worth men-
tioning that as the number of shots increases, for any given image/size data and level
of decomposition, conventional Q2C benefits more than QHT-based Q2C from the
increased number of shots, resulting in decreased correlation improvement, see Figs.
16a and 16b. As discussed earlier, there exists a threshold where the number of shots
is sufficient to characterize the quantum state and taking additional samples has a
negligible impact on similarity for QHT-based Q2C.

Δρ = ρQHT-based − ρconventional (17)

As the image sizes increase, the rate of correlation improvement increases until all
levels of decomposition outperform the conventional decoding technique once n ≥ 18
for 32, 000 shots and n ≥ 22 for 1, 000, 000 shots. The largest improvement is seen when
n = 26, � = 7 for 32, 000 shots, where the QHT-based Q2C method achieves a 91.18%
correlation coefficient compared to a 4.12% correlation coefficient for conventional
Q2C, see Figs. 14b and 16a.

(a) 32,000 shots (b) 1,000,000 shots

Fig. 16: Correlation improvement of 2D-QHT over conventional Q2C on Aer simulator

4.2 Performance of Quantum Haar Transform on Hardware

On quantum simulators, quantum circuits are often preset to their initial state,
and accordingly the overhead associated with state synthesis (preparation) is usu-
ally ignored. However, on actual quantum hardware, state synthesis requires a deep
quantum operation to be applied to the ground |0〉⊗n

state. IBM Qiskit uses the
Initialize API [23] to implement state synthesis leveraging a method of depth O(2n)

22



[24, 25]. Including state preparation in hardware execution would introduce significant
overhead to execution time, obfuscate performance differences between Q2C methods,
and restrict experiments to at most 14-qubit states, i.e., images of size (64 × 64 × 3)
pixels, due to constraints of the IBM Quantum platform. Therefore, excluding state
preparation allows us to leverage the full capabilities of the 27-qubit ibmq toronto pro-
cessor from IBM Quantum [22] to compare the execution times for conventional Q2C,
QFT-based Q2C, and QHT-based Q2C methods on 8-26 qubit circuits, see Fig. 17.

(a) 1-level decomposition (b) Maximal-level decomposition

(c) 26-qubit state

Fig. 17: Execution times for 2D-QHT decomposition on the 27-qubit ibmq toronto
device

Taken together, our results demonstrate QHT-based Q2C data decoding, partic-
ularly the measurement-based technique, exhibits significant speedup compared to
contemporary Q2C techniques on hardware. Speedup is shown in Fig. 18, where it

23



is calculated as the ratio between the execution time of a contemporary Q2C tech-
nique for a given image size and the execution time of the corresponding �-level
measurement-based decomposition.

(a) Speedup over conventional Q2C (b) Speedup over QFT-based Q2C

Fig. 18: Speedup of measurement-based 2D-QHT over contemporary Q2C methods
on the 27-qubit ibmq toronto device

Fig. 18 shows near-universal speedup of the measurement-based QHT technique
compared to conventional and QFT-based Q2C data decoding on hardware. In gen-
eral, we observe higher speedup for larger circuits and more decomposition levels as
expected, since the measurement-based QHT technique measures � · d fewer qubits
than either the conventional or QFT-based Q2C techniques while being significantly
space efficient using no additional quantum gates. Moreover, these results include
circuit-independent overhead from resetting qubits to the ground state between shots.
If executions were performed restlessly, we should expect to see even greater speedup
from the proposed measurement-based Q2C technique over QFT-based Q2C.

4.3 Comparison of Packet and Pyramidal Circuits

The depth analysis provided in [8, 11] for the packet and pyramidal circuits assumes
serial execution of each level of decomposition to provide a pessimistic prediction
of execution time. While the new analysis in (11a) to (13b) is more physically
accurate, quantum devices also possess unique qubit coupling restrictions requir-
ing additional SWAP operations which are not considered in our analysis. Tables 1
and 2 present the circuit depths of the packet and pyramidal decomposition tech-
niques, respectively, before and after interleaving in terms of H and SWAP gates.
These values were collected from the QuantumCircuit.depth() [15] API in Qiskit

and align with theoretical expectations from (11a) and (13a). Similarly, Tables 3
and 4 present the total gate count of the packet and pyramidal decomposition tech-
niques, respectively, in terms of H and SWAP gates. These values were collected
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from the QuantumCircuit.count ops() [26] API in Qiskit and align with theoretical
expectations from (12) and (14).

Table 1: Packet circuit depth in terms of H, SWAP, and Controlled-Phase gates

(a) Reported [8, 11]

(b) Interleaved (Overlapped)

Both the packet and pyramidal variants of our proposed QHT-based Q2C tech-
niques have identical circuits at � = 1 and only become distinct for higher levels of
decomposition, i.e., when � > 1. For the circuits from [8, 11], the pyramidal circuit
depth increases quadratically with increasing levels of decomposition, while the packet
circuit depth increases linearly. As a result, the pyramidal circuit depth intersects with
the packet circuit depth at �max, see (10), and would be expected to become shal-
lower if further decomposition levels were possible. By contrast, the proposed packet
circuits for multilevel decomposition are strictly shallower than the proposed pyrami-
dal circuits. Overall, the overlapping optimization to the QHT circuits were critical to
achieve shallower circuits than QFT for any image size and level of decomposition.

The circuit execution times as modelled by (11b) and (13b) do not include the
overhead associated with the measurement operations (gates), resulting from repeated
qubit resets among circuit samples (shots). Accordingly, we conducted experiments to
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Table 2: Pyramidal circuit depth in terms of H, SWAP, and Controlled-Phase gates

(a) Reported [8, 11]

(b) Interleaved (Overlapped)

determine that overhead and accounted for it in our results by reporting the per-shot
execution times, as shown in Fig. 19. After accounting for measurement-gate overhead,
the per-shot execution time on hardware for both packet and pyramidal decomposition
was upper-bounded by the execution time predictions of the pessimistic sequential
model from [8, 12] and lower-bounded by the interleaved/overlapped model presented
in this work, see Fig. 19. Such behavior should be expected, since additional SWAP
gates from hardware transpilation were not considered.

The performance of the packet and pyramidal circuits in Figs. 17c and 19 reflect
expected behavior for � < 10 from (11b) and (13b), due to how the interlevel permu-
tations in pyramidal decomposition undermine the parallelism seen from overlapping
levels of packet decomposition, in spite of reducing the size of the Ud−D−QHT operator
every level of decomposition. However, quantum devices have varying topologies and
usually are not fully connected, therefore additional SWAP gates are included dur-
ing hardware transpilation to compensate for the mismatch between the algorithmic
requirements and the target topology of the quantum device. As a result, at higher
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(a) Packet decomposition (b) Pyramidal decomposition

Fig. 19: Expected (theoretical) and measured per-shot execution times of 2D-QHT
for 26-qubit circuits

levels of decomposition, the packet and pyramidal circuits on actual hardware were
close to following the reported model in [8, 11], as shown in Figs. 17c and 19.

Finally, as discussed in Section 3.2, we used the total gate count as a metric for the
spatial complexity of our proposed methods. Compared to existing methods (QFT-
based Q2C), the space efficiency of our QHT-based Q2C (packet and pyramidal) in
terms of the required total gate count is demonstrated through the results shown
in Tables 3 and 4. For 26-qubit circuits and 12 levels of decomposition (� = 12),
our QHT-based Q2C requires 1.26× and 1.64× fewer gates for packet and pyramidal
decomposition, respectively, compared to QFT-based Q2C. Moreover, our QHT-based
Q2C demonstrates up to 15.17× higher space efficiency than QFT-based Q2C for
26-qubit circuits and 1 level of decomposition (� = 1), see Tables 3 and 4.

Table 3: Packet gate count in terms of H, SWAP, and Controlled-Phase gates
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Table 4: Pyramidal gate count in terms of H, SWAP, and Controlled-Phase gates

5 Conclusions and Future Work

Contemporary methods of quantum-to-classical (Q2C) data decoding incur signifi-
cant time overhead from repeated sampling of the quantum state, making it difficult
to practically implement time-efficient quantum algorithms. This work proposed Q2C
data decoding methods based on the multidimensional, multilevel-decomposable quan-
tum Haar transform (QHT), including a ‘measurement-based’ method that requires no
additional quantum gates. All methods were implemented on IBM Quantum’s Qiskit
SDK, executed both on a simulator and actual quantum hardware. The experimen-
tal results reveal the efficacy of the proposed techniques to improve time efficiency up
to 14% and 78% in execution time compared to conventional Q2C and QFT-based
Q2C, respectively, while simultaneously improving measurement accuracy. Moreover,
the proposed QHT-based Q2C method achieved up to 15× higher space efficiency
than the QFT-based Q2C method. In our future work, we will leverage our proposed
QHT-based Q2C techniques for data-intensive applications such as quantum machine
learning (QML). Comparisons with quantum mixed state measurement techniques
such as density matrix reconstruction [27] and quantum state tomography [28], along
with quantum compression techniques [29] will be investigated. We will also investi-
gate the effect of different topologies of quantum devices on the performance of our
proposed quantum algorithms.
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