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Performance limits due to thermal transport in graphene single-photon
bolometers
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In high-sensitivity bolometers and calorimeters, the photon absorption often occurs at a finite distance
from the temperature sensor to accommodate antennas or avoid the degradation of superconducting cir-
cuitry exposed to radiation. As a result, thermal propagation from the input to the temperature readout can
critically affect detector performance. In this paper we model the performance of a graphene bolometer,
accounting for electronic thermal diffusion and dissipation via electron-phonon coupling at low temper-
atures in three regimes: clean, supercollision, and resonant scattering. Our results affirm the feasibility
of a superconducting readout without Cooper-pair breaking by mid- and near-infrared photons, and pro-
vide a recipe for designing graphene absorbers for calorimetric single-photon detectors. We investigate
the trade-off between the input-readout distance and detector efficiency, and predict an intrinsic timing
jitter of approximately 2.7 ps. Based on our result, we propose a spatial-mode-resolving photon detector
to increase the communication bandwidth.
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I. INTRODUCTION

Bolometers are high-sensitivity direct detectors of elec-
tromagnetic radiation that sense the temperature rise of a
material resulting from photon absorption. Their remark-
able sensitivity and broad spectral bandwidth have found
numerous applications across various fields, including
radio astronomy, spectroscopy, and the observation of rare
events like dark matter interactions [1,2]. More recently,
bolometers have demonstrated an alternative approach to
the traditional heterodyne technique for measuring super-
conducting qubits [3]. When bolometers achieve single-
photon sensitivity and function as calorimeters, they can
provide distinct advantages by playing a crucial role in cre-
ating entangled quantum states over long distances [4]. The
ability to establish entanglement in a broad electromag-
netic spectrum using single-photon bolometers can open
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up exciting possibilities for advancing quantum communi-
cation and information processing technologies over many
different hardware platforms.

Graphene is a nearly ideal material for bolometers
[5–15] with potential for single-photon sensitivity
[16–22] and use in investigating mesoscopic thermo-
dynamics [19,23,24]. The electronic heat capacity of
graphene can be exceptionally small due to its minute
density of states, which can approach one Boltzmann con-
stant, kB, at low temperatures [16,18,25] that allow for
a substantial temperature rise from absorbing one pho-
ton. As a zero-band-gap semimetal, graphene can absorb
photons across an extensive range of the electromagnetic
spectrum, spanning from ultraviolet to microwave frequen-
cies [26]. Meanwhile, the electron-phonon (e-ph) coupling
in graphene is very weak [27–33] due to the require-
ment of momentum conservation in a small Fermi surface.
Finally, the electron-electron (e-e) interaction time is so
fast—approaching the Heisenberg uncertainty limit—that
heat is rapidly and efficiently diffused among the electrons
[34–36]. This characteristic is pivotal for both maintaining
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well-defined localized temperatures within the material
and preserving a significant portion of the photon energy
in the electrons by mitigating losses to optical phonons
during the hot electron cascade [37,38]. Everything consid-
ered, we can attribute these desirable bolometric properties
to the unique linear band structure of graphene, which
distinguishes it from other materials commonly used in
bolometers.

Nevertheless, achieving graphene single-photon
bolometers remains a substantial challenge [39] because
of the short thermal relaxation time of graphene elec-
trons [40] and the lack of fast and direct readout
of the electron temperature [7,9,41], �e. Graphene-
superconductor hybrid components have been developed
to address these obstacles, including Josephson junctions
[19,23,42], superconducting resonators [20,43], and
normal-metal–insulator–superconductor tunnel junctions
[16]. But their integration to the photon input is not
straightforward because the energy carried by infrared (IR)
photons exceeds the superconducting gap, leading to the
breaking of Cooper pairs that degrades the bolometer per-
formance. One particular crucial design consideration is
the distance separating the superconducting readout ele-
ments and the location of incoming photon (see Fig. 1).
As with transition edge sensors, the thermal properties of
the photon absorber can strongly impact the performance
of a single-photon bolometer, e.g., jitter, detection speed,
dead time, efficiency, and dark count. Previously, the heat
diffusion and dissipation in graphene was studied with con-
tinuous heating or high optical fluence in the pump-probe
experiments at higher temperatures [36,37,44–47]. In con-
trast, here we report on the electronic thermal transport
from the heat of a single photon at low temperatures.

We study the performance of graphene single-photon
bolometers resulting from the dissipative thermal diffusion

Dissipation via e-ph coupling

IR photon

Sensor

Superconducting 
electrodes

Diffusion

FIG. 1. Schematic of an infrared graphene bolometer. The
bolometer comprises a graphene sheet and a thermal sensor read-
out. When a single infrared photon is absorbed in the graphene,
the electron temperature is elevated in a localized hotspot. Heat
spreads by thermal diffusion and ultimately dissipates into the
lattice via e-ph coupling. A superconductor-based sensor can
measure the temperature rise, but must be isolated from the pho-
ton input to avoid degradation by photon-induced Cooper pair
breaking.

towards the superconducting readout. In Sec. II, we intro-
duce the differential equations that govern such processes,
the initial and boundary conditions, and the different e-ph
coupling regimes in graphene. In Sec. III, we solve the
one-dimensional (1D) problem using an exact analytical
solution for a toy model, before turning to numerical sim-
ulations in Sec. IV. Then, we calculate the performance
of graphene bolometers (Sec. V) and extend our model to
quasi-one-dimension to account for the finite width of a
graphene absorber (Sec. VI). We conclude with an out-
look envisioning a spatial-mode-resolving detector based
on these results.

II. DISSIPATIVE HEAT DIFFUSION OF
GRAPHENE ELECTRONS

We begin by considering the dissipative heat diffusion
model depicted in Fig. 1, with the absorption of a pho-
ton into a graphene sheet with a superconducting readout
nearby. We take the incoming light to be focused to a
diffraction-limited spot with its size of the order of the
photon wavelength, about λ. The absorption efficiency
of graphene is only about 2% for light at normal inci-
dence [26], but this can be enhanced with distributed
Bragg reflectors [48], evanescent coupling to a proximi-
tized waveguide [49], or a nanophotonic cavity [40]. For
longer wavelength photons, λ > 10 µm, an antenna can
guide and impedance match the incident radiation to the
graphene [19,50].

Microscopically, the absorption of a photon in graphene
is mediated by the interband excitation of a valence-band
electron [33] (see Fig. 2). The excited electron produces
a localized hotspot via multiple e-e scatterings on a fast
timescale [35,36,45,51,52], τe-e, preempting the loss of
energy to optical phonons and creating a locally thermal-
ized distribution of charge carriers with a hotspot temper-
ature, �hot. This hotspot diffuses out through the length of
the graphene by random thermal motion to reach the super-
conducting sensor. Meanwhile, the heat is also lost to the
phonon bath on a timescale τe-ph � τe-e. Our model only
considers timescales much longer than τe-e.

A. Electronic thermal diffusion and dissipation

We establish the differential equation, including diffu-
sion and dissipation to describe the thermal propagation of
electrons in graphene. In a small area A, heat can either
diffuse out or dissipate to the lattice via e-ph coupling
according to

ce
∂�e

∂t
= ∇ · (κe∇�e) − �(�δ

e − �δ
0). (1)

The left-hand side of Eq. (1) is the rate of change of
the internal energy of the electrons, with ce and �e the
electronic specific heat per unit area and the electronic tem-
perature, respectively. In monolayer graphene, the Fermi
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FIG. 2. Photoexcitation cascade and timescales for diffusion
and dissipation of electronic heat. The interband excitation from
the absorption of an infrared photon with energy hf leads to
a cascade of multiple electron-electron scattering events over a
time τe-e ∼ 100 fs. This generates a local hotspot of radius ξ , the
initial condition in our model. The timescale over which elec-
trons thermalize to the base temperature via e-ph scattering, τe-ph,
can be several orders of magnitude longer. During this time, heat
spreads through the graphene by electron diffusion and dissipates
into the lattice by e-ph coupling. The rise and fall of the elec-
tronic temperature at a distance x away from the hotspot can be
measured in a graphene sample of length L.

energy EF = �vFkF has a Dirac-like dispersion relation,
where � = h/2π is the reduced Planck constant, vF = 106

m/s is the Fermi velocity, and kF = √
πn is the Fermi

wave vector with n the charge carrier density. For typ-
ical 2D charge carrier densities of 1010–1012 cm−2, the
Fermi temperature, TF = EF/kB, ranges from 135 to 1350
K, far higher than typical bolometer operating tempera-
tures of about 1 K. In this degenerate regime the elec-
tronic specific heat is a linear function of temperature,
ce = γ�e, where γ = 4π5/2k2

Bn1/2/(3hvF) is the Sommer-
feld coefficient. The corresponding density of states is
g(EF) = 2|EF |A/(π�2v2

F), growing linearly with EF mea-
sured from the charge neutrality point [26]. This contrasts
with the constant density of states in 2D electron gases
with parabolic bands, and leads to an extraordinarily small
specific heat ce ∼ 1 kB/µm2 at 20 mK.

The first term on the right-hand side of Eq. (1) is the
divergence of the heat flow into or out of A. By Fourier’s
law, the heat flow is −κ∇�e with κe the electronic ther-
mal conductivity. Per the Wiedemann-Franz relation, κe =
σeL0�e, where σe is the electrical conductivity and L0 =
π2k2

B/3e2 is the Lorenz number with e the electron charge.
The second term on the right-hand side of Eq. (1)

describes the heat transfer per unit area between electrons
and the lattice via e-ph coupling [30,32,33]. Similar to
the Stefan-Boltzmann black-body radiation, it is a high
power law in temperature, originating from the integral of
bosonic and fermionic occupations and densities of states

in a Fermi golden-rule calculation. Here � is the e-ph
coupling parameter and δ is the constant exponent of a
temperature power law that depends on the sample quality.

In Eq. (1), we have omitted the heat flow from the ther-
moelectric effect [33]. This simplification is justified by
the negligible magnitude of the Seebeck coefficient at low
temperatures according to the Mott relation [53]. At room
temperatures, however, the thermoelectric effect is a siz-
able effect that can be used as a readout for a bolometer or
photodetector [6,13,54].

B. Three regimes of e-ph coupling

A key advantage of graphene is the weak e-ph coupling
in Eq. (1), which reduces heat dissipation to maintain a
high �e for a long enough time to enable a high signal-
to-noise ratio of the �e readout. The strength of the e-ph
coupling, i.e., both � and δ, can depend on the tempera-
ture and cleanliness of the graphene flake. Here, we only
consider the e-ph coupling to acoustic phonons because
optical phonons in graphene have energies of about 0.2 eV,
well above the bolometer operating temperatures [26,37].
For the same reason, we ignore the cooling channel by the
surface phonons [33,55,56] as well.

The character of e-ph coupling differs when the elec-
tronic temperature is above or below the Bloch-Grüneisen
temperature, �BG = 2�skF/kB, where s is the sound veloc-
ity in graphene [30]. For T < �BG, the average phonon
momentum is smaller than the size of the Fermi surface,
so the accessible momentum space for e-ph scattering
is greatly reduced by the need to conserve momentum
[30,57,58]. As a result, heat deposited in electronic degrees
of freedom can remain trapped for an extended period
of time, propagating efficiently across micrometer-scale
devices with little loss to the lattice. At the carrier densi-
ties n ∼ 1012 cm−2 considered in this work, �BG ≈ 100 K.
Therefore, we only consider the e-ph coupling below �BG,
and in three regimes of sample quality: (1) the clean limit,
where impurities are scarce and e-ph coupling is weak, (2)
the supercollision regime, where disorder enhances e-ph
coupling, and (3) resonant scattering, where edge defects
enhance e-ph coupling.

The clean limit can be experimentally achieved in
pristine, hexagonal-boron-nitride- (h-BN) encapsulated
graphene at low temperatures. In these devices the mean
free path, lmfp = �μkF/e, of charge carriers is longer than
the typical inverse phonon momentum. This limit is char-
acterized by a δ = 4 power-law dependence and � =
π5/2k4

BD2n1/2/(15ρm�4v2
Fs3), with D � 18 eV the defor-

mation potential and ρm = 7.4 × 10−19 kg μm−2 the mass
density of graphene. In real devices, this regime is often
reported when the perimeter-to-area ratio of the graphene
flake is small [18,47,59,60].

Disorder can enhance the e-ph coupling by relaxing
the constraints on momentum conservation in a process
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known as supercollision cooling [31,32]. This regime is
characterized by a disorder temperature, �dis = hs/kBlmfp.
When �e < �dis, disorder relaxes the momentum conser-
vation requirement by mediating the scattering process.
This enhances the heat transfer between electrons and
phonons by a transition to a δ = 3 power law and � =
2ζ(3)k3

BD2n1/2/(π3/2ρm�3v2
Fs2lmfp), with ζ the Riemann

zeta function [32]. In this regime, typically realized in
dirty, unencapsulated graphene, hot charge carriers will
more rapidly thermalize with the lattice [31,32,61–64].

Scanning temperature probes have revealed a role for
a third regime of resonant scattering due to the trapping
of hot charge carriers on atomic defects at the edges
of the graphene flake [65–67]. The scattering is mostly
localized at graphene edges in high-quality encapsulated
samples, suggesting that device fabrication may play a
role [19,66,68]. Similar to supercollision cooling, the result
is an enhancement in e-ph coupling. In this regime, δ is
predicted to be either 3 or 5 [67].

For our numerical calculations we employ typical values
of numerous graphene material parameters (see Table I)
and use experimentally reported values of δ and � (see
Table II), while noting that more work is needed to
confirm the power law and � in the resonant-scattering
regime for different fabrication methods. In contrast to the
clean limit, a power-law scaling of δ = 3—which may
correspond to either the supercollision or the resonant-
scattering regime—is typically reported in devices where
the graphene is not encapsulated in h-BN or has a large
perimeter-to-area ratio [19,52,59,61,63,68,69].

C. Boundary and initial conditions

We use the boundary condition of zero heat flow because
the heat diffusion at graphene-superconductor interfaces
at temperatures well below the superconducting transition

TABLE I. List of graphene parameters to model single-photon
bolometers in this paper. These numerical parameters are taken
from various experimental reports [60,63].

Graphene parameters in numerical calculations

Electron density n0 2.0 × 1012 cm−2

Electron mobility μ 1.0 × 105 cm2V−1s−1

Electron mean free path lmfp 1.7 µm
Graphene speed of sound s 2.6 × 104 ms−1

MLG deformation potential D 2.9 × 10−18 J
MLG mass density ρM 7.4 × 10−19 kg µm−2

Fermi’s velocity vF 1.0 × 106 ms−1

Electrical conductivity σ 0.032 S
Sommerfeld’s coefficient γ 9.5 × 10−10 Wsm−2K−2

Diffusion constant D 0.82 m2s−1

Photon frequency f 193.4 THz
Photon wavelength λ 1550 nm
Base temperature �0 0.020 K
Disorder temperature �dis 0.73 K

TABLE II. Different regimes of e-ph coupling in graphene.
The δ = 2 case, though fictitious, has an analytical solution to
Eq. (7) below, making it a useful tool for developing intuition
and checking numerical calculations. Numerical parameters for
the resonant-scattering regime are estimated from experiments
[19,68]. Numerical parameters for the supercollision regime and
clean limit are calculated using the parameters in Table I and
formulas for � in Sec. II B.

Scattering δ � τe-ph lth

Fictitious 2 · · · · · · · · ·
Resonant [19,68] 3 1 Wm−2K−3 16 ns 114 µm
Supercollision 3 1.38 × 10−3 Wm−2K−3 11 µs 3.1 mm
Clean limit 4 3.10 × 10−2 Wm−2K−4 19 µs 4 mm

temperature can be substantially suppressed, as Cooper
pairs carry no thermodynamic entropy and cannot conduct
heat [63,70]. Thanks to both theoretical [71] and experi-
mental [35,36,44,45,51,72] efforts, the initial temperature
profile of the hotspot after the photon absorption is rea-
sonably understood and will be modeled as a Gaussian
distribution with a half width half maximum ξ :

�e(t = 0) = �hote−(x−x0)2/2ξ2 + �0. (2)

Here x0 is the location of the photon absorption, and �hot
and �0 are the peak hotspot and base temperature, respec-
tively. It will be useful for our analysis to have an initial
condition that is Gaussian distributed in �2

e instead of �e:

�2
e(t = 0) = �2

hote
−(x−x0)2/ξ2 + �2

0. (3)

For �hot � �0, Eqs. (2) and (3) are approximately equiv-
alent. The average energy of electrons in the hotspot after
the initial photoexcitation cascade [37,38] will determine
�hot. For near-IR photons, this temperature is typically
on the scale of hundreds to thousands of kelvins, which
is � �0, justifying Eq. (3). To estimate �hot, we equate
the photon energy with the integrated heat capacity with
respect to temperature, yielding [23]

hf =
∫ �hot

�0

πξ 2γ�e d�e, (4)

�2
hot = 2hf

πξ 2γ
+ �2

0. (5)

Here �hot = 100 K corresponds to ξ = 94 nm, which is
consistent with values previously reported in the litera-
ture [36,73]. Since ξ is much smaller than the size of the
graphene flake, the initial heating profile is effectively a
point source in our model.

D. Simplifying to one dimension

As we are interested in how to keep the photon input far
enough from the superconducting electrodes of the readout

014006-4



PERFORMANCE LIMITS DUE TO THERMAL TRANSPORT. . . PHYS. REV. APPLIED 21, 014006 (2024)

circuit to avoid Cooper pair breaking, the optimal aspect
ratio of our graphene bolometer would be a long strip,
as depicted in Fig. 2, to minimize the total heat capac-
ity. Therefore, we simplify our dissipative heat diffusion
differential equation, Eq. (1), to one dimension, i.e.,

γ�e
∂�e

∂t
= ∂

∂x

(
σL0�e

∂

∂x
�e

)
− �(�δ

e − �δ
0), (6)

using ce = γ�e and the Wiedemann-Franz law. Further-
more, we can rewrite the equation in terms of �2

e to
obtain

∂

∂t
�2

e = D ∂2

∂x2 �2
e − 2�

γ
(�δ

e − �δ
0), (7)

in which we define a diffusion constant D such that

D = σL0

γ
= EFμe

2e
, (8)

where μe is the electron mobility, μe = σ/ne, and Eq. (8)
is the Einstein relation [36,74]. For μe � 105 cm2V−1s−1

and density 2.0 × 1012 cm−2, the typical σ value is 0.032
S, giving a numerical value for D of 0.82 m2s−1, which
is consistent with measured values [36,44]. In general, this
nonlinear diffusion equation has no analytical solution for
arbitrary values of δ, with the exception of some special
cases.

III. ANALYTIC DESCRIPTION OF THE δ = 2
CASE

We can analytically solve Eq. (7) when δ = 2 and
the graphene sample is infinitely long. Using the initial
condition, Eq. (4), with x0 = 0, the solution is

�e(x, t) =
[
�2

0 + e−t/τe-phe−(x−x0)2/(ξ2+4Dt)

× �2
hot√

1 + 4Dt/ξ 2

]1/2

, (9)

where τ
(δ=2)

e-ph = γ /2� is the thermal time constant bottle-
necked by e-ph coupling when δ = 2. While the first term,
�2

0, comes from the base temperature, the second term
describes the rise and fall of �e, within which the first
exponential-decay factor is due to the e-ph coupling with
time constant τe-ph. When there are additional channels of
heat dissipation, such as radiative coupling or contact to
normal-metal electrodes, we can replace τe-ph with a more
general thermal time constant, τth. We have τth ≤ τe-ph
because additional conductance channels will speed up the
thermal dissipation. In the linear response regime, τth is
given by the ratio of specific heat to the total thermal
conductivity [23]. The second factor provides the initial

rise of temperature at position x from the source at x0 due
to diffusion of heat, while the third factor describes the fall
of �e as heat diffuses further away.

Figure 3 plots Eq. (9) with increasing � from Figs. 3(a)
to 3(c). When diffusion dominates [Fig. 3(a)], the heat can
diffuse throughout the sample. At a position x, the temper-
ature will rise at t � (x − x0)

2/D, and subsequently fall
with a power law of t−1/4. The latter is the expected diffu-
sive behavior, i.e., �2

e ∝ 1/
√

t, in contrast to �e ∝ 1/
√

t if
both ce and κe do not depend on �e. As dissipation rises,
we can still observe diffusive behavior when t < τe-ph, but
�e falls at a faster rate than t−1/4 [Fig. 3(b)] because of
the high-temperature power law of δ. The electron temper-
ature �e decays at � τ

(δ=2)

e-ph , independent of the position x.
Deeper in the e-ph dominated regime, the decay timescale
is fast enough to compete with the initial temperature rise
from thermal diffusion [Fig. 3(c)]. In this limit, the heat
from the photon may not reach the sensing element of the
detector before it is lost to the lattice.

To investigate the thermal behavior of the system at
finite size, we solve Eq. (1) numerically for a graphene
sheet of length L with a hotspot in its middle. The second
column of Fig. 3 plots these numeric solutions alongside
the analytic solutions from the first column. Initially, all
of these finite-system solutions follow the same initial rise
and fall of �e observed in the infinite-system analytic solu-
tions. In the diffusive limit [Fig. 3(d)], the finite-size solu-
tions reach a plateau in temperature after a certain time,
with shorter samples settling at a higher temperature than
longer samples. From �e at different positions along a 20-
µm sheet plotted in Fig. 3(g), we confirm that �e plateaus
when the entire length of the graphene thermalizes to a
uniform temperature, �uniform. Once the electron temper-
ature is uniform, diffusion is complete and only dissipation
can further lower the temperature. We can understand this
behavior better by plotting the results in Fig. 4 with the
circles in the panel marking the time, τuniform, at which
graphene sheets of different lengths reach the plateau.
Figure 4(b) plots τuniform versus L. Clearly, τuniform follows
the expected behavior for diffusion, τuniform = (L/2)2/2D
(solid line), where L/2 is the distance from the hotspot
to either end of the graphene flake. Evaluating Eq. (9) at
t = L2/8D, Fig. 4(c) shows �uniform for different L. We
can estimate �uniform by considering our analytic solu-
tion in the diffusive limit. When ξ 2/D 
 t 
 τe-ph and
�hot � �0, Eq. (9) simplifies to

�e � �hot

(1 + 4Dt/ξ 2)1/4 . (10)

Substituting τuniform for t, and the estimation of �hot from
Eq. (5), we have

�uniform � 23/4

√
hf

πξLγ
. (11)
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FIG. 3. (a)–(c) Analytic solution for δ = 2 in an infinitely long sample—results of numerical calculations of our analytic solution
of the one-dimensional heat equation with an e-ph diffusion term. By adjusting the strength of the e-p coupling constant �, we can
observe three regimes of heat diffusion in graphene. In (a), when the e-ph coupling is weak, the system is dominated by diffusion,
characterized by the persistent 1/

√
t power law in �2. In (c), when the coupling is strong, the thermal propagation is dominated by

dissipative e-ph effects. When the two effects are more closely balanced, like in (b), we can see a mix of diffusive and dissipative
effects playing out on different timescales. (d)–(f) System size dependence for δ = 2: analytic versus numerical solution. Moving from
infinitely long samples to graphene of finite length necessitates solving the heat equation numerically. Panels (d)–(f) compare the
analytic solution (black dotted line) to the numerical results for various lengths of graphene. The numerical results line up well with
the analytic solution for long samples. The plateau in the temperature is explained by the entire sheet of graphene reaching a uniform
temperature, which persists for a timescale determined by the e-ph coupling. (g)–(i) Positional dependence in numerical solutions
for δ = 2. Panels (g)–(i) show the simulated temperature response measured at various lengths away from the hotspot for a photon
absorbed in the center of a 20-µm piece of graphene. Predictably, the heat from the incoming photon takes longer to propagate to spots
further away on the graphene. After approximately 100 ps, all locations on the graphene reach a uniform temperature.

Comparison with Eq. (5), Eq. (11) suggests that the fac-
tor πξL is the effective area of the 1D graphene flake,
with �uniform playing the role of hot-carrier temperature
when the photon energy is distributed evenly across the
entire graphene. Equation (11) [solid line in Fig. 4(c)] well
approximates �uniform from our numerical calculation.

In Fig. 3(e), we move beyond the diffusive limit.
Here we can still see the plateau behavior, but, similar
to Fig. 3(b), the temperature subsides quickly after the

timescale τ
(δ=2)

e-ph . Beyond a certain sample length, how-
ever, the timescale of e-ph coupling is faster than the time
at which a uniform temperature is reached, so the plateau
does not appear. The relevant length scale for this behav-
ior is the thermal-diffusion length lth = √Dτe-ph [37]. In
Fig. 3(e), the 100-µm sample exceeds the lth value of
19 µm, and so exhibits no plateau behavior. In the e-
ph-dominated regime [Fig. 3(f)], the timescale of thermal
dissipation is so short that the plateau behavior is never
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(a) (b)

(c)

Wm–2 K–2

Time (ns)

FIG. 4. Diffusive behavior for δ = 2—numerical calculations
showing the details of the temperature plateau seen in the diffu-
sive limit. (a) Equivalent to Fig. 3(d), the behavior of different
lengths of graphene in different colors (with the analytic solution
for a sample of infinite length plotted as a dashed black line).
(b) The timing of the plateau behavior τuniform plotted against
the sample length L, which follows L2/8D, characteristic of dif-
fusion. (c) The temperature of the plateau �uniform against the
system length, which is predicted by Eq. (10).

observed for the sizes of the graphene that we consider in
this paper.

Lastly, Figs. 3(g)–3(i) plot �e at different positions
for L = 20 µm. In the intermediate regime, �e reaches
�uniform before relaxing back to �0, following the same
curve governed by e-ph coupling regardless of the position.
In the dissipative regime [Fig. 3(i)], a uniform elevated
temperature is never reached, since the timescale of e-ph
coupling, τe-ph, is faster than the time L2/4D required for
diffusion to bring the graphene to a uniform temperature.

IV. SOLUTION FOR δ = 3 AND δ = 4

A. Linearized differential equation

Although there is no exact solution to the dissipative
heat diffusion differential equation [Eq. (7)] for δ = 3 or
4, we can gain more insight by linearization. Using the
substitution of u = �2 to Taylor expand Eq. (7), we find
that

∂u
∂t

= D ∂2u
∂x2 − 2�

γ
(uδ/2 − uδ/2

0 ) (12)

� D ∂2u
∂x2 − δ�uδ/2−1

0

γ
(�u + · · · ), (13)

where �u = u − u0. While Eq. (12) is still exact, the lin-
earization [Eq. (13)] contains an approximation for the
dissipative term. Taking only the first term of the Taylor
expansion, Eq. (13) becomes linear in u. As a result, the
solution takes the exact same form as Eq. (9), but with a
more general form for τe-ph:

τe-ph = γ

δ��δ−2 . (14)

As a result, most of the intuition built up in Sec. III is appli-
cable to the more realistic δ = 3 and 4 cases, especially in
the diffusion-dominated regime.

We plot the linearized analytic solutions for each regime
in Fig. 5. The timing and magnitude of the initial peak
in temperature track closely, i.e., t 
 τe-ph, across all e-ph
regimes because the diffusion term in Eq. (13) is indepen-
dent of δ and �. On the other hand, �e drops differently
depending on e-ph regimes with the time constant given by
Eq. (14). The linearized analytic solutions are ordered from
fastest to slowest e-ph dissipation time according to their
power law, with δ = 2 the most dissipative and δ = 4 the
least dissipative. However, the magnitude of � also plays
a considerable role in determining the behavior of each
regime: for instance, there is a greater difference between
the two δ = 3 regimes than between δ = 3 and δ = 4.

10–6 106

Time (ns)

10–2

10–1

100

101

102

 = 2, theoretical solution
 = 3, resonant scattering
 = 3, supercollision
 = 4, clean limit

 (K
)

10–3 1 103

FIG. 5. Analytic solution of the linearized differential equation
for δ = 3 and 4 for an infinitely long sample. We plot analytical
calculations showing the different thermal responses of graphene
following δ = 4 versus δ = 3 power laws, alongside a purely the-
oretical δ = 2 solution. For these calculations, we set � = 1 for
the δ = 2 case, representing the regime in between diffusive and
dissipative. The values of � for the δ = 3 and δ = 4 cases are
shown in Table II. Temperatures are measured at a distance of
x = 1 μm away from the hotspot.
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Specifically, we have used a relatively clean graphene,
with an electron mobility of 105 cm2/Vs and an lmfp of
1.7 µm, even in the supercollision regime.

B. Numerical solutions

Similar to Figs. 3(d)–3(i), Fig. 6 shows the numeri-
cal solutions to Eq. (7) for a finite-sized graphene. In the
supercollision regime [Fig. 6(a)], �e behaves similarly to
the diffusive limit of δ = 2, where �e plateaus as the entire
graphene reaches a uniform temperature, and �uniform and
τuniform depend on the system size in the same manner
as shown in Fig. 4. In contrast, the shorter or vanishing
plateaus of the clean and resonant-scattering regimes imply
a weaker diffusive behavior [Figs. 6(b) and 6(c)], leading to
a drop to the baseline temperature faster than the linearized
analytic solution. We emphasize that the qualitative behav-
ior of �e depends on both the numerical values of � and
δ, rather than just the assignment of an e-ph scattering
regime, as elaborated below.

Contrary to the behavior of the linearized analytic solu-
tion plotted in Fig. 5, the δ = 3 supercollision scattering
mechanism exhibits much more diffusive behavior than the
δ = 4 clean limit when using the same numerical parame-
ters. This is because �e � �0 in these calculations, well
outside the linear response. The higher power-law dissipa-
tion can relax �e with a timescale, τrelax, that depends on
both δ and �. We expect τrelax < τth ≤ τe-ph. As illustrated
in Fig. 5, the value of τe-ph for the supercollision regime is
slightly shorter than for the clean regime given the experi-
mental conditions and parameters in Table I. But the lower
power law means that τrelax for the δ = 3 supercollision
regime is longer than the δ = 4 clean regime when �e �
�0. This is the reason for the stronger diffusive behavior
observed in the supercollision regime [Figs. 6(a) and 6(d)]
compared to the clean regime [Figs. 6(b) and 6(e)]. On the
other hand, the numerical value of � is several orders of
magnitude larger for the resonant-scattering regime (see
Table II), so that it exhibits the least diffusive behavior
of the three regimes, despite having both a lower power
law than the clean regime and a shorter τrelax. This result
demonstrates the need to numerically solve the dissipa-
tive heat diffusion differential equation because qualitative
details can depend on the experimental values of both �

and δ. The same intuition for the faster-than-exponential
dissipation for high power laws in the e-ph coupling can
also explain why the numerical solutions drop below the
analytic solution in linear response (black dotted line in
Fig. 6).

The position dependence of �e for δ = 3 and 4
[Figs. 6(d)–6(f)] behaves similarly to the δ = 2 solu-
tions. For the supercollision regime, in Fig. 6(d) we
plot the different locations on a graphene flake reach-
ing �uniform, maintaining it for a time, and eventu-
ally subsiding to �0. The electron temperature �e in
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FIG. 6. The size dependence of the numerical solution for
δ = 3 and 4 for a finite-sized sample. (a)–(c) The numerical
simulation results for graphene samples of a variety of differ-
ent finite sizes for each of the higher power-law e-ph coupling
regimes, in order from most (panel (a)) to least (panel (c)) diffu-
sive. The temperature response is measured 200 nm away from
the hotspot. The linearized analytic solution [Eq. (9) with τe-ph
given by Eq. (14)] is plotted as a black dashed line. Notably,
the more diffusive the system, the better the linearized approxi-
mation performs. (d)–(f) The positional dependence of the same
three regimes for a 20-µm-long flake of graphene. The resonant-
scattering regime exhibits the fastest temperature decay, while
the supercollision regime exhibits the slowest.

the clean and resonant-scattering regimes [Figs. 6(e)
and 6(f)] can also reach the same �uniform as in Fig. 6(d),
although the dissipation has already kicked in by the
time �e reaches �uniform. A subtle but important dif-
ference between Figs. 6(e) and 6(f) is the speed at
which the sample thermalizes to �0 after t � τuniform.
The tail of the temperature curve decays with a con-
siderably gentler slope in Fig. 6(e) than in Fig. 6(f),
corresponding to several additional nanoseconds at an
elevated temperature for a device in the clean regime
than for a device in the resonant-scattering regime. This
difference will prove to be important to the detector
efficiency.
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V. BOLOMETER PERFORMANCE LIMITED BY
DISSIPATIVE HEAT DIFFUSION

A. Detector efficiency in the mid- and near-infrared
regimes

We can now use the calculated �e(t) at the sen-
sor position, of distance d, from the photon input to
study the performance of the graphene bolometer. To
begin, we need to choose the heat sensor that will be
used because its operation mechanism can determine the
overall sensitivity, efficiency, readout bandwidth, dark
count, and timing jitter. For example, when applying res-
onator techniques to directly measure �e in a normal-
metal–insulator–superconductor [75] or Josephson junc-
tion [76], we expect the bolometer sensitivity to depend
on the noise temperature of the amplifier chain of the
entire measurement system. On the other hand, when
using a Josephson junction to indirectly detect the rise of
�e from the switching rate [23,42], one may evade the
amplifier noise when the Josephson junction switches dis-
continuously from the superconducting to resistive state
in response to the arrival of a photon. Such a dc mea-
surement is straightforward to implement and we use it
to analyze the performance of a single-photon bolometer
in this paper. In comparison, the kinetic inductance mea-
surement [77] with a resonator is a faster and probably
higher-sensitivity readout to register the fleeting rise and
fall of �e(d, t) due to absorbing a single photon. We defer
analysis of the resonator readout to a future work due to
additional complexity arising from a τth that is shorter than
the response time of the readout resonator.

Let us now consider the bolometer design. The first
criteria is to keep the superconducting readout circuitry
and the location of the photon input separated by a dis-
tance shorter than the thermal diffusion length, lth. This
requirement can easily be satisfied because lth is of the
order of tens of micrometers, much longer than the pho-
ton wavelength. Since the temperature rise from photons
scales inversely to the heat capacity, the graphene bolome-
ter must be short in the transverse direction to minimize the
total area, while remaining long enough in the longitudi-
nal direction to maintain the separation between the photon
input and superconducting readout. Figure 7(a) illustrates
the graphene bolometer that we have modeled to assess
its detection efficiency in the near- and mid-IR regimes.
The photon input, a focused, diffraction-limited light spot
with a beam waist of about λ, is located in the middle
of the flake while the sensor, a Josephson junction with a
graphene weak link, is attached to the end of the flake. We
set the length of the graphene absorber to be 2λ to allow
for the efficient coupling of photons [40,78]. As the pho-
ton wavelength increases from the near-IR to the mid-IR
regime, we expect the detector efficiency to decrease. This
is because the size of a diffraction-limited beam spot grows
with increasing wavelength, requiring a larger graphene
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FIG. 7. Josephson junction bolometer performance. (a) A
schematic representing a Josephson junction–based bolometer
with superconducting readout. The length of the device is set
to be the minimum two times the photon wavelength, limited
by diffraction. (b) The detection mechanism, whereby thermal
fluctuations allow electrons to overcome the washboard poten-
tial, leading to thermally activated switching of the Josephson
junction detectable via voltage probe. (c) The simulated detection
efficiency of such a device for the three e-ph coupling regimes,
ignoring any geometric losses that might occur from various
coupling mechanisms.

absorber. In a longer device, both the diffusive and dissipa-
tive parts of Eq. (9) contribute to reduce �e at the sensor
position. Additionally, the lower photon energy creates a
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lower initial �hot, which can be modeled by lowering the
photon frequency in Eq. (5) while keeping the hotspot size
constant. Our goal in modeling this device is to understand
the variation of detection efficiency across a wide range of
the electromagnetic spectrum based on this simple design.
For the detection of a far-IR photon, which is outside the
scope of our discussion, we need to switch from a long
graphene absorber to an antenna-coupled device to focus
the photon electric field closer to the readout element [50].

We model the graphene-based Josephson junction as
a heat switch that changes state due to the heat from
absorbing a single photon. This device concept [23] can
be understood phenomenologically through the resistively
and capacitively shunted junction (RCSJ) model. This
model describes Josephson junction dynamics in terms
of a fictitious, massive phase particle residing inside the
well of a tilted washboard potential that is dependent on
the phase difference, φ, between the two superconducting
electrodes [Fig. 7(b)]. The potential barrier, �U, constrain-
ing the phase particle is given by �U = 2EJ 0(

√
1 − γ 2 −

γ cos−1 γ ), where EJ 0 = �Ic/2e is the Josephson energy
and γ = Ib/Ic, with Ib the applied current bias and Ic the
critical current of the junction. While EJ 0 sets the scale
of the barrier height, Ib can further tilt the washboard by
increasing γ , hence lowering the potential barrier. When
the phase particle rests inside the well, the device is in the
superconducting state. If, instead, the phase particle is per-
turbed such that it falls down the well, i.e., with a finite
dφ/dt, it is in the normal state. When a photon is absorbed
by the graphene, �e rises. With a higher ratio of the ther-
mal energy to the potential barrier, kB�e/�U, the phase
particle can be excited out of the well, causing a transition
to the normal state. This transition serves as a heat switch
and will result in an increase in the voltage, VJJ, measured
across the junction [Fig. 7(b)], indicating the detection
of a photon. The dark count, i.e., spontaneous switch-
ing without incident photons, is predominately caused by
macroscopic quantum tunneling [23,42].

Detection of the photon relies on understanding the
switching rate of the junction from the superconducting to
normal state. When the switching is thermally activated,
its rate can be described as

� = Ae−�U/kB�e , (15)

where A is a proportionality factor given by

A = ωp

2π

(√
1 + 1

4Q2 − 1
2Q

)
(16)

with Q = ωpRnCJJ the quality factor of the harmonic well
in the washboard potential, where Rn is the junction’s nor-
mal resistance, CJJ is the junction’s capacitance, and ωp
is the plasma frequency of the Josephson junction. At

TABLE III. Parameters of the Josephson junction in our model.
These inputs were used along with a fit to an RCSJ model of a
Josephson junction to calculate the switching probability from
the simulated spatiotemporal temperature response in graphene.
These are typical numerical values from experiments [23,42].

Josephson junction device parameters

Junction capacitance CJJ 1.0 fF
Junction resistance R 50 �

Critical current Ic 3.38 µA
Bias current Ibias 2.80 µA
Quality factor Q 0.11
Integration time tmeas 100 ns

a finite bias current, ωp = ωp0(1 − γ 2
JJ)

1/4, where ωp0 =√
2eIc/�CJJ is the zero-bias plasma frequency.
To calculate the probability of the switching of the

Josephson junction from � during the duration of the
measurement, tmeas, we can use [23]

P(switch) = 1 − e− ∫ tmeas
0 �dt. (17)

We numerically evaluate P(switch) using the experimental
values from a typical graphene-based Josephson junc-
tion listed in Table III and plot the results in Fig. 7(c).
Regardless of the e-ph coupling regime, we can achieve
a high, intrinsic efficiency for short wavelength photons
because there is enough photon energy to diffuse to the
sensor location through the short graphene absorber. How-
ever, as λ lengthens, the efficiency falls as �hot decreases.
The integral in Eq. (17) signifies that the importance of
the temperature response is not only the height of the
initial temperature peak, but also the elapsed time that
the graphene device remains at elevated temperatures. As
such, although the δ = 3 resonant scattering and the δ = 4
clean limit solutions in Fig. 6 appear visually similar, the
longer tail of the decaying temperature curve for δ = 4
can significantly impact the thermally activated switching
rate, so a device exhibiting δ = 4 behavior is better suited
to detecting low-energy photons. Predictably, the δ = 3
supercollision case maintains the highest detector efficien-
cies at longer photon wavelengths due to its longer time
at elevated �e. Similar to Fig. 6, we note that the perfor-
mance of a single-photon bolometer depends on both the
numerical values of � and δ in the e-ph coupling, rather
than the simple assignment of the e-ph regime. Specifi-
cally, we are using � and δ from a relatively high-quality
graphene in the supercollision regime that is achievable in
experiments (Table I).

These results inform the design of single-photon
bolometers for different photon detection experiments.
For photons with λ < 5 µm, a free-space-coupled single-
photon detector should work well, as long as the device is
appropriately short. For photons up to 15 µm, the fabrica-
tion requirements become more stringent to remain in the
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supercollision regime. Finally, if trying to detect photons
of λ > 30 µm, some compromises to the photon coupling
must be made, or more sophisticated methods must be
employed, in both the photon coupling design and device
fabrication to maintain a high detection efficiency.

B. Intrinsic limit of jitter due to spatial photonic modes

In addition to detection efficiency, the timing jitter is
another important parameter for sensitive photodetectors.
The detector physics and process can impose the most
fundamental limit to timing jitter [79]. We apply our dissi-
pative heat diffusion model to estimate this intrinsic limit
when it is due to the finite size of the spatial mode of the
photon input [80].

As described in Sec. II C, the hotspot initially created by
absorbing the internal energy of a single photon is effec-
tively a point source. The hotspot can be found anywhere
within the beam spot with a probability distribution that
follows from the intensity profile of the optical mode. This
is because the rate of the photon absorption by graphene
is proportional to the square of the electric field, and thus
the spatial mode profile. For a diffraction-limited Gaussian
beam, we expect the standard deviation of the variation in
hotspot location to be of the order of λ.

To calculate time jitter, we use the peak time of �e, tmax,
in the 1D model, as the time taken for the heat to diffuse
from the hotspot to the sensor at a distance d away from
the focal point. In Eq. (9), �e hits the peak when

tmax =
√Dτe-ph(4(d − x0)2 + Dτe-ph) − Dτe-ph

4D . (18)

To estimate the timing jitter, tjitter, we take the difference of
tmax for x0 = ±λ/2, accounting for the location variation
of the hotspot due to photon absorption, such that

tjitter = 1
4

√
τe-ph

D
(√

4(d + λ/2)2 + Dτe-ph

−
√

4(d − λ/2)2 + Dτe-ph

)
. (19)

Figure 8(a) plots Eq. (19) versus τe-ph. In the diffusive limit,
as τe-ph → ∞, tmax is determined by the speed of the heat
diffusion. Equation (18) reduces to tmax = (d − x0)

2/2D
and the jitter approaches

tjitter = dλ

D . (20)

Intuitively, the dependence on λ corresponds to a larger
spatial uncertainty in photon absorption for longer wave-
lengths. A short distance, d, or faster diffusion, D, can
reduce the difference of the time taken for the heat to
arrive at the sensor from different locations within the
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FIG. 8. Dependence of the timing jitter and maximum electron
temperature on detector distance. For a graphene single-photon
bolometer with λ = 1550 nm and D listed in Table I, we plot (a)
the timing jitter versus τe-ph according to Eq. (19). In (b), we plot
the peak electron temperature at the detector at the time of arrival
tmax.

spatial mode of the photons. Using D = 0.82 m2s−1 and
taking d � λ, tjitter = 2.7 ps for 1500-nm wavelength IR
photons. This value is comparable to superconducting
nanowire single-photon detectors (SNSPDs) [80,81] and
can be improved by using higher-mobility graphene or
the hydrodynamic effect [34,36]. Paradoxically, Eq. (19)
suggests that tjitter also improves at shorter τe-ph. This is
because the e-ph dissipation tends to reduce tmax at the
cost of a lower maximum electron temperature, �e(x, tmax)

[Fig. 8(b)]. As a result, timing jitter and dissipation are at
odds. As the efficiency of a single-photon bolometer relies
heavily on a higher �e(d, t) at the sensor component, it
is detrimental to the detector efficiency to improve jitter
by increasing the e-ph coupling. For better timing jitter
and detector efficiency, the design principle is to operate
in the diffusive limit while seeking to maximize D and
minimize d.

VI. QUASI-ONE-DIMENSIONAL MODEL

The previous sections consider the strictly 1D dissipa-
tive heat diffusion model with ξ as the effective width
suggested by Eq. (11). Here, we would like to understand
how the finite width, w, in realistic samples affects our
calculations and conclusions. Interestingly, the intuition
that we built through the one-dimensional model will help
us to approximate a quasi-one-dimensional solution for a
narrow rectangular strip, i.e., w 
 L (see Fig. 9).
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FIG. 9. Quasi-one-dimensional model. (a) The heat diffusion
in a quasi-1D graphene system where the width is finite but much
shorter than the length. Initially, the heat propagates out in two
dimensions, but after a time tw, the heat has propagated through
the full width of the graphene and the system’s behavior can be
approximated by a 1D solution with a larger and cooler initial
hotspot. (b) The different temperature profiles of the 1D versus
quasi-1D models for a graphene flake with a length of 10 µm
and a width of 1 µm, measured at a distance of 1 µm from the
center of the hotspot. (c) Comparison of the quasi-1D solution
(black dashed line) with the 1D solution with a lower photon
energy (yellow dashed line) as in Eq. (30).

We can extend our 1D initial condition in Eq. (3)
to include a second spatial dimension in the transverse
direction, y:

�2
e(t = 0) = �2

hote
−[(x−x0)2+(y−y0)2]/ξ2

+ �2
0 = �2

hote
−r2/ξ2 + �2

0 (21)

with the center of the hotspot at (x0, y0). The second equal-
ity presents the initial condition in polar coordinates, i.e.,
r2 = (x − x0)

2 + (y − y0)
2. The differential equation and

solution of the dissipative heat diffusion in two dimensions
is similar to those in one dimension [Eqs. (7) and (9)] and
are given by

∂

∂t
�2

e = D
(

∂2

∂r2 + 1
r

∂

∂r

)
�2

e − 2�

γ
(�δ

e − �δ
0), (22)

�e(r, t) =
[
�2

0 + e−t/τe-phe−r2/(ξ2+4Dt) �2
hot

1 + 4Dt/ξ 2

]1/2

,

(23)

respectively. Qualitatively, our discussions and plots of
the solution in one dimension applies in two dimensions
as well when the flake is infinitely large [Figs. 3(a)–3(c)
and 5] or circular in shape [Figs. 3(d)–3(i), 4, and 6].

When the flake is a strip with w 
 L [Fig. 9(a)], we can
construct an approximate, quasi-1D solution. Here Eq. (23)
is initially correct before the heat reaches the edge of the
graphene flake in the y direction. Similar to the finite width
in one dimension, after a characteristic time, tw, we expect
that �2D(x = 0, y, t) becomes uniform in and independent
of the y position at the center of the longitudinal direction,
provided that tw 
 τe-ph. From our analysis and plots in
Fig. 4, tw = (w/2)2/D such that Eq. (23) becomes

�2D(x, y, tw)

�
[
�2

0 + e−tw/te-phe−(x2+y2)/(ξ2+w2) �2
hot

1 + (w/ξ)2

]1/2

.

(24)

We can now cast the problem back to one dimension by
applying Eq. (24) with y = 0 as our new initial condi-
tion. Schematically shown as t = tw in Fig. 9(a), the size
of the hotspot at t = tw should have grown larger than ξ in
the new initial condition for our quasi-1D solution. Direct
comparison of Eqs. (21) and (24) leads to the definition of
the quasi-1D hotspot size, ξ̃ , and temperature, �̃hot, as

ξ̃ =
√

ξ 2 + w2, (25)

�̃hot = e−tw/2te-ph

(
ξ

ξ̃

)
�hot, (26)

respectively. The new quasi-1D initial condition to capture
the effect of the finite width of the device is

�̃2
e(x, t̃ = 0) = �̃2

hote
−x2/ξ̃2 + �2

0, (27)

in which we define t̃ = t − tw as the time reference from
the moment, tw, when �e becomes uniform along the x = 0
center.
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Applying this new initial condition, we arrive at the
quasi-1D solution

�̃e(x, t̃) =
[
�2

0 + e−t̃/τe-phe−x2/(ξ̃2+4Dt̃) �̃2
hot√

1 + 4Dt̃/ξ̃ 2

]1/2

.

(28)

Analogous to the 1D solution, ξ̃ plays the role of the finite
graphene flake width. Figure 9(b) compares the 1D and
quasi-1D solutions for w = 1 µm and infinite τe-ph. Specif-
ically, we are interested in �̃e for t � ξ̃ 2/4D when the
heat has diffused far enough from the hotspot [t > tw in
Fig. 9(a)]. In this case, we can compute the ratio of the
quasi-1D and 1D temperature and find that

�̃e

�e
� etw/2τe-ph

�̃hot

�hot

√
ξ̃

ξ
=

√
ξ

ξ̃
. (29)

Therefore, �e and �̃e maintain nearly a constant ratio,
as shown in Fig. 9(b). The quasi-1D approximate solu-
tion in Eq. (28) suggests that, for t � 4D/ξ̃ 2, the finite
width w will effectively degrade �e(x, t) by a geometric

factor of
√

ξ/ξ̃ if the dissipation within the time period tw
is negligible.

The �̃e/�e ratio is also helpful to estimate the effect
of finite graphene flake width on the detector efficiency
as a function of the photon energy that we calculated and
plotted in Fig. 7. Although the time integral to calculate
the Josephson junction switching probability [Eq. (17)]
depends on details of the rise and fall of �̃e, we can
approximate its degradation due to the finite width by
observing that, for time t � ξ̃ 2/D,

�̃e � �e

√
ξ

ξ̃
∝ �hot

√
ξ

ξ̃
∝ hf

√
ξ

ξ̃
, (30)

based on Eqs. (5) and (10) with �hot � �0. This suggests
that we can interpret the finite width effect as a reduction
of �e [Fig. 9(c)] and the photon energy by the same geo-

metric factor,
√

ξ/ξ̃ . As a result, the detector efficiency
for a finite width would simply shift the calculated results

in Fig. 7(c) to the left-hand direction by
√

ξ/ξ̃ . In real-
ity, it is an experimental task to fabricate a narrow enough
graphene absorber while maintaining a high τe-ph in order
to maximize the detector efficiency.

VII. OUTLOOK AND CONCLUSION

The analysis of the dissipative heat diffusion model
affirms the feasibility of simultaneously having effi-
cient photon coupling, low-loss heat diffusion, and

high-sensitivity superconductor-based readout in an IR
graphene bolometer. While the temperature rise and fall
in graphene as a function of position and time depends
entirely on the detailed parameters, as shown in Fig. 6, we
find that a few simple formulas in solving the linearized
differential equation can provide a basic understanding of
thermal diffusion in the presence of dissipation. Detector
performance also depends on the rate of heat dissipation,
which varies between e-ph coupling regimes, i.e., super-
collision, clean, or resonant scattering. Overall, our device
modeling favors the supercollision regime when a longer
integration time is needed, for instance to latch a Joseph-
son junction to the normal state. Otherwise, the clean or
resonant-scattering e-ph coupling regimes may provide
faster reset times due to their faster thermal relaxation in
the nonlinear regime. To use our numerical results for a dif-
ferent graphene strip width, we can use a simple geometric
factor to find the new detector efficiency.

A better understanding of thermal diffusion and dissipa-
tion can lead to photon detectors with expanded function-
ality. For instance, in Fig. 10 we show a device concept for
a spatial-mode-resolving (SMR) detector. With the photon
coupling at the center of the graphene flake, comparison
of the signals detected by multiple superconducting read-
outs along the circumference might be able to resolve

FIG. 10. Device concept of a spatial-mode-resolving detector.
Our result points towards the idea that we can exploit the differ-
ence in the rise and fall of the electron temperatures at different
locations on the graphene flake to resolve the spatial mode of
a single photon. Time-resolved measurements of the Josephson
junction sensors along the perimeter of the graphene absorber
may resolve the location of photon absorption and thus the spatial
mode.
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the spatial mode of the incident photon. This concept is
analogous to temporal sensing in SNSPDs, where the loca-
tion of the hotspot in the nanowire can be detected by
two amplifiers at opposite ends. Compared to the recent
demonstration of an SNSPD camera [82], graphene-based
SMR detectors may have a larger spectral bandwidth for
longer-wavelength photons. As a single photon can carry
a large amount of quantum information by exploiting
the multiple degrees of freedom in its spatial, temporal,
and polarization modes, an SMR detector could provide
a much needed technical capability in computation and
communication based on single-photon quantum logic.
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