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Abelian geometric fundamental groups for curves
over a p-adic field

par Evangelia GAZAKI et Toshiro HIRANOUCHI

Résumé. Pour une courbe X sur un corps p-adique k, nous étudions le groupe
fondamental géométrique abélien πab

1 (X)geo de X en utilisant la théorie du
corps de classes de X due à S. Bloch et S. Saito. En particulier, nous étudions
un sous-groupe de πab

1 (X)geo qui classifie les revêtements géométriques et
abéliens de X admettant une ramification au-dessus de la fibre spéciale du
modèle de X. En supposant que X a un point rationnel sur k, X a bonne
réduction et sa jacobienne a bonne réduction ordinaire, nous donnons un
encadrement de ce sous-groupe de πab

1 (X)geo.

Abstract. For a curve X over a p-adic field k, using the class field theory of
X due to S. Bloch and S. Saito we study the abelian geometric fundamental
group πab

1 (X)geo of X. In particular, we investigate a subgroup of πab
1 (X)geo

which classifies the geometric and abelian coverings of X which allow possible
ramification over the special fiber of the model of X. Under the assumptions
that X has a k-rational point, X has good reduction and its Jacobian variety
has good ordinary reduction, we give some upper and lower bounds of this
subgroup of πab

1 (X)geo.

1. Introduction
Let k be a p-adic field, that is, a finite extension of Qp, with residue

field Fk. In this note, we investigate the abelian fundamental group πab
1 (X)

for a projective smooth and geometrically connected curve X over k. The
structure map X → Spec(k) induces the short exact sequence

0 −→ πab
1 (X)geo −→ πab

1 (X) −→ Gab
k = πab

1 (Spec(k)) −→ 0,(1.1)

where πab
1 (X)geo is defined by the exactness and is referred to as the geo-

metric fundamental group of X. Local class field theory describes Gab
k suf-

ficiently to allow us to focus on πab
1 (X)geo. Now, we restrict our attention

to the case where X has good reduction in the sense that the special fiber
X := X ⊗Ok

Fk of a regular model X over Ok of X is a smooth curve over
Fk, and also X has a k-rational point. The short exact sequence (1.1) splits.
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906 Evangelia Gazaki, Toshiro Hiranouchi

There is a map called the specialization map πab
1 (X) sp→ πab

1 (X) (cf. (2.6))
and this induces

(1.2) 0 −→ πab
1 (X)geo

ram −→ πab
1 (X)geo sp−→ πab

1 (X)geo −→ 0,

where πab
1 (X)geo := Ker(πab

1 (X) → GFk
) is the geometric fundamental

group of X and πab
1 (X)geo

ram is defined by the exactness again. The funda-
mental group πab

1 (X)geo
ram classifies the geometric coverings of X which are

completely ramified over the special fiber X (for the precise description and
definition, see Section 2). The classical class field theory (for the curve X
over the finite field Fk) says that the reciprocity map induces an isomor-
phism ρX : J

�→ πab
1 (X)geo, where J = Jac(X) is the Jacobian variety of X.

Our main result describes the structure of the remaining part πab
1 (X)geo

ram
by using an invariant related to the Jacobian variety J = Jac(X) of X.

Theorem 1.1 (cf. Corollary 4.1). Let X be a projective smooth curve over
k with X(k) �= ∅, and J = Jac(X) the Jacobian variety of X. We assume
that X has good reduction, and the Jacobian variety J = Jac(X) of X is
an ordinary abelian variety. Then, we have surjective homomorphisms

(Z/pMur)⊕g −→−→ πab
1 (X)geo

ram −→−→ (Z/pNJ )⊕g,

where NJ = max{n | J [pn] ⊂ J(k)}, Mur = max{m | μpm ⊂ kur}, and g =
dim J . Here, we denoted by kur the maximal unramified extension of k and
μpm is the group of pm-th roots of unity.

Remark 1.2. Put M = max{m | μpm ⊂ k}. In general, we have inequalities
NJ ≤ M ≤ Mur. Here, the first inequality follows from the Weil pairing.
For the later inequality M ≤ Mur, if we assume μp ⊂ k, that is, M ≥ 1
and put e0(k) = ek/(p − 1), where ek is the absolute ramification index of
k, then M = Mur if and only if ζpM �∈ Im

(
U

pe0(k)
k ↪→ k× →→ k×/(k×)p

)
,

where ζpM is a primitive pM -th root of unity, and U
pe0(k)
k is the higher unit

group (see e.g., [19, Lemma 2.1.5]). For example, when the base field k is of
the form k = k0(ζpm) for some finite unramified extension k0/Qp, we have
M = Mur = m. If we additionally assume NJ = M as we considered in [12]
(we also give some elliptic curves satisfying this condition in Section 5),
then the exact sequence (1.2) splits and we have πab

1 (X)geo
ram 	 (Z/pm)⊕g.

One can recover the main theorem in [12].

The above theorem enables us to construct an abelian geometric covering
X̃ → X corresponding to πab

1 (X)geo
ram (Theorem 4.5) along the context of

the geometric abelian class field theory (e.g., [33]). This can be regarded as
an analogue of Yoshida’s work on the modular curve X0(p) over Qp ([42]).
In Section 5, we give examples in genus 1, that is when X = E is an elliptic
curve with good ordinary reduction, to indicate that each one of the two
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bounds given in Theorem 1.1 can be achieved depending on the Gal(k/k)-
action on the Tate module of X (cf. Theorem 5.3). This in particular shows
that Theorem 1.1 is as general as it can be. We also consider an elliptic
curve X = E over k with good supersingular reduction and we give bounds
for πab

1 (X)geo
ram of similar flavor as in Theorem 1.1.

Notation. Throughout this note, we use the following notation: We fix a
finite extension k of Qp. For a finite extension K/k, we define

• OK : the valuation ring of K with maximal ideal mK ,
• FK = OK/mK : the residue field of K,
• GK := Gal(k/K): the absolute Galois group of K, and
• UK = O×

K : the unit group of OK .
For an abelian group G and m ∈ Z≥1, we write G[m] and G/m for the
kernel and cokernel of the multiplication by m on G respectively. We also
denote by G{m} := ⋃

n≥1 G[mn] the m-primary part of G. For a profinite
group G, and a G-module M , we denote by MG ⊂ M and M →→ MG its
G-invariant subgroup and G-coinvariant quotient, respectively. In this note,
by a variety over k we mean an integral and separated scheme of finite type
over k, and a curve over k is a variety over k with dimension 1.

Acknowledgements. The authors would like to give heartful thanks to
Prof. Yoshiyasu Ozeki who allowed us to include his result on the invariants
NJ and Mur used in Theorem 1.1 (cf. Proposition 3.10). We would also like
to thank Prof. Takao Yamazaki whose comments on the construction of the
maximal covering in Section 4 were an enormous help to us. The authors
thank the referee for careful reading, and many valuable suggestions to
improve our manuscript.

2. Preliminaries
Finite by divisible. Following [28], we introduce the following notation:

Definition 2.1 ([28, Lemma 3.4.4]). An abelian group G is said to be finite
by divisible if G has a decomposition G � F ⊕ D for a finite group F and
a divisible group D. In what follows, we often denote by Gfin and Gdiv the
subgroups of G isomorphic to F and D respectively.

Lemma 2.2 ([28, Lemma 3.4.4]).
(i) Let G be an abelian group. Then, G is finite by divisible if and only

if lim←−m≥1 G/m is finite. The last condition holds if G/m is finite
for any m ≥ 1, and its order is bounded independently of m.

(ii) If G → G′ is a surjective homomorphism of abelian groups, and if
G is finite by divisible, then so is G′.
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908 Evangelia Gazaki, Toshiro Hiranouchi

(iii) Suppose that there is a short exact sequence 0 → G′′ → G → G′ → 0
of abelian groups. If G is finite by divisible, and G′ is finite, then
G′′ is also finite by divisible.

Proof. The assertions (i), (ii) follow from [28, Lemma 3.4.4].
Let’s now prove (iii). For any m ≥ 1, consider the exact sequence

(2.1) Tor(G′,Z/m) −→ G′′/m −→ G/m −→ G′/m −→ 0
induced from the short exact sequence 0 → G′′ → G → G′ → 0. Since G
is finite by divisible, G/m is finite and its order is bounded independently
of m. From Tor(G′,Z/m) = G′[m] ⊂ G′ and G′ is finite, both G′/m and
Tor(G′,Z/m) are finite and their orders are bounded. From the exact se-
quence (2.1) the same holds for G′′/m and hence G′′ is finite by divisible
from (i). �
Mackey products, and the Galois symbol map. We recall the defini-
tion and properties of Mackey functors following [28, (3.2)]. For properties
of Mackey functors, see also [14, 15].
Definition 2.3 (cf. [28, Section 3]). A Mackey functor M (over k) (or
a Gk-modulation in the sense of [25, Definition 1.5.10]) is a contravariant
functor from the category of étale schemes over k to the category of abelian
groups equipped with a covariant structure for finite morphisms such that
M (X1 �X2) = M (X1)⊕M (X2) and if the left diagram below is Cartesian,
then the right becomes commutative:

X ′

f ′
��

g′
�� X

f
��

Y ′ g
�� Y

M (X ′)
g′∗ �� M (X)

M (Y ′)

f ′∗
��

g∗ �� M (Y ).

f∗
��

For a Mackey functor M , we denote by M (K) its value M (Spec(K)) for
a field extension K of k. For any finite extension k ⊂ K ⊂ L, the induced
homomorphism from the canonical map j : Spec(L) → Spec(K) is denoted
by NL/K := j∗ : M (L) → M (K) which is often referred as the norm map,
and ResL/K := j∗ : M (K) → M (L) is called the restriction.
Example 2.4.

(i) Let G be a commutative algebraic group over k. Then, the algebraic
group G induces a Mackey functor by defining G(K) = G(Spec K)
for K/k finite.

(ii) For a Mackey functor M , and for m ∈ Z≥1, we define a Mackey
functor M /m by

(M /m)(K) := M (K)/m

for any finite extension K/k.
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The category of Mackey functors forms an abelian category with the
following tensor product:

Definition 2.5 (cf. [14]). For Mackey functors M and N , their Mackey
product M ⊗ N is defined as follows: For any field extension k′/k,

(M ⊗ N )(k′) :=

⎛
⎝ ⊕

K/k′: finite
M (K) ⊗Z N (K)

⎞
⎠/

(PF),

where (PF) stands for the subgroup generated by elements of the following
form:

(PF) For finite field extensions k′ ⊂ K ⊂ L,
NL/K(x) ⊗ y − x ⊗ ResL/K(y) for x ∈ M (L) and y ∈ N (K), and
x ⊗ NL/K(y) − ResL/K(x) ⊗ y for x ∈ M (K) and y ∈ N (L).

For the Mackey product M ⊗ N , we write {x, y}K/k′ for the image of
x ⊗ y ∈ M (K) ⊗Z N (K) in the product (M ⊗ N )(k′). For any finite field
extension k′/k, the norm map Nk′/k = j∗ : (M ⊗ N )(k′) → (M ⊗ N )(k)
is given by

(2.2) Nk′/k({x, y}K/k′) = {x, y}K/k.

Let G be a semi-abelian variety over k. For any m ∈ Z≥1, the connecting
homomorphism associated to the short exact sequence 0 → G[m] → G

m→
G → 0 as Gk-modules gives, for each finite extension K/k,

(2.3) δG : G(K)/m ↪−→ H1(K, G[m]) := H1(GK , G[m]),

which is often called the Kummer map.

Definition 2.6 (cf. [36, Proposition 1.5]). For semi-abelian varieties G1
and G2 over k, the Galois symbol map

sm : (G1 ⊗ G2)(k)/m −→ H2(k, G1[m] ⊗ G2[m])

is defined by the cup product and the corestriction: sm({x, y}K/k) =
CorK/k (δG1(x) ∪ δG2(y)). The map is well-defined by the functorial prop-
erties of Galois cohomology (cf. [25, Proposition 1.5.3(iv)]).

For two semi-abelian varieties G1, G2 over k, the Somekawa K-group
K(k; G1, G2) attached to G1, G2 is a quotient of the Mackey product (G1 ⊗
G2)(k) (see [36] for the precise definition) by considering G1, G2 as Mackey
functors (cf. Example 2.4). By definition, for every finite K/k there is a
surjection, (G1⊗G2)(K)→→K(K; G1, G2). The elements of K(k; G1, G2) will
also be denoted as linear combinations of symbols of the form {x1, x2}K/k,
where K/k is some finite extension and xi ∈ Gi(K) for i = 1, 2. The Galois
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symbol map sm : (G1 ⊗G2)(k)/m → H2(k, G1[m]⊗G2[m]) (Definition 2.6)
factors through K(k; G1, G2) and the induced map

sm : K(k; G1, G2)/m −→ H2(k, G1[m] ⊗ G2[m])
is also called the Galois symbol map.

Geometric fundamental groups, and their “ramified parts”. Let
V be a projective and smooth variety over k. We assume that there exists
a k-rational point x ∈ V (k). From this assumption, the variety V is geo-
metrically connected. The abelianization of the fundamental group π1(V )
is denoted by πab

1 (V ). Since we always consider the abelian fundamental
groups, we omit the geometric point. Furthermore, we say that ϕ : W → V
is an abelian covering if ϕ is an étale covering (that is, finite and étale),
and is Galois whose Galois group Aut(ϕ) is an abelian group. Let k(V )
be the function field of V . The map Spec(k(V )) → V induces a surjective
homomorphism
(2.4) Gal(k(V )ab/k(V )) � πab

1 (Spec(k(V ))) −→−→ πab
1 (V ),

where k(V )ab is the maximal abelian extension of k(V ) ([9, Exposé IX,
Proposition 8.2]). Define the maximal unramified extension k(V )ur,ab of
k(V ) by the subfield of k(V )ab generated by all finite extensions of k(V )
contained in k(V )ab that are unramified over V . Here, a finite extension
F/k(V ) is said to be unramified over V , if the normalization of V in F is
unramified over V , or equivalently, étale over V . The kernel of the map (2.4)
is Gal(k(V )ab/k(V )ur,ab) and hence πab

1 (V ) � Gal(k(V )ur,ab/k(V )). The
structure map V → Spec(k) induces a surjective homomorphism π1(V ) →→
π1(Spec(k)) = Gk ([9, Exposé IX, Théorème 6.1]). This map induces a short
exact sequence
(2.5) 0 −→ πab

1 (V )geo −→ πab
1 (V ) −→ Gab

k −→ 0,

where πab
1 (V )geo is defined by the exactness and is called the geometric

fundamental group of V . By the fixed k-rational point x ∈ V (k), the above
sequence splits. The fundamental group πab

1 (V )geo classifies (abelian) geo-
metric coverings of X. Here, an abelian covering ϕ : V ′ → V is said to be
geometric if the fiber ϕ−1(x) = V ′ ×V x → Spec(k) of ϕ over x is com-
pletely split, in the sense that ϕ−1(x) is the sum of distinct [k(V ′) : k(V )]
k-rational points. (cf. [17, II Preliminaries]). More precisely, the geometric
fundamental group πab

1 (X)geo is written as

πab
1 (V )geo � Gal(k(V )ur,ab/k(V )kab) � Gal(k(V )geo/k(V )),

where k(V )geo is the subfield of k(V )ur,ab generated by all finite extensions
of k(V ) contained in k(V )ur,ab that are completely split over x. Here, a
finite extension k ⊂ F ⊂ k(V )ur,ab is said to be completely split over x if
the normalization of V in F is completely split over x.
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In the following, we assume that V has good reduction, that is, there
exists a proper smooth model over Ok of V . We denote by V = V ⊗Ok

Fk

the special fiber of a smooth model V over Ok which is a smooth variety
over the finite field Fk. In this case, it is known that πab

1 (V )geo is finite ([43,
Corollary 1.2], [27, Chapter 4]). By the valuative criterion for properness,
the fixed rational point x gives rise to an Ok-rational point of V and hence
to an Fk-rational point of V denoted by x. In the same way as above, we
have a split short exact sequence

0 −→ πab
1 (V )geo −→ πab

1 (V ) −→ GFk
−→ 0.

By [9, Exposé X, Théorèm 2.1], there is a canonical surjection

(2.6) sp: πab
1 (V ) −→ πab

1 (V ) � πab
1 (V )

and this induces the following commutative diagram:

0 �� πab
1 (V )geo ��

sp
��

πab
1 (V ) ��

sp
����

Gab
k

��

����

0

0 �� πab
1 (V )geo �� πab

1 (V ) �� GFk
�� 0.

As the horizontal sequences split, the specialization map sp: πab
1 (V )geo →

πab
1 (V )geo on the geometric fundamental groups is surjective.

Definition 2.7 ([42, Definition 2.2]). We denote by πab
1 (V )ram the kernel

of the specialization map sp: πab
1 (V ) → πab

1 (V ). In the same way, we define
πab

1 (V )geo
ram by the kernel of sp: πab

1 (V )geo → πab
1 (V )geo on the geometric

fundamental groups. The abelian coverings corresponding to πab
1 (V )ram are

said to be completely ramified over V .

For the later use, we give a precise description of πab
1 (V )ram. First, we

recall the construction of the map sp: πab
1 (V ) → πab

1 (V ): For an étale
covering ϕ : W → V , there exists a unique étale covering W → V such that
its closed fiber is ϕ ([9, Exposé IX, Théorème 1.10]). By taking the generic
fiber ϕ : W → V of W → V , we obtain

(2.7)
W

ϕ

��

�� W

��

W��

ϕ
��

V �� V V .��

This induces the map sp: πab
1 (V ) → πab

1 (V ).

Definition 2.8. For an abelian covering ϕ : W → V with Galois group
Aut(ϕ) = G, we say that ϕ : W → V is unramified over V , if there exists
an abelian covering ϕ : W → V with Aut(ϕ) � G such that ϕ and ϕ fit into
the diagram (2.7) as above.
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We define k(V )ur
V

to be the subfield of k(V )ur,ab generated by all fi-
nite extensions of k(V ) contained in k(V )ur,ab that are unramified over
V . Here, a finite field extension F/k(V ) is said to be unramified over V
if the normalization of V in F is unramified over V . We have πab

1 (V ) �
Gal(Fk(V )ur,ab/Fk(V )) � Gal(k(V )ur

V
/k(V )). In particular, there is a one

to one correspondence between the set of abelian coverings of V unramified
over V and that of abelian coverings of V . A diagram of fields and their
Galois groups is

k(V )ur,ab

kur,abk(V )geo

k(V )kab

Gab
k

πab
1 (V )geo

k(V )ur
V

πab
1 (V )ram

πab
1 (V )geo

ram
k(V )geo

k(V )kur,ab

πab
1 (V )geo

k(V )

πab
1 (V )

(cf. The diagram of fields and Galois groups in [17, Introduction]). An
abelian covering ϕ : W → V is completely ramified over V if and only if ϕ
does not have a sub covering which is unramified over V .

Class field theory for curves. Let X be a projective smooth curve over
k with X(k) �= ∅ and with good reduction. There exists a proper smooth
model X over Ok of X whose closed fiber is denoted by X = X ⊗Ok

Fk.
Following [1], [31], we recall the class field theory for the curve X. The
group SK1(X) is defined by the cokernel of the tame symbol map

SK1(X) = Coker
(

∂ : KM
2 (k(X)) −→

⊕
x

k(x)×
)

,

where x runs through the set of closed points in X, k(x) is the residue field
at x, and k(X) is the function field of X. The norm maps Nk(x)/k : k(x)× →
k× for closed points x induce N : SK1(X) → k×. Its kernel is denoted by
V (X). The reciprocity map σX : SK1(X) → πab

1 (X) is compatible with
the reciprocity map ρk : k× → Gab

k of local class field theory as in the
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commutative diagram:

(2.8)

0 �� V (X)

τX

��

�� SK1(X) N ��

σX

��

k×

ρk

��

0 �� πab
1 (X)geo �� πab

1 (X) �� Gab
k

�� 0,

where the bottom horizontal sequence is induced from the structure map
X → Spec(k) (cf. (2.5)). The diagram above gives a map τX : V (X) →
πab

1 (X)geo to describe the geometric fundamental group πab
1 (X)geo. In fact,

the above short exact sequences split from the assumption X(k) �= ∅. The
main theorem of the class field theory for X is the following:

Theorem 2.9 ([1], [31]). The following statements hold for the reciprocity
maps σX and τX .

(i) The reciprocity map σX has dense image in πab
1 (X), and its kernel

is the maximal divisible subgroup, SK1(X)div of SK1(X).
(ii) The map τX is surjective, and its kernel is Ker(τX) = V (X)div,

which is the maximal divisible subgroup of V (X).
(iii) The image Im(τX) of τX is finite.

From the above theorem, the reciprocity map τX induces an isomor-
phism V (X)/V (X)div

�→ πab
1 (X)geo of finite groups. Since an extension

of a finite group by a divisible group splits, V (X) is finite by divisible:
V (X) = V (X)fin ⊕ V (X)div. Moreover, the group V (X) can be expressed
as a Somekawa K-group, namely

(2.9) V (X) � K(k; J,Gm)
associated with the Jacobian variety J = Jac(X) and Gm ([36, Theo-
rem 2.1], [28, Remark 2.4.2(c)]). For X has good reduction, the Jaco-
bian variety J has also good reduction. The reciprocity map τX : V (X) →
πab

1 (X)geo coincides with the Galois symbol map associated with J and
Gm ([36, Proposition 1.5]) as in the following commutative (up to sign)
diagram: For any m ∈ Z≥1,

(2.10)

V (X)/m

� (2.9)
��

τX,m
�� πab

1 (X)geo/m

�
��

K(k; J,Gm)/m
sm �� H2(k, J [m] ⊗ μm)

(cf. [1, Theorem 1.14]). Here, the right vertical isomorphism is induced from
H2(k, J [m]⊗μm) � J [m]Gk

. By the class field theory for X (Theorem 2.9),
the map τX,m induced from τX is surjective. As Ker(τX) is divisible, the map
τX,m is injective. We conclude that the Galois symbol map sm is bijective
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for every m ≥ 1. (Note that the injectivity of sm has also been established
for an arbitrary field in [40, Appendix].)

There is a surjective homomorphism SK1(X) → CH0(X) (see [16, Sec-
tion 2]), called the boundary map, where CH0(X) is the Chow group of the
special fiber X = X ⊗Ok

Fk of the model X . This map is compatible with
the valuation map vk of k as the following commutative diagram indicates:

(2.11)

0 �� V (X) ��

∂X

��

SK1(X) N ��

����

k× ��

vk

��

0

0 �� A0(X) �� CH0(X) deg
�� Z �� 0,

where deg is the degree map, and A0(X) is its kernel. We denote by ∂X the
induced map V (X) → A0(X). Because the horizontal sequences split, the
boundary map ∂X is surjective. A rational point x ∈ X(k) gives rise to an
Fk-rational point of X by the valuative criterion for properness. The Abel–
Jacobi map gives an isomorphism A0(X) �→ J(Fk), where J = Jac(X) is
the Jacobian variety of X.

Lemma 2.10. The kernel Ker(∂X) is finite by divisible (in the sense of Def-
inition 2.1). Namely, we have a decomposition

Ker(∂X) = Ker(∂X)fin ⊕ Ker(∂X)div

for a finite group Ker(∂X)fin and a divisible group Ker(∂X)div.

Proof. Consider the short exact sequence 0 → Ker(∂X) → V (X) ∂X→
A0(X) → 0. As noted above V (X) is finite by divisible and A0(X) � J(Fk)
is finite. The assertion follows from Lemma 2.2(iii). �

The classical class field theory (for the curve X over Fk) says that the
reciprocity map ρX : A0(X) �→ πab

1 (X)geo = πab
1 (X)tor is bijective of finite

groups and makes the following diagram commutative:

0 �� Ker(∂X)

μX

��

�� V (X) ∂X ��

τX
����

A0(X)
ρX̄�

��

�� 0

0 �� πab
1 (X)geo

ram �� πab
1 (X)geo sp

�� πab
1 (X)geo �� 0.

For the commutativity of the right square in the above diagram, see [16,
Proposition 2]. From the diagram, we obtain the surjective homomorphism
μX : Ker(∂X) →→ πab

1 (X)geo
ram with Ker(μX) � Ker(τX) = V (X)div. Since

the group A0(X) is finite, we have an equality Ker(∂X)div = V (X)div.
Moreover, the reciprocity map τX induces V (X)fin = V (X)/V (X)div

�→
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πab
1 (X)geo. It follows that the map μX induces an isomorphism of finite

groups

(2.12) Ker(∂X)fin
�−→ πab

1 (X)geo
ram.

3. Abelian varieties
Throughout this section, we will be using the following notation:

• A: an abelian variety over k of dimension g = dim(A) with good
ordinary reduction.

• A : the Néron model over Ok of A ([2, Section 1.2]).
• A := A ⊗Ok

Fk: the special fiber of A which is an ordinary abelian
variety over Fk.

• ̂A: the formal group law over Ok of A (cf. [10, Section C.2]).
The formal group law ̂A defines a Mackey functor by the associated group

̂A(K) := ̂A(mK) for a finite extension K/k.

Boundary map. For any m ≥ 1, the finite flat group scheme A [m] over
Ok fits into the following connected-étale exact sequence

(3.1) 0 −→ A [m]◦ ι−→ A [m] π−→ A [m]et −→ 0

(cf. [37, Section 1.4]). By taking the limit lim←−m
, we obtain the short exact

sequence

(3.2) 0 −→ T (A )◦ ι−→ T (A ) π−→ T (A )et −→ 0

of the full Tate modules, where T (A )• := lim←−m
A [m]• for • ∈ {◦, ∅, et}.

On the other hand, the group ̂A(k) := lim−→k′/k
̂A(mk′) associated with the

formal group law ̂A over Ok of A gives the short exact sequence

(3.3) 0 −→ ̂A[m] ι−→ A[m] π−→ A[m] −→ 0,

where ̂A[m] = ̂A(k)[m] is the m-torsion subgroup of ̂A(k) ([10, Theo-
rem C.2.6]). The valuative criterion of properness yields A [m] 	 A[m]
as Gk-modules. By the equivalence of categories between finite étale group
schemes over Ok and finite Gk-modules, we have A [m]et 	 A[m] (cf. [37,
Section 1.4]). The group ̂A(k) has no non-trivial prime to p-torsion ([10,
Proposition C.2.5]). By comparing the short exact sequences (3.1) and (3.3),
we obtain

A [m]◦ 	 ̂A[m], T (A )et 	 lim←−
m

A[m], and T (A )◦ 	 lim←−
m

̂A[m].

By taking the Gk-coinvariance of (3.2), we have

(3.4) (T (A )◦)Gk

ι−→ T (A)Gk

π−→ (T (A )et)Gk
−→ 0.
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From [36, (3.2.1)] (see also [1, Remark 2.7]), the étale quotient of the above
sequence becomes

(3.5) (T (A )et)Gk
� lim←−

m

(A[m])Gk
� A(Fk).

By taking the projective limit, the Galois symbol maps (sm)m induce a map
s : K(k; A,Gm) → lim←−m

H2(k, A[m] ⊗ μm). The composite map

(3.6) ∂A : K(k; A,Gm) s−→ lim←−
m

H2(k, A[m] ⊗ μm)
(♦)� T (A)Gk

π−→−→ A(Fk),

is called the boundary map of A, where the middle isomorphism (♦) follows
from the local Tate duality theorem ([25, Theorem 7.2.6], cf. [1, (2.2)], see
also Proposition A.1 in Appendix). Since the limit of the Galois symbol
map s = lim←−m

sm in (3.6) is surjective ([36, Theorem 3.3]), so is ∂A.

Lemma 3.1.
(i) The groups (A ⊗ Gm)(k), K(k; A,Gm) and Ker(∂A) are finite by

divisible in the sense of Definition 2.1.
(ii) For any m ≥ 1 prime to p, we have Ker(∂A)/m = 0.

Proof.

(i). The proof of [28, Theorem 4.5] implies that (A ⊗ Gm)(k)/m is finite
and its order is bounded independently of m. This implies the first assertion
by Lemma 2.2(i) (as in Lemma 2.10). Since we have the quotient map (A⊗
Gm)(k) →→ K(k; A,Gm), the second assertion follows from Lemma 2.2(ii).

Consider the short exact sequence 0 → Ker(∂A) → K(k; A,Gm) ∂A→
A(Fk) → 0. Since A(Fk) is finite, Lemma 2.2(iii) implies that Ker(∂A)
is finite by divisible.

(ii). From (i), we have K(k; A,Gm) = K(k; A,Gm)fin⊕K(k; A,Gm)div, and
Ker(∂A) = Ker(∂A)fin ⊕ Ker(∂A)div (cf. Definition 2.1). As the target of the
boundary map ∂A : K(k; A,Gm) → A(Fk) is finite, we obtain a short exact
sequence 0 → Ker(∂A)fin → K(k; A,Gm)fin

∂A→ A(Fk) → 0. Take any m ≥ 1
coprime to p. For K(k; A,Gm)fin and A(Fk) are finite, the multiplication
by m map on these finite groups induces

K(k; A,Gm)fin[m] � K(k; A,Gm)fin/m
(�)� A(Fk)/m � A(Fk)[m],

where the isomorphism (�) follows from [12, Proposition 2.6] (for the case
where A is the Jacobian variety, [1, Proposition 2.29]). The boundary map
∂A gives an isomorphism K(k; A,Gm){m} �→ A(Fk){m}, for any m prime
to p. This implies that Ker(∂A)fin is a p-primary torsion group. �
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Let Tp(A )• = lim←−n
(A [pn]•) be the p-adic Tate module of A [pn]• for • ∈

{◦, ∅, et} (cf. (3.1)) and write T (A )• = Tp(A )• × T ′(A )• with T ′(A )• =
lim←−(m,p)=1 A [m]•. From the following lemma, one can describe Ker(∂A)fin
by using the exact sequence

(Tp(A )◦)Gk

ι−→ Tp(A)Gk

π−→ (Tp(A )et)Gk
−→ 0,

where Tp(A) := lim←−n
A[pn] � Tp(A ) (cf. (3.4)).

Lemma 3.2. Suppose that, for any m ≥ 1, the Galois symbol map

sm : K(k; A,Gm)/m −→ H2(k, A[m] ⊗ μm)

is injective. We have Ker(∂A)fin � Im((Tp(A )◦)Gk

ι→ Tp(A)Gk
).

Proof. For any m ∈ Z≥1, by [36, Theorem 3.3] the map sm is surjective.
From the assumption, it is bijective. By taking the projective limit, we
obtain lim←−m

sm = sA : K(k; A,Gm)fin
�→ T (A)Gk

. From the definition of
the boundary map (3.6), we have a commutative diagram

K(k; A,Gm)fin

∂A
����

sA

�
�� T (A)Gk

π
����

A(Fk) �
(3.5)

�� (T (A )et)Gk
.

This gives Ker(∂A)fin � Ker
(
T (A)Gk

π→ A(Fk)
)
. Next, Lemma 3.1 (ii)

yields an isomorphism K(k; A,Gm)/m � A(Fk)/m for any m ∈ Z≥1 which
is prime to p. Thus, we have T ′(A)Gk

�→ lim←−(m,p)=1(A(Fk)/m)Gk
and the

following commutative diagram:

(Tp(A )◦)Gk

ι �� Tp(A)Gk� �

��

�� (Tp(A )et)Gk
��

� �

��

0

(Tp(A )◦)Gk
�� T (A)Gk

�� A(Fk) �� 0.

Here, the first vertical map is the identity, the second is the natural in-
clusion induced by Tp(A) ↪→ T (A) (which splits) and the third one is the
composition (Tp(A )et)Gk

� A(Fk){p} ↪→ A(Fk) ([1, Remark 2.7]), where
A(Fk){p} is the p-primary torsion subgroup of A(Fk). Then, it is clear that

Im((Tp(A )◦)Gk

ι−→ Tp(A)Gk
) = Im((Tp(A )◦)Gk

−→ T (A)Gk
)

= Ker(T (A)Gk

π−→ A(Fk)).

The lemma follows from these equalities. �
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Formal groups associated with abelian varieties. In this paragraph,
we give an upper bound for the Mackey product ( ̂A ⊗ Gm)(k) associated
to ̂A and Gm.

Lemma 3.3. Let k′/k be a finite tamely ramified extension. Then, the
norm map

Nk′/k : ( ̂A ⊗ Gm)(k′) −→−→ ( ̂A ⊗ Gm)(k)
is surjective.

Proof. Take any symbol of the form {x, a}K/k in ( ̂A ⊗Gm)(k). For Kk′/K

is also tamely ramified, there exists ξ ∈ ̂A(K) such that NKk′/K(ξ) = x
([3, Proposition 3.9]). The projection formula, that is, the relation (PF)
defining the Mackey product in Definition 2.5, yields

{x, a}K/k = {NKk′/K(ξ), a}K/k

(PF)= {ξ, ResKk′/K(a)}Kk′/k

(2.2)= Nk′/k({ξ, ResKk′/K(a)}Kk′/k′).

The assertion follows. �

In the same way as in Definition 2.6, for any n ≥ 1, we define the Galois
symbol map

(3.7) spn := spn,k : ( ̂A ⊗ Gm)(k)/pn −→ H2(k, ̂A[pn] ⊗ μpn)

by spn({x, a}K/k) = CorK/k(δ
̂A
(x) ∪ δGm(a)), where δ

̂A
: ̂A(K)/pn ↪→

H1(K, ̂A[pn]) is the Kummer map. This map is well-defined by properties
of the cup product ([25, Proposition 1.5.3]).

Proposition 3.4. We assume ̂A[p] ⊂ ̂A(k), μp ⊂ k, and A[p] ⊂ A(Fk).
(i) There is an isomorphism ̂A/p � U

⊕g of Mackey functors over k,
where U is the sub Mackey functor of Gm/p defined by

U(K) := UK := Im(UK −→ K×/p) = UK/p.

(ii) For any n ≥ 1, the Galois symbol map

spn : ( ̂A ⊗ Gm)(k)/pn −→ H2(k, ̂A[pn] ⊗ μpn)

defined in (3.7) is bijective.

The isomorphism ̂A/p � U
⊕g in the assertion (i) is not canonical and

depends on the choice of an isomorphism ̂A[p] � (μp)⊕g of (trivial) Galois
modules. The proof of the above proposition essentially follows from [12,
Section 4], but the assumptions are weakened slightly.
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Proof of Proposition 3.4.

(i). We fix an isomorphism Â[p] � (μp)⊕g of Galois modules. This induces
the bijection (♣) below

δK : Â(K)/p
δ

Â
↪−→ H1(K, Â[p])

(♣)� H1(K, μp)⊕g �←− (
K×/p

)⊕g

for any finite extension K/k. Here, the last map is the Kummer map on
Gm (cf. (2.3)) which is bijective from “Hilberts Satz 90”. First, we show
Im(δK) ⊂ (UK)⊕g. Consider the following commutative diagram:

Â(K)/p
δK ��

��

(K×/p)⊕g v ��

ι

��

(Z/p)⊕g

id
��

Â(Kur)/p
δKur

�� ((Kur)×/p)⊕g v �� (Z/p)⊕g,

where Kur is the completion of the maximal unramified extension of K,
and v is the valuation map. Since we have Â ⊗Ok

Okur � (Ĝm)⊕g ([22,
Lemma 4.26, Lemma 4.27]), Â(Kur)/p � (UKur)⊕g and the composition
v ◦ δKur = 0 in the above diagram. Thus, the composition v ◦ δK = 0 in the
top sequence and hence Im(δK) ⊂ (UK)⊕g. From the structure theorem of
the multiplicative group K×, we have UK/p � (Z/p)⊕([K:Qp]+1) and hence
#(UK)⊕g = {#(UK/p)}g = pg([K:Qp]+1). It is enough to show #Â(K)/p ≥
pg([K:Qp]+1).

By Mattuck’s theorem ([21]) and #A(K)[p] = p2g we have #A(K)/p =
pg([K:Qp]+2). Recall that A has ordinary reduction so that A[p] � (Z/p)⊕g.
The exact sequence

Â(K)/p −→ A(K)/p −→ A(FK)/p −→ 0

and the equality #A(FK)/p = #A(FK)[p] imply the inequality #Â(K)/p ≥
pg([K:Qp]+1). The map δK : Â(K)/p

�→ (UK)⊕g is bijective.

(ii). For each n ∈ Z≥1, to simplify the notation, we put

Mn := (Â ⊗ Gm)(k)/pn, Hn := H2(k, Â[pn] ⊗ μpn)
and sn := spn : Mn → Hn. We will show by induction that sn is bijective.
First, we show that s1 : M1 → H1 is bijective. As in the proof of (i) above,
we fix an isomorphism Â[p] � (μp)⊕g of Galois modules and hence we obtain

(3.8) H1 = H2(k, Â[p] ⊗ μp) � H2(k, μ⊗2
p )⊕g.

By (i), there is an isomorphism Â/p � U
⊕g. For the Mackey product com-

mutes with the direct sum,

(3.9) M1 � (Â/p ⊗ Gm/p)(k) � (U ⊗ Gm/p)(k)⊕g.
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The natural inclusion U ↪→ Gm/p, induces the following commutative dia-
gram:

M1

�(3.9)
��

s1 �� H1

(3.8) �
��

(U ⊗ Gm/p)(k)⊕g �� (Gm/p ⊗ Gm/p)(k)⊕g
(sp)⊕g

�� H2(k, μ⊗2
p )⊕g.

Here, the map sp in the bottom is the Galois symbol map associated to
Gm. In fact, the composition (U ⊗ Gm/p)(k) → (Gm/p ⊗ Gm/p)(k) sp→
H2(k, μ⊗2

p ) is bijective ([28, Lemma 4.2.1], see also [12, Lemma 4.5]) and
so is s1 : M1 → H1.

Next, we consider the following commutative diagram with exact rows
except possibly at Mn−1:

̂A[p] ⊗Z k× ψ
��

φ
��

Mn−1 ��

sn−1�
��

Mn
��

sn

��

M1

� s1
��

�� 0
(♦)

H1(k, ̂A[p] ⊗ μp) �� Hn−1 �� Hn
�� H1 �� 0

(cf. [28, Lemma 4.2.2]), where the bottom sequence is induced from

0 −→ ̂A[pn−1] ⊗ μpn −→ ̂A[pn] ⊗ μpn −→ ̂A[p] ⊗ μp −→ 0.

Here, the far left vertical map φ is given by
̂A[p] ⊗Z k× id ⊗δ−→ H0(k, ̂A[p]) ⊗Z H1(k, μp) ∪−→ H1(k, ̂A[p] ⊗ μp)

and ψ is induced from ̂A[p] ↪→ ̂A(k) →→ ̂A(k)/pn−1: ψ(w ⊗ a) := {w, a}k/k

for w ⊗ a ∈ ̂A[p] ⊗ k×. The commutativity of the square (♦) follows from
a property of the cup product (cf. [25, Proposition 1.4.3(i)]). By the fixed
isomorphism ̂A[p] � (μp)⊕g of trivial Galois modules, the map φ becomes

̂A[p] ⊗Z k× −→−→ (μp ⊗Z k×/p)⊕g � H1(k, μ⊗2
p )⊕g � H1(k, ̂A[p] ⊗ μp).

In particular, φ is surjective. From the inductive hypothesis, sn−1 is bijec-
tive and hence sn is surjective. From the diagram chase and the induction
hypothesis, sn is injective. �
Theorem 3.5. For any n ≥ 1, there is a surjective homomorphism

(Z/pMur)⊕g −→−→ ( ̂A ⊗ Gm)(k)/pn,

where Mur = max{m ≥ 0 | μpm ⊂ kur}.
Proof. Recall that, for any finite unramified extension k′/k, the norm map
( ̂A ⊗ Gm)(k′) → ( ̂A ⊗ Gm)(k) is surjective (Lemma 3.3). We may assume
Mur = M := max{m ≥ 0 | μpm ⊂ k}. We have a short exact sequence

0 −→ ̂A[p] −→ A[p] −→ A[p] −→ 0
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by [10, Theorem C.2.6]. Mazur’s theorem Â ⊗Ok
Okur � (Ĝm)⊕g ([22, Lem-

ma 4.26, Lemma 4.27]) indicates that, by replacing k with a finite unrami-
fied extension, the above sequence becomes

0 −→ (μp)⊕g −→ A[p] −→ (Z/p)⊕g −→ 0
as Gk-modules. In particular, we have A[p] ⊂ A(Fk). In the following, we
put K = k(μp).

First, we consider the case M = 0 and show (Â ⊗ Gm)(k)/p = 0. This
implies that (Â ⊗ Gm)(k) is p-divisible so that (Â ⊗ Gm)(k)/pn = 0 for
any n ≥ 1. The assumption M = 0 implies μp �⊂ k and k � K. Using
Â[p] � (μp)⊕g, the Galois symbol map defined in (3.7) is of the form:

sp : (Â ⊗ Gm)(k)/p −→ H2(k, Â[p] ⊗ μp) � H2(k, μ⊗2
p )⊕g.

Since we have H2(k, μ⊗2
p ) � KM

2 (k)/p = 0 (cf. [6, Chapter IX, Proposi-
tion 4.2]), it is left to show that the Galois symbol map sp is injective. The
extension degree of K = k(μp)/k is prime to p. The composition

(Â ⊗ Gm)(k)/p
ResK/k−→ (Â ⊗ Gm)(K)/p

NK/k−→ (Â ⊗ Gm)(k)/p

is the multiplication by [K : k] and is bijective. Note that the restriction
ResK/k is injective. Consider the following commutative diagram:

(Â ⊗ Gm)(k)/p� �

ResK/k

��

sp
�� H2(k, μ⊗2

p )⊕g

ResK/k

��

(Â ⊗ Gm)(K)/p �
sp,K

�� H2(K, μ⊗2
p )⊕g.

Here, the Galois symbol map sp,K is bijective from Proposition 3.4(ii).
From the diagram above, the Galois symbol map sp is injective. We obtain
(Â ⊗ Gm)(k)/pn = 0.

Next, consider the case M > 0. In this case, K = k. Fix ζ ∈ μpM

a primitive pM -th root of unity. In the following, we show the following
claim:

Claim. (Â ⊗ Gm)(k)/p is generated by symbols of the form {w, ζ}k/k for
some w ∈ Â(k).

Proof. Recall that the Hilbert symbol (−, −)p : k× ⊗ k× → μp � Z/p satis-
fies
(3.10) (y, x)p = 0 ⇔ y ∈ Nk( p√x )/k

(
k( p

√
x )×)

, for x, y ∈ k×

(cf. [38, Proposition 4.3]). From the very definition of M and M = Mur,
the extension L := k(μpM+1)/k is non-trivial, and totally ramified. We have
Uk/NL/kUL � k×/NL/kL× (cf. the proof of [32, Section V.3, Corollary 7])
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and local class field theory says k×/NL/kL× � Gal(L/k) �= 0 (cf. [32,
Section XIII.3]). Thus, there exists y ∈ Uk � NL/kUL such that (y, ζ)p �= 0
from (3.10). As (y, ζ)p �= 0, the chosen element y induces a non-trivial
element in Uk = Uk/p. We use the same notation y for this induced element
in Uk. For each 1 ≤ i ≤ g, put

y(i) := (1, . . . , 1,

i
∨
y, 1, . . . , 1) ∈ (Uk)⊕g

and we denote by w(i) ∈ Â(k)/p the element corresponding to y(i) through
the isomorphism Â(k)/p � (Uk)⊕g (Proposition 3.4(i)). The Galois sym-
bol map is compatible with the Hilbert symbol map ([32, Section XIV.2,
Proposition 5]) as the following commutative diagram indicates:

(3.11)

Â(k)/p ⊗Z k×/p
ι ��

�
��

(Â ⊗ Gm)(k)/p
sp

�
���� H2(k, Â[p] ⊗ μp)

�
��(

Uk ⊗Z k×/p
)⊕g (−,−)p

�� (Z/p)⊕g.

Here, sp is the Galois symbol map and is bijective (Proposition 3.4(ii)),
and the map ι is given by ι(w ⊗ x) = {w, x}k/k. The image of w(i) ⊗ ζ ∈
Â(k)/p ⊗Z k×/p in (Z/p)⊕g via the lower left corner in (3.11) is

ξ(i) := (0, . . . , 0,

i
∨

(y, ζ)p, 0, . . . , 0) ∈ (Z/p)⊕g.

These elements ξ(i) (1 ≤ i ≤ g) generate (Z/p)⊕g and hence the symbols
{w(i), ζ}k/k = ι(w(i) ⊗ ζ) for 1 ≤ i ≤ g generate (Â ⊗ Gm)(k)/p. �

For any n ≥ 1, consider the exact sequence

(Â ⊗ Gm)(k)/p
pn

−→ (Â ⊗ Gm)(k)/pn+1 −→ (Â ⊗ Gm)(k)/pn −→ 0,

where pn is the map induced from the multiplication by pn. From the claim
above, the map pn becomes 0 for all n ≥ M , so that (Â ⊗ Gm)(k)/pn+1 �
(Â⊗Gm)(k)/pn. It is left to show (Z/pM )⊕g →→(Â⊗Gm)(k)/pM . From Lem-
ma 3.3, by replacing k with a sufficiently large unramified extension of k, we
may assume Â[pM ] � (μpM )⊕g as Gk-modules. As the Galois symbol map
(Â ⊗ Gm)(k)/pM → H2(k, Â[pM ] ⊗ μpM ) is bijective (Proposition 3.4(ii))
and μpM ⊂ k, we have

(Â ⊗ Gm)(k)/pM � H2(k, Â[pM ] ⊗ μpM ) � H2(k, μ⊗2
pM )⊕g � (Z/pM )⊕g.

�
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Upper and lower bounds of the kernel of the boundary maps. The
Mackey functor defined by the formal group law ̂A associated to A gives
the short exact sequence as Mackey functors

(3.12) 0 −→ ̂A
ι−→ A

π−→ A/ ̂A −→ 0,

where A/ ̂A is defined by the exactness. The Mackey functor A/ ̂A is given
by (A/ ̂A)(K) � A(FK) for each finite extension K/k with residue field FK

(for the precise description, see [28, (3.3)]). By applying − ⊗ Gm (which
is right exact) to the sequence (3.12), we have the following commutative
diagram with exact rows

(3.13)

( ̂A ⊗ Gm)(k)

ϕ

��

ι⊗id
�� (A ⊗ Gm)(k)

����

�� ((A/ ̂A) ⊗ Gm)(k) ��

ψ
����

0

0 �� Ker(∂A) �� K(k; A,Gm) ∂A ���� A(Fk) �� 0,

where the middle vertical map is the quotient map, and ∂A is the boundary
map defined in (3.6). Here, the commutativity of the left square in (3.13)
follows from the lemma below and this induces the right vertical map ψ
which is surjective.

Lemma 3.6. The boundary map ∂A annihilates the image of ( ̂A ⊗Gm)(k)
in K(k; A,Gm).

Proof. For m = #A(Fk), there is a commutative diagram:

( ̂A ⊗ Gm)(k) ��

mod m
��

K(k; A,Gm)

mod m

��

∂A �� A(Fk)

� mod m
��

( ̂A ⊗ Gm)(k)/m �� K(k; A,Gm)/m
∂A,m

�� A(Fk)/m.

It is enough to show that the bottom sequence is a complex. The Galois
symbol maps induce the following commutative diagram with exact rows:

( ̂A ⊗ Gm)(k)/m
ι⊗id

��

sm

��

(A ⊗ Gm)(k)/m

sm

��

��

∂A,m

��

((A/ ̂A) ⊗ Gm)(k) ��

��

0

H2(k, ̂A[m] ⊗ μm) ��

�
��

H2(k, A[m] ⊗ μm) ��

�
��

H2(k, A[m] ⊗ μm)

�
��

�� 0

̂A[m]Gk

ι �� A[m]Gk

π �� A[m]Gk
�� 0,

where the second exact sequence is induced from the exact sequence for
A[m] noted in (3.3). The definition of the boundary map ∂A (cf. (3.6)) says
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that the composition

(A ⊗ Gm)(k)/m
sm−→ H2(k, A[m] ⊗ μm) π−→ H2(k, A [m]et ⊗ μm)

is the boundary map ∂A,m. Since the bottom sequence in the above diagram
is exact, ∂A,m annihilates the image of ( ̂A ⊗ Gm)(k)/m and the assertion
follows from this. �

Theorem 3.7. There are surjective homomorphisms

(Z/pMur
)⊕g −→−→ Ker(∂A)fin −→−→ (Z/pNA)⊕g,

where NA = max{n ≥ 0 | A[pn] ⊂ A(k)} and g = dim(A).

Proof. To give the lower bound, we may assume N := NA > 0. The dia-
gram (3.13) induces

( ̂A ⊗ Gm)(k)/pN

��

�� (A ⊗ Gm)(k)/pN

��

�� ((A/ ̂A) ⊗ Gm)(k)/pN ��

��

0

Ker(∂A)/pN �� K(k; A,Gm)/pN
∂

A,pN
���� A(Fk)/pN �� 0.

In fact, the middle and right vertical maps are bijective ([12, Lemma 4.1,
Corollary 4.3(i)]), the upper sequence is left exact, and ( ̂A ⊗Gm)(k)/pN �
(Z/pN )⊕g ([12, Lemma 4.5(ii)]). Therefore,

Ker(∂A) −→−→ Ker(∂A)/pN

−→−→ Ker(∂A,pN ) � ( ̂A ⊗ Gm)(k)/pN � (Z/pN )⊕g.

Next, we consider the decomposition A(Fk) = A(Fk){p} ⊕ A(Fk){m} for
some m coprime to p. The composition ∂

{p}
A : K(k; A,Gm) ∂A→ A(Fk) →→

A(Fk){p} gives the following diagram:

0 �� Ker(∂A)� �

j
��

�� K(k; A,Gm)
∂A �� A(Fk)

����

�� 0

0 �� Ker(∂{p}
A ) �� K(k; A,Gm)

∂
{p}
A �� A(Fk){p} �� 0.

By applying the snake lemma, the above diagram induces an isomorphism
A(Fk){m} �→ Coker(j). Since TorZ(Coker(j),Z/pn) = 0, we conclude that

(3.14) Ker(∂A)/pn �−→ Ker(∂{p}
A )/pn.
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From the diagram (3.13), we have

(3.15)

(Â ⊗ Gm)(k)

ϕ{p}
��

�� (A ⊗ Gm)(k)

����

�� ((A/Â) ⊗ Gm)(k) ��

ψ{p}
��

0

0 �� Ker(∂{p}
A ) �� K(k; A,Gm)

∂
{p}
A ���� A(Fk){p} �� 0,

where the right vertical map ψ{p} is the composition ((A/Â) ⊗ Gm)(k) ψ→
A(Fk) →→ A(Fk){p}.

Claim. The kernel Ker(ψ{p}) is p-divisible.

Proof. Put M = ((A/Â ) ⊗ Gm)(k). Since ψ{p} induces an isomorphism

M /pn � A(Fk){p}/pn = A(Fk)/pn

for all n ≥ 1 ([12, Lemma 4.1]), we have

lim←−
n

M /pn � lim←−
n

A(Fk)/pn � A(Fk){p}.

It follows that

(3.16) Ker(ψ{p}) = Ker
(

M −→ lim←−
n

M /pn

)
=

⋂
n≥1

pnM .

As A(Fk){p} is a finite p-group, there exists s ≥ 0 such that ps annihilates
A(Fk){p}. To show the claim, take any x ∈ Ker(ψ{p}) and any n ≥ 1.
From (3.16), there exists y ∈ M such that x = pn+sy = pn(psy). Here,
psy ∈ Ker(ψ{p}). Thus, Ker(ψ{p}) is p-divisible. �

By the snake lemma, the diagram (3.15) gives a surjective homomor-
phism Ker(ψ{p})→→Coker(ϕ{p}). From the above claim, Coker(ϕ{p}) is also
p-divisible. The map ϕ{p} induces a surjective homomorphism

ϕn : (Â ⊗ Gm)(k)/pn ϕ{p}
−→−→ Ker(∂{p}

A )/pn (3.14)� Ker(∂A)/pn.

From Theorem 3.5, we obtain

(Z/pMur)⊕g −→−→ (Â ⊗ Gm)(k)/pn ϕn−→−→ Ker(∂A)/pn

for any n ≥ 1. For the finite part Ker(∂A)fin is a p-group (Lemma 3.1(ii))
this implies the existence of surjective homomorphism (Z/pMur)⊕g →→
Ker(∂A)fin as required. �

Remark 3.8. In the case where A = E is an elliptic curve, define

N̂ := max{n | Ê[pn] ⊂ Ê(k)}.
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In general, we have N ≤ N̂ . By [22, Lemma 4.26 and Lemma 4.27], the base
change Ê[pn]kur to kur gives Êkur [pn] � μpn and hence N̂ ≤ Mur. Using this,
we will give a refined upper bound Z/pN̂ →→ Ker(∂E)fin in Proposition 5.2.

Remark 3.9. As noted in the introduction, we apply Theorem 3.7 to the
Jacobian variety J = Jac(X) for a curve X over k which has good reduction
to obtain the structure of πab

1 (X)geo
ram (Corollary 4.1). However, the structure

of Ker(∂J) ⊂ K(k; J,Gm) � V (X) can be obtained without assuming X
has good reduction. Precisely, let X be a projective smooth curve over k
with X(k) �= ∅ and assume that the Jacobian variety J = Jac(X) has good
ordinary reduction. From Theorem 3.7 there are surjective homomorphisms

(Z/pMur)⊕g −→−→ Ker(∂J)fin −→−→ (Z/pNJ )⊕g.

Note that when X has good reduction (this is the very case studied in [1]),
its Jacobian J has good reduction. But, the converse does not hold in
general. By the semi-stable reduction theorem, at least X has semi-stable
reduction, that is, there exists a model X over Ok of X whose closed fiber
X = X ⊗Ok

Fk is semistable, i.e., X is reduced and has at most ordinary
double points as singularities ([4, Theorem 2.4]).

The following proposition due to Yoshiyasu Ozeki insists that if we en-
large the base field k then the difference NA ≤ Mur becomes arbitrarily
large.

Proposition 3.10. Let A be an abelian variety over k with potentially good
reduction. For an extension K/k, we define

NA(K) := max{n | A[pn] ⊂ A(K)} = NAK
, and

M(K) := max{m | μpm ⊂ K×}.

Then, for any x > 0, there exists a finite extension K/k, such that M(K)−
NA(K) > x.

Proof. For each m ≥ 1, put km := k(μpm) and k∞ := ⋃
m≥1 km. By defini-

tion, for any m ≥ 1, we always have

(3.17) m ≤ M(km).

By Imai’s theorem [13], #A(k∞)tor < ∞. In particular, NA(k∞) < ∞. For
sufficiently large m > 0, we have A(k∞)[p∞] = A(km)[p∞]. Take such m
satisfying

(3.18) m > NA(k∞).

On the other hand, for any t ≥ 1,

A[pt] ⊂ A(k∞) ⇔ A[pt] ⊂ A(k∞)[p∞] = A(km)[p∞] ⇔ A[pt] ⊂ A(km).
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From these equivalences,

(3.19) A[pNA(k∞)+1] �⊂ A(km), and A[pNA(k∞)] ⊂ A(km).

Thus we obtain

NA(km) (3.19)= NA(k∞)
(3.18)

< m
(3.17)

≤ M(km).

As NA(k∞) does not depend on m and we can take arbitrary large m, the
assertion follows by putting K = km. �

4. Curves
In this section, we give a proof of Theorem 1.1 and also construct the

maximal covering of a curve X over k which produces the subgroup
πab

1 (X)geo
ram of πab

1 (X)geo. Throughout this section, we use the following
notation:

• X: a projective smooth curve over k with X(k) �= ∅ and we addi-
tionally assume that X has good reduction.

• X := X ⊗Ok
Fk: the special fiber of a regular model X over Ok of

X,
• J = Jac(X): the Jacobian variety of X which has good reduction

from the assumption on X,
• J : the Néron model over Ok of J , and
• J := Jac(X): the Jacobian variety of X which is also the closed

fiber of J .
Finally, we suppose that J is an ordinary abelian variety. From this as-
sumption, the Jacobian variety J has good ordinary reduction. We fix a
rational point x ∈ X(k). By the valuative criterion for properness, the ra-
tional point x gives rise to an Fk-rational point of X which is denoted by
x ∈ X(Fk).

Proof of the main theorem. The boundary map ∂J for J defined in (3.6)
is compatible with ∂X defined in (2.11) as in the following commutative
diagram:

V (X) ∂X �� ��

(2.9) �
��

A0(X)

�
��

K(k; J,Gm) ∂J �� �� J(Fk),

where the right vertical map is the Abel–Jacobi map A0(X) �→ J(Fk) which
is bijective ([36, Lemma 2.2], see also [1, Lemma 2.12]). Recall that both of
∂X and ∂J are surjective, we obtain an isomorphism Ker(∂X) �→ Ker(∂J).
This isomorphism and Theorem 3.7 together with the class field theory
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μX : Ker(∂X)fin
�→ πab

1 (X)geo
ram (cf. (2.12)) induce the following main result

referred in Theorem 1.1:

Corollary 4.1. We have surjective homomorphisms:
(Z/pMur)⊕g −→−→ πab

1 (X)geo
ram −→−→ (Z/pNJ )⊕g.

When the absolute ramification index ek = ek/Qp
of k satisfies ek <

p − 1, we have μp �⊂ kur, and this implies Mur = 0. From Corollary 4.1 we
recover the following assertion in [16, Proposition 7] (cf. [42, Theorem 3.2,
Theorem 4.1]. For more general results, see also [27, Proposition 4.25]).

Corollary 4.2. Assume ek < p − 1. Then, we have πab
1 (X)geo

ram = 0.
Construction of the maximal covering. In the following, we construct
a geometric covering ϕ : ˜X → X such that the composition

πab
1 (X)geo

ram ↪−→ πab
1 (X)geo � Gal(k(X)geo/k(X)) −→−→ Aut(ϕ)

is bijective. The construction of such covering is known classically as the
pullback of an appropriate isogeny ˜J → J along the Albanese map fx : X →
J = Jac(X) associated with the given rational point x ∈ X(k) (cf. [33]).
Since we could not find appropriate references, we give precise explanations
below: Consider also the Albanese map fx : X → J ([23, Section 6]). We
have the middle vertical arrow in the commutative diagram below

(4.1)

X ��

fx

��

X

��

X��

f x̄

��

J �� J J��

by the Néron mapping property of J .

Lemma 4.3. The diagram (4.1) above induces πab
1 (X)geo � π1(J)geo and

πab
1 (X)geo

ram � π1(J)geo
ram. Note that all finite étale coverings of J are abelian.

Proof. Because of H2(k,Q) = H3(k,Z) = 0, and the long sequence arising
from 0 → Z → Q → Q/Z → 0, we have H2(k,Q/Z) = 0. The five-term
exact sequence induced by the Hochschild–Serre spectral sequence gives
short exact sequences

0 �� H1(k,Q/Z) ��

�
��

H1
et(X,Q/Z) ��

��

H1
et(X ⊗k k,Q/Z)Gk ��

�
��

0

0 �� H1(k,Q/Z) �� H1
et(J,Q/Z) �� H1

et(J ⊗k k,Q/Z)Gk �� 0.

The sequences are exact on the right because the group H2(k,Q/Z) van-
ishes. Here, the right vertical map is bijective, because fx induces an iso-
morphism πab

1 (X ⊗k k) � π1(J ⊗k k) = πab
1 (J ⊗k k) ([23, Proposition 9.1]).
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We obtain πab
1 (X) � H1

et(X,Q/Z)∨ � H1
et(J,Q/Z)∨ � π1(J). In the same

way, we also obtain πab
1 (X) � π1(J). Thus, we obtain πab

1 (X)geo � π1(J)geo

and πab
1 (X)geo

ram � π1(J)geo
ram. �

It follows by Corollary 4.1 that there is an isomorphism

πab
1 (X)geo

ram �
g⊕

i=1
Z/pri ,

for some integers NJ ≤ ri ≤ Mur, i = 1, . . . , g. In particular, this implies
that πab

1 (X)geo
ram has a subgroup isomorphic to (Z/pNJ )⊕g. We wish to find

an explicit finite abelian covering X ′ → X whose Galois group coincides
with the aforementioned subgroup of πab

1 (X)geo
ram. This is of course only

interesting when NJ ≥ 1. Put N := NJ and suppose N ≥ 1. Consider the
splitting

J [pN ] � Ĵ [pN ] ⊕ J [pN ] � (μpN )⊕g ⊕ (Z/pN )⊕g

induced by the connected-étale short exact sequence for J (cf. (3.3)). Put
HN := J [pN ] and consider it as a subgroup of J [pN ]. This induces an
isogeny ψ : J → J/HN =: JN with kernel HN ([24, Example 4.40]). Let
ψ̌ : JN → J be its dual ([24, Proposition 5.12]).

Proposition 4.4. The isogeny ψ̌ : JN → J is a geometric covering which is
completely unramified over J . Furthermore, we have Aut(ψ̌) � (Z/pN )⊕g.

Proof. Abelian covering. It is known that any isogeny on abelian varieties
is finite flat ([24, Proposition 5.2]) and we are working over a characteristic
0 field, hence the isogeny ψ̌ : JN → J is finite étale ([24, Proposition 5.6]).
The map Ker(ψ̌) → Aut(ψ̌) which sends ξ ∈ Ker(ψ̌) to the automorphism
given by the translation by ξ is bijective, because any non-constant homo-
morphism is the composition of an isogeny and a translation by some ξ ([24,
Proposition 1.14]). Since Aut(ψ̌) acts transitively on the fibers Ker(ψ̌), the
covering ψ̌ is Galois with Galois group Aut(ψ̌) � Ker(ψ̌) � (Z/pN )⊕g.

Geometric covering. Next, we show that ψ̌ is a geometric covering of J . As
we recalled in Section 2, using the zero 0J ∈ J(k), it suffices to show that
the fiber (JN )0 over 0J

JN

ψ̌
��

(JN )0 = JN ×J 0J

��

��

J Spec(k)0J��

is completely split over Spec(k). In fact, we have (JN )0 � Ker(ψ̌) as schemes
and the later Ker(ψ̌) is precisely the subgroup ψ(Ĵ [pN ]), which is k-rational
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by assumption. Therefore, (JN )0 is the sum of k-rational points, and hence
ψ̌ : JN → J is a geometric covering of J .

Completely ramified. Finally, we show that the geometric covering ψ̌ : JN →
J is completely ramified over J . Suppose that ψ̌ contains a sub covering
φ : A → J unramified over J . Since the isogeny ψ̌ maps 0 in JN to 0 in
J , there exists a rational point e ∈ A(k) such that φ(e) = 0. From the
Lang–Serre theorem ([24, Theorem 10.36]), A is an abelian variety. Let A
be the Néron model of A and A its closed fiber. By the functorial property
of the Néron models ([2, Section 7.3, Proposition 6]) there exists an isogeny
Φ: A → J which makes the following diagram commutative:

(4.2)

A

φ

��

�� A

Φ
��

A

φ
��

��

J �� J J.��

Claim. The isogenies φ and Φ are étale. In particular, in the correspon-
dence between the set of abelian coverings of J unramified over J and that
of abelian coverings of J referred in Section 2, the isogeny φ comes from
the above diagram (4.2) with the isogeny Φ: A → J of the Néron models.

Proof. The kernel Ker(Φ) of the induced isogeny Φ is a finite group scheme
([24, Proposition 5.2]). Consider the connected-étale sequence

0 −→ Ker(Φ)◦ −→ Ker(Φ) −→ Ker(Φ)et −→ 0
([24, Proposition 4.45]). We can factor Φ as a composition of two iso-
genies A → A / Ker(Φ)◦ Φet→ J . In the same way, φ can be written

A → A/ Ker(φ)◦ φet
→ J . Putting A et := A / Ker(Φ)◦ and A

et := A/ Ker(φ)◦,
they make the following diagram commutative:

A ��

φ

��

��

A
��

��

A��

��

��

Aet ��

φet��

A et

Φet��

A
et��

φet��
J �� J J�� ,

where φet : Aet → J is given by taking the generic fiber of Φet. Here, Φet

and φet are isogenies whose kernels are étale group schemes so that Φet and
φet are étale ([24, Proposition 5.6]). From this, φet is an abelian covering
of J which is unramified over J .

Since φ is unramified over J (and A → Aet is not unramified over A
et), we

have A � Aet. This implies that A � A et and A � A
et and the assertions

follow. �
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Let JN be the Néron model of JN . Extending the diagram (4.2), we
have the following commutative diagram:

JN
��

��

ψ̌

��

JN

��

��

JN
��

ψ̌

��

��

A ��

φ

��

A

��

A��

φ
��

J �� J J.��

From the functorial property of Néron models, the above diagram is com-
mutative. Here, φ is étale. From the construction of JN , ψ̌ : JN

�→ J is
an isomorphism and so is φ. This implies that φ : A → J is an isomor-
phism. Therefore, ψ̌ does not contain sub abelian coverings of J which are
unramified over J . �

It follows (see e.g., [23, Section 9]) that the pull-back

XN
��

ϕ

��

JN

ψ̌
��

X
fx

�� J

of ψ̌ along fx : X → J defines an étale covering of X. From the construc-
tion of XN and the universal property of the Albanese map fx, we have
Aut(ψ̌) � Aut(ϕ).

Theorem 4.5. Suppose we have Ker(∂X)fin � (Z/pNJ )⊕g with N := NJ ≥
1. The étale covering ϕ : XN → X is a geometric covering which is com-
pletely ramified over X. Furthermore, the composition

πab
1 (X)geo

ram ↪−→ πab
1 (X)geo −→−→ Aut(ϕ)

is bijective.

Proof. From Proposition 4.4, the right vertical map in the following com-
mutative diagram is surjective

Aut(ϕ) fx

�
�� Aut(ψ̌)

πab
1 (X)geo fx

�
��

��

π1(J)geo.

����

Thus, the left vertical map is surjective, and hence ϕ : XN → X is a geo-
metric (abelian) covering of X.
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Recall that we have (Z/pN )⊕g � Ker(∂X)fin � πab
1 (X)geo

ram and Aut(ϕ) �
Aut(ψ̌) � (Z/pN )⊕g (Proposition 4.4). Consider the following commutative
diagram:

πab
1 (X)geo

ram
� � ��

�
��

πab
1 (X)geo �� ��

�
��

Aut(ϕ)

�
��

π1(J)geo
ram

� � �� π1(J)geo �� �� Aut(ψ̌).

From Proposition 4.4, the composition of the bottom maps is bijective, so
is the top map. This implies that ϕ : XN → X is completely ramified over
X and is maximal. �

Remark 4.6. The assumption in Theorem 4.5 holds if we have NJ = Mur

(see Remark 1.2). In Theorem 5.3 below, we also consider elliptic curves
which satisfy this assumption.

Products of curves. The above results can be extended to products of
curves. For a product X = X1 × · · · × Xd of smooth and projective curves
Xi over k with good reduction and Xi(k) �= ∅ for all i, we have a short
exact sequence 0 → V (X) → SK1(X) N→ k× → 0 and the reciprocity map
τX : V (X) → πab

1 (X)geo defined similarly as in (2.8) (cf. [31, Section 1]).
There is a commutative diagram

V (X) � ��

τX

��

d⊕
i=1

V (Xi) ⊕ Ṽ (X)

⊕τXi
��

πab
1 (X)geo � ��

d⊕
i=1

πab
1 (Xi)geo,

where Ṽ (X) is a divisible group ([41, Proposition 1.7 and Corollary 2.5,
see also the proof of Theorem 1.1]). From the decomposition of V (X), one
define the boundary map

∂X : V (X) projection−−−−−−→
d⊕

i=1
V (Xi)

⊕∂Xi−→
d⊕

i=1
A0(Xi) �

d⊕
i=1

J i(Fk),

where J i is the Jacobian variety of the special fiber Xi for each i. Here, the
target of the boundary map ∂X can be considered as the Albanese variety
Alb(X)(Fk) = ⊕

i J i(Fk), where X = X1 × · · · × Xd. This induces the
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commutative diagram with horizontal exact sequences:

0 �� Ker(∂X) ��

μX

����

V (X) ��

τX

����

d⊕
i=1

J i(Fk) ��

� ⊕ρX̄i��

0

0 �� πab
1 (X)geo

ram �� πab
1 (X)geo ��

d⊕
i=1

πab
1 (Xi)geo �� 0.

From the top horizontal sequence, we have a decomposition

Ker(∂X) � Ker(∂X)fin ⊕ Ker(∂X)div

(Lemma 2.2(iii)), with Ker(∂X)fin � ⊕
i Ker(∂Xi)fin and Ker(∂X)div =

Ṽ (X). Since μX induces an isomorphism

Ker(∂X)fin �
d⊕

i=1
Ker(∂Xi)fin

�−→
d⊕

i=1
πab

1 (Xi)geo
ram � πab

1 (X)geo
ram,

Theorem 3.7 gives the following corollary.

Corollary 4.7. Let X = X1×· · ·×Xd be a product of smooth and projective
curves over k with good reduction, and Xi(k) �= ∅ for all 1 ≤ i ≤ d. Assume
that the Jacobian variety J i := Jac(Xi) has ordinary reduction for each
1 ≤ i ≤ d. Then, there are surjective homomorphisms

d⊕
i=1

(Z/pMur)⊕gi −→−→ πab
1 (X)geo

ram −→−→
d⊕

i=1
(Z/pNJi )⊕gi ,

where gi = dim(Ji).

5. Elliptic curve
In this section, we consider an elliptic curve X = E over k which has good

reduction. Recalling from Lemma 2.10, we have a decomposition Ker(∂E) �
Ker(∂E)fin ⊕ Ker(∂E)div. We will obtain a sharp computation of the group
Ker(∂E)fin under some mild assumptions on E. From now on we will simply
write N for the integer NE .

Good ordinary reduction. First, we assume that E has good ordinary
reduction. Theorem 3.7 gives surjections

Z/pMur −→−→ Ker(∂E)fin −→−→ Z/pN .

Recall that we have the invariants

N̂ = max
{
m ≥ 0 | Ê[pm] ⊂ Ê(k)

}
, and M = max

{
m ≥ 0 | μpm ⊂ k

}
.

In general, we have N ≤ N̂ ≤ Mur as noted in Remark 3.8.
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Lemma 5.1. Let G ⊂ Gk be a closed subgroup, and T a free Zp-module of
rank 1 with non-trivial G-action χ : G → Aut(T ). Then, we have isomor-
phisms

TG � lim←−
n

[(T/pn)G] � T/pMG ,

where MG = max{m | G acts on T/pm trivially}.

Proof. Put Tn := T/pn and m := MG. Take a generator (zn) of lim←−n
Tn = T

with zn ∈ Tn. We will show that, for any n ≥ m, the natural map Tn →→ Tm

induces (Tn)G
�→ Tm. The mod pn-representation χn : G

χ→ Aut(T ) →→
Aut(Tn) factors through a finite cyclic subgroup Gn ⊂ G. Fix a generator σn

of Gn. Thus, (Tn)G = Tn/IG(Tn), where IG(Tn) := 〈(χn(σn)−1)x | x ∈ Tn〉.
Then χn(σn)(zn) = anzn for some an ∈ (Z/pn)×. Since G acts on Tm

trivially, anzn mod pm = zn mod pm in Tm and hence an mod pm = 1.
Write an − 1 = pmln. This equality means precisely that the subgroup
IG(Tn) is contained in pmTn. To prove the reverse inclusion it is enough to
show that (ln, p) = 1. Assume for contradiction that p | ln. This yields

χn(σn)zn mod pm+1 = anzn mod pm+1 = zn mod pm+1 in Tm+1.

But this means that G acts trivially on Tm+1, which contradicts the defi-
nition of the integer m = MG.

To finish the proof we consider the following commutative diagram with
exact rows,

0 �� IG(Tn) ��

��

Tn
�� (Tn)G

��

��

0

0 �� pmTn
�� Tn

�� Tm
�� 0.

The first two vertical maps are equalities, giving the desired isomorphism
(Tn)G � Tm. In the appendix we prove an isomorphism TG � lim←−n

[(Tn)G]
(cf. Proposition A.1). �
Proposition 5.2. There are surjective homomorphisms

Z/p
̂N −→−→ Ker(∂E)fin −→−→ Z/pN .

The inequality N ≤ ̂N can be strict.

Proof. From Lemma 3.2 we have an isomorphism

Ker(∂E)fin � Im((Tp(E )◦)Gk

ι−→ Tp(E)Gk
).

Note that the injectivity of the Galois symbol map follows from (2.10). By
the definition of N , Gk acts on E[pN ] trivially and so does on ̂E[pN ]. We
obtain

Im((Tp(E )◦)Gk

ι−→ Tp(E)Gk
) � Im( ̂E[pN ] ↪−→ E[pN ]) � Z/pN .
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From Lemma 5.1, (Tp(E )◦)Gk
� ̂E[p ̂N ] � Z/p ̂N and this implies the as-

sertion. It is clear that if ̂E[p ̂N ] �⊂ E(Fk), the inequality N ≤ ̂N becomes
strict. �

Let E be the Néron model of E. For every n ≥ 1, consider the connected-
étale exact sequence of finite flat group schemes over Spec(Ok) (cf. (3.2)),
(5.1) 0 −→ E [pn]◦ −→ E [pn] −→ E [pn]et −→ 0.

When E has complex multiplication, (5.1) splits ([34, A.2.4]). Equivalently,
the Gk-action on E[pn] is diagonal for all n ≥ 1. We will refer to this as the
semisimple case. In general (5.1) does not split and the Gk-action on E[pn]
is upper triangular. Over kur the sequence (5.1) becomes
(5.2) 0 −→ μpn −→ E [pn] −→ Z/pn −→ 0.

Passing to the limit we obtain a short exact sequence of continuous Gkur-
modules
(5.3) 0 −→ Zp(1) −→ Tp(E) −→ Zp −→ 0.

When E has complex multiplication, (5.3) splits; that is, Tp(E) is semisim-
ple as Gkur-module. Suppose we are in the non-semisimple case. Assume
additionally that μpn ⊂ k and that E[pn] ⊂ E(Fk) for some n. Then the
sequence (5.2) is given over k. In particular, the group scheme E [pn] defines
an element of Ext1

Ok
(Z/pn, μpn) � H1

fppf (Ok, μpn). This group is isomor-
phic to O×

k /pn and therefore the extension E [pn] (or equivalently the Galois
module E[pn]) corresponds to a unit u ∈ O×

k /pn. That is, the sequence (5.2)
becomes split after extending to the finite extension k( pn√

u). The unit u
is known as the Serre–Tate parameter of E and it is trivial when E has
complex multiplication. For more information we refer to [18, Chapter 8,
Section 9].

Theorem 5.3. Let ρn : Gk → Aut(E[pn]) be the mod pn representation
arising from E[pn] for any n ≥ 1.

(i) If ρ
̂N

is semisimple, then Ker(∂E)fin � Z/p ̂N .
(ii) If ρ

̂N
is non semisimple, we further assume that M = Mur, E[pM ] ⊂

E(Fk) and the restriction ρN+1|Ik
of the mod pN+1 representation

ρN+1 to the inertia subgroup Ik ⊂ Gk is also non semisimple. Then,
we have ̂N = M , and an isomorphism Ker(∂E)fin � Z/pN . That is,
the lower bound is achieved and the inequality N ≤ M = Mur can
be strict.

Proof. If N = ̂N there is nothing to show, so we assume N < ̂N .

(i). As in the proof of Proposition 5.2, Ker(∂E)fin � Im((Tp(E )◦)Gk

ι→
Tp(E)Gk

) and Tp(E )◦ � Z/p ̂N . From the assumption, the sequences (5.1)
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are split for all n ≥ 1 and hence (Tp(E )◦)Gk

ι→ Tp(E)Gk
is injective. This

implies that Z/pN̂ � Tp(E )◦ � Ker(∂E)fin.

(ii). Consider the short exact sequence

(5.4) 0 −→ Ê[pM ] −→ E[pM ] −→ E[pM ] −→ 0

as Gk-modules from (3.3). From the assumption E[pM ] ⊂ E(Fk), the Galois
invariance of the Weil pairing ([35, Chapter III, Proposition 8.1]) implies
that the determinant of the mod pM representation

Gk
ρM−→ Aut(E[pM ]) � GL2(Z/pM ) det−→ (Z/pM )×

coincides with the cyclotomic character χM : Gk → μpM by fixing a prim-
itive pM -th root of unity ζ which is in k. We have Ê[pM ] � μpM as Gk-
modules and hence M ≤ N̂ . As we assumed M = Mur, we have M = N̂ .
The above short exact sequence (5.4) becomes

(5.5) 0 −→ μpM
ιM−→ E[pM ] πM−→ Z/pM −→ 0.

Let ζ = ζpM be a fixed primitive pM -th root of unity in k. Fix a basis
(z, y) of E[pM ] where z = ιM (ζ) ∈ E[pM ] and E[pM ] is generated by the
reduction of y. This gives Aut(E[pM ]) � GL2(Z/pM ). If the sequence (5.5)
splits, then by taking the mod pN+1

Gk
ρM ��

ρN+1 ��

GL2(Z/pM )

mod pN+1

��

GL2(Z/pN+1)

the mod pN+1 representation ρN+1 becomes semisimple, which contradicts
the assumption that the restriction of ρN+1 to the inertia subgroup is irre-
ducible. We conclude that the above short exact sequence (5.5) is non-split.

Applying Gk-coinvariance to (5.5) we obtain an exact sequence of abelian
groups,

(μpM )Gk

ιM−→ E[pM ]Gk

πM−→ (Z/pM )Gk
−→ 0.

Claim 1. There is an isomorphism Im((μpM )Gk

ιM→ E[pM ]Gk
) � μpN �

Z/pN .

Proof. The following are true for the sequence (5.5): Its corresponding
Serre–Tate parameter u ∈ O×

k /pM is nontrivial. The Gk-action on E[pM ]
factors through the cyclic quotient Gal(k(u1/pM )/k). Let σ ∈ Gk be a lift
of a generator of the Galois group Gal(k(u1/pM )/k). For the mod pM rep-
resentation ρM : Gk → Aut(E[pM ]) = GL2(Z/pM ), we have ρM (σ) =

( 1 b
0 1

)
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for some b ∈ Z/pM . Namely, σ(z, 0) = (z, 0) and σ(0, y) = (bz, y). Con-
sider the map defined by the multiplication by pM−N : E[pM ] → E[pN ] and
(pM−N z, pM−N y) is a basis of E[pN ]. The following diagram is commutative

Gk

ρN ��

ρM �� GL2(Z/pM )

mod pN

��

GL2(Z/pN ).

Since the action of Gk on E[pN ] is trivial, we have
( 1 b

0 1
) ≡ ( 1 0

0 1 ) mod pN

and hence b ≡ 0 mod pN . If we suppose b ≡ 0 mod pN+1, then the action
of Gk on E[pN+1] becomes trivial so that b is not divisible by pN+1.

Next, we show that Ker(μpM
ιM→ E[pM ]Gk

) = 〈ζb〉. Since (μpM )Gk
= μpM ,

ζb is a non-trivial element of (μpM )Gk
. In fact, it is a primitive pM−N -th

root of unity. We have

ιM (ζb) = (bz, 0) = σ(0, y) − (0, y) = 0 ∈ E[pM ]Gk
.

This proves 〈ζb〉 ⊆ Ker(μpM
ιM→ E[pM ]Gk

). Conversely, take any x in the
kernel Ker(μpM

ιM→ E[pM ]Gk
). Since the Gk-action is cyclic, this means that

there exists some w ∈ E[pM ] such that ιM (x) = σ(w) − w in E[pM ]. Since
the Gk-action on μpM is trivial, we may assume that w = l(0, y) for some
l ∈ Z/pM . Then ιM (x) = l(σ(0, y) − (0, y)) = lbz = l · ιM (ζb). This implies
Ker(μpM

ιM→ E[pM ]Gk
) = 〈ζb〉. We conclude that there is an exact sequence

0 −→ μpM /〈ζb〉 ιM−→ E[pM ]Gk

πM−→ Z/pM −→ 0.

Finally notice that we have an isomorphism μpM /〈ζb〉 � μpN , since 〈ζb〉 �
μpM−N , which yields the desired isomorphism Im(ιM ) � μpN � Z/pN . �

Claim 2. The extension k(E[pM ])/k is totally ramified.

Proof. Let G be the image of the Galois representation

ρM : Gk −→ Aut(E[pM ]) = GL2(Z/pM ).
We have G � Gal(k(E[pM ])/k). As noted in the proof of Claim 1, G is
generated by

( 1 b
0 1

)
with b ≡ 0 mod pN . We have #G ≤ pM−N . We denote

by I the image of the inertia subgroup Ik = Gkur by ρM which is isomorphic
to the inertia subgroup of Gal(k(E[pM ])/k). Since I ⊂ G, it is isomorphic
to an additive subgroup of Z/pM , and hence I can be written as

I =
{(1 x

0 1

) ∣∣∣∣ x ∈ pt(Z/pM )
}

,

for some N ≤ t ≤ M . We consider what happens mod pN+1. If we assume
N < t, then ( 1 x

0 1 ) ∈ I for x ∈ pt(Z/pM ) is the identity mod pN+1, and
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x ≡ 0 mod pN+1. The action of Ik on E[pN+1] is trivial. This contradicts
the assumption that ρN+1|Ik

is irreducible. Therefore, t = N and hence
#I = pM−N = #G. The extension k(E[pM ])/k is totally ramified. �

Claim 3. We have an isomorphism

Im((Tp(E )◦)Gk

ι−→ Tp(E)Gk
) � Im(μpM −→ E[pM ]Gk

).

Proof. In the appendix (cf. Proposition A.1) we prove that there are iso-
morphisms Tp(E)Gk

� lim←−n
(E[pn]Gk

) and Tp(E)Ik
� lim←−n

(E[pn]Ik
). We

have commutative diagrams

(Tp(E )◦)Ik

ι ��

�
��

Tp(E)Ik

����

(μpM )Ik

ιM �� E[pM ]Ik
.

and

(Tp(E )◦)Gk

ι ��

�
��

Tp(E)Gk

����

(μpM )Gk

ιM �� E[pM ]Gk
.

Here, the left vertical map in each diagram is bijective by Lemma 5.1 and
the assumption M = Mur. Consider the following commutative diagram:

Im((Tp(E )◦)Ik

ι→ Tp(E)Ik
) �� ��

����

Im((Tp(E )◦)Gk

ι→ Tp(E)Gk
)

����

Im((μpM )Ik

ιM→ E[pM ]Ik
) � �� Im((μpM )Gk

ιM→ E[pM ]Gk
).

Here, the bottom horizontal map is bijective because of Claim 2. Thus,
it is enough to prove the injectivity of the left vertical map in the above
diagram. It suffices to show that for every r > M we have an isomorphism
Im((μpr )Ik

ιr→ E[pr]Ik
) � Im((μpM )Ik

ιM→ E[pM ]Ik
). This will follow by Lem-

ma 5.1 and the snake lemma. We have a commutative diagram with exact
rows and columns

0
��

(μpr−M )Ik

ιr−M
��

α
��

E[pr−M ]Ik

πr−M
��

��

Z/pr−M ��

��

0

(μpr )Ik

ιr ��

β
��

E[pr]Ik

πr ��

��

Z/pr ��

��

0

(μpM )Ik

ιM ��

��

E[pM ]Ik

πM ��

��

Z/pM ��

��

0

0 0 0 .
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The snake lemma applied to the rightmost part of the diagram gives an
exact sequence

Ker(πr−M ) α−→ Ker(πr) β−→ Ker(πM ) δ−→ Coker(πr−M ) = 0.

Since πr−M is surjective, we get an exact sequence

Ker(πr−M ) α−→ Ker(πr) β−→ Ker(πM ) −→ 0.

The claim will follow if we show that the map Ker(πr) β→ Ker(πM ) is an
isomorphism, or equivalently that Ker(πr−M ) α→ Ker(πr) is the zero map.
But this follows by Lemma 5.1. Namely, the map (μpr )Ik

β→ (μpM )Ik
is an

isomorphism. �
From Lemma 3.2, Ker(∂E)fin � Im((Tp(E )◦)Gk

ι→ Tp(E)Gk
). Claim 1

and Claim 3 will complete the proof of the theorem in this case. It is clear
that if E[p ̂N ] �⊂ E(Fk), the inequality N ≤ ̂N becomes strict. �
Remark 5.4. One can use part (ii) of Theorem 5.3 to construct examples
of elliptic curves for which we have N < ̂N = Mur. In particular, the upper
bound of Theorem 1.1 can be strictly achieved. For example, consider E an
elliptic curve over Qp with complex multiplication. Let k0 = Qp(μp) and
for n ≥ 1 consider the tower of finite extensions kn = k0( ̂E[pn]). It follows
by [19, Theorem 2.1.6] and [35, IV.6, Theorem 6.1] that for every n ≥ 1 the
extension kn+1/kn is totally ramified of degree p. Thus, there exists some
n ≥ 1 such that E[pn] �⊂ E(Fkn). This means that over kn we have a strict
inequality N < n = ̂N . Moreover, notice that ̂N = Mur, since kn+1/kn is
totally ramified.

Construction of the maximal covering. We next consider the case
when the elliptic curve E is the base change of an elliptic curve over Q with
potential complex multiplication. Let E0 be an elliptic curve over Q. For
a field extension F/Q, we denote by EndF (E0) the ring of endomorphisms
on E0 which are defined over F . Assume first, E0 has potential complex
multiplication by the ring of integers OK of an imaginary quadratic field
K. Namely, End

Q
(E0) � OK . As all endomorphisms on E0 are defined over

K, we also have End
Q

(E0) = EndK(E0) � OK . It follows by [30, Corol-
lary 5.12] that K has class number one. Suppose that the prime number
p splits completely in K and E0 has good reduction at p. We consider the
reduction modulo p,

r : EndK(E0) −→ End
Fp

(E0).

It follows by [5] (see also [20, 13.4, Theorem 12], [26, p. 2]) that there
exists a prime element η of OK such that p = ηη and the endomorphism
η : E0 → E0 of E0 reduces to the Frobenius automorphism ϕ : E0 → E0.

73.251.155.230 on Sun, 19 May 2024 20:21:55 +00:00



940 Evangelia Gazaki, Toshiro Hiranouchi

Since p splits completely in K, the completion of K at (η) is Qp. Denote by
E = E0⊗QQp the base change of E0 to Qp. We conclude that E has complex
multiplication defined over Qp. That is, EndQp(E) � OK and η : E → E

reduces to the Frobenius. We claim that for every n ≥ 1, Ker(ηn) = ̂E[pn].
Since the reduction of ηn is an automorphism, we clearly have Ker(ηn) ⊂ ̂E.
Moreover, the equality ηη = p implies that Ker(ηn) ⊂ E[pn] from where
the claim follows.

We conclude that if Ker(ηn) = ̂E[pn] ⊂ ̂E(k), then the isogeny ηn : E →
E defines a geometric covering of degree pn and is completely ramified over
E. According to Theorem 5.3(i), η ̂N : E → E is the maximal covering
corresponding to πab

1 (E)geo
ram.

Good supersingular reduction. Next, we consider the elliptic curve E
which has good supersingular reduction. The boundary map ∂E : V (E) →
E(Fk) induces a short exact sequence

Ker(∂E)/pn −→ V (E)/pn −→ E(Fk)/pn −→ 0.

As the reduction E of E satisfies E[pn] = 0 for any n ≥ 1, we have
E(Fk)/pn = 0 and Tor(E(Fk),Z/pn) � E(Fk)[pn] = 0 so that we obtain

(5.6) Ker(∂E)/pn � V (E)/pn.

In the following, we assume E[p] ⊂ E(k) and will give bounds of Ker(∂E)fin
(Theorem 5.9). By fixing an isomorphism E[p] � (μp)⊕2 of (trivial) Gk-
modules, the Kummer map gives

̂E(k)/p ↪−→ H1(k, ̂E[p]) � H1(k, μp)⊕2 � (k×/p)⊕2.

Its image can be understood by a filtration on k×/p using the higher unit
group U i

k = 1 + mi
k. Precisely, because E[p] = 0, we have the following

decomposition:

(5.7) E(k)/p � ̂E(k)/p � U
p(e0(k)−t0(k))
k ⊕ U

pt0(k)
k ,

where U
i
k := Im(U i

k → k×/p), e0(k) = ek/(p − 1), and

t0(k) = max{vk(y) | 0 �= y ∈ ̂E[p]}
(cf. [7, Section 3.4]). By identifying the isomorphism (5.7), we can decom-
pose an element w in E(k)/p as w = (u′, u) with u′ ∈ U

p(e0(k)−t0(k))
k , u ∈

U
pt0(k)
k . The Galois symbol map associated to E and Gm (Definition 2.6)

induces

sp : (E/p ⊗ Gm/p)(k) −→ H2(k, E[p] ⊗ μp) � H2(k, μ⊗2
p )⊕2 � (Z/p)⊕2.

In fact, this map sp becomes bijective ([12, Theorem 4.2]), and since it fac-
tors through the surjection (E/p ⊗ Gm/p)(k) →→ K(k; E,Gm)/p, it follows
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that this surjection is an isomorphism as well. The map above is compat-
ible with the Hilbert symbol map (−, −)p : k×/p ⊗ k×/p → μp � Z/p
([32, Section XIV.2, Proposition 5]) as the following commutative diagram
indicates:

E(k)/p ⊗ k×/p
{−,−}k/k

��

�
��

(E/p ⊗ Gm/p)(k)

sp�
��(

U
pt0(k)
k ⊗ k×/p

) ⊕ (
U

p(e0(k)−t0(k))
k ⊗ k×/p

) (−,−)⊕2
p

�� (Z/p)⊕2.

Here, the top horizontal map is the symbol map w ⊗x �→ {w, x}k/k (cf. [12,
Proof of Proposition 4.6]). The above commutative diagram gives the fol-
lowing lemma.

Lemma 5.5. Two elements {(u′
1, 1), x1}k/k and {(1, u2), x2}k/k generate

K(k; E,Gm)/p if they satisfy (u′
1, x1)p �= 0 and (u2, x2)p �= 0.

The image of U
i
k ⊗ U

j
k by the Hilbert symbol is known as follows:

Lemma 5.6 ([11, Lemma 3.4]). If p � i or p � j, then

#(U i
k, U

j
k)p =

{
p, if i + j ≤ pe0(k),
0, otherwise.

For m ≥ 1, put km := k(μpm). Moreover, consider the invariant

R = min{r ≥ 0 | ek ≤ (p − 1)pr}.

Using the above observations, we determine generators of K(km; E,Gm)/p
for some m.

Lemma 5.7. We assume E[p] ⊂ E(k) and M = Mur. Then, there exists
M ≤ m ≤ M + R such that the K-group K(km; E,Gm)/p is generated by
elements of the form {a, ζpm}km/km

, where ζpm is a primitive pm-th root of
unity.

Proof. Recalling from [7, Lemma 3.4], we have U
i
k = 1 for i > pe0(k) and

U
i
k = U

i+1
k for i with p | i. For some i ≤ pe0(k) which is prime to p or

i = pe0(k), we have ζ = ζpM ∈ U
i
k �U

i+1
k . From the assumption M = Mur,

kM+1 = k(ζpM+1)/k is a totally ramified extension of degree p. In the case
i = pe0(k), the extension kM+1/k is unramified ([19, Lemma 2.1.5]) so we
conclude that i < pe0(k). If we have

(5.8) i ≤ min{pt0(k), p(e0(k) − t0(k))},

then i + pt0(k), i + p(e0(k) − t0(k)) ≤ pe0(k). There exist u′ ∈ U
pt0(k)
k

and u ∈ U
p(e0(k)−t0(k))
k such that (u′, ζ)p �= 0 and (u, ζ)p �= 0 (Lemma 5.6).
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Thus, the elements {(u′, 1), ζ}k/k and {(1, u), ζ}k/k generate K(k; E,Gm)/p
by Lemma 5.5. The assertion holds for m = M and for k = kM .

Suppose that the above inequality (5.8) does not hold. It follows by Lem-
ma 5.8 below that we have ζpM+1 ∈ U

i
kM+1 � U

i+1
kM+1 , while e0(kM+1) =

pe0(k), and t0(kM+1) = pt0(k). Since i < pe0(k) and we defined R to be
the smallest nonnegative integer such that e0(k) ≤ pR. We have

i < pe0(k) ≤ pR+1 ≤ pR min{pt0(k), p(e0(k) − t0(k)}.

It follows that there exists r ≤ R such that over the extension km =
k(μpm)/k, with m = M + r, we have

i ≤ min{pt0(km), p(e0(km) − t0(km))} = pr min{pt0(k), p(e0(k) − t0(k))}.

Applying Lemma 5.5 and Lemma 5.6 as above to km, there are symbols of
the form {a, ζpm}km/km

which generate K(km; E,Gm)/p as required. �

Lemma 5.8 (cf. [8, Lemma 3.23] for the case M ≥ 2). We assume μp ⊂ k.
Let x ∈ U

i
k � U

i+1
k , where 0 < i < pe0(k) and i is coprime to p. Let

K = k( p
√

x) and write ξ = p
√

x. Then, ξ ∈ U
i
K � U

i+1
K .

Proof. In this proof, we denote by x the residue class in U
i
k = U i

k/U i
k ∩(k×)p

represented by the unit x ∈ U i
k. First, we note that the extension K/k is a

totally ramified extension of degree p ([19, Lemma 2.1.5]). Thus, vK(x−1) =
pvk(x−1) = pi. Suppose that ξ = p

√
x is in U j

K �U j+1
K for some j and write

ξ = 1 + uπj
K for a unit u ∈ O×

K , where πK is a fixed uniformizer of K.
From [6, (5.7)], we calculate the valuation of ξp − 1 = x − 1 as follows:

• If j > e0(K) = pe0(k), then ξp ≡ 1 + u′πj+eK
K mod πj+eK+1

K for
some unit u′ ∈ O×

K . Thus,

pi = vK(x − 1) = vK(ξp − 1) = j + eK > pe0(k) + pek = p2e0(k).

This gives i > pe0(k) and contradicts the assumption on i.
• If j = e0(K), then ξp ≡ 1+(up +u′)πpe0(K)

K mod π
pe0(K)+1
K for some

unit u′ ∈ O×
K and hence

pi = vK(x − 1) = vK(ξp − 1) ≥ pe0(K) = p2e0(k).

Therefore, i ≥ pe0(k), which is again a contradiction.
• If j < e0(K), then ξp ≡ 1 + upπpj

K mod πpj+1
K . We have

pi = vK(x − 1) = vK(ξp − 1) = pj.

This implies i = j.

As ξ ∈ U i
K � U i+1

K , the residue class ξ is in U
i
K � U

i+1
K . �
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Theorem 5.9. Let E be an elliptic curve over k which has good super-
singular reduction. We assume that E[p] ⊂ E(k). Then, we have surjective
homomorphisms

(Z/pMur+R)⊕2 −→−→ Ker(∂E)fin −→−→ (Z/pN )⊕2,

where R = min{r | ek ≤ (p − 1)pr}.

Proof. As we noted in (5.6), there are isomorphisms

Ker(∂E)/pn � V (E)/pn � K(k; E,Gm)/pn

for any n ≥ 1. Recalling from (2.9), we have V (E) � K(k; E,Gm). The
lower bound is given by

(5.9) Ker(∂E) −→−→ Ker(∂E)/pN � K(k; E,Gm)/pN � (Z/pN )⊕2,

where the last isomorphism follows from [11, Remark 4.3].
Since the norm map K(k′; E,Gm) → K(k; E,Gm) is surjective for any

finite extension k′/k ([41, Proposition 3.1]), we may assume M = Mur.
In particular, the Kummer extension k(μpM+1)/k is a totally ramified p-
extension. Take m ≤ M + R as in Lemma 5.7 and put km = k(μpm). For
each n ≥ m, we consider the following diagram with exact rows:

0 �� K(km; E,Gm)/p

����

pn

�� K(km; E,Gm)/pn+1

����

�� K(km; E,Gm)/pn ��

����

0

0 �� K(k; E,Gm)/p
pn

�� K(k; E,Gm)/pn+1 �� K(k; E,Gm)/pn �� 0,

where the vertical maps are given by norms which are surjective. The far
left vertical map K(km; E,Gm)/p → K(k; E,Gm)/p is bijective because of

K(km; E,Gm)/p � K(k; E,Gm)/p � (Z/p)⊕2

using the assumption E[p] ⊂ E(k) as in (5.9). By Lemma 5.7, the map
pn : K(km; E,Gm)/p → K(km; E,Gm)/pn+1 defined by the multiplication
by pn is the 0-map and so is pn : K(k; E,Gm)/p → K(k; E,Gm)/pn+1. From
the above diagram, we have K(k; E,Gm)/pn+1 � K(k; E,Gm)/pn for any
n ≥ m. Putting K = k(E[pM+R]), there are surjective homomorphisms

K(K; E,Gm)/pM+R −→−→ K(K; E,Gm)/pm −→−→ K(k; E,Gm)/pm.

Here, the last map is induced from the norm map which is surjective. From
this, we have

(Z/pM+R)⊕2 � K(K; E,Gm)/pM+R −→−→ K(k; E,Gm)/pn � Ker(∂E)/pn

for any n ≥ 1. This implies the existence of a surjective homomorphism
(Z/pM+R)⊕2 →→ Ker(∂E)fin as required. �
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Appendix A. Profinite Group Homology
In this appendix, we show the following proposition which is used in [1,

(2.21)] and [36, Section 3]:

Proposition A.1. Let l be a prime, A a semi-abelian variety over a p-adic
field k, and G a closed normal subgroup of Gk. Then, we have

Tl(A)G � lim←−
n

[(A[ln])G].

Put T := Tl(A) and An := A[ln]. Using this notation, T = lim←−n
An

can be regarded as a profinite Zl[[G]]-module. Recall that, for a profinite
Zl[[G]]-module M , the m-th homology group Hm(G, M) of G with coeffi-
cients in M is given by the m-th left derived functor of − ̂⊗Zl[[G]]Zl (cf. [29,
Section 6.3]). The homology group Hm(G, M) can be computed by using
the homogeneous bar resolution L• →→ Zl as follows:

Hm(G, M) = Hm(M ̂⊗Zl[[G]]L•)

(cf. [29, Theorem 6.3.1]). Each term Lm in L• is a free profinite Zl[[G]]-
module, so that we have lim←−(An ̂⊗Zl[[G]]L•) = T ̂⊗Zl[[G]]L• and

Hm(G, T ) = Hm(T ̂⊗Zl[[G]]L•), Hm(G, An) = Hm(An ̂⊗Zl[[G]]L•).

As An ̂⊗Zl[[G]]Lm = An ⊗Z/ln[[G]] Lm/ln is finite, the tower of chain com-
plexes · · · → An ̂⊗Zl[[G]]L• → · · · → A1 ̂⊗Zl[[G]]L• satisfies the Mittag-Leffler
condition. By [39, Theorem 3.5.8], we have an exact sequence for each m:

0 −→ lim←−
n

1Hm+1(G, An) −→ Hm(G, T ) −→ lim←−
n

Hm(G, An) −→ 0.

In particular, we have

0 −→ lim←−
n

1H1(G, An) −→ TG −→ lim←−
n

(An)G −→ 0.

Here, H1(G, An)∨ � H1(G, A∨
n), where ∨ denotes the Pontrjagin dual. Since

A∨
n is finite, the action of G on A∨

n factors through a finite quotient G/Kn for
some open normal subgroup Kn ⊂ G. By the inflation-restriction sequence
([29, Corollary 7.2.5]), we have a short exact sequence

0 −→ H1(G/Kn, A∨
n) inf−→ H1(G, A∨

n) Res−→ H1(Kn, A∨
n).

As H1(Kn, A∨
n) = Homcont(Kn, A∨

n) and H1(G/Kn, A∨
n) are finite abelian

groups, so is H1(G, A∨
n) and hence H1(G, An) is finite. From this, the tower

· · · → H1(G, An+1) → H1(G, An) → · · · → H1(G, A1) satisfies the Mittag-
Leffler condition (cf. [39, Exercise 3.5.1]). We have lim←−n

1H1(G, An) = 0
by [39, Proposition 3.5.7]. This gives Proposition A.1.
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