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Journal de Théorie des Nombres
de Bordeaux 35 (2023), 905-946

Abelian geometric fundamental groups for curves

over a p-adic field

par EVANGELIA GAZAKI et TosHiro HIRANOUCHI

RESUME. Pour une courbe X sur un corps p-adique k, nous étudions le groupe
fondamental géométrique abélien 73P(X )2 de X en utilisant la théorie du
corps de classes de X due a S. Bloch et S. Saito. En particulier, nous étudions
un sous-groupe de 74P(X)&° qui classifie les revétements géométriques et
abéliens de X admettant une ramification au-dessus de la fibre spéciale du
modele de X. En supposant que X a un point rationnel sur k, X a bonne
réduction et sa jacobienne a bonne réduction ordinaire, nous donnons un
encadrement de ce sous-groupe de 73 (X)8°.

ABSTRACT. For a curve X over a p-adic field k, using the class field theory of
X due to S. Bloch and S. Saito we study the abelian geometric fundamental
group m4P(X )&% of X. In particular, we investigate a subgroup of 7P (X )ge°
which classifies the geometric and abelian coverings of X which allow possible
ramification over the special fiber of the model of X. Under the assumptions
that X has a k-rational point, X has good reduction and its Jacobian variety
has good ordinary reduction, we give some upper and lower bounds of this

subgroup of 74P (X )&,

1. Introduction

Let k be a p-adic field, that is, a finite extension of Q,, with residue
field Fy.. In this note, we investigate the abelian fundamental group 74P (X)
for a projective smooth and geometrically connected curve X over k. The
structure map X — Spec(k) induces the short exact sequence

(1.1) 0 — 7P(X)8° — 78(X) — GZ° = 7P (Spec(k)) — 0,

where 73P(X )8 is defined by the exactness and is referred to as the geo-
metric fundamental group of X . Local class field theory describes sz suf-
ficiently to allow us to focus on 73P(X)8%. Now, we restrict our attention
to the case where X has good reduction in the sense that the special fiber
X = 2 ®0, Fi, of a regular model 2" over Oy, of X is a smooth curve over
Fi, and also X has a k-rational point. The short exact sequence (1.1) splits.

Manuscrit regu le 9 septembre 2022, accepté le 28 avril 2023.

2020 Mathematics Subject Classification. 11G45, 11G10, 11G20.

Mots-clefs. Class field theory, Fundamental groups, and Elliptic curves.

The first author was partially supported by the NSF grant DMS-2001605. The second author
was supported by JSPS KAKENHI Grant Number 20K03536.

This content downloaded from
73.251.155.230 on Sun, 19 May 2024 20:21:55 +00:00
All use subject to https://about.jstor.org/terms



906 Evangelia GAzAKI, Toshiro HIRANOUCHI

There is a map called the specialization map 73P(X) 3B 722(X) (cf. (2.6))
and this induces

(1.2) 0 — miP(X)8e — miP(X)E =By rib(X)E — 0,
where 7P (X)g®° := Ker(ri?(X) — Gp,) is the geometric fundamental

group of X and 7#(X)8% is defined by the exactness again. The funda-
mental group mi?(X)& classifies the geometric coverings of X which are
completely ramified over the special fiber X (for the precise description and
definition, see Section 2). The classical class field theory (for the curve X
over the finite field Fy) says that the reciprocity map induces an isomor-
phism pg: J = 7iP(X)8, where J = Jac(X) is the Jacobian variety of X.
Our main result describes the structure of the remaining part m$P(X)&%,
by using an invariant related to the Jacobian variety J = Jac(X) of X.

Theorem 1.1 (cf. Corollary 4.1). Let X be a projective smooth curve over

k with X (k) # 0, and J = Jac(X) the Jacobian variety of X. We assume

that X has good reduction, and the Jacobian variety J = Jac(X) of X is

an ordinary abelian variety. Then, we have surjective homomorphisms
B/ — (X —» /™),

ram

where Ny = max{n|J[p"] C J(k)}, M" = max{m |pym C k"}, and g =
dim J. Here, we denoted by k" the maximal unramified extension of k and
ppm is the group of p™-th roots of unity.

Remark 1.2. Put M = max{m |y, C k}. In general, we have inequalities
Ny < M < M". Here, the first inequality follows from the Weil pairing.
For the later inequality M < MY, if we assume p, C k, that is, M > 1
and put eg(k) = e /(p — 1), where ey, is the absolute ramification index of
k, then M = M if and only if (ur ¢ Im(UPC®) < k% = kX /(k)P),

where (v is a primitive pM-th root of unity, and U,feo(k) is the higher unit

group (see e.g., [19, Lemma 2.1.5]). For example, when the base field k is of
the form k = ko((pm) for some finite unramified extension ko/Q,, we have
M = M™ = m. If we additionally assume N; = M as we considered in [12]
(we also give some elliptic curves satisfying this condition in Section 5),
then the exact sequence (1.2) splits and we have 7P (X)8%0 ~ (Z/pm)®9,
One can recover the main theorem in [12].

The above theorem enables us to construct an abelian geometric covering
X — X corresponding to 73P(X)8% (Theorem 4.5) along the context of
the geometric abelian class field theory (e.g., [33]). This can be regarded as
an analogue of Yoshida’s work on the modular curve Xo(p) over Q, ([42]).
In Section 5, we give examples in genus 1, that is when X = FE is an elliptic

curve with good ordinary reduction, to indicate that each one of the two
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Abelian geometric fundamental groups 907

bounds given in Theorem 1.1 can be achieved depending on the Gal(k/k)-
action on the Tate module of X (cf. Theorem 5.3). This in particular shows
that Theorem 1.1 is as general as it can be. We also consider an elliptic
curve X = FE over k with good supersingular reduction and we give bounds

for 7P (X)8% of similar flavor as in Theorem 1.1.

Notation. Throughout this note, we use the following notation: We fix a
finite extension k of Q,. For a finite extension K /k, we define

Op: the valuation ring of K with maximal ideal mg,

Fr = Ok /mg: the residue field of K,

Gk = Gal(k/K): the absolute Galois group of K, and

Uk = Oj: the unit group of O.

For an abelian group G and m € Z>1, we write G[m| and G/m for the
kernel and cokernel of the multiplication by m on G respectively. We also
denote by G{m} := U,,~; G|m"] the m-primary part of G. For a profinite
group G, and a G-module M, we denote by M c M and M —» M its
G-invariant subgroup and G-coinvariant quotient, respectively. In this note,
by a variety over k we mean an integral and separated scheme of finite type
over k, and a curve over k is a variety over k with dimension 1.

Acknowledgements. The authors would like to give heartful thanks to
Prof. Yoshiyasu Ozeki who allowed us to include his result on the invariants
Njand M™ used in Theorem 1.1 (cf. Proposition 3.10). We would also like
to thank Prof. Takao Yamazaki whose comments on the construction of the
maximal covering in Section 4 were an enormous help to us. The authors
thank the referee for careful reading, and many valuable suggestions to
improve our manuscript.

2. Preliminaries

Finite by divisible. Following [28], we introduce the following notation:

Definition 2.1 ([28, Lemma 3.4.4]). An abelian group G is said to be finite
by divisible if G has a decomposition G ~ F' & D for a finite group F' and
a divisible group D. In what follows, we often denote by G, and Gy the
subgroups of G isomorphic to I and D respectively.

Lemma 2.2 ([28, Lemma 3.4.4]).

(i) Let G be an abelian group. Then, G is finite by divisible if and only
if l'&lm>1 G/m is finite. The last condition holds if G/m is finite
for any m > 1, and its order is bounded independently of m.

(ii) If G — G’ is a surjective homomorphism of abelian groups, and if
G is finite by divisible, then so is G'.

This content downloaded from
73.251.155.230 on Sun, 19 May 2024 20:21:55 +00:00
All use subject to https://about.jstor.org/terms



908 Evangelia GAzAKI, Toshiro HIRANOUCHI

(iii) Suppose that there is a short exact sequence 0 — G" — G — G' — 0
of abelian groups. If G is finite by divisible, and G’ is finite, then
G" is also finite by divisible.

Proof. The assertions (i), (ii) follow from [28, Lemma 3.4.4].
Let’s now prove (iii). For any m > 1, consider the exact sequence

(2.1) Tor(G',Z/m) — G"/m — G/m — G'/m — 0

induced from the short exact sequence 0 — G” — G — G’ — 0. Since G
is finite by divisible, G/m is finite and its order is bounded independently
of m. From Tor(G',Z/m) = G'[m] C G’ and G’ is finite, both G’/m and
Tor(G',Z/m) are finite and their orders are bounded. From the exact se-
quence (2.1) the same holds for G”/m and hence G” is finite by divisible
from (i). O

Mackey products, and the Galois symbol map. We recall the defini-
tion and properties of Mackey functors following [28, (3.2)]. For properties
of Mackey functors, see also [14, 15].

Definition 2.3 (cf. [28, Section 3]). A Mackey functor .# (over k) (or
a Gp-modulation in the sense of [25, Definition 1.5.10]) is a contravariant
functor from the category of étale schemes over k to the category of abelian
groups equipped with a covariant structure for finite morphisms such that
M(X1UX9) = M (X1) DA (X5) and if the left diagram below is Cartesian,
then the right becomes commutative:

X —7 x ) —L s w(x)
Y — Y MY —T s (Y)

For a Mackey functor .#, we denote by .# (K) its value .# (Spec(K)) for
a field extension K of k. For any finite extension k¥ C K C L, the induced
homomorphism from the canonical map j: Spec(L) — Spec(K) is denoted
by Np/i = j« : A (L) — #(K) which is often referred as the norm map,
and Resy g := j* : M (K) — (L) is called the restriction.

Example 2.4.

(i) Let G be a commutative algebraic group over k. Then, the algebraic
group G induces a Mackey functor by defining G(K) = G(Spec K)
for K/k finite.

(ii) For a Mackey functor .#, and for m € Z>;, we define a Mackey
functor .# /m by

(A [m)(K) = A (K)/m

for any finite extension K/k.
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Abelian geometric fundamental groups 909

The category of Mackey functors forms an abelian category with the
following tensor product:

Definition 2.5 (cf. [14]). For Mackey functors .# and ./, their Mackey
product A & A is defined as follows: For any field extension £'/k,

(M N)E) = ( P #(K) ey ,/V(K))/(PF),

K/K': finite

where (PF) stands for the subgroup generated by elements of the following
form:

(PF) For finite field extensions ¥’ € K C L,
Np/k(z) @y —x®Respk(y) forx € (L) and y € A (K), and
r® Np/g(y) — Respg(r) @y forz € #(K)and y € A (L).

For the Mackey product .#Z @ .4, we write {z,y} /s for the image of
r®y € M(K)®z A (K) in the product (# @ A")(K'). For any finite field
extension k'/k, the norm map Ny, = ju : (M @ N )(K') — (M @ N )(k)
is given by

(2.2) Ne({w, vt e) = {2,y -

Let G be a semi-abelian variety over k. For any m € Z>1, the connecting
homomorphism associated to the short exact sequence 0 — G[m] — G &
G — 0 as Gg-modules gives, for each finite extension K/k,

(2.3) Sc: G(K)/m — HY(K,G[m]) := H (G, G[m)),
which is often called the Kummer map.

Definition 2.6 (cf. [36, Proposition 1.5]). For semi-abelian varieties G
and Go over k, the Galois symbol map

Sm: (G1 ® Go)(k)/m — H2(k,G1[m] ® Ga[m])

is defined by the cup product and the corestriction: s, ({7, y}x/;k) =
Corg i, (0, () Udg,(y))- The map is well-defined by the functorial prop-
erties of Galois cohomology (cf. [25, Proposition 1.5.3 (iv)]).

For two semi-abelian varieties G1,Go over k, the Somekawa K-group
K (k; G1,G9) attached to G, G3 is a quotient of the Mackey product (G ®
G2)(k) (see [36] for the precise definition) by considering G, G2 as Mackey
functors (cf. Example 2.4). By definition, for every finite K/k there is a
surjection, (G1®G2)(K)—»K(K;G1,G2). The elements of K (k; G1, G2) will
also be denoted as linear combinations of symbols of the form {x1, z2} g /1,
where K /k is some finite extension and x; € G;(K) for i = 1, 2. The Galois
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910 Evangelia GAzAKI, Toshiro HIRANOUCHI

symbol map s, : (G1®G2)(k)/m — H?(k,G1[m]® G2[m]) (Definition 2.6)
factors through K(k; Gy, G32) and the induced map

Sm - K(k‘; Gl, GQ)/m — H2<k‘, Gl[m] & Gg[m])
is also called the Galois symbol map.

Geometric fundamental groups, and their “ramified parts”. Let
V' be a projective and smooth variety over k. We assume that there exists
a k-rational point z € V(k). From this assumption, the variety V is geo-
metrically connected. The abelianization of the fundamental group (V)
is denoted by 7¢P(V). Since we always consider the abelian fundamental
groups, we omit the geometric point. Furthermore, we say that ¢: W — V
is an abelian covering if ¢ is an étale covering (that is, finite and étale),
and is Galois whose Galois group Aut(yp) is an abelian group. Let k(1)
be the function field of V. The map Spec(k(V)) — V induces a surjective
homomorphism

(2.4) Gal(k(V)™/k(V)) = 73" (Spec(k(V))) — n{*(V),

where k(V)2P is the maximal abelian extension of k(V) ([9, Exposé IX,
Proposition 8.2]). Define the mazimal unramified extension k(V)™2P of
kE(V) by the subfield of k(V )2 generated by all finite extensions of k(1)
contained in k(V)2P that are unramified over V. Here, a finite extension
F/k(V) is said to be unramified over V, if the normalization of V in F' is
unramified over V', or equivalently, étale over V. The kernel of the map (2.4)
is Gal(k(V)P/k(V)"2P) and hence m3P(V) ~ Gal(k(V)"2P/k(V)). The
structure map V' — Spec(k) induces a surjective homomorphism 71 (V') —
m1(Spec(k)) = Gy, (9, Exposé IX, Théoreme 6.1]). This map induces a short
exact sequence

(2.5) 0 — mP (V)8 — 28 (V) — G — 0,

where m$P(V)8% is defined by the exactness and is called the geometric
fundamental group of V. By the fixed k-rational point x € V(k), the above
sequence splits. The fundamental group 73 (V)& classifies (abelian) geo-
metric coverings of X. Here, an abelian covering p: V' — V is said to be
geometric if the fiber p=1(z) = V' xy o — Spec(k) of ¢ over z is com-
pletely split, in the sense that ¢ ~1(x) is the sum of distinct [k(V”) : k(V)]
k-rational points. (cf. [17, IT Preliminaries]). More precisely, the geometric
fundamental group m§P(X )8 is written as

miP (V)8 o Gal(k(V)"*" /k(V)k*) ~ Gal(k(V )8 /k(V)),
where k(V)8% is the subfield of k(V)"2P generated by all finite extensions
of k(V) contained in k(V)":" that are completely split over z. Here, a

finite extension k C F' C k(V)"2P is said to be completely split over x if
the normalization of V' in F'is completely split over x.
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Abelian geometric fundamental groups 911

In the following, we assume that V' has good reduction, that is, there
exists a proper smooth model over Oy, of V. We denote by V = ¥ @0, Fj,
the special fiber of a smooth model ¥ over O which is a smooth variety
over the finite field Fy,. In this case, it is known that 73" (V)& is finite ([43,
Corollary 1.2], [27, Chapter 4]). By the valuative criterion for properness,
the fixed rational point x gives rise to an Oj-rational point of 7" and hence
to an [Fj-rational point of V denoted by Z. In the same way as above, we
have a split short exact sequence

0 — TPV — 7%(V) — Gy, — 0.

By [9, Exposé X, Théoréem 2.1], there is a canonical surjection

(2.6) sp: TP(V) — w22 (¥) ~ 782 (V)
and this induces the following commutative diagram:
0 —— mf*(V)E —— mi* (V) —— G} —— 0
!
I sp lsp i
pel _
0 —— miP(V)8%° —— 78 (V) Gr, 0.

As the horizontal sequences split, the specialization map sp: W%b(V)geO —
7P (V)8 on the geometric fundamental groups is surjective.

Definition 2.7 ([42, Definition 2.2]). We denote by 73" (V)am the kernel
of the specialization map sp: 7 (V) — 732(V). In the same way, we define
7P (V)80 by the kernel of sp: 7 (V)8 — 7m3b(V)&© on the geometric
fundamental groups. The abelian coverings corresponding to w3 (V);am are

said to be completely ramified over V.

For the later use, we give a precise description of 7P (V)am. First, we
recall the construction of the map sp: 73*(V) — 73P(V): For an étale
covering ¢: W — V| there exists a unique étale covering # — ¥ such that
its closed fiber is @ ([9, Exposé IX, Théoréme 1.10]). By taking the generic
fiber p: W — V of # — ¥, we obtain

W——W+—W

(2.7) l l E

V—— ¥ 7V.
This induces the map sp: 73 (V) — 3P (V).

Definition 2.8. For an abelian covering ¢: W — V with Galois group
Aut(p) = G, we say that ¢: W — V is unramified over V, if there exists
an abelian covering @: W — V with Aut(®) ~ G such that ¢ and @ fit into
the diagram (2.7) as above.
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912 Evangelia GAzAKI, Toshiro HIRANOUCHI

We define k(V)i to be the subfield of k(V)urab generated by all fi-

nite extensions of k(V) contained in k(V)™*" that are unramified over
V. Here, a finite field extension F/k(V) is said to be unramified over V
if the normalization of V in F is unramified over V. We have 73(V) ~
Gal(Fy (V) m2b /Ty (V) ~ Gal(k(V)37 /k(V)). In particular, there is a one
to one correspondence between the set of abelian coverings of V' unramified
over V and that of abelian coverings of V. A diagram of fields and their
Galois groups is

k;r,abk(v)geo
~ - h ~
> ~
TRV, k(v)see
ﬂ_'lb(V) _ ~ -

(cf. The diagram of fields and Galois groups in [17, Introduction]). An
abelian covering ¢: W — V' is completely ramified over V' if and only if ¢
does not have a sub covering which is unramified over V.

Class field theory for curves. Let X be a projective smooth curve over
k with X (k) # 0 and with good reduction. There exists a proper smooth
model 2 over O, of X whose closed fiber is denoted by X = X ®o, Fi.
Following [1], [31], we recall the class field theory for the curve X. The
group SK;(X) is defined by the cokernel of the tame symbol map

SK (X)) = Coker(@: K (k(X)) — @k(fﬂ)x>,

where x runs through the set of closed points in X, k(x) is the residue field
at x, and k(X) is the function field of X. The norm maps Ny /i: k(z)* —
k> for closed points x induce N: SK;(X) — k*. Its kernel is denoted by
V(X). The reciprocity map ox: SKi(X) — m$P(X) is compatible with
the reciprocity map pg: k* — sz of local class field theory as in the
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Abelian geometric fundamental groups 913
commutative diagram:
N
00— V(X) —— SKy (X) s k%

(2.8) 1ox lox lpk

0 — m3P(X)8®° —— miP(X) Geb 0,

where the bottom horizontal sequence is induced from the structure map
X — Spec(k) (cf. (2.5)). The diagram above gives a map 7x: V(X) —
7P (X)8° to describe the geometric fundamental group 73 (X )&, In fact,
the above short exact sequences split from the assumption X (k) # (). The
main theorem of the class field theory for X is the following:

Theorem 2.9 ([1], [31]). The following statements hold for the reciprocity
maps ox and Tx.
(i) The reciprocity map ox has dense image in 75°(X), and its kernel
is the mazimal divisible subgroup, SKi(X )iy of SK1(X).
(ii) The map Tx is surjective, and its kernel is Ker(tx) = V(X )aiv,
which is the maximal divisible subgroup of V(X).
(iii) The image Im(7x) of Tx is finite.

From the above theorem, the reciprocity map 7x induces an isomor-
phism V(X)/V(X)qy — m3P(X)8%° of finite groups. Since an extension
of a finite group by a divisible group splits, V(X)) is finite by divisible:
V(X) = V(X)an ® V(X)div. Moreover, the group V(X) can be expressed
as a Somekawa K-group, namely
(2.9) V(X) ~ K(k; J,Gy,)
associated with the Jacobian variety J = Jac(X) and G, ([36, Theo-
rem 2.1], [28, Remark 2.4.2(c)]). For X has good reduction, the Jaco-
bian variety J has also good reduction. The reciprocity map 7x: V(X) —
7P (X)8%° coincides with the Galois symbol map associated with J and

Gy, ([36, Proposition 1.5]) as in the following commutative (up to sign)
diagram: For any m € Z>1,

V(X)/m —" s mib (X )8 fm
(2.10) :J(zg) ~
K(k; J, Gy ) fm —" H?(k, J[m] & i)

(cf. [1, Theorem 1.14]). Here, the right vertical isomorphism is induced from
H?(k, JIm] ® i) =~ J[m]q,. By the class field theory for X (Theorem 2.9),
the map 7x ,, induced from 7y is surjective. As Ker(rx) is divisible, the map
Tx,m is injective. We conclude that the Galois symbol map s, is bijective
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914 Evangelia GAzAKI, Toshiro HIRANOUCHI

for every m > 1. (Note that the injectivity of s,, has also been established
for an arbitrary field in [40, Appendix].)

There is a surjective homomorphism SK;(X) — CHp(X) (see [16, Sec-
tion 2]), called the boundary map, where CHg(X) is the Chow group of the
special fiber X = 2" ®0, Fj, of the model 2. This map is compatible with
the valuation map vy of k as the following commutative diagram indicates:

0—— V(X) — SKy(X) —s kX ——0
|
(2.11) o l }k
\V— — deg
0—— Ag(X) — CHy(X) —25 7 ——0,

where deg is the degree map, and Ay(X) is its kernel. We denote by Ox the
induced map V(X) — Ag(X). Because the horizontal sequences split, the
boundary map Jx is surjective. A rational point x € X (k) gives rise to an
[Fi-rational point of X by the valuative criterion for properness. The Abel-
Jacobi map gives an isomorphism Ag(X) = J(Fy), where J = Jac(X) is
the Jacobian variety of X.

Lemma 2.10. The kernel Ker(0x) is finite by divisible (in the sense of Def-
inition 2.1). Namely, we have a decomposition

Ker(ax) = Ker(@x)ﬁn D Kel‘(ax)div

for a finite group Ker(0x )an and a divisible group Ker(9x)diy-

Proof. Consider the short exact sequence 0 — Ker(dx) — V(X) %

Ao(X) — 0. As noted above V(X)) is finite by divisible and Ag(X) ~ J(Fy)
is finite. The assertion follows from Lemma 2.2 (iii). O

The classical class field theory (for the curve X over Fy) says that the
reciprocity map pg : Ag(X) = 7P (X)&® = 7 (X)sor is bijective of finite

groups and makes the following diagram commutative:

0 Ker(dx) —— V(X) —2X 5 4y(X) ——0

\
I X lTX Nlpx
+ S v
0 —— mP (X5 — mP(X)20 — AP (X)E° —— 0.

For the commutativity of the right square in the above diagram, see [16,
Proposition 2|. From the diagram, we obtain the surjective homomorphism
px: Ker(9x) — miP(X)8 with Ker(pux) ~ Ker(rx) = V(X)aiy. Since

ram

the group Ag(X) is finite, we have an equality Ker(dx)aiw = V(X)div-
Moreover, the reciprocity map 7x induces V(X)a, = V(X)/V(X)aw —
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Abelian geometric fundamental groups 915

7P (X)g%°. Tt follows that the map px induces an isomorphism of finite
groups

(2.12) Ker(x )n —> 3" (X80

ram-*

3. Abelian varieties

Throughout this section, we will be using the following notation:

e A: an abelian variety over k of dimension g = dim(A) with good
ordinary reduction.

e ¢/: the Néron model over Oy of A (]2, Section 1.2]).

o A:= ./ ®0, Fi: the special fiber of &7 which is an ordinary abelian
variety over F.

e A: the formal group law over Oy, of A (cf. [10, Section C.2]).

The formal group law A defines a Mackey functor by the associated group

~

A(K) := A(mg) for a finite extension K /k.

Boundary map. For any m > 1, the finite flat group scheme .«/[m| over
O, fits into the following connected-étale exact sequence

(3.1) 0 — [m]° —= [m] = [m]** — 0

(cf. [37, Section 1.4]). By taking the limit im . we obtain the short exact
sequence

(3.2) 0 —T(F)° > T(H) " T(F) —0

of the full Tate modules, where T'(&/)® := lim .o/[m]* for e € {00, et}.
On the other hand, the group A(k) := ligk,/k A(my) associated with the
formal group law A over Oy of A gives the short exact sequence

(3.3) 0 — A[m] = A[m] = A[m] — 0,

where Alm] = A(k)[m] is the m-torsion subgroup of A(k) ([10, Theo-
rem C.2.6]). The valuative criterion of properness yields o/[m] ~ A[m)]
as Gp-modules. By the equivalence of categories between finite étale group
schemes over Oy, and finite G-modules, we have o7 [m]®* ~ A[m] (cf. [37,
Section 1.4]). The group A(k) has no non-trivial prime to p-torsion ([10,
Proposition C.2.5]). By comparing the short exact sequences (3.1) and (3.3),
we obtain

Am)° = Alm], T()" ~lim A[m], and T(&)° = lim A[m)].

By taking the G-coinvariance of (3.2), we have

(3.4) (T(#))c, — T(A)a, — (T(#)")q, — 0.
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916 Evangelia GAzAKI, Toshiro HIRANOUCHI

From [36, (3.2.1)] (see also [1, Remark 2.7]), the étale quotient of the above
sequence becomes

(3.5) (T()") e, ~ lim(A[m])g, ~ A(Fy).

By taking the projective limit, the Galois symbol maps (s, ), induce a map
s: K(k; A, Gy,) — lim H?(k, Alm] ® ). The composite map

(3.6) Da: K (ki A, Grn) > lim H2(k, Alm] @ i) % T(A), —» A(F),

is called the boundary map of A, where the middle isomorphism (<) follows
from the local Tate duality theorem ([25, Theorem 7.2.6], cf. [1, (2.2)], see
also Proposition A.1l in Appendix). Since the limit of the Galois symbol
map s = lim s, in (3.6) is surjective ([36, Theorem 3.3]), so is 4.

Lemma 3.1.
(i) The groups (A @ Gp,)(k), K(k; A, G,,) and Ker(04) are finite by
divisible in the sense of Definition 2.1.
(ii) For any m > 1 prime to p, we have Ker(94)/m = 0.

Proof.

(i). The proof of [28, Theorem 4.5] implies that (A ® G,,)(k)/m is finite
and its order is bounded independently of m. This implies the first assertion
by Lemma 2.2 (i) (as in Lemma 2.10). Since we have the quotient map (A®
Gm) (k) = K(k; A, Gy,), the second assertion follows from Lemma 2.2 (ii

).
_ Consider the short exact sequence 0 — Ker(04) — K(k; A, Gy) %
A(Fr) — 0. Since A(Fy) is finite, Lemma 2.2 (iii) implies that Ker(04)
is finite by divisible.

(ii). From (i), we have K (k; A, Gy,) = K(k; A, Gp)ain B K (k3 A, Gy ) aiv, and
Ker(04) = Ker(94)an @ Ker(04)aiv (cf. Definition 2.1). As the target of the
boundary map d4: K (k; A, G,,) — A(Fy) is finite, we obtain a short exact
sequence 0 — Ker(94)an — K(k; A, Gy fin % A(Fg) — 0. Take any m > 1
coprime to p. For K(k; A, G,)an and A(Fy) are finite, the multiplication
by m map on these finite groups induces

(%) — _

K(k; A,Gm)an[m] ~ K(k; A, G )an/m ~ A(Fr)/m ~ A(Fi)[m],
where the isomorphism (x) follows from [12, Proposition 2.6] (for the case
where A is the Jacobian variety, [1, Proposition 2.29]). The boundary map
da gives an isomorphism K (k; A, G,,){m} = A(Fy){m}, for any m prime
to p. This implies that Ker(d4)gy, is a p-primary torsion group. O
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Abelian geometric fundamental groups 917

Let T, (&/)® = lgln(ﬂ[p”]') be the p-adic Tate module of .27 [p"]® for e €
{o,0,et} (cf. (3.1)) and write T'(«7)® = T(«/)® x T'(</)® with T"(/)*® =
Jim (mp)=1 o/[m|®. From the following lemma, one can describe Ker(04)gn
by using the exact sequence

(To()°)e, — Tp(A)g, — (Tp()*)e,, — 0,
where T, (A) := lim Alp"] = T, () (cf. (3.4)).
Lemma 3.2. Suppose that, for any m > 1, the Galois symbol map
St K(k; A, Gyp)/m — H?(k, Alm] @ i)
is injective. We have Ker(04)an =~ Im((Tp(#)%) e, — Tp(A)a,)-

Proof. For any m € Z>1, by [36, Theorem 3.3] the map s, is surjective.
From the assumption, it is bijective. By taking the projective limit, we
obtain lglm Sm = sa: K(k; A,Gp)fin 5 T(A)g,. From the definition of
the boundary map (3.6), we have a commutative diagram

K(k; A, Gp)in —=— T(A)g,

Jo |

A(Fy) (3—ﬁ5)> (T()Y) g,

This gives Ker(9a)a, ~ Ker (T(A)Gk 5 /T(]Fk)> Next, Lemma 3.1 (ii)
yields an isomorphism K (k; A, G,,,)/m ~ A(Fy)/m for any m € Z>1 which
is prime to p. Thus, we have T'(A)g, — @(m p)zl(Z(Fk)/m)Gk and the

following commutative diagram:

(To()°) e, —— Tp(A)g, — (Tp(#)*) g, — 0

(T,(A))a, —— T(A)g, —— A(Fr) ——— 0.

Here, the first vertical map is the identity, the second is the natural in-
clusion induced by T),(A) < T'(A) (which splits) and the third one is the
composition (T,(#)*)¢, ~ A(Fr){p} — A(Fx) ([1, Remark 2.7]), where
A(Fj){p} is the p-primary torsion subgroup of A(F}). Then, it is clear that
Im((T(#)%) e, — Tp(A)g,) = Im((Ty()%)a, — T(A)c,)
— Ker(T(A)a, = A(Fy)).

The lemma follows from these equalities. Il

This content downloaded from
73.251.155.230 on Sun, 19 May 2024 20:21:55 +00:00
All use subject to https://about.jstor.org/terms



918 Evangelia GAzAKI, Toshiro HIRANOUCHI

Formal groups associated with abelian varieties. In this paragraph,
we give an upper bound for the Mackey product (A ® G,,)(k) associated
to A and G,,.

Lemma 3.3. Let k'/k be a finite tamely ramified extension. Then, the
norm map

Nijp: (A® G) (k) —» (A® Gy (k)
18 surjective.

Proof. Take any symbol of the form {z,a} g/ in (fl@ Gm) (k). For KK'/K

is also tamely ramified, there exists £ € fT(K) such that N/ (§) = =
([3, Proposition 3.9]). The projection formula, that is, the relation (PF)
defining the Mackey product in Definition 2.5, yields

{7, a}k/k = {Nkgw/k(§),a} ki

PF
e, Resgrr /i (a) Y icr /h

(2.2)
= Ny /e({& Resgwr /i (a) Y i)

The assertion follows. O

In the same way as in Definition 2.6, for any n > 1, we define the Galois
symbol map

(3.7) spn 1= spn g (AQ Gp)(k)/p" — H2(k, A[p"] © ppn)

by spr({®,a}tg/) = Corgp(dz(z) U dg,,(a)), where 04 : E(K)/p” —
HY (K, A[p"]) is the Kummer map. This map is well-defined by properties
of the cup product ([25, Proposition 1.5.3]).

Proposition 3.4. We assume Alp] C A(k), p, C k, and Alp] C A(Fy,).

(i) There is an isomorphism fT/p ~ T of Mackey functors over k,
where U is the sub Mackey functor of G,/p defined by

U(K) = UK = Im(UK — Kx/p) = UK/p.
(ii) For any n > 1, the Galois symbol map
sprt (A@ G (k) /p" — H(k, A[p"] & pipn)
defined in (3.7) is bijective.

®g . . N .
7 in the assertion (i) is not canonical and

The isomorphism A/p ~ U
depends on the choice of an isomorphism A[p] ~ (u,)®9 of (trivial) Galois
modules. The proof of the above proposition essentially follows from [12,

Section 4], but the assumptions are weakened slightly.
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Abelian geometric fundamental groups 919
Proof of Proposition 3.4.

(i). We fix an isomorphism A[p] ~ (pp)®9 of Galois modules. This induces
the bijection (&) below

~ Uy ~ o () ~
Sic: A(K)/p <2 H'(K, Alp]) = HY (K, 1) & (K* /p)™*

for any finite extension K/k. Here, the last map is the Kummer map on

G (cf. (2.3)) which is bijective from “Hilberts Satz 90" First, we show
Im(6g) C (Ug)®9. Consider the following commutative diagram:

A(K) Jp—5s (K% [p)®9 —*— (Z/p)®9

| | Js
AE) fp 55 (K% /)™~ (2 /),

where K" is the completion of the maximal unramified extension of K,
and v is the valuation map. Since we have A ®o, Opur =~ ((@m)@g ([22,
Lemma 4.26, Lemma 4.27]), A(K™)/p ~ (Ugw)® and the composition
vodgw = 0 in the above diagram. Thus, the composition vodx = 0 in the
top sequence and hence Im(dx) C (U )®9. From the structure theorem of
the multiplicative group K*, we have Ug /p ~ (Z/p)®E:@l+1) and hence
#(Ug)®9 = {#(Ug /p)}9 = p9FQ+D) Tt is enough to show #E(K)/p >
pI(E:Qp]+1)

By Mattuck’s theorem ([21]) and #A(K)[p] = p*9 we have #A(K)/p =
pd(E:Q]+2)  Recall that A has ordinary reduction so that Alp] ~ (Z/p)¥9.
The exact sequence

A(K)/p — A(K)/p — A(Fg)/p — 0
and the equality #A(]F‘K)/p #Z(IFK) [p] imply the inequality #A(K)/p >
pI(IE QeI+ The map 65 : A(K)/p = (Ug)®9 is bijective.
(ii). For each n € Z>1, to simplify the notation, we put
My = (A@ G (k)/p", A= H?(k, Alp"] © pun)

and s, 1= syn: My — ;,. We will show by induction that s, is bijective.
First, we show that s;: .#) — J4 is bijective. As in the proof of (i) above,
we fix an isomorphism A[p] ~ (u,)®9 of Galois modules and hence we obtain

(3.8) A = H?(k, Alp] @ pp) ~ H?(k, u3)®9.

By (i), there is an isomorphism A /p~U “9 For the Mackey product com-
mutes with the direct sum,

(3.9) My~ (A)p @ G /) (k) =~ (U @ Gy /) (k)9
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920 Evangelia GAzAKI, Toshiro HIRANOUCHI

The natural inclusion U — G,,,/p, induces the following commutative dia-
gram:

S1

M 74

(3-9)&“ (3.8)l~
Dy

(T © G /1) (B)29 —— (G /p ® G /) (k)29 25 H2(k, u52)29.

Here, the map s, in the bottom is the Galois symbol map associated to
G- In fact, the composition (U @ G,,/p)(k) — (Gm/p @ Gp/p)(k) %
H?(k, p$?) is bijective ([28, Lemma 4.2.1], see also [12, Lemma 4.5]) and
so is s1: M — FA4.

Next, we consider the following commutative diagram with exact rows
except possibly at .#,_1:

A\[p] ®z k> v Moy 1 > My, M1 >0

M,
I I L
W

H'(k, Alp] @ 1) Moy s I, —— 0

(cf. 28, Lemma 4.2.2]), where the bottom sequence is induced from
0 — Alp" 1 @ pn — Alp"] ® pipn — Alp] @ p1, — 0.
Here, the far left vertical map ¢ is given by

~

Alp] @z k* 'Y€ HO(k, Alp]) @7 H' (k, pp) ~2 H'(k, Alp] @ pp)

and ¥ is induced from Afp] — A(k) —» A(k)/p" ' ¢(w @ a) = {w, alysi
for w® a € Afp] ® k*. The commutativity of the square ({) follows from
a property of the cup product (cf. [25, Proposition 1.4.3(i)]). By the fixed
isomorphism /T[p] ~ (up)®9 of trivial Galois modules, the map ¢ becomes

Alp] @7k — (1p @7,k /p)®9 = H (k, u3*)® ~ H' (k, Alp] ® pp).

In particular, ¢ is surjective. From the inductive hypothesis, s, 1 is bijec-
tive and hence s,, is surjective. From the diagram chase and the induction
hypothesis, s, is injective. O

Theorem 3.5. For any n > 1, there is a surjective homomorphism
(Z/pM")9 —» (A& ) (k) /9",
where M™ = max{m > 0| ppm C k"}.

Proof. Recall that, for any finite unramified extension k’/k, the norm map
(A® Gp)(K) = (AR Gy)(k) is surjective (Lemma 3.3). We may assume
M"™ = M = max{m > 0| u,m C k}. We have a short exact sequence

0 — Alp] — Alp] — Afp] — 0
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Abelian geometric fundamental groups 921

by [10, Theorem C.2.6]. Mazur’s theorem 2®@k Opnr ~ (Gn)®9 (22, Lem-
ma 4.26, Lemma 4.27]) indicates that, by replacing k with a finite unrami-
fied extension, the above sequence becomes

0 — (1p)® — Alp] — (Z/p)®? — 0
as Gj-modules. In particular, we have Alp] C A(F}). In the following, we
put K = k(pp). R
First, we consider the case M = 0 and show (A ® G,,)(k)/p = 0. This
implies that (A ® G,,)(k) is p-divisible so that (A ® G,,)(k)/p™ = 0 for
any n > 1. The assumption M = 0 implies p, ¢ k and k ; K. Using
Alp] ~ (up)®9, the Galois symbol map defined in (3.7) is of the form:

sp (A® Gy)(k)/p — H?(k, Alp] @ ) ~ H? (k, )%,

Since we have H2(/<:,u§2) ~ KM(k)/p = 0 (cf. [6, Chapter IX, Proposi-
tion 4.2]), it is left to show that the Galois symbol map s, is injective. The
extension degree of K = k(p,)/k is prime to p. The composition

Resg /k

(A@Gu)(k)/p —4" (A® G)(K)/p pLly (A® Gp)(k)/p

is the multiplication by [K : k] and is bijective. Note that the restriction
Resgy, is injective. Consider the following commutative diagram:

(A ® Gry) (k) /p —2—s H2(k, p2)®9
RGSK/k lResK/k
(A® Cp)(K)/p s HA(K, p£2)%,

Here, the Galois symbol map s, i is bijective from Proposition 3.4 (ii).
From the diagram above, the Galois symbol map s, is injective. We obtain
(A®Gp)(k)/p" = 0.

Next, consider the case M > 0. In this case, K = k. Fix ( € p,um

a primitive p™-th root of unity. In the following, we show the following
claim:

Claim. (A ® G,,)(k)/p is generated by symbols of the form {w, Chiyi for
some w € A(k).

Proof. Recall that the Hilbert symbol (—, —),: k* ® k™ — p, ~ Z/p satis-
fies

(3.10) (Y, 2)p =0y € Ny ymy (B(Y2)7), forz,y € k*

(cf. [38, Proposition 4.3]). From the very definition of M and M = M",
the extension L := k(p,a+1)/k is non-trivial, and totally ramified. We have
Ur/NpUr ~ k™ /Ny, L™ (cf. the proof of [32, Section V.3, Corollary 7])

This content downloaded from
73.251.155.230 on Sun, 19 May 2024 20:21:55 +00:00
All use subject to https://about.jstor.org/terms



922 Evangelia GAzAKI, Toshiro HIRANOUCHI

and local class field theory says k* /Ny, L* ~ Gal(L/k) # 0 (cf. [32,
Section XIIL.3]). Thus, there exists y € Uy, \ Ny Uy, such that (y, (), # 0
from (3.10). As (y,(), # 0, the chosen element y induces a non-trivial
element in U, = Uy, /p. We use the same notation y for this induced element
in U},. For each 1 < i < g, put

yD =1, 1,0,1,...,1) € (T2

and we denote by w(® e ﬁ(k}) /p the element corresponding to y® through
the isomorphism A(k)/p ~ (U)®¥ (Proposition 3.4(i)). The Galois sym-
bol map is compatible with the Hilbert symbol map ([32, Section XIV.2,
Proposition 5]) as the following commutative diagram indicates:

A(k)/p ©z k* /p —— (A @ G (k) /p — H(k, Alp] © pp)

(3.11) l: Jg

(T b /m) ™ - @/p).

Here, s, is the Galois symbol map and is bijective (Proposition 3.4 (ii)),
and the map ¢ is given by «(w ® z) = {w, z};/;. The image of w® @ ¢ e
A(k)/p @z k*/p in (Z/p)®9 via the lower left corner in (3.11) is
(i) ; ®
&Y :=1(0,...,0,(y,¢)p,0,...,0) € (Z/p)™9.

These elements @) (1 < i < g) generate (Z/p)®9 and hence the symbols
{w(i),(}k/k = 1(w® @) for 1 <i < g generate (A ® G,,)(k)/p. O

For any n > 1, consider the exact sequence

(A®Cm)(k)/p L5 (A® Gp) (k) /0" — (A Gy)(k)/p" — 0,

where p" is the map induced from the multiplication by p™. From the claim
above, the map p" becomes 0 for all n > M, so that (A @ G,,)(k)/p"+! ~
(A®G,,)(k)/p™. Tt is left to show (Z/pM)®9— (ARG, )(k)/p™. From Lem-
ma 3.3, by replacing k with a sufficiently large unramified extension of k, we
may assume A[pM] ~ (11,01)®9 as Gr-modules. As the Galois symbol map
(A® Gp)(k)/pM — H2(k, ApM] ® ppar) s bijective (Proposition 3.4 (ii))
and p,m C k, we have

(A @ Gy) () /p™ 2 H*(k, Alp™] @ ujoe) = H?(k, p53)®9 =~ (2,/p™) 9.
U
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Abelian geometric fundamental groups 923

Upper and lower bounds of the kernel of the boundary maps. The
Mackey functor defined by the formal group law A associated to A gives
the short exact sequence as Mackey functors

(3.12) 0— A A" AJA—0,

where A/ A is defined by the exactness. The Mackey functor A/ Ais given
by (A/A)(K) ~ A(Fg) for each finite extension K /k with residue field Fx
(for the precise description, see [28, (3.3)]). By applying — ® G, (which
is right exact) to the sequence (3.12), we have the following commutative
diagram with exact rows

(A Cr) (1) B4R Cr) (k) = ((A/A) ® Gy) (k) = 0

(3.13) f@ i v

0 Ker(9a) — K(k; A, Gp) — A5 A(F),) —— 0,

where the middle vertical map is the quotient map, and 94 is the boundary
map defined in (3.6). Here, the commutativity of the left square in (3.13)
follows from the lemma below and this induces the right vertical map v
which is surjective.

Lemma 3.6. The boundary map 8, annihilates the image of (A® Gy,)(k)
in K(k; A,Gp,).

Proof. For m = #A(F},), there is a commutative diagram:

(A9 G) (k) —— K(k; A, Gp) — 2 A(Fy)

l mod m l mod m Nl mod m

(A o) (k) /m —— K (k5 A, G /m —275 A(Fy)/m.

It is enough to show that the bottom sequence is a complex. The Galois
symbol maps induce the following commutative diagram with exact rows:

(A ® Gua)(k)/m 2% (A @ Gu) (k) /m — (A)A) @ ) (k) — 0

l J/ m :

R m m 7{/

H?(k, Alm] @ pn) — H?(k, Alm] ® pim) — H*(k, A[m] @ ) — 0
A\[m]gk — 3 Alm]g, ————— Alm]g, —— 0,
where the second exact sequence is induced from the exact sequence for
A[m] noted in (3.3). The definition of the boundary map d4 (cf. (3.6)) says
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924 Evangelia GAzAKI, Toshiro HIRANOUCHI
that the composition
(A® Gy (k) /m =™ H*(k, Alm] @ i) —— H?(k, &[] & p,)

is the boundary map 04 ,,. Since the bottom sequence in the above diagram

is exact, 04, annihilates the image of (A ® Gy,)(k)/m and the assertion
follows from this. O

Theorem 3.7. There are surjective homomorphisms
(Z/p"")P —» Ker(a)gin — (Z/p™4)®9,
where Ng = max{n > 0| A[p"] C A(k)} and g = dim(A).

Proof. To give the lower bound, we may assume N := N4 > 0. The dia-
gram (3.13) induces

(A®Gn)(k) /" — (A@ G) (k) /pV — ((4/A) ® Gyn) (k) /p" — 0

l ! l

Ker(0)/pN —— K (k; A, Gy /pN 2225y () /p —— 0.

In fact, the middle and right vertical maps are bijective ([12, Lemma 4.1,
Corollary 4.3 (i)]), the upper sequence is left exact, and (A® G,,)(k)/p"
(Z/pN)®9 ([12, Lemma 4.5 (ii)]). Therefore,

Ker(d4) —» Ker(84)/pY
—» Ker(@Ava) >~ (A\ & Gm)(k)/p]v = (Z/pN)EBg

Next, we consider the decomposition A(Fy) = A(Fy){p} ® A(Fy){m} for
some m coprime to p. The composition aj{’} : K(k; A, Gyp) 04 A(Fy) —»
A(Fy){p} gives the following diagram:

0 — s Ker(9a) — K(k; A, Gr) 25 A(Fy) —— 0

! o b

A

0—— Ker(@P) —— K(k; A, G,,) —— A(Fy){p} —— 0.

By applying the snake lemma, the above diagram induces an isomorphism
A(Fy){m} = Coker(j). Since Torz(Coker(5),Z/p™) = 0, we conclude that

(3.14) Ker(94)/p" — Ker(d{)/p"
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Abelian geometric fundamental groups 925
From the diagram (3.13), we have

(A® Gm)(k) = (A® Gm)(k) = (4/A) © Gpn) (k) =0

(3.15) Lf,{p} l P}{p}
a{P}

0 — Ker(d) — K(k; A, Gp) —— A(Fy){p} —— 0,
where the right vertical map 1P} is the composition ((A/A) ® G,,) (k) %
A(Fy) = A(Fr){p}.

Claim. The kernel Ker(i/{P}) is p-divisible.
Proof. Put 4 = ((A/A) ® Gy,) (k). Since ¥{P} induces an isomorphism
A [p" = A(Fp){p}/p" = A(Fy)/p"

for all n > 1 ([12, Lemma 4.1]), we have

fm 4 /p" = Y%nﬁ(Fk)/p” ~ A(Fy){p}-
It follows that
(3.16) Ker(y{P}) = Ker (/// — @%/p") = ﬂ p" A .

n n>1

As A(Fy){p} is a finite p-group, there exists s > 0 such that p* annihilates
A(Fi){p}. To show the claim, take any z € Ker(¢{"}) and any n > 1.
From (3.16), there exists y € .# such that x = p" "5y = p"(p°y). Here,
p*y € Ker(y1P})). Thus, Ker(41P}) is p-divisible. O

By the snake lemma, the diagram (3.15) gives a surjective homomor-
phism Ker(w{p}) — Coker(go{p}). From the above claim, Coker(cp{p}) is also
p-divisible. The map go{p} induces a surjective homomorphism

N {»} (3.14)
n t (A®G)(k)/p" & Ker(0F)) /p" =" Ker(9a)/p".
From Theorem 3.5, we obtain
(Z/p™™ )% — (A @ Gy) (k) /p" = Ker(a)/p"

for any n > 1. For the finite part Ker(04)sy, is a p-group (Lemma 3.1 (ii))
this implies the existence of surjective homomorphism (Z/p™")®9 —
Ker(04)sn as required. O

Remark 3.8. In the case where A = F is an elliptic curve, define

N := max{n|E[p"] c E(k)}.
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926 Evangelia GAzAKI, Toshiro HIRANOUCHI

In general, we have N < N. By [22, Lemma 4.26 and Lemma 4.27], the base
change E[p"]pur to k" gives Ejur [p"] ~ p1pn and hence N < M™. Using this,
we will give a refined upper bound Z/p" — Ker(dg)g, in Proposition 5.2.

Remark 3.9. As noted in the introduction, we apply Theorem 3.7 to the
Jacobian variety J = Jac(X) for a curve X over k which has good reduction

to obtain the structure of 73" (X )& (Corollary 4.1). However, the structure

of Ker(0dy) € K(k;J,G,,) ~ V(X) can be obtained without assuming X
has good reduction. Precisely, let X be a projective smooth curve over k
with X (k) # () and assume that the Jacobian variety J = Jac(X) has good
ordinary reduction. From Theorem 3.7 there are surjective homomorphisms

(Z/p™M")®9 — Ker (D, )an — (Z/pN7)9.

Note that when X has good reduction (this is the very case studied in [1]),
its Jacobian J has good reduction. But, the converse does not hold in
general. By the semi-stable reduction theorem, at least X has semi-stable
reduction, that is, there exists a model 2~ over Oy of X whose closed fiber
X = X ®0, Fy, is semistable, i.e., X is reduced and has at most ordinary
double points as singularities ([4, Theorem 2.4]).

The following proposition due to Yoshiyasu Ozeki insists that if we en-
large the base field k then the difference Ny < M"" becomes arbitrarily
large.

Proposition 3.10. Let A be an abelian variety over k with potentially good
reduction. For an extension K/k, we define

Nu(K) :=max{n|A]p"] C A(K)} = Na, and

M(K) := max{m/| pym C K*}.
Then, for any x > 0, there exists a finite extension K /k, such that M (K)—
NA(K) > .

Proof. For each m > 1, put ky, := k(upm) and koo := U,;,>1 km- By defini-
tion, for any m > 1, we always have

(3.17) m < M (k).

By Imai’s theorem [13], #A(kso)tor < 00. In particular, N (ko) < 0o. For
sufficiently large m > 0, we have A(kx)[p™] = A(kp)[p™>]. Take such m
satisfying

(3.18) m > Na(koo).

On the other hand, for any ¢ > 1,

Alp'] € Alks) & Alp'] C Alkso)[p™] = Alki) [p™] & Alp'] € A(km).
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Abelian geometric fundamental groups 927

From these equivalences,
(3.19) AlpNate) T 7 A(ky,), and  A[pNaE=)] ¢ A(k,y,).
Thus we obtain

) 3.18 (3.17)
Nalim) 22 Nakoo) P2 m 2 M ().
As N (ko) does not depend on m and we can take arbitrary large m, the
assertion follows by putting K = ky,. U

4. Curves

In this section, we give a proof of Theorem 1.1 and also construct the
maximal covering of a curve X over k which produces the subgroup
7P (X)g0  of 1P (X)&e°, Throughout this section, we use the following
notation:

e X: a projective smooth curve over k with X (k) # () and we addi-

tionally assume that X has good reduction.

e X := 2 ®0, Fi: the special fiber of a regular model 2" over Oy, of
X,
J = Jac(X): the Jacobian variety of X which has good reduction
from the assumption on X,
¥ : the Néron model over O, of J, and
J = Jac(X): the Jacobian variety of X which is also the closed
fiber of 7.

Finally, we suppose that .J is an ordinary abelian variety. From this as-
sumption, the Jacobian variety J has good ordinary reduction. We fix a
rational point = € X (k). By the valuative criterion for properness, the ra-

tional point x gives rise to an Fi-rational point of X which is denoted by

Proof of the main theorem. The boundary map d; for J defined in (3.6)
is compatible with dx defined in (2.11) as in the following commutative
diagram:

V(X) —2 s Ay(X)

(Q.Q)lz lz

K(k; J,Gp) —2s J(F),

where the right vertical map is the Abel-Jacobi map Ay(X) = J(F;) which
is bijective ([36, Lemma 2.2], see also [1, Lemma 2.12]). Recall that both of

dx and Jy are surjective, we obtain an isomorphism Ker(dx) = Ker(dy).
This isomorphism and Theorem 3.7 together with the class field theory
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928 Evangelia GAzAKI, Toshiro HIRANOUCHI

px: Ker(dx)gn — miP(X)80, (cf. (2.12)) induce the following main result
referred in Theorem 1.1:

Corollary 4.1. We have surjective homomorphisms:
(Z/p™")P — 7P (X )Eem —» (Z /™).

ram

When the absolute ramification index e, = ey, of k satisfies e, <
p — 1, we have p, ¢ k", and this implies M"" = 0. From Corollary 4.1 we
recover the following assertion in [16, Proposition 7] (cf. [42, Theorem 3.2,
Theorem 4.1]. For more general results, see also [27, Proposition 4.25]).

Corollary 4.2. Assume e, < p— 1. Then, we have 73 (X)g2 = 0.

ram

Construction of the maximal covering. In the following, we construct
a geometric covering ¢: X — X such that the composition

7O (X)EO 8P (X)8% ~ Gal(k(X)E° /k(X)) —» Aut(y)

ram
is bijective. The construction of such covering is known classically as the
pullback of an appropriate isogeny J—J along the Albanese map f*: X —
J = Jac(X) associated with the given rational point x € X (k) (cf. [33]).
Since we could not find appropriate references, we give precise explanations
below: Consider also the Albanese map f%: X — J ([23, Section 6]). We
have the middle vertical arrow in the commutative diagram below

X— X +—X

o A

J—— F—J
by the Néron mapping property of #.

Lemma 4.3. The diagram (4.1) above induces i (X)& ~ 11 (.J)8° and

7P (X)8e0 ~ 11 (J)8© . Note that all finite étale coverings of J are abelian.

Proof. Because of H?(k,Q) = H3(k,Z) = 0, and the long sequence arising
from 0 — Z — Q — Q/Z — 0, we have H?(k,Q/Z) = 0. The five-term
exact sequence induced by the Hochschild—Serre spectral sequence gives
short exact sequences

0 — H'(k,Q/Z) — H(X,Q/Z) — H(X @k k,Q/Z)%* — 0

S

0— H'(k,Q/Z) — HL(J,Q/Z) — HL(J @ k,Q/Z)C* — 0.

The sequences are exact on the right because the group H?(k,Q/Z) van-
ishes. Here, the right vertical map is bijective, because f* induces an iso-
morphism 7 (X @y k) ~ 71 (J @ k) = 73P(J @4 k) ([23, Proposition 9.1]).
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Abelian geometric fundamental groups 929

We obtain m$P(X) ~ HL(X,Q/Z)Y ~ HL(J,Q/Z)" ~ 71(J). In the same
way, we also obtain 73" (X) ~ 7 (.J). Thus, we obtain 7P (X)8e ~ 1 (.J)&e
and 3P (X)80 ~ gy (.J)80 . O

ram — ram

It follows by Corollary 4.1 that there is an isomorphism
X)fam ™~ EB Z/p"™,

for some integers Ny < r; < M", i =1,...,g. In particular, this implies
that 78P(X)8% has a subgroup isomorphic to (Z/p™7)®9. We wish to find
an explicit finite abelian covering X’ — X whose Galois group coincides
with the aforementioned subgroup of m$P(X)g% . This is of course only

interesting when Nj; > 1. Put N := N; and suppose N > 1. Consider the
splitting

T[] = Jp"] @ T[] = (upn ) & (2/pN)
induced by the connected-étale short exact sequence for J (cf. (3.3)). Put
Hy := J[p"] and consider it as a subgroup of J[p"]. This induces an
isogeny ¢ : J — J/Hy =: Jy with kernel Hy ([24, Example 4.40]). Let
Y Jy — J be its dual ([24, Proposition 5.12]).

Proposition 4.4. The isogeny 1/3 Jn — J is a geomelric covering which is
completely unramified over J. Furthermore, we have Aut(¢)) ~ (Z/p™)®9

Proof. Abelian covering. It is known that any isogeny on abelian varieties
is finite flat ([24, Proposition 5.2]) and we are working over a characteristic
0 field, hence the isogeny 1/} Jn — J is finite étale ([24, Proposition 5.6]).
The map Ker(¢)) — Aut(¢)) which sends £ € Ker(1)) to the automorphism
given by the translation by & is bijective, because any non-constant homo-
morphism is the composition of an isogeny and a translation by some £ ([24
Proposition 1. 14]). Since Aut(¢)) acts transitively on the fibers Ker(qz) the
covering v is Galois with Galois group Aut(¢)) ~ Ker() ~ (Z/p™)®9

Geometric covering. Next, we show that 1[1 is a geometric covering of J. As
we recalled in Section 2, using the zero 05 € J(k), it suffices to show that
the fiber (Jn)o over 0

IN—— (IN)o=JINn x5 0s
| |
J#Spec(lﬂ)

is completely split over Spec(k). In fact, we have (Jy)o ~ Ker(¢)) as schemes
and the later Ker(¢)) is precisely the subgroup ¢ (J[p’V]), which is k-rational
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930 Evangelia GAzAKI, Toshiro HIRANOUCHI

by assumption. Therefore, (Jy)o is the sum of k-rational points, and hence
v: Jy — J is a geometric covering of J.

Completely ramified. Finally, we show that the geometric covering ¢ JN —
J is completely ramified over J. Suppose that w contains a sub covering
¢: A — J unramified over J. Since the isogeny zp maps 0 in Jy to 0 in
J, there exists a rational point e € A(k) such that ¢(e) = 0. From the
Lang—Serre theorem ([24, Theorem 10.36]), A is an abelian variety. Let .o/
be the Néron model of A and A its closed fiber. By the functorial property
of the Néron models (]2, Section 7.3, Proposition 6]) there exists an isogeny
®: o/ — ¢ which makes the following diagram commutative:

A——sd+— A

175

J—— 7+ J.

Claim. The isogenies ¢ and ® are étale. In particular, in the correspon-
dence between the set of abelian coverings of J unramified over J and that
of abelian coverings of J referred in Section 2, the isogeny ¢ comes from
the above diagram (4.2) with the isogeny ®: &/ — _# of the Néron models.

Proof. The kernel Ker(®) of the induced isogeny ® is a finite group scheme
([24, Proposition 5.2]). Consider the connected-étale sequence

0 — Ker(®)° — Ker(®) — Ker(®)® — 0
([24, Proposition 4.45]). We can factor ® as a composition of two iso-
genies &/ — o/ /| Ker(®)° LN #. In the same way, ¢ can be written
A — A/ Ker(p)° (Z—e; J. Putting @7°* := o/ / Ker(®)° and A = A/ Ker(¢)°,
they make the following diagram commutative:

A Z
h X
é Aet o %et o
(Det M

s
Y ¢et

J

where ¢°t: At — J is given by taking the generic fiber of ®°'. Here, ®°*
and ¢ are isogenies whose kernels are étale group schemes so that ®°* and
¢°* are étale ([24, Proposition 5.6]). From this, ¢°* is an abelian covering
of J which is unramified over .J.

Since ¢ is unramified over .J (and A — A°* is not unramified over A° t), we

have A ~ A°. This implies that &7 ~ &° and A ~ A and the assertions
follow. O
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Abelian geometric fundamental groups 931

Let #Zn be the Néron model of Jy. Extending the diagram (4.2), we
have the following commutative diagram:

JN Sz

11

hSH|

S

o A

s/
/
/
\
o
N
4

From the functorial property of Néron models, the above diagram is com-

mutative. Here, ¢ is étale. From the construction of Jy, 17): In = J s
an isomorphism and so is ¢. This implies that ¢: A — J is an isomor-
phism. Therefore, 1L does not contain sub abelian coverings of J which are
unramified over J. O

It follows (see e.g., [23, Section 9]) that the pull-back

Xy —— Jn

|, b

X —J

of 1[) along f*: X — J defines an étale covering of X. From the construc-
tion of Xy and the universal property of the Albanese map f*, we have

~

Aut(v)) ~ Aut(y).

Theorem 4.5. Suppose we have Ker(Ox )gn =~ (Z/p™7)®9 with N := N >
1. The étale covering ¢ : XN — X is a geometric covering which is com-
pletely ramified over X. Furthermore, the composition

TP (X)Em = w1 (X)E° — Aut(p)

is bijective.
Proof. From Proposition 4.4, the right vertical map in the following com-

mutative diagram is surjective

Aut(p) —— Aut(d)

b (X )geo f? 1 (J)8e.

Thus, the left vertical map is surjective, and hence ¢: Xy — X is a geo-
metric (abelian) covering of X.
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Recall that we have (Z)pN)®9 ~ Ker(Ox )gn ~ 7P (X)8, and Aut(p) ~

Aut(¢)) ~ (Z/pN)®9 (Proposition 4.4). Consider the following commutative
diagram:

TP (X)En > TP (X)E° —» Aut(p)

T

1 ()8, 1 (J)E° —— Aut(¥)).

From Proposition 4.4, the composition of the bottom maps is bijective, so
is the top map. This implies that p: Xy — X is completely ramified over
X and is maximal. O

Remark 4.6. The assumption in Theorem 4.5 holds if we have Nj; = M
(see Remark 1.2). In Theorem 5.3 below, we also consider elliptic curves
which satisfy this assumption.

Products of curves. The above results can be extended to products of
curves. For a product X = X x --- x X of smooth and projective curves
X; over k with good reduction and X;(k) # 0 for all i, we have a short

exact sequence 0 — V(X) — SK;(X) N kx5 0 and the reciprocity map
7x: V(X) — mP(X)8° defined similarly as in (2.8) (cf. [31, Section 1]).
There is a commutative diagram

where I7(X ) is a divisible group ([41, Proposition 1.7 and Corollary 2.5,
see also the proof of Theorem 1.1]). From the decomposition of V(X), one
define the boundary map

Lo d d d
Oy : V(X)M@V(Xi)@a—xf@ ~ @ T;(Fy),
i=1

i=1 =1

where .J; is the Jacobian variety of the special fiber X; for each i. Here, the
target of the boundary map Jx can be considered as the Albanese variety
Alb(X)(Fr) = B, Ji(Fx), where X = X x --- x X4. This induces the
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Abelian geometric fundamental groups 933

commutative diagram with horizontal exact sequences:

d
0 —— Ker(0x) —— V(X) ——— @ Ji(Fr) —— 0

! i=1
: Bx lTx ~ | ®rx,
¥ d B
0 —— mP(X)8eo, —— miP(X)E° —— P i (X,)E8° —— 0.
i=1
From the top horizontal sequence, we have a decomposition
Ker(0x) ~ Ker(0x)an @ Ker(9x )div

(Lemma 2.2(iii)), with Ker(0x)sn =~ €; Ker(dx,)in and Ker(dx)aw =
V(X). Since px induces an isomorphism

d d
Ker(9x )i ~ €D Ker(9x,)in — D 1" (Xi)fm =~ 71" (X,
i=1 i=1

Theorem 3.7 gives the following corollary.

Corollary 4.7. Let X = X1 x---x Xy be a product of smooth and projective
curves over k with good reduction, and X;(k) # 0 for all 1 <i < d. Assume
that the Jacobian variety J; := Jac(X;) has ordinary reduction for each
1 <1 < d. Then, there are surjective homomorphisms

d d
D@/p")P —» P (X)ER — D@ /p") P,

i=1 i=1

where g; = dim(J;).

5. Elliptic curve

In this section, we consider an elliptic curve X = E over k which has good
reduction. Recalling from Lemma 2.10, we have a decomposition Ker(dg) ~
Ker(0g)an ® Ker(0g)div. We will obtain a sharp computation of the group
Ker(0g)an under some mild assumptions on E. From now on we will simply
write N for the integer Ng.

Good ordinary reduction. First, we assume that E has good ordinary
reduction. Theorem 3.7 gives surjections

Z/pMur —» Ker(0g)an —» Z/pN.
Recall that we have the invariants
N =max{m > 0| E[p™] c E(k)}, and M = max{m > 0| ppm C k}.

In general, we have N < N < M™ as noted in Remark 3.8.
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934 Evangelia GAzAKI, Toshiro HIRANOUCHI

Lemma 5.1. Let G C G}, be a closed subgroup, and T a free Z,-module of
rank 1 with non-trivial G-action x : G — Aut(T'). Then, we have isomor-
phisms

Tes = Yn[(T/p")) = T/,
where Mg = max{m |G acts on T/p™ trivially}.

Proof. Put T,, :== T'/p™ and m := M¢,. Take a generator (z,,) of @n T,=T
with z, € T},. We will show that, for any n > m, the natural map T;, — T,,
induces (T,,)¢ — Tjn. The mod p"-representation y, : G = Aut(T) —»
Aut(T,) factors through a finite cyclic subgroup G,, C G. Fix a generator o,
of Gy. Thus, (Tn)G = Tn/IG(Tn)a where IG(Tn) = <(Xn(0n) - 1)$ | T e Tn>'
Then xn(0n)(zn) = anz, for some a, € (Z/p™)*. Since G acts on T,
trivially, a,z, mod p™ = z, mod p™ in T,, and hence a, mod p'" = 1.
Write a, — 1 = p™l,. This equality means precisely that the subgroup
I¢(T,) is contained in p™T,,. To prove the reverse inclusion it is enough to
show that (l,,p) = 1. Assume for contradiction that p | [,,. This yields

m—+1 m—+1

Xn(0n)z, mod p = anzp mod p =z, mod p™ ! in T4 1.

But this means that G acts trivially on 7},,4+1, which contradicts the defi-
nition of the integer m = Mg.

To finish the proof we consider the following commutative diagram with
exact rows,

0——Ig(Ty) —— T, —— (Th)g —— 0

[

0 P T, T, s Tin 0.

The first two vertical maps are equalities, giving the desired isomorphism
(Th)G =~ Ty, In the appendix we prove an isomorphism T ~ Hm (Th)a]
(cf. Proposition A.1). O

Proposition 5.2. There are surjective homomorphisms
Z/pﬁ — Ker(9g)gn —» Z/p".
The inequality N < N can be strict.
Proof. From Lemma 3.2 we have an isomorphism
Ker(9g)an ~ Im((Tp(&)%) e, — Tp(E)q,)-

Note that the injectivity of the Galois symbol map follows from (2.10). By
the definition of N, G} acts on E[p”] trivially and so does on E[p"]. We
obtain

In((Ty(8)%)6, = Tp(E)e,) = Im(E[p"] — E[p"]) ~ 2/p".
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From Lemma 5.1, (T),(&)°)q, =~ N | ~7Z/ pﬁ and this implies the as-
]

Elp
sertion. It is clear that if E [p N ¢ E(F}), the inequality N < N becomes
strict. ]

Let & be the Néron model of E. For every n > 1, consider the connected-
étale exact sequence of finite flat group schemes over Spec(Oy) (cf. (3.2)),

(5.1) 0 — &P"° — &P — EPTTT — 0.
When E has complex multiplication, (5.1) splits ([34, A.2.4]). Equivalently,
the Gi-action on E[p"] is diagonal for all n > 1. We will refer to this as the

semisimple case. In general (5.1) does not split and the G-action on E[p"]
is upper triangular. Over k" the sequence (5.1) becomes

(5.2) 0 — ppn — EP"] — Z/p" — 0.

Passing to the limit we obtain a short exact sequence of continuous Gjur-
modules

(5.3) 0 — Zp(l) — T,(E) — Z, — 0.

When E has complex multiplication, (5.3) splits; that is, T),(E) is semisim-
ple as Gpur-module. Suppose we are in the non-semisimple case. Assume
additionally that uy,n C k and that E[p"] C E(Fy) for some n. Then the
sequence (5.2) is given over k. In particular, the group scheme &'[p"] defines
an element of Exty, (Z/p", pyn) =~ H}ppf(Ok, pipr ). This group is isomor-
phic to O} /p™ and therefore the extension &[p"] (or equivalently the Galois
module E[p"]) corresponds to a unit u € O, /p". That is, the sequence (5.2)
becomes split after extending to the finite extension k( Py/u). The unit u
is known as the Serre—Tate parameter of E and it is trivial when E has

complex multiplication. For more information we refer to [18, Chapter 8,
Section 9].

Theorem 5.3. Let p,: G — Aut(E[p"]) be the mod p" representation
arising from E[p"| for any n > 1.
(i) If pg is semisimple, then Ker(9g)gin ~ Z/pﬁ
(ii) If p5 is non semisimple, we further assume that M = M™, E[pM] c
E(Fy) and the restriction pn11|1, of the mod pNtL representation
PN+1 to the inertia subgroup I, C Gy, is also non semisimple. Then,
we have N = M, and an isomorphism Ker(dg)gn ~ Z/p™. That is,

the lower bound is achieved and the inequality N < M = M™ can
be strict.

Proof. If N = N there is nothing to show, so we assume N < N.

(i). As in the proof of Proposition 5.2, Ker(0g)an =~ Im((Tp(&)%)a, —
T,(E)g,) and Ty(&)° ~ Z/p". From the assumption, the sequences (5.1)
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. = T,(E)g, is injective. This

are split for all n > 1 and hence (7,,(£)°)q
implies that Z/p" ~ T,(&)° ~ Ker(9g )sin-

(ii). Consider the short exact sequence
(5.4) 0 — EpM] — Ep™] — EpM] — 0

as Gp-modules from (3.3). From the assumption E[p"] c E(Fy), the Galois
invariance of the Weil pairing ([35, Chapter III, Proposition 8.1]) implies
that the determinant of the mod pM representation

Gr 2% Aut(E[pM]) ~ GLao(Z/p™) 2% (2/pM)

coincides with the cyclotomic character xar: Gy — p,u by fixing a prim-
itive p™-th root of unity C which is in k. We have E[pM] ~ ppy as G-

modules and hence M < N. As we assumed M = M W we have M = N.
The above short exact sequence (5.4) becomes

(5.5) 0 — pyr =5 EpM] 245 Z/pM — 0.

Let ¢ = (,m be a fixed primitive p M_th root of unity in k. Fix a basis
(z,9) of E[pM] where z = 13/(¢) € E[p™] and E[pM] is generated by the
reduction of y. This gives Aut(E[p™]) ~ GLo(Z/pM). If the sequence (5.5)
splits, then by taking the mod p™+!

G 22 GLy(7/pM)

l mod pN+1
PN+1

GLQ(Z/pN+1)

the mod p™V ! representation py.; becomes semisimple, which contradicts

the assumption that the restriction of py1 to the inertia subgroup is irre-
ducible. We conclude that the above short exact sequence (5.5) is non-split.

Applying Gg-coinvariance to (5.5) we obtain an exact sequence of abelian
groups,

(MpM>Gk L E[pM]Gk = (Z/pM>Gk — 0.

Claim 1. There is an isomorphism Im((p,m)g, M EpMa,) ~ HpN 22
7)p".

Proof. The following are true for the sequence (5.5): Its corresponding
Serre-Tate parameter u € O; /p™ is nontrivial. The Gy-action on E[pM]
factors through the cyclic quotient Gal(k(u!/?"")/k). Let o € G}, be a lift
of a generator of the Galois group Gal(k(u!/?" ) /k). For the mod p™ rep-
resentation par: G — Aut(E[pM]) = GLo(Z/pM), we have par(o) = (%)
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Abelian geometric fundamental groups 937

for some b € Z/pM. Namely, o(z,0) = (2,0) and o(0,y) = (bz,7). Con-
sider the map defined by the multiplication by p™~N: E[pM] — E[p"] and
(pM =Nz, pM=Ny) is a basis of E[p"]. The following diagram is commutative

Gy 22 GLy(Z/pM)

N
S o

GLy(Z/pV).

Since the action of Gy, on E[p"] is trivial, we have ({ %) = (}{) mod p"

and hence b = 0 mod p. If we suppose b = 0 mod p™¥ !, then the action
of Gj, on E[p™N*1] becomes trivial so that b is not divisible by p/V*1.
Next, we show that Ker (g, M BElpMg,) = (¢*). Since (pM) Gy, = Hpn

¢ is a non-trivial element of (,UpM)Gk. In fact, it is a primitive pM —N-th

root of unity. We have
(€)= (b2,0) = 0(0,) = (0,) = 0 € EpYg,.
This proves (¢*) C Ker (f1,m ™ E[pM]a,). Conversely, take any = in the

kernel Ker (f1,u ™ E[pM]g, ). Since the G-action is cyclic, this means that

there exists some w € E[pM] such that ty/(x) = o(w) — w in E[p™]. Since
the G-action on p,u is trivial, we may assume that w = [(0,y) for some

1€ Z/pM. Then vpr(z) = 1(0(0,y) — (0,y)) = lbz =1 - 137(¢?). This implies

Ker (j1,m M EpM]a,) = (¢*). We conclude that there is an exact sequence
0 — ppne /() =% BpY e, = Z/p" — 0.

Finally notice that we have an isomorphism ji,u / (¢t ~ Hpn , since (¢t ~

ppy-n, which yields the desired isomorphism Im(epr) ~ p,n ~ Z/ pN. O

Claim 2. The extension k(E[p™])/k is totally ramified.

Proof. Let G be the image of the Galois representation
pu : Gy — Aut(E[pM]) = GLy(Z/p™M).

We have G ~ Gal(k(E[pM])/k). As noted in the proof of Claim 1, G is
generated by (%) with b= 0 mod p". We have #G < p"~. We denote
by I the image of the inertia subgroup I, = Gjur by pps which is isomorphic
to the inertia subgroup of Gal(k(E[p™])/k). Since I C G, it is isomorphic
to an additive subgroup of Z/ pM  and hence I can be written as

1={(; 1)|ser@mn},

for some N < t < M. We consider what happens mod p™V*!. If we assume
N < t, then ({%) € I for z € p'(Z/pM) is the identity mod p™*!, and
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938 Evangelia GAzAKI, Toshiro HIRANOUCHI

z = 0 mod pV 1. The action of Iy on E[p™T!] is trivial. This contradicts
the assumption that pn41]7, is irreducible. Therefore, ¢t = N and hence
#1 = pM—N = 4G, The extension k(E[pM])/k is totally ramified. O

Claim 3. We have an isomorphism

Im((T,(8)%) e, — Tp(E)a,,) =~ Im(un — EpMg,).

p

Proof. In the appendix (cf. Proposition A.1) we prove that there are iso-
morphisms T),(E)g, =~ 1£1n(E[p”]Gk) and T),(E)r, ~ @n(E[p”]Ik) We

have commutative diagrams

(Tp(g)o)lk — TP(E)Ik (Tp(@@)o)Gk — TP(E)Gk

R

()1, —— E[pM]y,. () — E[pM]c, .

Here, the left vertical map in each diagram is bijective by Lemma 5.1 and
the assumption M = M™. Consider the following commutative diagram:

Im((T(6)%) 1, = Tp(E)1,) — Im((Tp(6)")c,, = Tp(E)c,)

l l

Im((pp)r, * EpM]r) —=— Im((upr)c, = ElpM]e,).

Here, the bottom horizontal map is bijective because of Claim 2. Thus,
it is enough to prove the injectivity of the left vertical map in the above
diagram. It suffices to show that for every r > M we have an isomorphism
Im((ppr )1, = E[p']s,) =~ Im ((pepar) 1, 2 E[pM];,). This will follow by Lem-
ma 5.1 and the snake lemma. We have a commutative diagram with exact
rows and columns

br—M Tr—M

(pr—r1), — Elp" M), ——= Z/p"M ——0
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The snake lemma applied to the rightmost part of the diagram gives an
exact sequence

Ker(m,_a7) — Ker(n,) LN Ker(mas) N Coker(m,—pr) = 0.

Since m,_js is surjective, we get an exact sequence
Ker(m,_a7) — Ker(n,) N Ker(mp) — 0.

The claim will follow if we show that the map Ker(r,) LA Ker(mys) is an
isomorphism, or equivalently that Ker(m,_ ) — Ker(r,) is the zero map.

But this follows by Lemma 5.1. Namely, the map (p,r)r, LA (ppre)1, is an
isomorphism. O

From Lemma 3.2, Ker(0g)an ~ Im((T,(&)%)a, — Tp(E)g,). Claim 1
and Claim 3 will complete the proof of the theorem in this case. It is clear

that if E[pN] ¢ E(F}), the inequality N < N becomes strict. O

Remark 5.4. One can use part (ii) of Theorem 5.3 to construct examples
of elliptic curves for which we have N < N = M"™.In particular, the upper
bound of Theorem 1.1 can be strictly achieved. For example, consider E an
elliptic curve over Q, with complex multiplication. Let ky = Q,(p,) and
for n > 1 consider the tower of finite extensions k, = ko(E[p"]). It follows
by [19, Theorem 2.1.6] and [35, IV.6, Theorem 6.1] that for every n > 1 the
extension ky11/ky, is totally ramified of degree p. Thus, there exists some
n > 1 such that E[p"] ¢ E(Fy, ). This means that over k, we have a strict
inequality N < n = N. Moreover, notice that N=M Wosinee kpy1/ky is
totally ramified.

Construction of the maximal covering. We next consider the case
when the elliptic curve F is the base change of an elliptic curve over Q with
potential complex multiplication. Let Ey be an elliptic curve over Q. For
a field extension F'/Q, we denote by Endp(FEy) the ring of endomorphisms
on Fy which are defined over F. Assume first, £y has potential complex
multiplication by the ring of integers Ok of an imaginary quadratic field
K. Namely, End@(EO) ~ Ok. As all endomorphisms on FEj are defined over
K, we also have Endg(Ep) = Endk(Eyp) ~ Ok. It follows by [30, Corol-
lary 5.12] that K has class number one. Suppose that the prime number
p splits completely in K and Ej has good reduction at p. We consider the
reduction modulo p,

r: Endg (FEp) — Endﬁ(EO).

It follows by [5] (see also [20, 13.4, Theorem 12], [26, p. 2]) that there
exists a prime element 1 of Ok such that p = 17 and the endomorphism
n: Fy — Ey of Ey reduces to the Frobenius automorphism ¢ : Eg — Ej.
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Since p splits completely in K, the completion of K at (7) is Q,. Denote by
E = Ey®qQ) the base change of Ey to Q,. We conclude that F has complex
multiplication defined over Q,. That is, Endg,(F) ~ Ok and n: £ — E
reduces to the Frobenius. We claim that for every n > 1, Ker(n") = E[p"].
Since the reduction of ™ is an automorphism, we clearly have Ker(n") C E.
Moreover, the equality n77 = p implies that Ker(n™) C E[p"] from where
the claim follows. R R

We conclude that if Ker(n™) = E[p"] C E(k), then the isogeny " : E —
E defines a geometric covering of degree p™ and is completely ramified over
E. According to Theorem 5.3(i), "V : £ — E is the maximal covering

corresponding to 3P ()& .

Good supersingular reduction. Next, we consider the elliptic curve E
which has good supersingular reduction. The boundary map 9g : V(E) —
E(F}) induces a short exact sequence

Ker(0g)/p" — V(E)/p" — E(Fy)/p"™ — 0.

As the reduction E of E satisfies E[p"] = 0 for any n > 1, we have
E(F)/p"™ = 0 and Tor(E(Fy),Z/p") ~ E(F)[p"] = 0 so that we obtain
(5.6) Ker(dg)/p" ~ V(E)/p".
In the following, we assume E[p] C E(k) and will give bounds of Ker(0g)an
(Theorem 5.9). By fixing an isomorphism E[p] ~ (u,)®? of (trivial) G-
modules, the Kummer map gives

E(k)/p— H'(k, E[p]) =~ H' (k, pp)** ~ (k* /p) **.

Its image can be understood by a filtration on £* /p using the higher unit
group U, = 1 4 mj. Precisely, because E[p] = 0, we have the following
decomposition:

(5.7) E(k)/p~ E(k)/p ~ Uz(eo(k)—to(k)) @ Ugto(k)’
where UZ = Im(U} — k*/p), eo(k) = ex/(p — 1), and

to(k) = max{uvy(y)| 0 # y € E[p]}

(cf. [7, Section 3.4]). By identifying the isomorphism (5.7), we can decom-

pose an element w in E(k)/p as w = (v/,u) with v’ € Uz(eo(k)fto(k)), u €

Uﬁto(k). The Galois symbol map associated to E and G, (Definition 2.6)
induces

sp: (E/p® Gp/p)(k) — H2(k,E[p] ® pip) HQ(k,u?2)@2 ~ (Z/p)®2.

In fact, this map s, becomes bijective ([12, Theorem 4.2]), and since it fac-
tors through the surjection (E/p ® G, /p)(k) = K (k; E,G,,)/p, it follows
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that this surjection is an isomorphism as well. The map above is compat-
ible with the Hilbert symbol map (—,—), : K*/p® k*/p — pp, ~ Z/p
([32, Section XIV.2, Proposition 5]) as the following commutative diagram
indicates:

ER)/p© b Jp—— (B /p & Gu/p)(k)

L |-

— )92
T @ 1 fp) & RO @ k% fp) 0 (@)

Here, the top horizontal map is the symbol map w®z +— {w, z} . (cf. [12,
Proof of Proposition 4.6]). The above commutative diagram gives the fol-
lowing lemma.

Lemma 5.5. Two elements {(uy, 1), 21}, and {(1,u2), x2}y/, generate
K(k; B, Gu) /p if they satisfy (u},a1), # 0 and (uz, 2), # 0.

The image of UZ ® Ui by the Hilbert symbol is known as follows:
Lemma 5.6 ([11, Lemma 3.4]). Ifpti orpfj, then

PR p, ifi+j < peo(k),
Uk, Up)p =
# (U Up)p {0, otherwise.

For m > 1, put k,, := k(ppm). Moreover, consider the invariant
R=min{r >0|ex < (p—1)p"}.

Using the above observations, we determine generators of K (ky,; E,Gy,)/p
for some m.

Lemma 5.7. We assume E[p| C E(k) and M = M". Then, there exists
M < m < M + R such that the K-group K (kpy; E,Gy,)/p is generated by
elements of the form {a,Cym}y, /.., where (um is a primitive p™-th root of
unity.

Proof. Recalling from [7, Lemma 3.4], we have U}, = 1 for i > peg(k) and
U, = U:rl for i with p | i. For some i < peg(k) which is prime to p or
i = peo(k), we have ¢ = (,u € U~ UZH. From the assumption M = M"™,
knri1 = k(Gyum+1)/k is a totally ramified extension of degree p. In the case

i = pep(k), the extension kpsy1/k is unramified ([19, Lemma 2.1.5]) so we
conclude that ¢ < peg(k). If we have

(5.8) i < min{pto(k),p(eo(k) — to(k))},

then ¢ + pto(k),7 + p(eo(k) — to(k)) < peo(k). There exist v’ € Uito(k)
and u € Ui(eo(k)_to(k» such that (v, (), # 0 and (u, (), # 0 (Lemma 5.6).

This content downloaded from
73.251.155.230 on Sun, 19 May 2024 20:21:55 +00:00
All use subject to https://about.jstor.org/terms



942 Evangelia GAzAKI, Toshiro HIRANOUCHI

Thus, the elements {(u, 1), (}x/x and {(1,u), (}y /i generate K (k; E, Gy,)/p
by Lemma 5.5. The assertion holds for m = M and for k = kjy.
Suppose that the above inequality (5.8) does not hold It follows by Lem-

ma 5.8 below that we have (m1 € UkM+1 ~ UkM .» while eq(kpar1) =

peo(k), and to(kpr41) = ptg(k) Since i < peg(k) and we defined R to be
the smallest nonnegative integer such that eg(k) < p. We have

i < peo(k) < p™ < pmin{pto(k), p(eo(k) — to(k)}.

It follows that there exists r < R such that over the extension k,, =
k(ppm)/k, with m = M + r, we have

i < min{pto(km), p(eo(km) — to(km))} = p" min{pto(k), p(eo(k) — to(k))}-

Applying Lemma 5.5 and Lemma 5.6 as above to k,,, there are symbols of
the form {a, (ym }1,, /k,, Which generate K (k,; E,Gp,)/p as required. O

Lemma 5.8 (cf. [8 Lemma 3.23] for the case M > 2). We assume p, C k.
Let © € Uk ~ Uk , where 0 < i < peo(k) and i is coprime to p. Let
K = k(¥/x) and write £ = ¥/x. Then, fEUK\UlH.

Proof. Tn this proof, we denote by 7 the residue class in U}, = U}, /UL N (k*)P
represented by the unit z € U,i. First, we note that the extension K/k is a
totally ramified extension of degree p ([19, Lemma 2.1.5]). Thus, vk (z—1) =
pug(x —1) = pi. Suppose that £ = ¥/x is in U;{ ~ Ug;rl for some j and write
E=1+ uw%( for a unit u € O, where 7 is a fixed uniformizer of K.
From [6, (5.7)], we calculate the valuation of (&P —1 =z — 1 as follows:

o If j > eo(K) = peo(k), then & = 1+ u/'my; IR mod 7T]+6K+1 for
some unit v’ € Oj. Thus,
pi=vg(x—1) =vg (&P — 1) = j + ex > peg(k) + per, = peq(k).
This gives i > peg(k) and contradicts the assumption on i.
o If j = eg(K), then &P =1+ (up—i-u’)ﬂfgo(m mod WpeO(K)H for some
unit v’ € O and hence
pi = v (z — 1) = v (€¥ — 1) > peo(K) = p*eo(k).
Therefore, i > peg(k), which is again a contradiction.
o If j < eg(K), then £ = 1 + uPrh? mod 72/, We have
pi=vg(r—1)=vg( —1) =
This implies ¢ = j.
As £ e Uk~ U?l, the residue class £ is in UK ~ UZH. U
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Theorem 5.9. Let E be an elliptic curve over k which has good super-
singular reduction. We assume that E[p| C E(k). Then, we have surjective
homomorphisms

(Z/p"" )P —» Ker(9p)an — (Z/p™) 2,
where R = min{r |ex, < (p —1)p"}.
Proof. As we noted in (5.6), there are isomorphisms
Ker(0p)/p" ~ V(E)/p" ~ K(k; E,Gm)/p"
for any n > 1. Recalling from (2.9), we have V(FE) ~ K(k; E,G,,). The
lower bound is given by
(5.9) Ker(9p) — Ker(0g)/p" ~ K(k; E,Gy,)/p" ~ (Z/p™)*?,

where the last isomorphism follows from [11, Remark 4.3].

Since the norm map K (k; E,G,,) — K(k; E,G,,) is surjective for any
finite extension k'/k ([41, Proposition 3.1]), we may assume M = M".
In particular, the Kummer extension k(p,m+1)/k is a totally ramified p-
extension. Take m < M + R as in Lemma 5.7 and put k,, = k(upm). For
each n > m, we consider the following diagram with exact rows:

0 = K (km; E, Gon) /p L K (ki B, Gon) /" = K (ks E, Gon) /™ = 0

| ) |

0= K(k; E,Gp)/p -2 K(k; E,Gp) /o — K(k; B, Gp) /1" — 0,

where the vertical maps are given by norms which are surjective. The far
left vertical map K (kn,; E,Gy,)/p — K(k; E,G,,)/p is bijective because of

K(km; E,Gp)/p ~ K(k; E,Gp)/p ~ (Z/p)®?

using the assumption E[p] C E(k) as in (5.9). By Lemma 5.7, the map
p": K(km; E,Gp)/p — K(km; E,Gy,)/p" ™! defined by the multiplication
by p" is the 0-map and so is p": K (k; E,G,,)/p — K (k; E,G,,)/p""'. From
the above diagram, we have K (k; E,G,,)/p""! ~ K(k; E,G,,)/p" for any
n > m. Putting K = k(E[p™*%]), there are surjective homomorphisms

K(K;E,G,,)/pM ™ — K(K;E,G,,)/p™ — K(k; E,G,,)/p™.

Here, the last map is induced from the norm map which is surjective. From
this, we have

(z/pM T2 ~ K(K; E,G,,)/pM T —s K(k; E,G,,)/p" ~ Ker(0g) /p"

for any n > 1. This implies the existence of a surjective homomorphism
(Z,)pM+)92 s Ker(0)gn as required. ]
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Appendix A. Profinite Group Homology

In this appendix, we show the following proposition which is used in [1,
(2.21)] and [36, Section 3|:

Proposition A.1. Let ! be a prime, A a semi-abelian variety over a p-adic
field k, and G a closed normal subgroup of G.. Then, we have
Ti(A)c =~ lm((AI")el.

Put T := T;(A) and A, := A[l"]. Using this notation, T = lim Ay
can be regarded as a profinite Z;[G]-module. Recall that, for a profinite
Z;[G]-module M, the m-th homology group H,,(G, M) of G with coeffi-
cients in M is given by the m-th left derived functor of —@Zl 161Z1 (cf. [29,

Section 6.3]). The homology group H,,(G, M) can be computed by using
the homogeneous bar resolution L, — Z; as follows:

Hpn(G, M) = Hy(M&g,1c1Ls)

(cf. [29, Theorem 6.3.1]). Each term L,, in L. is a free profinite Z;[G]-
module, so that we have @(Am@zl [c1le) = T®Zz[[GﬂL° and

Hn(G,T) = Hy(T®g,[c1Le); Him(G, An) = H(An®z,161Ls)-

As An@Zl[[G]] m = An ®Z/ln[G]] L,,/l"™ is finite, the tower of chain com-
plexes - -+ — An®Zl [gjLe = -+ — A1®Zl [c]Le satisfies the Mittag-Leffler
condition. By [39, Theorem 3.5.8], we have an exact sequence for each m:

0 — Lim' Hyp1 (G, An) — Hn(G, T)—>L m(G, Ay) —

In particular, we have

0— l'%anl(G, Ap) — T — lim(4,)g — 0.

n

Here, H1(G, A,)Y ~ HY(G, AY), where V denotes the Pontrjagin dual. Since
A is finite, the action of G on A factors through a finite quotient G/ K, for
some open normal subgroup K,, C G. By the inflation-restriction sequence
([29, Corollary 7.2.5]), we have a short exact sequence

0 — HY(G/K,,AY) 2 gY (G, AY) B3 gY(K,, AY).
As HY(K,, A)) = Homeont (Kp, A))) and HY(G/K,, A)) are finite abelian
groups, so is H'(G, AY) and hence H; (G, A,,) is finite. From this, the tower

- — H1(G, Apt1) — Hi(G, Ap) — -+ — Hi(G, Ay) satisfies the Mittag-
Leffler condition (cf. [39, Exercise 3.5.1]). We have l'glanl(G,An) =0
by [39, Proposition 3.5.7]. This gives Proposition A.1.
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