? frontiers ‘ Frontiers in Neuroscience

‘ @ Check for updates

OPEN ACCESS

EDITED BY

Harald E. Méller,

Max Planck Institute for Human Cognitive and
Brain Sciences, Germany

REVIEWED BY

Franciszek Hennel,

University of Zurich, Switzerland
Haykel Snoussi,

Boston Children’s Hospital and Harvard
Medical School, United States

*CORRESPONDENCE
Abigail Julian
abigail julian@emory.edu

RECEIVED 25 March 2024
ACCEPTED 25 April 2024
PUBLISHED 27 May 2024

CITATION

Julian A and Ruthotto L (2024) PyHySCO:
GPU-enabled susceptibility artifact distortion
correction in seconds.

Front. Neurosci. 18:1406821.

doi: 10.3389/fnins.2024.1406821

COPYRIGHT

© 2024 Julian and Ruthotto. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Neuroscience

TYPE Technology and Code
PUBLISHED 27 May 2024
pol 10.3389/fnins.2024.1406821

PyHySCO: GPU-enabled
susceptibility artifact distortion
correction in seconds

Abigail Julian** and Lars Ruthotto?

!Department of Computer Science, Emory University, Atlanta, GA, United States, 2Department of
Mathematics, Emory University, Atlanta, GA, United States

Over the past decade, reversed gradient polarity (RGP) methods have become a
popular approach for correcting susceptibility artifacts in echo-planar imaging
(EPI). Although several post-processing tools for RGP are available, their
implementations do not fully leverage recent hardware, algorithmic, and
computational advances, leading to correction times of several minutes per
image volume. To enable 3D RGP correction in seconds, we introduce PyTorch
Hyperelastic Susceptibility Correction (PyHySCO), a user-friendly EPI distortion
correction tool implemented in PyTorch that enables multi-threading and
efficient use of graphics processing units (GPUs). PyHySCO uses a time-tested
physical distortion model and mathematical formulation and is, therefore,
reliable without training. An algorithmic improvement in PyHySCO s its use of
the one-dimensional distortion correction method by Chang and Fitzpatrick
to initialize the non-linear optimization. PyHySCO is published under the GNU
public license and can be used from the command line or its Python interface.
Our extensive numerical validation using 3T and 7T data from the Human
Connectome Project suggests that PyHySCO can achieve accuracy comparable
to that of leading RGP tools at a fraction of the cost. We also validate the new
initialization scheme, compare different optimization algorithms, and test the
algorithm on different hardware and arithmetic precisions.

KEYWORDS

echo planar imaging, reversed gradient polarity, GPU acceleration, software,
parallelization

1 Introduction

Reversed gradient polarity (RGP) methods are commonly used to correct susceptibility
artifacts in spin-echo echo-planar imaging (EPI; Stehling et al,, 1991). RGP methods
acquire a pair of images with opposite phase encoding directions, which leads to a minimal
increase in scan time due to the speed of EPI. In a post-processing step, RGP approaches
use the fact that the distortion in both images has an equal magnitude but acts in
opposite directions to estimate the field map (see Figure 1; Chang and Fitzpatrick, 1992;
Bowtell et al., 1994). The field map is then used to estimate a distortion-free image, either
as a post-processing step using reconstructed images (Chang and Fitzpatrick, 1992) or
simultaneously with image reconstruction by including the field map in the signal inverted
during reconstruction (Zahneisen et al., 2017).

Compared to other correction approaches, such as field map acquisition, point-spread
function map acquisition, and anatomical registration, RGP methods generally achieve
comparable or superior accuracy while being more robust to noise and motion, see, e.g.,
Wu et al. (2008), Esteban et al. (2014), Graham et al. (2017), and Tax et al. (2022). These
advantages make RGP correction a popular choice. For example, the widely-used MRI

01 frontiersin.org

Julian and Ruthotto

database from the Human Connectome Project (HCP; Van Essen
et al.,, 2012) used the RGP correction tool TOPUP (Andersson
et al., 2003) in the preprocessing of released diffusion MRI from
EPI scans.

The original RGP distortion correction approaches in Chang
and Fitzpatrick (1992) and Bowtell et al. (1994)’s studies are
one-dimensional, treating each image column separately in the
phase encoding direction. This leads to a non-smooth field
map estimate and corrections. TOPUP addresses this non-
smoothness with a 3D spline-based approach and the introduction
of regularization (Andersson et al., 2003). TOPUP has limited
support for hyperthreading and is often a time-consuming step of
MRI processing pipelines (Cai et al., 2021). In our experiments,
running TOPUP on a standard CPU took over 60 minutes on
average per HCP subject.

Although less widely used than TOPUP, other iterative
methods have proposed implementations of RGP correction
employing various optimization schemes, discretizations, and
regularization terms to speed up the correction. EPIC (Holland
et al, 2010) introduces correction using a non-linear image
registration framework. The tool was developed specifically for
anterior-posterior distortions and can be less effective for left-right
distortions (Gu and Eklund, 2019). DR-BUDDI (Irfanoglu et al.,
2015) and TISAC (Duong et al., 2020a) methods regularize the
optimization using either a T2-weighted or T1-weighted image,
respectively. While including undistorted anatomical information
can improve the quality of distortion correction (Gu and Eklund,
2019), it complicates the choice of an effective distance measure
and, depending on the protocol, may require additional scan
time. Hyperelastic Susceptibility Correction (HySCO) introduces
hyper-elastic registration regularization and a novel separable
discretization (Ruthotto et al, 2012, 2013; Macdonald and
Ruthotto, 2017). HySCO can accurately correct real and simulated
data varying in phase encoding direction, anatomy, and field of
view (Gu and Eklund, 2019; Snoussi et al., 2021; Tax et al., 2022).
In our experiments, on average, HySCO runs on the CPU for 1-
2 min per HCP subject. While HySCO is a statistical parametric
mapping (SPM; Penny et al., 2007) plugin and has been integrated
into several SPM-based DTI processing pipelines, see, e.g., Clark
etal. (2021) and David et al. (2024), its dependency on a MATLAB
license may limit its wider application.

Recently, several deep learning approaches for susceptibility
artifact correction have been proposed due to extended processing
times of the above mentioned RGP tools, see, e.g., Duong et al.
(2020b, 2021), Hu et al. (2020), Zahneisen et al. (2020), and
Alkilani et al. (2023). A recurrent theme is to train a correction
operator in an offline stage in a supervised way using training data,
which enables fast evaluations in the online step. For example,
training S-Net on 150 volumes took over 5 days, while correcting
an image pair on a CPU took an average of 2.8 s (0.96 s on a
GPU; Duong et al.,, 2020b). However, the significant reduction of
correction time comes at the cost of losing the robustness and
generalizability that the existing RGP approaches obtain from the
physical distortion model. For example, while RGP approaches can
handle images from different scanners, anatomies, resolutions, and
other acquisition parameters, deep learning models perform poorly
when applied outside the training distribution (Chen et al., 2022).

Frontiersin Neuroscience

10.3389/fnins.2024.1406821

Furthermore, deep learning models are highly sensitive to noise and
adversarial attacks in other contexts (Antun et al., 2020).

The PyHySCO
Correction) toolbox aims to achieve the accuracy, robustness,

(PyTorch Hyperelastic ~ Susceptibility
and generalizability of state-of-the-art RGP approaches at
computational costs similar to evaluating a pre-trained deep
learning model. PyHySCO offers EPI distortion correction through
a GPU-enabled and command-line-accessible Python tool powered
by PyTorch (Paszke et al.,, 2019). The mathematical formulation
is based on HySCO augmented by a separable discretization
(Macdonald and Ruthotto, 2017), which increases parallelism.
PyHySCO alleviates the need for multilevel optimization by using
the one-dimensional correction of Chang and Fitzpatrick (1992),
which we derive through optimal transport. We demonstrate the
use of PyHySCO using its Python interface and command-line tool,
which is compatible with existing MRI postprocessing pipelines.

The remainder of our study is organized as follows. In Section
2, we review the mathematical model and its discretization under
the hood of PyHySCO and describe the parallelized Chang and
Fitzpatrick (CF) initialization using optimal transport, fast solvers
exploiting the separable structure, and GPU-enabled PyTorch
implementation. In Section 3, we extensively validate PyHySCO
on real and simulated EPI data. We show the speed and accuracy
of the CF initialization scheme and the speed and accuracy of the
complete correction pipeline across optimizers, GPUs, and two
levels of numerical precision. In Section 4, we discuss the benefits
and implications of using PyHySCO for EPI distortion correction.
In Section 5, we provide a conclusion.

2 Methods

This section describes the algorithmic and coding structure
of PyHySCO. Section 2.1 introduces notation and reviews
the mathematical formulation of the RGP correction problem.
Section 2.2 describes the one-dimensional correction of Chang
and Fitzpatrick (1992), which we use for initialization, and relates
it to optimal transport. Section 2.3 describes the optimization
algorithms available in PyHySCO. Section 2.4 explains the structure
of the code and some key implementation details. Section 2.5
demonstrates the basic usage of PyHySCO and how to integrate it
into existing processing pipelines.

2.1 Mathematical Formulation

The field map estimation and distortion correction are based
on the physical forward model defined in Chang and Fitzpatrick
(1992). Let v € R? be the phase encoding direction for the distorted
observation I: Q2 — TR, and let Q2 c R> be the image domain of
interest. The mass-preserving transformation operator that, given
the field map b:Q — R, corrects the distortions of an image I
acquired with phase-encoding direction v reads

T[Lb,v](x) = I(x+ b(x)v) - (1 + 0yb)(x) Vx € Q. (1)
Here, dyb is the directional derivative of b in the direction of v.
The first term of the operator corrects the geometric deformation in

frontiersin.org

Julian and Ruthotto

10.3389/fnins.2024.1406821

input images

FIGURE 1

field map b

Optlmlze - -

The reverse gradient polarity correction paradigm. Two images are acquired with opposite phase encoding directions, +v and —v. These two images
are used to estimate the field map b, and the distortion correction model (Chang and Fitzpatrick, 1992) is applied to obtain a corrected image /.

corrected image [

the direction of v, and the second is an intensity modulation term,
which should always be positive.

Similar to Ruthotto et al. (2013), PyHySCO solves the inverse
problem of estimating the field map b based on two observations,
Ity and I_y, acquired with phase-encoding directions %v. To this
end, we estimate the field map b by minimizing the distance of the
corrected images.

1 2

D(b) = - / (TU4y, b,V](x) — Ty, b, —v](x))” dx. (2)
Q

The distance term is additionally regularized to enforce smoothness

and the intensity modulation constraint. The smoothness

regularization term
1 2
S(b) = 5 [[IVbx)[|"dx,
2 Ja

penalizes large values of the gradient of b to ensure smoothness in
all directions.

The intensity modulation constraint of the physical model
requires that —1 < dyb(x) < 1 foralmostallx € Q. Thisis enforced
by the barrier term as follows:

2 ze(-1,1)

1)
P(b) = - / B (3yb(x))dx, where ¢(z) = | 1=
2 Ja 00, else.
(©)
Altogether, this gives the optimization problem,
min J(b) = D(b) + aS(b) + BP(b), (4)

where the importance of the regularization terms is weighted
with non-negative scalars o and p. Higher values of o promote
a smoother field map, while lower values of & promote reduced
distance between corrected images at the expense of smoothness
in the field map. Any positive value for B ensures the intensity

Frontiersin Neuroscience

modulation constraint is satisfied, but lower values can lead to
more ill-conditioned problems. For the purpose of this study, we
fixo =300and 8 = le — 4.

PyHySCO follows the discretize-then-optimize paradigm
commonly used in image registration, see, e.g., Modersitzki (2009).
PyHySCO discretizes the variational problem (Equation 4) as in
Macdonald and Ruthotto (2017) to obtain a finite-dimensional
optimization problem almost entirely separable in the phase
encoding direction. Specifically, coupling is only introduced in the
smoothness regularization term when calculating the gradient in
the frequency encoding and slice selection directions.

Our convention is to permute the dimensions of the input
image such that the phase encoding direction is aligned with the
[0,0,1]7
an e3-staggered grid; that is, we discretize its values in the cell

third unit vector e3 = . The field map is discretized on
centers along the first two dimensions and on the nodes in the
third dimension. The integrals in Equation (4) are approximated
by a midpoint quadrature rule. The input images are modeled
by a one-dimensional piecewise linear interpolation function in
the phase encoding direction. The geometric transformation is
estimated in the cell centers with an averaging operator, and the
intensity modulation is estimated in the cell centers with a finite
difference operator.

The discretized smoothness regularization term is computed
for the discretized field map b via

S(b) = Wbﬁﬂ, —

hy-hy-h
RN NP (5)

where hy, hy, and h3 are the voxel sizes and H is a standard
five-point discretization of the negative Laplacian and thus
is a positive semi-definite operator. The discretized intensity
modulation constraint term applies ¢, as defined in Equation
(3), element-wise to the result of a finite difference operator
applied to the discretized field map. This results in the discretized

frontiersin.org

Julian and Ruthotto

optimization problem to be solved as follows:

m&n J(b) = D(b) 4 aS(b) + BP(b). (6)

This problem is challenging to solve because it is high-dimensional
and non-convex, but we can exploit the structure and separability
to efficiently solve the problem wusing parallelization. The
implementation of this optimization problem in a parallelizable
way, as described in Section 2.4, includes the choices of image
interpolation, linear operators for averaging and finite difference,
and regularization terms, S and P.

2.2 Parallelized one-dimensional
initialization

Due to the non-convexity of the optimization problem
(Equation 6), an effective initialization strategy for the field map is
critical. To this end, PyHySCO initializes the correction with the
result of the one-dimensional correction of Chang and Fitzpatrick
(1992), which can be derived from optimal transport (OT) theory
(Peyré and Cuturi, 2017). The key idea is to compute the ‘halfway’
point of the oppositely distorted images in Wasserstein space
(as opposed to Euclidean space, which would simply average the
images). To render this problem feasible, we treat each image
column separately, use the closed-form solutions of 1D OT
problems, and then apply a smoothing filter. Implementing the
Chang and Fitzpatrick (1992) correction using optimal transport
provides a mathematical understanding of their algorithm and a
highly accurate and parallelizable initialization.

We calculate these transformations as optimal transport maps
(Peyré and Cuturi, 2017). More specifically, because the distortions
only occur in the phase encoding direction, these transformations
are a set of one-dimensional maps calculated in parallel across
the distortion dimension. One-dimensional optimal transport has
a closed-form solution considering the one-dimensional signal
as a positive measure and constructing a cumulative distribution
function (Peyré and Cuturi, 2017).

We describe the computation of the one-dimensional optimal
transport maps in the distortion correction setting. In practice, the
computation is parallelized in the distortion dimension to compute
the entire initial field map simultaneously.

Let ity € R"™ be the image data from an entry in the phase
encoding dimension of Iy, and let i_y, € IR™ be the image data
from the corresponding entry in the phase encoding dimension of
I_y. Consider ip,f the sequence of image intensity values from the
corresponding entry of the undistorted image I. We numerically
ensure that iy, and i_y can be considered positive measures by
applying a small shift to the image values, which does not change
the relative distance between elements.

We initialize the field map using the optimal transport maps
Ty from ity to ipgr and T from i_y to iy These maps can be
directly computed using the closed-form one-dimensional optimal
transport formula, which depends on a cumulative distribution
function and its pseudoinverse (Peyré and Cuturi, 2017).

We define the discretized cumulative distribution function
C;:{0,...,m} — [0,1] of a measure i as the cumulative sum as

Frontiersin Neuroscience

10.3389/fnins.2024.1406821

follows:

X

Vx € {0,...,m} Ci(x) = Zi(j),

j=0
where i(j) returns the pixel intensity value at index j of i. The

pseudoinverse Ci_1 :[0,1] — {0, ..., m} is defined as follows:

Vr e [0,1] Ci_l(r) = mxin{x €{0,...,m}| Ci(x) > r}.

In practice, C; 1

Returning to the measures arising from the input images, the

is computed using a linear spline interpolation.

closed-form solution for one-dimensional optimal transport gives
the optimal transport map from iy to ipy as follows:

Ty =C!

o
ihalf

C

iy

and the optimal transport map from i_y to ips as follows:

T-=C. oG,
where Ci;allf is calculated as (Ci: i + C_ 1)/2. Figure 2 visualizes

the computation of the one-dimensional transport maps, and the
parallelized computation and resulting field maps are visualized in
Figure 3. We thus compute the initial guess for the field map as
the average of the maps Ty and —T_, computed in parallel. We
apply a smoothing filter to the initial field map before optimization
to introduce smoothness in the frequency encoding and slice
selection dimensions.

2.3 Optimization Algorithms

Since the optimal choice of optimization algorithms for
approximately solving Equation (6) may depend on various factors,
including image sizes, computational hardware, and severity of
distortions, PyHySCO offers three options. Section 2.3.1 describes
a Gauss-Newton scheme with a Jacobi-preconditioned conjugate
gradient (GN-PCG) method as an inner solver, which is similar
to Ruthotto et al. (2013) and is the default option. An option
that exploits the parallelism of the discretization more effectively
is the Alternating Direction Method of Multipliers (ADMM)
in Section 2.3.2, which is based on Macdonald and Ruthotto
(2017). For comparison, we also provide an interface to an LBFGS
optimizer, see Section 2.3.3.

2.3.1 GN-PCG: Gauss-Newton with
Jacobi-Preconditioned Conjugate Gradient solver

PyHySCO’s default solver is a PyTorch implementation of
the GN-PCG scheme used in Ruthotto et al. (2013). Following
the general idea of Gauss-Newton, we linearize the (non-linear)
distortion correction operator (Equation 1) about the k-th iterate
by, obtain a quadratic model for the objective function by using
a second-order Taylor approximation, and update the field map
estimate with its approximate solution obtained with a few
iterations of the PCG method.

More precisely, let V] be the gradient and H; be a positive
definite approximation of the Hessian of the optimization problem

frontiersin.org

Julian and Ruthotto

10.3389/fnins.2024.1406821

1-D Measures

FIGURE 2

1.0 1
0.8 A
0.6
0.4
0.2
0.0 A

r T : . T . . T T . . T

0 50 100 150 200 250 0 50 100 150 200 250

Pseudoinverses Transport Maps
0 50 100 150 200 250 0 50 100 150 200 250

Cumulative Distributions

The example of one-dimensional optimal transport maps. The top left shows an example of one-dimensional measures. The green signal, iy,
corresponds to an intensity pileup in I, while the purple signal i_, corresponds to an intensity dispersion in /_,. The red signal corresponds to the
intensity of the true image. The top right shows the cumulative distributions for the measures i;, and i_,. The bottom left shows the pseudoinverses

for i, and i_, along with the pseudoinverse C:* used in calculating the transport maps T, = C;alM oCj,,and T_ = cto Ci_,. which are shown in

X fnalf fnalf
bottom right.

(Equation 6) about by. Gauss-Newton iteratively updates the
current field map estimate via

bri1 = br + vqp

where the step size yj is determined using a line search method
such as Armijo (Nocedal and Wright, 1999, Ch. 3 p. 33-36) and the
search direction q; approximately satisfies the following equation:

Hj(bg)q; = —VJ(by). (7)

To obtain q, we apply up to 10 iterations of the preconditioned
conjugate gradient (PCG) method and stop early if the relative
residual is less than 0.1, see the original work (Hestenes and Stiefel,
1952) or the textbook (Saad, 2003) for more details on PCG. The
performance of PCG crucially depends on the clustering of the
eigenvalues, which a suitable preconditioner can often improve.
As a computationally inexpensive and often effective option, we
implement a Jacobi preconditioner, which approximates the inverse
of Hj by the inverse of its diagonal entries. Rather than constructing

Frontiersin Neuroscience 05

the matrix Hj, which is computationally expensive, we provide
efficient algorithms to compute matrix-vector products and extract
its diagonal. While the diagonal preconditioner works well in our
examples, we note that a more accurate (yet also more expensive)
block-diagonal preconditioner has been proposed in Macdonald
and Ruthotto (2017).

2.3.2 Alternating Direction Method of Multipliers
(ADMM)

We additionally modify the ADMM (Boyd et al, 2011)
algorithm in Macdonald and Ruthotto (2017) and implement it in
PyHySCO. To leverage separability of the objective function, the
idea is to split the optimization problem into two subproblems.
In contrast to Macdonald and Ruthotto (2017), which uses a hard
constraint to ensure positivity of the intensity modulation and
employs Sequential Quadratic Programming, we implement this as
a soft constraint with the barrier term (Equation 3).

frontiersin.org

Julian and Ruthotto

10.3389/fnins.2024.1406821

~—1
1.0 1.0 10
0.8 0.8 5
0.6 0.6
0
o) =
0.4 0.4
=5
0.2 0.2
-10
0.0 0.0
—1
1.0
10
0.8
5
0.6
o 0
0.4
=5
0.2
-10
0.0
FIGURE 3
The maps T and T_ are calculated using the closed-form one-dimensional optimal transport solution, parallelized in the distortion dimension
(Peyré and Cuturi, 2017). Note the inverted coloring between T, and T_ as the map T_ corrects a distortion in the opposite direction as T... (A) The
map T4 mapping from I, halfway to /_, is calculated as the composition of the cumulative distribution function C., from /., and the interpolated
pseudoinverse C;allf. (B) The map T_ mapping from /_, halfway to /,, is calculated as the composition of the cumulative distribution function C_,
from I_, and the interpolated pseudoinverse Cgalﬁ.

As in Macdonald and Ruthotto (2017), we split the objective in

Equation (6) into
F(b) = D(b) 4+ aS3(b) + BP(b), and G(z) = aSi(z) + S, (2),
(8)

where S3 is the part of the smoothness regularization term S
corresponding to the phase encoding direction, and S; and S, are
the remaining terms corresponding to the other directions. This
gives rise to the following optimization problem, equivalent to
Equation (6):

r{;in F(b) + G(z) s.t. b=z
\Z

With the corresponding augmented Lagrangian

h3
L(b,z,y) = F(b) + G(z) + y" (b — z) + pTllb —z|?,

where y is the Lagrange multiplier for the equality constraint
b = z and p is a scalar augmentation parameter, and using
scaled Lagrange multiplier u = %, each iteration has the updates
as follows:

h3
biy = argmin F(b) + pTllb—zk—{—ukllz 9)
. P 3 2
Zkt+1 = argmin G(z) + TkuH —z+ ugl| (10)
Wy =g+ by — 7. (11)

Frontiersin Neuroscience

The b update computed in Equation (9) involves a separable
optimization problem that can be solved independently for each
image column along the phase-encoding direction. In PyHySCO,
we use a modified version of the GN-PCG scheme described
above. The only change is the computation of the search direction
(Equation 7), which can now be parallelized across the different
image columns. To exploit this structure, we implement a PCG
method that solves the system for each image column in parallel. In
addition to more parallelism, we observe an increase in efficiency
since the scheme uses different step sizes and stopping criteria for
each image column.

The z update is computed by solving the quadratic problem
(Equation 10) directly. This update is enabled by the structure of
the associated linear system, which is block-diagonal, and each
block is given by a 2D negative Laplacian (from the regularizers)
shifted by an identity (from the proximal term). Assuming
periodic boundary conditions on the images, the blocks in the
approximation itself have an exploitable structure [called Block
Circulant—Circulant Block in Hansen et al. (2006)] and, therefore,
can be inverted efficiently with the Fast Fourier Transform (FFT).

The scaled Lagrange multiplier u is updated at each iteration
as in Equation (11). The augmentation parameter p is updated
adaptively as described in Boyd et al. (2011) to keep the relative
primal and dual residuals close.

2.3.3 LBFGS

As a comparison, we provide an implementation of LBFGS
(Liu and Nocedal, 1989), although optimization with LBFGS

frontiersin.org

Julian and Ruthotto

does not exploit any of the structure or separability of the
optimization problem. LBFGS is a quasi-Newton method that
uses an estimate of the objective function’s Hessian based on a
limited number of previous iterations in solving for the search
direction (Liu and Nocedal, 1989). In our implementation, we
provide an explicitly calculated derivative to an LBFGS solver.!
While computing the objective function, we precompute parts of
the derivative which allows for faster optimization than relying on
automatic differentiation.

2.4 Coding structure of PyHySCO

We implemented PyHySCO in PyTorch (Paszke et al., 2019)
following the overall code structure visualized in the diagrams
in Figures 4A, B for the objective function and optimization,
respectively. The main classes of PyHySCO are the loss function,
which is implemented in EPIMRIDistortionCorrection,
and the optimization, which is defined in EPIOptimize. The
other classes and methods, described in detail in the following,
implement the components of the loss function evaluation and
optimization schemes.

2.4.1 Data storage and the image model

The input pair of images with opposite phase encoding
directions are loaded and permuted such that the distortion
dimension is the last, as this is where PyTorch expects the batch
dimension for parallelizing operations. Information on the input
images is stored in an object of type DataObject. This class
stores information on the image size, domain, voxel size, how to
permute the data back to the input order, and the ImageModel
for each input image. The ImageModel abstract class defines the
structure and required methods for an image model, including
storing the original data and providing a method eval that
returns the data interpolated on the given points. We provide
the default implementation InterplD, a piecewise linear one-
dimensional interpolation parallelized in the last dimension. The
DataObject for a given input pair is then stored in the
EPIMRIDistortionCorrection object.

2.4.2 The correction model

The mass-preserving correction model (Equation 1) is
implemented in the method mp_transform, a class method of
EPIMRIDistortionCorrection. The method takes as input
an ImageModel and a field map. The geometric deformation is
computed by using an averaging LinearOperator to compute
the field map values in the cell centers and adding this to a
cell-centered grid to obtain the deformed grid defined by this field
map. Using the ImageModel, the image is interpolated on this
deformed grid. The intensity modulation term is computed using a
finite difference LinearOperator. The two terms are multiplied
together element-wise before returning the corrected image. The
default implementation of the LinearOperator objects for

1 https://github.com/hjmshi/PyTorch-LBFGS

Frontiersin Neuroscience

10.3389/fnins.2024.1406821

averaging and finite difference are given as one-dimensional
convolutions, parallelized in the last dimension.

2.4.3 Regularization terms

The intensity regularization term is computed within the
method
phi_EPI which computes the result of applying ¢, as defined

EPIMRIDistortionCorrection class in the
in Equation (3), element-wise to the result of applying the finite
difference operator to the field map, as computed in the correction
model. This function acts as a barrier term, ensuring that the
derivative of the field map in the distortion dimension is in
the range (-1, 1).

The smoothness regularization term is implemented in a
QuadRegularizer object, which defines the evaluation of
a quadratic regularization term of the form of Equation (5)
using a positive semi-definite LinearOperator as H. By
default, H is a discretized negative Laplacian applied via a
three-dimensional convolution.

In the ADMM optimizer, the regularizer structure differs
to account for the splitting in Equation (8). The objective
function for the b update in Equation (9) is computed in
EPIMRIDistortionCorrection where the computation of
S3 is a one-dimensional Laplacian in the distortion dimension
applied via a one-dimensional convolution. The proximal term
is computed through a TikRegularizer object, a Tikhonov
regularizer structure. The objective function for the z update
in Equation (10) is a QuadRegularizer object, where
the LinearOperator H is a two-dimensional Laplacian
corresponding to S, and S3. This operator is implemented
in FFT3D, which defines an operator applying a convolution
kernel diagonalized in Fourier space (Cooley et al., 1969). This
implementation allows for easily inverting the kernel while solving
for z.

2.4.4 Hessian and preconditioning
For the
approximate

Gauss-Newton and ADMM optimizers, an

Hessian and preconditioner are
of the

EPIMRIDistortionCorrection during objective function

additionally
computed. The parts Hessian are computed in
evaluation, and the Hessian can be applied through a matrix-vector
product. Similarly, a Preconditioner can be computed during
objective function evaluation and is accessible through a returned
function applying the preconditioner to its input. By default, we
provide a Jacobi preconditioner in the class JacobiCG.

2.4.5 Initialization
The EPIMRIDistortionCorrection
method initialize, returning an initial guess for the field

class has a

map using some InitializationMethod. We provide
an implementation of the proposed parallelized Chang and
Fitzpatrick initialization in InitializeCF. The implementation
computes the one-dimensional transport maps in parallel
using a linear spline interpolation. In practice, the parallelized
initialization gives a highly non-smooth initial field map, so
the method optionally applies a blurring operator using a

frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

A
EPIMRIDistortionCorrection
evaluates objective function ¢ ——— =5
J(b) = D(T(I_+v, b), T(I_-v, b)) + |
alpha * S(b) + beta * P(b) |
DataObject
3 B i
image models
(inser olations) alon implements one-dimensional : L regularization term of the
with i:a e size domagn — Chang and Fitzpatrick I form S(x) = 1/2%||x||_H**2
i ermgtaticn' ' . initialization of field | where H is positive semi-
. P . | | map using optimal definite LinearOperator
information | | B |
l 2
¢ l + i
; |
ImageModel LinearOperator | TikRegularizer
abstract class defining abstract class defining abstract class defining | implements Tikonov
data and methods of an methods of preconditioners methods of linear - regularization term of the
image model and operators form Q(x) = 1/2%||x-y||**2
interpolation A for given reference value
T y
e
implements ImageModel and implements Jacobi implements three- implements one-dimensional
provides one-dimensional preconditioner dimensional convolution convolution in the
image interpolation in the distortion dimension
distortion dimension
implements three- implements identity
dimensional convolution operator
using FFTs
B

OptimizationLogger

stores optimization
metrics and related
information

LeastSquaresCorrection

implements least squares
correction to solve for
true image given field map
information

EPIOptimize

defines attributes and
methods of optimization,
including applying field
map for correction and
visualizing results

GaussNewton

implements optimization
using Gauss Newton

implements optimization
using ADMM

LBFGS

implements optimization
using LBFGS

BlockPCG

implements preconditioned
conjugate gradient solver

implements preconditioned
conjugate gradient solver

implements preconditioned
Jacobi solver

parallelized for block
diagonal input

FIGURE 4

(A) The class structure of the PyHySCO loss function. The main class representing the loss function is EPIMRIDistortionCorrection. Purple
classes are abstract, and blue classes are concrete. Solid arrows indicate inheritance. Dashed arrows indicate dependencies and class objects that are
attributes. (B) The class structure of PyHySCO optimization. The main class defining optimization is EPIOptimize. Solid arrows indicate inheritance.
Dashed arrows indicate dependencies and class objects that are attributes. UML diagram of PyHySCO showing the classes and relationships for the
(A) loss function and (B) optimization. AEPIMRIDistortionCorrection object defining the loss function is an attribute of every EPIOptimize
object defining the optimization scheme.

2.4.6 Optimization

The minimization of the objective function defined in a

3-by-3-by-3 Gaussian kernel with a standard deviation of 1.0
to promote a smoother optimized field map. Applying the blur
to the field map is implemented using the fast FFT convolution = EPIMRIDistortionCorrection objecthappensinasubclass

operator FFT3D. of EPIOptimize, which takes the objective function object as

Frontiersin Neuroscience 08 frontiersin.org

Julian and Ruthotto

10.3389/fnins.2024.1406821

BO

data

opt

A
define loss define initialize optimize
load data . . . :
function optimizer field map field map
correction
choose
choose image hyperparameters, choose choose least
model, operators, S squares or
- : optimization X
precision, and regularizers, Jacobian
: e parameters X
compute device initialization, and correction
preconditioning
B

load images with phase encoding direction in first dimension
= DataObject('iml.nii.gz',
define loss function

loss_func =

define optimizer using Gauss Newton

= GaussNewton(loss_func, max_iter=500, verbose=True, path='results/')
initialize field map

loss_func.initialize()

optimize field map

opt.run_correction(B0)

apply correction
opt.apply_correction(method="'1lstsq')

EPIMRIDistortionCorrection(data, 300, le-4, averaging_operator=myAvglD,

'im2.nii.gz', 1, device='cuda:0', dtype=torch.float32)

derivative_operator=myDifflD, regularizer=myLaplacian3D, PC=JacobiCG)

Cc
root $ pyhysco --help
usage: pyhysco [-h] [--output_dir OUTPUT_DIR] [--alpha ALPHA] [--beta BETA] [--rho RHO]
[--optimizer OPTIMIZER]| [--max_iter MAX_ITER] [--verbose]| [--precision {single,double}]
[--correction {jac,lstsq}] [--averaging AVERAGING| [--derivative DERIVATIVE]
[-=initialization INITIALIZATION]| [--regularizer REGULARIZER] [--PC PC]
file_1 file_2 {1,2,3}
PyHySCO: EPI-MRI Distortion Correction.
positional arguments:
file_1 Path to the 1input 1 data file (NIfTI format .nii.gz)
file_2 Path to the 1input 2 data file (NIfTI format .nii.gz)
{5253} Dimension of phase encoding direction
optional arguments:
-h, --help show this help message and exit
--output_dir OUTPUT_DIR Directory to save the corrected images and reports (default=cwd)
--alpha ALPHA Smoothness regularization parameter (default=300)
--beta BETA Intensity modulation constraint parameter (default=le-4)
--rho RHO Initial Lagrangian parameter (ADMM only) (default=1le3)
--optimizer OPTIMIZER Optimizer to use (default=GaussNewton)
--max_iter MAX_ITER Maximum number of iterations (default=50)
--verbose Print details of optimization (default=True)
--precision {single,double} Use (single/double) precision (default=single)
--correction {jac,lstsq} Use (Jacobian ['jac']/ Least Squares ['lstsq']) correction (default=1lstsq)
--averaging AVERAGING LinearOperator to use as averaging operator (default=myAvglD)
--derivative DERIVATIVE LinearOperator to use as derivative operator (default=myDifflD)
--initialization INITIALIZATION Initialization method to use (default=InitializeCF)
--regularizer REGULARIZER LinearOperator to use for smoothness regularization term (default=myLaplacian3D)
--PC PC Preconditioner to use (default=JacobiCG)
FIGURE 5

(A) The workflow of the PyHySCO toolbox from setup through optimization and distortion correction. (B) An example of using the PyHySCO toolbox
from a Python script. (C) The help message for the PyHySCO command line interface. This interface allows the use of PyHySCO as a part of existing
MRI post-processing pipelines. The usage and workflow of PyHySCO.

Frontiersin Neuroscience 09

frontiersin.org

Julian and Ruthotto

10.3389/fnins.2024.1406821

TABLE 1 Details of data used in validation. LR/RL is left-to-right and right-to-left phase encoding, and AP/PA is anterior-to-posterior and
posterior-to-anterior phase encoding.

Dataset No. of subjects Image size Resolution PE directions
3T 20 168 x 144 x 111 1.25 x 1.25 x 1.25 mm? LR/RL
7T 20 200 x 200 x 132 1.05 x 1.05 x 1.05 mm? AP/ PA
Simulated 20 320 x 320 x 256 0.7 x 0.7 x 0.7 mm® AP/ PA

Further details of acquisition parameters are in Van Essen et al. (2012).

TABLE 2 Validation of the Chang and Fitzpatrick initialization.

Chang and Fitzpatrick Chang and Fitzpatrick (blur) Multilevel
Initial After opt Initial After opt Initial After opt
5.78 11.43 6.31 15.36 41.69 55.34
Runtime (s)
+1.26 +1.46 +0.60 +3.90 +1.71 +2.84
0.27 4.34 0.28 6.78 42.43 48.65
Opt. Time (s)
+0.01 +0.67 40.02 +0.67 +4.04 +3.95
T Relative 96.44 83.90 79.71 82.75 67.04 81.96
3
Improvement +1.13 +3.43 +3.43 +3.49 +5.15 +3.51
1.05e09 2.84e07 1.76e08 2.56e07 4.82e07 2.51e07
Loss Value
+2.66e08 +7.49¢06 +5.20e07 +7.66e06 +1.70e07 +7.54e06
Smoothness 3.50e06 5.08e04 5.28e05 3.85e04 6.89¢04 3.47e04
Reg. Value +8.81e05 +1.23e04 +1.54e05 +1.21e04 +2.98e04 +1.08e04
7.61 13.55 8.32 19.72 58.73 77.79
Runtime (s)
+1.99 +2.04 +2.79 +2.91 +6.24 +5.72
0.61 5.09 0.63 10.16 30.38 40.50
Opt. Time (s)
+0.02 +1.23 +0.02 +0.85 +2.63 +3.87
Relative 96.53 86.01 75.09 85.76 69.12 85.42
7T
Improvement +1.47 +5.15 +3.97 +5.10 +8.28 +5.08
3.48e09 5.28e07 4.50¢08 4.14e07 7.77e07 4.02¢07
Loss Value
+1.15e09 +2.01e07 +2.47e08 +1.95¢07 +3.01e07 +1.82e07
Smoothness 1.16e07 9.52e04 1.36e06 5.63e04 8.21e04 5.03e04
Reg. Value +3.83¢06 +2.64e04 +7.74e05 +1.91e04 +4.07¢04 +1.48e04
10.62 80.29 16.59 106.47 173.20 47.98
Runtime (s)
+0.57 +9.96 +0.64 +11.21 +27.06 +8.38
351 64.45 3.61 89.17 125.35 157.95
Opt. Time (s)
+0.03 +10.02 +0.15 +11.48 +24.88 +28.79
Relative 94.64 76.82 75.34 76.27 55.01 73.63
Simulated
Improvement +1.26 +5.09 +3.44 +5.18 +5.66 +5.39
5.10e08 6.31e07 2.11e08 6.07e07 8.17e07 5.83e07
Loss Value
+9.51e07 +1.46e07 +4.30e07 +1.39¢07 +2.08¢07 +1.33e07
Smoothness 1.67¢06 1.06e05 5.84e05 9.53e04 6.18e04 7.50e04
Reg. Value +3.14e05 +2.94e04 +1.24e05 +2.71e04 +1.70e04 +2.20e04

We compare the runtime, relative improvement, smoothness value, and loss function value at initialization and after optimization with Gauss-Newton for the proposed parallelized Chang and
Fitzpatrick initialization, the proposed initialization with an additional Gaussian blur, and the multilevel initialization used in HySCO (Ruthotto et al., 2013). For each metric, we report the
mean and standard deviation in the 3T, 7T, and simulated datasets. The multilevel initialization is timed on CPU in Matlab, and the Chang and Fitzpatrick initializations and all optimizations
are timed on GPU in Python. The Chang and Fitzpatrick-based initializations provide a comparable quality while decreasing runtime compared to the multilevel initialization, and the Chang
and Fitzpatrick with Gaussian blur promotes a smoother field map.

Frontiersin Neuroscience 10 frontiersin.org

Julian and Ruthotto

10.3389/fnins.2024.1406821

Chang & Fitzpatrick

—
—
o
or—
=
o]
N
or—
—
(o]
o=
-5
o=
—
—
or—

optimized

FIGURE 6

Example field maps (Subject ID 826353) at initialization (top row) and after optimization with Gauss-Newton (bottom row). The first column uses the
proposed Chang and Fitzpatrick initialization scheme. The middle column uses the same scheme with an additional Gaussian blur to promote
smoothness. The right column uses the coarse-to-fine multilevel initialization scheme from HySCO with five levels, and the final field map is
optimized at the original image resolution. The multilevel initialized field map is smooth by construction and further optimized to improve the relative
image distance at the full resolution. The Chang and Fitzpatrick initialization accurately corrects the distortions but is not smooth in the
non-distortion dimensions unless blurred with a Gaussian. After the fine-level optimization, all field maps are visually similar.

input. During optimization, the
class is used to track iteration history, saving it to a log file
and optionally printing this information to standard output.
PyHySCO includes implementations of the LBFGS, Gauss-
Newton, and ADMM solvers described previously. Each of
the classes LBFGS, GaussNewton, and ADMM provide a
run_correction method that minimizes the objective
function using the indicated optimization scheme. The LBFGS
implementation uses the explicitly computed derivative from
EPIMRIDistortionCorrection. For LBFGS, we use the
norm of the gradient reaching a given tolerance as stopping
criteria, or the change in loss function or field map between
iterations falling below a given tolerance. The GaussNewton
implementation uses a conjugate gradient solver implemented in
the class PCG. Our Gauss-Newton implementation uses the same
stopping criteria as LBFGS. The ADMM implementation solves the
b update in Equation (9) using GaussNewt on with a parallelized
conjugate gradient solver in BlockPCG. The z update in Equation
(10) is solved directly through the inverse method inv of the
operator used to define the QuadRegularizer for this term,
efficiently implemented using FFTs in FFT3D. As stopping criteria,
the ADMM iterations will terminate if the change in all of b, z, and
u from the previous iteration falls below a given tolerance.

OptimizationLogger

2.4.7 Image correction

The optimal field map, stored as Bc in the EPIOptimize
object after run_correction is completed, can be
used to produce a corrected image or pair of images.

The apply_correction method of EPIOptimize

Frontiersin Neuroscience

both a Jacobian modulation correction and
squares correction. The Jacobian modulation
correction is based on the model of Chang and Fitzpatrick
(1992) as implemented in the mp_transform method
of EPIMRIDistortionCorrection. This correction
method computes and saves two corrected images, one for each
input image.
The field map can also be used in a least squares correction
similar to the correction in Andersson et al. (2003), implemented in

implements
a least

LeastSquaresCorrection. In this correction, the estimated
field map determines a push-forward matrix that transforms the
true image to the distorted image given as input. This gives rise to
a least squares problem for the true image, given the input images
and push forward matrix.

2.5 PyHySCO usage and workflow

The workflow of PyHySCO is illustrated in Figure 5A alongside
examples of using PyHySCO in a Python script (Figure 5B) and
through the command line (Figure 5C). Running PyHySCO from
a user-defined Python script allows for more control of the
inputs and outputs from PyHySCO methods. The command line
interface allows the user to pass configuration options directly from
the command line, which enables our EPI distortion correction
tool to be easily used as a part of the existing command line
based MRI post-processing pipelines such as the FMRIB Software
Library (FSL) toolbox (Smith et al., 2004). Executing PyHySCO
requires the user to provide, at a minimum, the file paths for the
input pair of images with opposite phase encoding directions and

frontiersin.org

Julian and Ruthotto

TABLE 3 The speed and quality of optimization in PyHySCO on GPU and CPU with LBFGS, Gauss-Newton, and ADMM.

10.3389/fnins.2024.1406821

104.45 23.13 27.37 10.37 98.54 11.58
Runtime (s)
+70.74 +4.61 +4.53 +0.87 +30.15 +2.23
100.28 16.70 23.13 4.38 94.53 5.63
Opt. Time (s)
+70.82 +4.49 +4.53 +0.68 +30.20 +2.15
Relative 81.47 82.32 82.74 82.74 82.76 82.77
3T
Improvement +3.71 +3.40 +3.50 +3.50 +3.31 +3.30
7.90e07 2.56e07 2.56e07 2.56e07 3.09¢07 3.10e07
Loss Value
+7.99¢07 +7.72e06 +7.69¢06 +7.69¢06 +8.51e96 +8.56e06
Smoothness 2.13e05 3.72e04 3.85e04 3.85e04 5.62e04 5.65e04
Reg. Value +2.56e05 +1.18e04 +1.21e04 +1.21e04 +1.65¢04 +1.71e04
141.44 36.23 31.71 13.62 158.64 15.25
Runtime (s)
+117.38 +7.76 +3.18 +2.38 +46.99 +3.15
135.72 29.23 26.84 6.57 152.69 8.34
Opt. Time (s)
+116.29 +7.88 +3.15 +2.30 +46.64 +2.91
Relative 80.75 85.74 85.76 85.76 85.87 85.85
7T
Improvement +6.91 +4.99 £5.10 +5.10 +4.99 +4.99
2.25e08 4.25e07 4.14e07 4.14e07 4.43e07 4.43e07
Loss Value
+2.22¢08 +2.00e07 +1.95e07 +1.95e07 +1.99¢07 +1.95e07
Smoothness 6.38e05 6.00e04 5.63e04 5.63e04 6.68e04 6.66e04
Reg. Value +7.01e05 +2.18e04 +1.91e04 +1.91e04 +2.18¢04 +3.68e04
6344.93 143.77 1094.96 55.26 7687.28 52.72
Runtime (s)
+649.21 +6.47 +135.20 +3.86 +4596.31 +18.01
6320.43 125.95 1070.65 37.60 7662.55 35.15
Opt. Time (s)
+649.01 +6.40 +135.69 +4.54 +4596.38 +17.92
Relative 75.45 75.44 76.28 76.28 74.93 75.00
Sim.
Improvement +5.40 +5.35 +5.19 +5.18 +5.59 +5.34
6.03e07 6.00e07 6.08e07 6.08e07 6.08e07 6.12e07
Loss Value
+1.44e07 +1.41e07 +1.40e07 +1.40e07 +1.40e07 +1.43e07
Smoothness 9.06e04 8.94e04 9.56e04 9.56e04 8.97e04 9.12e04
Reg. Value +2.94e04 +2.74e04 +2.74e04 +2.72e04 +2.79¢04 +2.77e04

We report for each dataset and optimizer the mean and standard deviation of total runtime (including loading and saving data), optimization time, improvement in distance between corrected
images relative to input image, loss value, and smoothness regularizer value. Gauss-Newton achieves a similar correction quality in less time than LBFGS or ADMM on both CPU and GPU.

which dimension (1, 2, or 3) is aligned with the phase encoding
direction. The modularity of PyHySCO additionally allows for
configuring options such as the scalar hyperparameters in Equation
(6); implementation of operators, regularizers, and interpolation;
optimizer and associated optimization parameters; and the image
correction method.

Regardless of execution through a script or the command line,
PyHySCO stores the input images in a DataObject object, the
loss function in an EPIMRIDistortionCorrection object,
and the optimizer in an object of a subclass of EPIOptimize.
The field map is initialized from the method initialize
in EPIMRIDistortionCorrection, and the field map is
optimized by calling the method run_correction in the
optimizer object. Finally, the method apply_correction in

Frontiersin Neuroscience

EPIOptimize applies the field map to correct the input images
and saves the result to one or more NIFTI file(s).

3 Results

We demonstrate PyHySCO’s effectiveness through extensive
experiments using real and simulated data from the Human
Connectome Project (Van Essen et al., 2012) and validate the
initialization scheme and the implementation of optimization
algorithms. Section 3.1 describes the datasets and Section 3.2
introduces our evaluation metrics. Section 3.3 demonstrates the
Chang and Fitzpatrick initialization scheme. The experiments
in Section 3.4 compare the performance of the three optimization

frontiersin.org

Julian and Ruthotto

algorithms implemented in PyHySCO on CPU and GPU hardware.
Section 3.5 compares the performance of PyHySCO in single and
double-precision arithmetic on CPU and GPU hardware. Section
3.6 compares PyHySCO with existing tools, HySCO and TOPUP
(Andersson et al., 2003; Ruthotto et al., 2013).

3.1 Validation datasets

The data used in the following experiments is from the Human
Connectome Project (Van Essen et al,, 2012). We validate our
methods and tool on 3T and 7T diffusion-weighted imaging
data from the HCP 1200 Subjects Release, with 20 subjects
randomly chosen for each field strength. Table 1 provides details
of the datasets.

We also evaluate our methods on simulated data. This data only
contains susceptibility artifact distortions, thus it shows how our
tool performs without the influence of other factors, e.g., patient
movement between scans. To simulate the distortions, we use a
pair of magnitude and phase images for a subject in HCP and
generate the field map using FSLs FLIRT and PRELUDE tools
(Smith et al., 2004). Considering the physical model of Chang and
Fitzpatrick (1992), the field map b can be used to define the push-
forward matrices that show how the intensity value at x is pushed
forward to x + b(x) in the distortion direction +v as well as the
opposite direction —v. By applying the push-forward matrices to a
T2-weighted image for the subject, we generate a pair of distorted
images. For the simulated data, we then have a reference value for
the field map and an undistorted, true image.

3.2 Metrics

The quality of correction results is measured using the
relative improvement of the distance between a pair of corrected
images. Particularly, we calculate the sum-of-squares distance (SSD,
Equation 2) of the corrected image pair relative to the SSD of the
input pair. This metric is a useful surrogate for the correctness of
the field map in the absence of a ground truth (Graham etal., 2017).
Additionally, we take the value of the smoothness regularization
term S(b) as a measure of how smooth the resulting field map is,
with lower values being better.

We report the runtime in seconds of PyHySCO. The runtime is
measured as the wall clock time using the Linux t ime command
when calling the correction method from the command line. This
time, therefore, includes the time taken to load and save the
image data. In some cases, we also report the optimization time
only, without loading and saving data, as measured by Python’s
time module.

3.3 Validity of Chang and Fitzpatrick
initialization

We compare the results of PyHySCO wusing the one-
dimensional parallelized Chang and Fitzpatrick initialization to
those of the multi-level initialization used in HySCO (Ruthotto

Frontiersin Neuroscience

10.3389/fnins.2024.1406821

TABLE 4 Details of optimization for PyHySCO optimizers LBFGS, Gauss
Newton, and ADMM.

LBFGS GN-PCG M
455.30 8.400 36.05
Iterations
+52.80 +0.92 +10.37
Stopping
Criteria 9/3/0/8 0/20/0/0 0/0/20/0
(grad/loss/field
map/max iter)
463.30 9.40 37.05
3T Func. Evals
+54.12 +0.92 +10.37
92.40 437.50
Hessian Evals N/A
+10.08 +140.30
10.0000 11.0269
Inner Iterations N/A
+0.00 +1.02
2.56e07 2.56e07 3.10e07
Loss Value
+7.72e06 +7.69¢06 +8.56e06
405.00 7.50 56.75
Iterations
+65.61 +0.87 +17.01
Stopping
Criteria 14/3/0/3 0/20/0/0 0/0/20/0
(grad/loss/field
map)
415.35 8.50 57.75
7T Func. Evals
+68.00 +0.87 +17.01
82.25 339.05
Hessian Evals N/A
+9.15 +101.55
9.9722 49771
Inner Iterations N/A
+0.12 +0.08
4.25e07 4.14e07 4.43e07
Loss Value
+2.00e07 +1.95¢07 +1.95e07
497.65 20.05 109.35
Iterations
+5.88 +1.83 +64.52
Stopping
Criteria 1/0/0/19 0/18/2/0 0/0/20/0
(grad/loss/field
map)
. 532.35 21.05 110.35
Simulated Func. Evals
+28.27 +1.83 +64.52
220.55 1872.15
Hessian Evals N/A
+20.13 +1417.11
10.0000 15.1681
Inner Iterations N/A
+0.00 +3.69
6.00e07 6.08e07 6.12e07
Loss Value
+1.41e07 +1.40e07 +1.43e07

For each dataset, we report the average and standard deviation number of iterations, count
of stopping criteria used (gradient tolerance/ loss function change tolerance/ field map
change tolerance/ maximum iterations), average and standard deviation number of function
evaluations, average and standard deviation number of Hessian evaluations, average and
standard deviation number of inner iterations, and average and standard deviation loss value.
Gauss-Newton achieves a similar quality of correction with less computation than LBFGS or
ADMM.

frontiersin.org

Julian and Ruthotto

10.3389/fnins.2024.1406821

TABLE 5 The speed and quality of PyHySCO optimization with Gauss-Newton on three different GPUs and a CPU in both single (float 32) and double
(float 64) precision arithmetic.

RTX A6000 Quadro RTX 8000 Titan RTX Intel Xeon E5-4627
(GPU) (GPU) (GPU) (CPU)
Double Single Double Single Double Single Double Single
12.7262 9.5750 13.4800 7.8854 13.1178 7.5820 34.3328 27.1305
Runtime (s)
+0.68 +0.58 +1.23 +0.91 +1.31 +0.98 +4.26 +3.09
Optimization 6.7947 4.1562 7.0133 2.1065 6.7862 1.9327 27.8682 23.2062
Time (s) +0.51 +0.39 +1.25 +0.90 +1.25 +0.62 +3.10 +3.07
- Relative 82.7486 82.7393 82.7486 82.7393 82.7486 82.7393 82.486 82.7393
3
Improvement £3.49 £3.50 +3.49 +3.50 +3.49 +3.50 +3.49 +3.50
2.560e07 2.562e07 2.560e07 2.562e07 2.560e07 2.562e07 2.560e07 2.562e07
Loss Value
+7.66e06 +7.69e06 +7.66e06 +7.69¢06 +7.66e06 +7.69¢06 +7.66e06 +7.69¢06
Smoothness 3.848e04 3.851e04 3.848e04 3.851e04 3.848e04 3.851e04 3.848e04 3.851e04
Reg. Value +1.21e04 +1.21e04 +1.21e04 +1.21e04 +1.21e04 +1.21e04 +1.21e04 +1.21e04
17.2494 11.9028 21.0102 9.3140 18.6522 9.4680 82.1059 33.4020
Runtime (s)
+0.94 +0.44 +6.31 +0.99 +2.84 +2.19 +7.64 +4.15
Optimization 10.1298 5.7460 11.9937 2.2579 10.9617 2.9775 72.1380 28.5530
Time (s) +0.95 +0.42 +3.55 +0.64 +2.85 +2.11 +6.82 +4.09
- Relative 85.7618 85.7641 85.7618 85.7642 85.7618 85.7642 85.7618 85.7638
7
Improvement +5.10 +5.10 +5.10 +5.10 +5.10 +5.10 +5.10 +5.10
4.143e07 4.140e07 4.143e07 4.140e07 4.143e07 4.140e07 4.1432e07 4.1410e07
Loss Value
+1.95e07 +1.95e07 +1.95e07 +1.95e07 +1.95e07 +1.95¢07 +1.95e07 +1.95e07
Smoothness 5.634e04 5.628e04 5.634e04 5.628e04 5.634e04 5.628e04 5.634e04 5.629e04
Reg. Value +1.91e04 +1.91e04 +1.91e04 +1.91e04 +1.91e04 +1.91e04 +1.91e04 +1.91e04
106.92 50.26 127.38 24.17 125.25 23.60 851.18 417.56
Runtime (s)
+11.42 +3.52 +13.42 +1.31 +14.87 +3.78 +107.41 +55.33
Optimization 89.53 35.53 104.47 7.93 105.78 9.32 827.06 402.04
Time (s) +11.56 +4.13 +13.88 +0.92 +14.84 +3.81 +108.91 +56.58
Relative 76.27 76.28 76.27 76.28 76.27 76.28 76.27 76.28
Sim.
Improvement +5.18 +5.18 +5.18 +5.18 +5.18 +5.18 +5.18 +5.18
6.07e07 6.08e07 6.07e07 6.08e07 6.07e07 6.08e07 6.07e07 6.08e07
Loss Value
+1.39¢07 +1.40e07 +1.39¢07 +1.40e07 +1.39¢07 +1.40e07 +1.39¢07 +1.40e07
Smoothness 9.53e04 9.56e04 9.53e04 9.56e04 9.53e04 9.56e04 9.54e04 9.56e04
Reg. Value +2.71e04 +2.72e04 +2.71e04 +2.73e04 +2.71e04 +2.73e04 +2.71e04 +2.73e04

The relative improvement, loss value, and smoothness value are evaluated in double precision in all cases. The results are shown for both 3T and 7T data from the Human Connectome Project

(Van Essen et al., 2012) and simulated data. There is a great speedup when calculating in single precision without losing the quality of correction, and the speedup of PyHySCO using a GPU is

clear compared to the CPU.

et al., 2013) both at initialization and after optimization with
Gauss-Newton. The multi-level optimization of HySCO solves
the optimization problem on a coarse grid and uses the result
as the initialization of optimization on a finer grid, continuing
until the original image resolution is reached; this follows the
guidelines of Modersitzki (2009, Chapter 9.4). In our experiments,
we use five levels of initialization. The multi-level initialization
gives a field map that is smooth by construction and improves the
distance reduction as the grid becomes more fine. The field map

Frontiersin Neuroscience

14

from the PyHySCO Chang and Fitzpatrick initialization drastically
lowers the relative error between the input images, a relative
improvement of over 96% on real data and 94% on simulated
data. However, the parallelized one-dimensional computations
lead to a lack of smoothness in the resulting field map. The
smoothness can be improved by applying a Gaussian blur to
the field map from the Chang and Fitzpatrick initialization. This
field map is smoother after initialization and gives a smoother
field map after optimization. These results are comparable in

frontiersin.org

Julian and Ruthotto

relative error and smoothness to the field map optimized using
the multilevel initialization of HySCO. Our one-dimensional
parallelized initialization, even if adding additional Gaussian blur, is
much faster to compute than the multilevel initial field map, given
the ability to parallelize computations. PyHySCO initialization
on a GPU with the additional blur takes less than 1 s on real
data and ~3 s on simulated data. In comparison, the multi-
level initialization on a CPU takes 30-40 s on real data and over
2 min on simulated data. The mean and standard deviation of
relative improvement, smoothness value, loss function value, and
runtime are reported in Table 2 across all datasets. The examples
of these field maps before and after optimization are shown
in Figure 6.

3.4 A comparison of PyHySCO Optimizers
on GPU and CPU

We compare the results of PyHySCO using GN-PCG, ADMM,
and LBFGS on both GPU and CPU architectures. Table 3 shows
the runtimes and correction quality of each optimizer on CPU and
GPU. All optimizers achieve a similar correction quality regarding a
relative improvement of image distance, loss value, and smoothness
regularizer value. However, GN-PCG has faster runtime on both
CPU and GPU. On real data, GN-PCG took 10-13 s on average
on GPU and 27-31 s on average on CPU, while ADMM took
11-15 s on GPU and 98-158 s on CPU, and LBFGS took 23-36
s on GPU and 104-141 s on CPU. Table 4 shows optimization
metrics, including the number of iterations, stopping criteria,
number of function evaluations, number of Hessian evaluations,
and number of inner iterations if applicable. Consistent with its
faster runtime, optimization with GN-PCG achieves a similar loss
value with less computation as measured by objective function and
Hessian evaluations. Figures 7-9 show the field map and corrected
images of each optimizer for one example subject from each
dataset. The field maps and corrected images are visually similar
across optimizers.

3.5 Single precision vs. double precision on
GPU and CPU

We show the validity of PyHySCO using the Chang and
Fitzpatrick initialization and GN-PCG in both double precision
(64 bit) and single precision (32 bit) arithmetic on three
different GPU architectures and a CPU architecture. These
results are reported in Table 5. Since GPU architectures are
optimized for the speed of lower precision calculations, we see
a significant speedup when using single precision instead of
double precision. However, there is a risk of lower accuracy
or propagating errors when performing calculations in single
precision, as it uses fewer bits to approximate floating point values.
Empirically, we observed that the quality of our results is not
significantly impacted by using single-precision arithmetic. We
also observed consistent results across different GPU architectures:
a Quadro RTX 8000, Titan RTX, and RTX A6000. Because
PyHySCO is optimized to parallelize computations on GPU, the

Frontiersin Neuroscience

15

10.3389/fnins.2024.1406821

TABLE 6 The speed and quality of optimization for TOPUP, HySCO, and
PyHySCO.

PyHySCO HySCO TOPUP
10.37 65.06 4022.56
Runtime (s)
+0.87 +8.64 +73.11
Relative 82.74 78.98 54.36
- Improvement +3.50 +6.39 +17.08
3
2.56e07 4.13e07
Loss Value N/A
+7.69¢06 +1.38¢07
Smoothness 3.85e04 7.84¢04
N/A
Reg. Value +1.21e04 +3.01e04
13.62 120.92 3713.51
Runtime (s)
+2.38 +19.61 +63.04
Relative 85.76 80.43 74.51
Improvement +5.10 +10.46 +9.13
7T
4.14e07 5.87e07
Loss Value N/A
+1.95e07 +2.48e07
Smoothness 5.63e04 8.03¢04
N/A
Reg. Value +1.91e04 +3.68¢04
55.26 757.65 30854.18
Runtime (s)
+3.86 +96.26 +568.11
Relative 76.28 69.53 17.56
Improvement +5.18 +5.10 +28.14
Loss 6.08¢07 6.07e07
N/A
Value +1.40e07 +1.51e07
Smoothness 9.56e04 6.10e04
Simulated N/A
Reg. Value +2.72e04 +1.60e04
Relative 14.48 19.70 16.37
Error
(Field Map) +7.71 +11.70 +3.60
SSIM 91.80 86.91 80.15
(Field Map) +0.03 +0.05 +0.08
SSIM 99.87 99.95 99.96
(T2w Image) +0.0017 +0.0003 +0.0002

PyHySCO uses Gauss Newton and optimizes in single precision on GPU. HySCO and TOPUP
optimize on CPU using the default configurations. The results are reported for 3T and 7T data
from the Human Connectome Project (Van Essen et al., 2012) and the simulated distortion
data.

runtimes are faster on the GPUs compared to the Intel Xeon
E5-4627 CPU.

3.6 A comparison of PyHySCO with HySCO
and TOPUP

We compare the runtime, relative improvement, and resulting
images after correction using PyHySCO to those given by TOPUP
(Andersson et al., 2003) as implemented in FSL (Smith et al., 2004)

frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

input

field map b

Iiv

Q2
—
®
(=)
=

(9]

=
(]

=

FIGURE 7

Visualization of resulting field maps and images for one subject from the 3T dataset (Subject ID: 211619). The first column in the top half shows the
input data. The remaining columns show the results from PyHySCO using LBFGS, GN-PCG, and ADMM compared with TOPUP and HySCO. For each
optimization, the top two rows are the pair of images with opposite phase encoding directions, and the third row shows the absolute difference (with
inverted color) between the pair of images. The bottom row shows the field maps estimated for each method. PyHySCO achieves similar image
distance and field map smoothness improvements in less computational time.

Frontiersin Neuroscience 16 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

PyHySCO (GN)

field map b

4

PyHySCO (ADMM)

e

e
o,
o]
=

=
()
=

FIGURE 8
Visualization of resulting field maps and images for one subject from the 7T dataset (Subject ID: 825048). The first column in the top half shows the

input data. The remaining columns show the results from PyHySCO using LBFGS, GN-PCG, and ADMM compared with TOPUP and HySCO. For each
optimization, the top two rows are the pair of images with opposite phase encoding directions, and the third row shows the absolute difference (with
inverted color) between the pair of images. The bottom row shows the field maps estimated for each method. PyHySCO achieves similar image
distance and field map smoothness improvements in less computational time.

Frontiersin Neuroscience 17 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

Q2
=
&
g

el

=
[
=

Lol
2
a
E
e
—
@
N=|

FIGURE 9
Visualization of resulting field maps and images for one subject from the simulated dataset (Subject ID: 105014). The first column in the top half
shows the input data and the second column shows the ground truth T2w image and field map. The remaining columns show the results from
PyHySCO using LBFGS, GN-PCG, and ADMM, TOPUP, and HySCO. For each optimization, the top two rows are the pair of images with opposite
phase encoding directions, and the third row shows the absolute difference (with inverted color) between the pair of images. The bottom row shows
the field maps estimated for each method. PyHySCO achieves similar image distance and field map smoothness improvements in less computational

time.

Frontiersin Neuroscience 18 frontiersin.org

Julian and Ruthotto

using the default configuration,” and HySCO (Ruthotto et al., 2013)
as implemented in the ACID toolbox for SPM using the default
parameters. HySCO is also based on the optimization problem
Equation (6), while TOPUP uses a slightly different objective
function. This makes it difficult to compute the smoothness and
loss function values for TOPUP.

Table 6 reports the runtime and correction quality for
PyHySCO using GN-PCG, HySCO, and TOPUP. On real 3T
and 7T data, PyHySCO achieves lower loss and higher relative
improvement between corrected images than HySCO and higher
relative improvement than TOPUP. The runtime on CPU for
real data is 1-2 min for HySCO and over 1 h for TOPUP, while
PyHySCO on GPU has runtimes of 10-13 s. For the simulated
dataset, PyHySCO requires an average of 1 min on GPU, HySCO
requires an average of 12.6 min on CPU, and TOPUP requires an
average of 8.5 h on CPU. Using the ground truth field maps from
the simulated dataset, PyHySCO achieves the lowest average field
map relative error of 14.48% compared to 19.70% for HySCO and
16.36% for TOPUP. PyHySCO also achieves the highest structural
similarity (SSIM; Wang et al., 2004) with the ground truth field map
of 91.80 compared to 86.91 for HySCO and 80.15 for TOPUP. All
three methods average a structural similarity of over 99 with the
ground truth T2-weighted image. Figures 7-9 show the field map
and corrected images for one example subject from each dataset.
The results of the methods are similar, and the resulting field maps
are comparable to those of the existing tools, HySCO and TOPUP,
while PyHySCO is considerably faster.

4 Discussion

The PyHySCO toolbox accurately and robustly corrects
susceptibility artifacts in spin-echo EPIs acquired using RGP
acquisition. In numerous experiments conducted with real and
simulated data, PyHySCO achieves similar correction quality to
leading RGP toolboxes, TOPUP and HySCO, while having a time-
to-solution in the order of timings reported for pre-trained deep
learning approaches. Compared to the latter class of methods, it
is important to highlight that PyHySCO does not require any
training and is based on a physical distortion model, which helps
generalize to different scanners, image acquisition parameters,
and anatomies.

PyHySCO’s modular design encourages improvements and
contributions. The toolbox is based on PyTorch, which provides
hardware support and other functionality, including automatic
differentiation. In our experiments, correction quality is hardware
and precision-independent, but a considerable speedup is realized
on GPUs with single precision (32-bit) arithmetic. The reduced
computational time is mostly attributed to the effective use of
multithreading and parallelism on modern hardware.

PyHySCO uses the one-dimensional correction of Chang and
Fitzpatrick (1992) to initialize the non-linear optimization.
scheme is fast and

In our numerical experiments, the

2 The default TOPUP configuration performs upsampling requiring the
dimensions to be a multiple of 2. The configuration for TOPUP with images
of the 3T data set does not perform upsampling due to the odd number of

slices in the image volumes.

Frontiersin Neuroscience

10.3389/fnins.2024.1406821

effective and we provide further insights through optimal
transport theory. The initial estimate of the field map already
substantially reduces the distance between the images with
opposite phase encoding directions. In our experiments, the
non-smoothness of the initial field map can be corrected by
applying a Gaussian blur and a few optimization steps to the full
image resolution.

The three optimization algorithms of PyHySCO achieve
comparable correction results but have different computational
costs. The ADMM algorithm takes advantage of the separable
structure of the optimization problem to enhance parallelism
but requires more iterations than GN-PCG. While this results
in longer runtimes in our examples, the method could be
more scalable for datasets of considerably higher resolution.
For the relatively standard image sizes of about 200 x 200 x
132, the default GN-PCG algorithm is most effective. Both
customized optimization algorithms are more efficient than our
comparison, LBFGS.

PyHySCO can be interfaced directly in Python or run in
batch mode via the command line. The latter makes it a drop-in
replacement for other RGP tools in MRI post-processing pipelines.

The speed of PyHySCO relative to the existing tools makes
it uniquely positioned to enable online distortion correction in
applications where real-time decisions are necessary. For example,
the speed of EPI acquisition along with the speed of PyHySCO
distortion correction enables real-time distortion-free imaging
useful for intra-operative guidance (see, e.g., Hall and Truwit, 2008;
Roder et al.,, 2021; Yang et al., 2022). Additionally, PyHySCO can
play a crucial role in the furthering of emerging fields such as fetal
and neonatal imaging (see, e.g., Malamateniou et al., 2013; Afacan
et al., 2019; Christiaens et al., 2019). In this application, EPI is
popular for reducing the effects of uncontrollable subject motion,
and fast distortion correction using PyHySCO can enable faster
intervention if necessary.

5 Conclusion

PyHySCO offers RGP-based correction with high accuracy
at a cost similar to pre-trained learning-based methods. Our
implementation is based on PyTorch and makes efficient use
of modern hardware accelerators such as GPUs. We show the
accuracy and efficiency of PyHySCO on real and simulated three-
dimensional volumes of various field strengths and phase encoding
axes. Our results show that PyHySCO achieves a correction of
comparable quality to leading physics-based methods in a fraction
of the time.

Data availability statement

Publicly available datasets were analyzed in this study.
This data can be found at: https://www.humanconnectome.org.
The source code, examples, and documentation for PyHySCO
are available at the following repository: https://github.com/
EmoryMLIP/PyHySCO. The Python package for PyHySCO can be
installed via pip and be downloaded from: https://pypi.org/project/
PyHySCO/.

frontiersin.org

Julian and Ruthotto

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation
and the institutional requirements.

Author contributions

Validation, Visualization,
Investigation,

AJ: Investigation, Software,
draft. LR:
Writing—review & editing.

Writing—original Software,

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. AJ was
supported by the National Science Foundation Graduate Research
Fellowship under Grant No. 1937971. The work was also supported
in part by the NSF awards DMS 1751636 and DMS 2038118.

References

Afacan, O, Estroff, J. A,, Yang, E., Barnewolt, C. E., Connolly, S. A,, Parad, R. B,,
et al. (2019). Fetal echoplanar imaging: promises and challenges. Top. Magnet. Reson.
Imag. 28, 245-254. doi: 10.1097/RMR.0000000000000219

Alkilani, A. Z., Cukur, T., and Saritas, E. U. (2023). FD-Net: an unsupervised deep
forward-distortion model for susceptibility artifact correction in EPI. arXiv preprint
arXiv:2303.10436. doi: 10.48550/arXiv.2303.10436

Andersson, J. L. R, Skare, S., and Ashburner, J. (2003). How to correct susceptibility
distortions in spin-echo echo-planar images: application to diffusion tensor imaging.
NeuroImage 20, 870-888. doi: 10.1016/51053-8119(03)00336-7

Antun, V., Renna, F., Poon, C., Adcock, B., and Hansen, A. C. (2020). On
instabilities of deep learning in image reconstruction and the potential costs of AL Proc.
Nat. Acad. Sci. U. S. A. 117, 30088-30095. doi: 10.1073/pnas.1907377117

Bowtell, R., McIntyre, D., Commandre, M., Glover, P., and Mansfield, P. (1994).
Correction of geometric distortion in echo planar images. Soc. Magn. Res. Abstr. 2:411.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011). Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Found. Trends Machine Learn. 3, 1-122. doi: 10.1561/2200000016

Cai, L. Y., Yang, Q., Hansen, C. B., Nath, V., Ramadass, K., Johnson, G. W.,
et al. (2021). Prequal: an automated pipeline for integrated preprocessing and quality
assurance of diffusion weighted MRI images. Magnet. Reson. Med. 86, 456-470.
doi: 10.1002/mrm.28678

Chang, H., and Fitzpatrick, J. M. (1992). A technique for accurate magnetic-
resonance-imaging in the presence of field inhomogeneities. Med. Imag. IEEE Trans.
11, 319-329.

Chen, Z., Pawar, K., Ekanayake, M., Pain, C., Zhong, S., and Egan, G. F. (2022). Deep
learning for image enhancement and correction in magnetic resonance imaging-state-
of-the-art and challenges. J. Digit. Imag. 9, 1-27. doi: 10.1007/s10278-022-00721-9

Christiaens, D., Slator, P. J., Cordero-Grande, L. Price, A. N., Deprez,
M., Alexander, D. C, et al. (2019). In utero diffusion MRI: challenges,

advances, and applications. Top. Magnet. Reson. Imag. 28, 255-264.
doi: 10.1097/RMR.0000000000000211

Clark, I. A., Callaghan, M. F., Weiskopf, N., Maguire, E. A., and Mohammadji, S.
(2021). Reducing susceptibility distortion related image blurring in diffusion MRI EPI
data. Front. Neurosci. 15:706473. doi: 10.3389/fnins.2021.706473

Cooley,]. W., Lewis, P. A., and Welch, P. D. (1969). The fast fourier transform and
its applications. IEEE Trans. Educ. 12, 27-34.

David, G., Fricke, B., Oeschger, J. M., Ruthotto, L., Fritz, F. J., Ohana, O., et
al. (2024). Acid: a comprehensive toolbox for image processing and modeling of

Frontiersin Neuroscience

10.3389/fnins.2024.1406821

Acknowledgments

We used an Al-enabled spell and grammar checker to improve
the writing in the manuscript.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships
that could be
of interest.

construed as a potential conflict

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their those of the publisher,
the editors and the reviewers. Any product that may be

affiliated organizations, or

evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

brain, spinal cord, and ex vivo diffusion MRI data. BioRxiv. doi: 10.1101/2023.10.13.
562027

Duong, S., Phung, S. L., Bouzerdoum, A., Taylor, H. B., Puckett, A., and Schira,
M. M. (2020a). Susceptibility artifact correction for sub-millimeter fMRI using inverse
phase encoding registration and T1 weighted regularization. J. Neurosci. Methods
336:108625. doi: 10.1016/j.jneumeth.2020.108625

Duong, S. T., Phung, S. L, Bouzerdoum, A. and Schira, M. M. (2020b).
An unsupervised deep learning technique for susceptibility artifact correction
in reversed phase-encoding EPI images. Magnet. Reson. Imag. 71, 1-10.
doi: 10.1016/j.mri.2020.04.004

Duong, S. T. M,, Phung, S. L., Bouzerdoum, A., Ang, S. P., and Schira, M. M.
(2021). Correcting susceptibility artifacts of MRI sensors in brain scanning: a 3D
anatomy-guided deep learning approach. Sensors 21:72314. doi: 10.3390/521072314

Esteban, O., Daducci, A., Caruyer, E., O’Brien, K., Ledesma-Carbayo, M. J.,
Bach-Cuadra, M., et al. (2014). “Simulation-based evaluation of susceptibility
distortion correction methods in diffusion MRI for connectivity analysis,” in 2014
IEEE 11th International Symposium on Biomedical Imaging (ISBI) (Beijing: IEEE),
738-741.

Graham, M. S., Drobnjak, I, Jenkinson, M., and Zhang, H. (2017). Quantitative
assessment of the susceptibility artefact and its interaction with motion in diffusion
MRI. PLoS ONE 12:e0185647. doi: 10.1371/journal.pone.0185647

Gu, X., and Eklund, A. (2019). Evaluation of six phase encoding based susceptibility
distortion correction methods for diffusion MRI. Front. Neuroinformat. 13:76.
doi: 10.3389/fninf.2019.00076

Hall, W. A,, and Truwit, C. L. (2008). Intraoperative MR-guided neurosurgery. J.
Magnet. Reson. Imag. 27, 368-375. doi: 10.1002/jmri.21273

Hansen, P., Nagy, J., and O’Leary, D. (2006). Deblurring images: matrices, spectra,
and filtering. Fundament. Algorit. 2006:74. doi: 10.1137/1.9780898718874

Hestenes, M. R., and Stiefel, E. (1952). Methods of conjugate gradients for solving
linear systems. J. Res. Nat. Bur. Stand. 49, 409-436.

Holland, D., Kuperman, J. M., and Dale, A. M. (2010). Efficient correction of
inhomogeneous static magnetic field-induced distortion in echo planar imaging.
NeuroImage 50, 175-183. doi: 10.1016/j.neuroimage.2009.11.044

Hu, Z., Wang, Y., Zhang, Z., Zhang, J., Zhang, H., Guo, C,, et al. (2020). Distortion
correction of single-shot EPI enabled by deep-learning. NeuroImage 221, 117-170.
doi: 10.1016/j.neuroimage.2020.117170

Irfanoglu, M. O., Modi, P., Nayak, A., Hutchinson, E. B., Sarlls, J., and Pierpaoli, C.
(2015). Dr-buddi (diffeomorphic registration for blip-up blip-down diffusion imaging)

frontiersin.org

Julian and Ruthotto

method for correcting echo planar imaging distortions. Neuroimage 106, 284-299.
doi: 10.1016/j.neuroimage.2014.11.042

Liu, D. C,, and Nocedal, J. (1989). On the limited memory BFGS method for large
scale optimization. Math. Progr. 45, 503-528.

Macdonald, J., and Ruthotto, L. (2017). Improved susceptibility artifact correction
of echo planar MRI using the alternating direction method of multipliers. J. Math. Imag.
Vis. 60, 268-282. doi: 10.1007/s10851-017-0757-x

Malamateniou, C., Malik, S., Counsell, S., Allsop, J., McGuinness, A., Hayat, T., et al.
(2013). Motion-compensation techniques in neonatal and fetal MR imaging. Am. J.
Neuroradiol. 34, 1124-1136. doi: 10.3174/ajnr.A3128

Modersitzki, J. (2009). FAIR: Flexible Algorithms for Image Registration, Vol. 6.
Philadelphia, PA: Society for Industrial and Applied Mathematics.

Nocedal, J., and Wright, S. J. (1999). Numerical Optimization. Berlin: Springer.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G,, et al. (2019).
“Pytorch: an imperative style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems, eds. H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Bug, E. Fox, and R. Garnett (Red Hook, NY: Curran Associates, Inc.), 32.

Penny, W. D,, Friston, K. J., Ashburner, J. T., Kiebel, S. J., and Nichols, T. E. (2007).
Statistical Parametric Mapping: The Analysis of Functional Brain Images. Cambridge,
MA: Elsevier.

Peyré, G., and Cuturi, M. (2017). Computational Optimal Transport. Center for
Research in Economics and Statistics Working Papers, 2017-86. Hanover, MA: Now
Publishers.

Roder, C., Haas, P., Tatagiba, M., Ernemann, U., and Bender, B. (2021). Technical
limitations and pitfalls of diffusion-weighted imaging in intraoperative high-field MRI.
Neurosurg. Rev. 44, 327-334. doi: 10.1007/s10143-019-01206-0

Ruthotto, L., Kugel, H., Olesch, J., Fischer, B., Modersitzki, J., Burger, M, et al.
(2012). Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic
resonance images. Phys. Med. Biol. 57, 5715-5731. doi: 10.1088/0031-9155/57/
18/5715

Ruthotto, L., Mohammadi, S., Heck, C., Modersitzki, J., and Weiskopf, N. (2013).
“Hyperelastic susceptibility artifact correction of DTI in SPM,” in Bildverarbeitung fuer
die Medizin, eds. H.-P. Meinzer, T. M. Deserno, H. Handels, and T. Tolxdorff (Berlin;
Heidelberg: Springer), 344-349.

Frontiersin Neuroscience

21

10.3389/fnins.2024.1406821

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Philadelphia, PA: STAM.

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens,
T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural
MR image analysis and implementation as FSL. Neuroimage 23, S208-S219.
doi: 10.1016/j.neuroimage.2004.07.051

Snoussi, H., Cohen-Adad, J., Commowick, O., Combes, B., Bannier, E., Leguy, S., et
al. (2021). Evaluation of distortion correction methods in diffusion MRI of the spinal
cord. arXiv [Preprint]. arXiv:2108.03817.

Stehling, M. K., Turner, R., and Mansfield, P. (1991). Echo-planar imaging: magnetic
resonance imaging in a fraction of a second. Science 254, 43-50.

Tax, C. M., Bastiani, M., Veraart, J., Garyfallidis, E., and Irfanoglu, M. O. (2022).
What’s new and what’s next in diffusion mri preprocessing. Neurolmage 249:118830.
doi: 10.1016/j.neuroimage.2021.118830

Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E., Bucholz,
R, et al. (2012). The human connectome project: a data acquisition perspective.
Neuroimage 62, 2222-2231. doi: 10.1016/j.neuroimage.2012.02.018

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality
assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13,
600-612. doi: 10.1109/TIP.2003.819861

Wu, M., Chang, L.-C., Walker, L., Lemaitre, H., Barnett, A. S., Marenco, S., et al.
(2008). “Comparison of EPI distortion correction methods in diffusion tensor MRI
using a novel framework,” in International Conference on Medical Image Computing
and Computer-Assisted Intervention (Berlin: Springer), 321-329.

Yang, J. Y.-M., Chen, J., Alexander, B., Schilling, K., Kean, M., Wray, A., et al. (2022).
Assessment of intraoperative diffusion EPI distortion and its impact on estimation of
supratentorial white matter tract positions in pediatric epilepsy surgery. Neurolmage
35:103097. doi: 10.1016/j.nicl.2022.103097

Zahneisen, B., Aksoy, M., Maclaren, J., Wuerslin, C., and Bammer, R.
(2017). Extended hybrid-space sense for EPI: off-resonance and eddy current
corrected joint interleaved blip-up/down reconstruction. NeuroImage 153, 97-108.
doi: 10.1016/j.neuroimage.2017.03.052

Zahneisen, B., Baeumler, K., Zaharchuk, G., Fleischmann, D., and Zeineh,
M. (2020). Deep flow-net for EPI distortion estimation. Neuroimage 217:116886.
doi: 10.1016/j.neuroimage.2020.116886

frontiersin.org

	PyHySCO: GPU-enabled susceptibility artifact distortion correction in seconds
	1 Introduction
	2 Methods
	2.1 Mathematical Formulation
	2.2 Parallelized one-dimensional initialization
	2.3 Optimization Algorithms
	2.3.1 GN-PCG: Gauss-Newton with Jacobi-Preconditioned Conjugate Gradient solver
	2.3.2 Alternating Direction Method of Multipliers (ADMM)
	2.3.3 LBFGS

	2.4 Coding structure of PyHySCO
	2.4.1 Data storage and the image model
	2.4.2 The correction model
	2.4.3 Regularization terms
	2.4.4 Hessian and preconditioning
	2.4.5 Initialization
	2.4.6 Optimization
	2.4.7 Image correction

	2.5 PyHySCO usage and workflow
	3 Results
	3.1 Validation datasets
	3.2 Metrics
	3.3 Validity of Chang and Fitzpatrick initialization
	3.4 A comparison of PyHySCO Optimizers on GPU and CPU
	3.5 Single precision vs. double precision on GPU and CPU
	3.6 A comparison of PyHySCO with HySCO and TOPUP

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note

	References

