
TYPE Technology and Code

PUBLISHED 27 May 2024

DOI 10.3389/fnins.2024.1406821

OPEN ACCESS

EDITED BY

Harald E. Möller,

Max Planck Institute for Human Cognitive and

Brain Sciences, Germany

REVIEWED BY

Franciszek Hennel,

University of Zurich, Switzerland

Haykel Snoussi,

Boston Children9s Hospital and Harvard

Medical School, United States

*CORRESPONDENCE

Abigail Julian

abigail.julian@emory.edu

RECEIVED 25 March 2024

ACCEPTED 25 April 2024

PUBLISHED 27 May 2024

CITATION

Julian A and Ruthotto L (2024) PyHySCO:

GPU-enabled susceptibility artifact distortion

correction in seconds.

Front. Neurosci. 18:1406821.

doi: 10.3389/fnins.2024.1406821

COPYRIGHT

© 2024 Julian and Ruthotto. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

PyHySCO: GPU-enabled
susceptibility artifact distortion
correction in seconds

Abigail Julian1* and Lars Ruthotto1,2

1Department of Computer Science, Emory University, Atlanta, GA, United States, 2Department of

Mathematics, Emory University, Atlanta, GA, United States

Over the past decade, reversed gradient polarity (RGP) methods have become a

popular approach for correcting susceptibility artifacts in echo-planar imaging

(EPI). Although several post-processing tools for RGP are available, their

implementations do not fully leverage recent hardware, algorithmic, and

computational advances, leading to correction times of several minutes per

image volume. To enable 3D RGP correction in seconds, we introduce PyTorch

Hyperelastic Susceptibility Correction (PyHySCO), a user-friendly EPI distortion

correction tool implemented in PyTorch that enables multi-threading and

e�cient use of graphics processing units (GPUs). PyHySCO uses a time-tested

physical distortion model and mathematical formulation and is, therefore,

reliable without training. An algorithmic improvement in PyHySCO is its use of

the one-dimensional distortion correction method by Chang and Fitzpatrick

to initialize the non-linear optimization. PyHySCO is published under the GNU

public license and can be used from the command line or its Python interface.

Our extensive numerical validation using 3T and 7T data from the Human

Connectome Project suggests that PyHySCO can achieve accuracy comparable

to that of leading RGP tools at a fraction of the cost. We also validate the new

initialization scheme, compare di�erent optimization algorithms, and test the

algorithm on di�erent hardware and arithmetic precisions.

KEYWORDS

echo planar imaging, reversed gradient polarity, GPU acceleration, software,

parallelization

1 Introduction

Reversed gradient polarity (RGP) methods are commonly used to correct susceptibility

artifacts in spin-echo echo-planar imaging (EPI; Stehling et al., 1991). RGP methods

acquire a pair of images with opposite phase encoding directions, which leads to a minimal

increase in scan time due to the speed of EPI. In a post-processing step, RGP approaches

use the fact that the distortion in both images has an equal magnitude but acts in

opposite directions to estimate the field map (see Figure 1; Chang and Fitzpatrick, 1992;

Bowtell et al., 1994). The field map is then used to estimate a distortion-free image, either

as a post-processing step using reconstructed images (Chang and Fitzpatrick, 1992) or

simultaneously with image reconstruction by including the field map in the signal inverted

during reconstruction (Zahneisen et al., 2017).

Compared to other correction approaches, such as field map acquisition, point-spread

function map acquisition, and anatomical registration, RGP methods generally achieve

comparable or superior accuracy while being more robust to noise and motion, see, e.g.,

Wu et al. (2008), Esteban et al. (2014), Graham et al. (2017), and Tax et al. (2022). These

advantages make RGP correction a popular choice. For example, the widely-used MRI

Frontiers inNeuroscience 01 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

database from the Human Connectome Project (HCP; Van Essen

et al., 2012) used the RGP correction tool TOPUP (Andersson

et al., 2003) in the preprocessing of released diffusion MRI from

EPI scans.

The original RGP distortion correction approaches in Chang

and Fitzpatrick (1992) and Bowtell et al. (1994)’s studies are

one-dimensional, treating each image column separately in the

phase encoding direction. This leads to a non-smooth field

map estimate and corrections. TOPUP addresses this non-

smoothness with a 3D spline-based approach and the introduction

of regularization (Andersson et al., 2003). TOPUP has limited

support for hyperthreading and is often a time-consuming step of

MRI processing pipelines (Cai et al., 2021). In our experiments,

running TOPUP on a standard CPU took over 60 minutes on

average per HCP subject.

Although less widely used than TOPUP, other iterative

methods have proposed implementations of RGP correction

employing various optimization schemes, discretizations, and

regularization terms to speed up the correction. EPIC (Holland

et al., 2010) introduces correction using a non-linear image

registration framework. The tool was developed specifically for

anterior-posterior distortions and can be less effective for left-right

distortions (Gu and Eklund, 2019). DR-BUDDI (Irfanoglu et al.,

2015) and TISAC (Duong et al., 2020a) methods regularize the

optimization using either a T2-weighted or T1-weighted image,

respectively. While including undistorted anatomical information

can improve the quality of distortion correction (Gu and Eklund,

2019), it complicates the choice of an effective distance measure

and, depending on the protocol, may require additional scan

time. Hyperelastic Susceptibility Correction (HySCO) introduces

hyper-elastic registration regularization and a novel separable

discretization (Ruthotto et al., 2012, 2013; Macdonald and

Ruthotto, 2017). HySCO can accurately correct real and simulated

data varying in phase encoding direction, anatomy, and field of

view (Gu and Eklund, 2019; Snoussi et al., 2021; Tax et al., 2022).

In our experiments, on average, HySCO runs on the CPU for 1–

2 min per HCP subject. While HySCO is a statistical parametric

mapping (SPM; Penny et al., 2007) plugin and has been integrated

into several SPM-based DTI processing pipelines, see, e.g., Clark

et al. (2021) and Dávid et al. (2024), its dependency on a MATLAB

license may limit its wider application.

Recently, several deep learning approaches for susceptibility

artifact correction have been proposed due to extended processing

times of the above mentioned RGP tools, see, e.g., Duong et al.

(2020b, 2021), Hu et al. (2020), Zahneisen et al. (2020), and

Alkilani et al. (2023). A recurrent theme is to train a correction

operator in an offline stage in a supervised way using training data,

which enables fast evaluations in the online step. For example,

training S-Net on 150 volumes took over 5 days, while correcting

an image pair on a CPU took an average of 2.8 s (0.96 s on a

GPU; Duong et al., 2020b). However, the significant reduction of

correction time comes at the cost of losing the robustness and

generalizability that the existing RGP approaches obtain from the

physical distortion model. For example, while RGP approaches can

handle images from different scanners, anatomies, resolutions, and

other acquisition parameters, deep learning models perform poorly

when applied outside the training distribution (Chen et al., 2022).

Furthermore, deep learningmodels are highly sensitive to noise and

adversarial attacks in other contexts (Antun et al., 2020).

The PyHySCO (PyTorch Hyperelastic Susceptibility

Correction) toolbox aims to achieve the accuracy, robustness,

and generalizability of state-of-the-art RGP approaches at

computational costs similar to evaluating a pre-trained deep

learning model. PyHySCO offers EPI distortion correction through

a GPU-enabled and command-line-accessible Python tool powered

by PyTorch (Paszke et al., 2019). The mathematical formulation

is based on HySCO augmented by a separable discretization

(Macdonald and Ruthotto, 2017), which increases parallelism.

PyHySCO alleviates the need for multilevel optimization by using

the one-dimensional correction of Chang and Fitzpatrick (1992),

which we derive through optimal transport. We demonstrate the

use of PyHySCO using its Python interface and command-line tool,

which is compatible with existing MRI postprocessing pipelines.

The remainder of our study is organized as follows. In Section

2, we review the mathematical model and its discretization under

the hood of PyHySCO and describe the parallelized Chang and

Fitzpatrick (CF) initialization using optimal transport, fast solvers

exploiting the separable structure, and GPU-enabled PyTorch

implementation. In Section 3, we extensively validate PyHySCO

on real and simulated EPI data. We show the speed and accuracy

of the CF initialization scheme and the speed and accuracy of the

complete correction pipeline across optimizers, GPUs, and two

levels of numerical precision. In Section 4, we discuss the benefits

and implications of using PyHySCO for EPI distortion correction.

In Section 5, we provide a conclusion.

2 Methods

This section describes the algorithmic and coding structure

of PyHySCO. Section 2.1 introduces notation and reviews

the mathematical formulation of the RGP correction problem.

Section 2.2 describes the one-dimensional correction of Chang

and Fitzpatrick (1992), which we use for initialization, and relates

it to optimal transport. Section 2.3 describes the optimization

algorithms available in PyHySCO. Section 2.4 explains the structure

of the code and some key implementation details. Section 2.5

demonstrates the basic usage of PyHySCO and how to integrate it

into existing processing pipelines.

2.1 Mathematical Formulation

The field map estimation and distortion correction are based

on the physical forward model defined in Chang and Fitzpatrick

(1992). Let v * R3 be the phase encoding direction for the distorted

observation I :� ³ R, and let � ¢ R
3 be the image domain of

interest. The mass-preserving transformation operator that, given

the field map b :� ³ R, corrects the distortions of an image I

acquired with phase-encoding direction v reads

T[I, b, v](x) = I(x+ b(x)v) · (1+ "vb)(x) "x * �. (1)

Here, "vb is the directional derivative of b in the direction of v.

The first term of the operator corrects the geometric deformation in

Frontiers inNeuroscience 02 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

FIGURE 1

The reverse gradient polarity correction paradigm. Two images are acquired with opposite phase encoding directions, +v and 2v. These two images

are used to estimate the ûeld map b, and the distortion correction model (Chang and Fitzpatrick, 1992) is applied to obtain a corrected image I.

the direction of v, and the second is an intensity modulation term,

which should always be positive.

Similar to Ruthotto et al. (2013), PyHySCO solves the inverse

problem of estimating the field map b based on two observations,

I+v and I2v, acquired with phase-encoding directions ±v. To this

end, we estimate the field map b by minimizing the distance of the

corrected images.

D(b) =
1

2

∫

�

(

T[I+v, b, v](x)2 T[I2v, b,2v](x)
)2

dx. (2)

The distance term is additionally regularized to enforce smoothness

and the intensity modulation constraint. The smoothness

regularization term

S(b) =
1

2

∫

�

||'b(x)||2dx,

penalizes large values of the gradient of b to ensure smoothness in

all directions.

The intensity modulation constraint of the physical model

requires that21 < "vb(x) < 1 for almost all x * �. This is enforced

by the barrier term as follows:

P(b) =
1

2

∫

�

Ç("vb(x))dx, where Ç(z) =

{

z4

12z2
, z * (21, 1)

>, else.

(3)

Altogether, this gives the optimization problem,

min
b

J(b) = D(b)+ ³S(b)+ ´P(b), (4)

where the importance of the regularization terms is weighted

with non-negative scalars ³ and ´ . Higher values of ³ promote

a smoother field map, while lower values of ³ promote reduced

distance between corrected images at the expense of smoothness

in the field map. Any positive value for ´ ensures the intensity

modulation constraint is satisfied, but lower values can lead to

more ill-conditioned problems. For the purpose of this study, we

fix ³ = 300 and ´ = 1e2 4.

PyHySCO follows the discretize-then-optimize paradigm

commonly used in image registration, see, e.g., Modersitzki (2009).

PyHySCO discretizes the variational problem (Equation 4) as in

Macdonald and Ruthotto (2017) to obtain a finite-dimensional

optimization problem almost entirely separable in the phase

encoding direction. Specifically, coupling is only introduced in the

smoothness regularization term when calculating the gradient in

the frequency encoding and slice selection directions.

Our convention is to permute the dimensions of the input

image such that the phase encoding direction is aligned with the

third unit vector e3 = [0, 0, 1]T . The field map is discretized on

an e3-staggered grid; that is, we discretize its values in the cell

centers along the first two dimensions and on the nodes in the

third dimension. The integrals in Equation (4) are approximated

by a midpoint quadrature rule. The input images are modeled

by a one-dimensional piecewise linear interpolation function in

the phase encoding direction. The geometric transformation is

estimated in the cell centers with an averaging operator, and the

intensity modulation is estimated in the cell centers with a finite

difference operator.

The discretized smoothness regularization term is computed

for the discretized field map b via

S(b) =
h1 · h2 · h3

2
b¦Hb =

h1 · h2 · h3

2
||b||2H , (5)

where h1, h2, and h3 are the voxel sizes and H is a standard

five-point discretization of the negative Laplacian and thus

is a positive semi-definite operator. The discretized intensity

modulation constraint term applies Ç, as defined in Equation

(3), element-wise to the result of a finite difference operator

applied to the discretized field map. This results in the discretized

Frontiers inNeuroscience 03 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

optimization problem to be solved as follows:

min
b

J(b) = D(b)+ ³S(b)+ ´P(b). (6)

This problem is challenging to solve because it is high-dimensional

and non-convex, but we can exploit the structure and separability

to efficiently solve the problem using parallelization. The

implementation of this optimization problem in a parallelizable

way, as described in Section 2.4, includes the choices of image

interpolation, linear operators for averaging and finite difference,

and regularization terms, S and P.

2.2 Parallelized one-dimensional
initialization

Due to the non-convexity of the optimization problem

(Equation 6), an effective initialization strategy for the field map is

critical. To this end, PyHySCO initializes the correction with the

result of the one-dimensional correction of Chang and Fitzpatrick

(1992), which can be derived from optimal transport (OT) theory

(Peyré and Cuturi, 2017). The key idea is to compute the ‘halfway’

point of the oppositely distorted images in Wasserstein space

(as opposed to Euclidean space, which would simply average the

images). To render this problem feasible, we treat each image

column separately, use the closed-form solutions of 1D OT

problems, and then apply a smoothing filter. Implementing the

Chang and Fitzpatrick (1992) correction using optimal transport

provides a mathematical understanding of their algorithm and a

highly accurate and parallelizable initialization.

We calculate these transformations as optimal transport maps

(Peyré and Cuturi, 2017). More specifically, because the distortions

only occur in the phase encoding direction, these transformations

are a set of one-dimensional maps calculated in parallel across

the distortion dimension. One-dimensional optimal transport has

a closed-form solution considering the one-dimensional signal

as a positive measure and constructing a cumulative distribution

function (Peyré and Cuturi, 2017).

We describe the computation of the one-dimensional optimal

transport maps in the distortion correction setting. In practice, the

computation is parallelized in the distortion dimension to compute

the entire initial field map simultaneously.

Let i+v * Rm be the image data from an entry in the phase

encoding dimension of I+v, and let i2v * Rm be the image data

from the corresponding entry in the phase encoding dimension of

I2v. Consider ihalf the sequence of image intensity values from the

corresponding entry of the undistorted image I. We numerically

ensure that i+v and i2v can be considered positive measures by

applying a small shift to the image values, which does not change

the relative distance between elements.

We initialize the field map using the optimal transport maps

T+ from i+v to ihalf and T2 from i2v to ihalf. These maps can be

directly computed using the closed-form one-dimensional optimal

transport formula, which depends on a cumulative distribution

function and its pseudoinverse (Peyré and Cuturi, 2017).

We define the discretized cumulative distribution function

Ci :{0, . . . ,m} ³ [0, 1] of a measure i as the cumulative sum as

follows:

"x * {0, . . . ,m} Ci(x) =

x
∑

j=0

i(j),

where i(j) returns the pixel intensity value at index j of i. The

pseudoinverse C21
i :[0, 1] ³ {0, . . . ,m} is defined as follows:

"r * [0, 1] C21
i (r) = min

x
{x * {0, . . . ,m} | Ci(x) g r}.

In practice, C21
i is computed using a linear spline interpolation.

Returning to the measures arising from the input images, the

closed-form solution for one-dimensional optimal transport gives

the optimal transport map from i+v to ihalf as follows:

T+ = C21
ihalf

ç Ci+v ,

and the optimal transport map from i2v to ihalf as follows:

T2 = C21
ihalf

ç Ci2v ,

where C21
ihalf

is calculated as (C21
i+v

+ C21
i2v

)/2. Figure 2 visualizes

the computation of the one-dimensional transport maps, and the

parallelized computation and resulting field maps are visualized in

Figure 3. We thus compute the initial guess for the field map as

the average of the maps T+ and 2T2, computed in parallel. We

apply a smoothing filter to the initial field map before optimization

to introduce smoothness in the frequency encoding and slice

selection dimensions.

2.3 Optimization Algorithms

Since the optimal choice of optimization algorithms for

approximately solving Equation (6) may depend on various factors,

including image sizes, computational hardware, and severity of

distortions, PyHySCO offers three options. Section 2.3.1 describes

a Gauss-Newton scheme with a Jacobi-preconditioned conjugate

gradient (GN-PCG) method as an inner solver, which is similar

to Ruthotto et al. (2013) and is the default option. An option

that exploits the parallelism of the discretization more effectively

is the Alternating Direction Method of Multipliers (ADMM)

in Section 2.3.2, which is based on Macdonald and Ruthotto

(2017). For comparison, we also provide an interface to an LBFGS

optimizer, see Section 2.3.3.

2.3.1 GN-PCG: Gauss-Newton with
Jacobi-Preconditioned Conjugate Gradient solver

PyHySCO’s default solver is a PyTorch implementation of

the GN-PCG scheme used in Ruthotto et al. (2013). Following

the general idea of Gauss-Newton, we linearize the (non-linear)

distortion correction operator (Equation 1) about the k-th iterate

bk, obtain a quadratic model for the objective function by using

a second-order Taylor approximation, and update the field map

estimate with its approximate solution obtained with a few

iterations of the PCG method.

More precisely, let 'J be the gradient and HJ be a positive

definite approximation of the Hessian of the optimization problem

Frontiers inNeuroscience 04 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

FIGURE 2

The example of one-dimensional optimal transport maps. The top left shows an example of one-dimensional measures. The green signal, i+v,

corresponds to an intensity pileup in I+v, while the purple signal i2v corresponds to an intensity dispersion in I2v. The red signal corresponds to the

intensity of the true image. The top right shows the cumulative distributions for the measures i+v and i2v. The bottom left shows the pseudoinverses

for i+v and i2v along with the pseudoinverse C
21
ihalf

used in calculating the transport maps T+ = C
21
ihalf

ç Ci+v and T2 = C
21
ihalf

ç Ci2v , which are shown in

bottom right.

(Equation 6) about bk. Gauss-Newton iteratively updates the

current field map estimate via

bk+1 = bk + µkqk,

where the step size µk is determined using a line search method

such as Armijo (Nocedal andWright, 1999, Ch. 3 p. 33–36) and the

search direction qk approximately satisfies the following equation:

HJ(bk)qk = 2'J(bk). (7)

To obtain qk, we apply up to 10 iterations of the preconditioned

conjugate gradient (PCG) method and stop early if the relative

residual is less than 0.1, see the original work (Hestenes and Stiefel,

1952) or the textbook (Saad, 2003) for more details on PCG. The

performance of PCG crucially depends on the clustering of the

eigenvalues, which a suitable preconditioner can often improve.

As a computationally inexpensive and often effective option, we

implement a Jacobi preconditioner, which approximates the inverse

ofHJ by the inverse of its diagonal entries. Rather than constructing

the matrix HJ , which is computationally expensive, we provide

efficient algorithms to compute matrix-vector products and extract

its diagonal. While the diagonal preconditioner works well in our

examples, we note that a more accurate (yet also more expensive)

block-diagonal preconditioner has been proposed in Macdonald

and Ruthotto (2017).

2.3.2 Alternating Direction Method of Multipliers
(ADMM)

We additionally modify the ADMM (Boyd et al., 2011)

algorithm in Macdonald and Ruthotto (2017) and implement it in

PyHySCO. To leverage separability of the objective function, the

idea is to split the optimization problem into two subproblems.

In contrast to Macdonald and Ruthotto (2017), which uses a hard

constraint to ensure positivity of the intensity modulation and

employs Sequential Quadratic Programming, we implement this as

a soft constraint with the barrier term (Equation 3).

Frontiers inNeuroscience 05 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

FIGURE 3

The maps T+ and T2 are calculated using the closed-form one-dimensional optimal transport solution, parallelized in the distortion dimension

(Peyré and Cuturi, 2017). Note the inverted coloring between T+ and T2 as the map T2 corrects a distortion in the opposite direction as T+. (A) The

map T+ mapping from I+v halfway to I2v is calculated as the composition of the cumulative distribution function C+v from I+v and the interpolated

pseudoinverse C
21
half. (B) The map T2 mapping from I2v halfway to I+v is calculated as the composition of the cumulative distribution function C2v

from I2v and the interpolated pseudoinverse C
21
half.

As in Macdonald and Ruthotto (2017), we split the objective in

Equation (6) into

F(b) = D(b)+ ³S3(b)+ ´P(b), and G(z) = ³S1(z)+ ³S2(z),

(8)

where S3 is the part of the smoothness regularization term S

corresponding to the phase encoding direction, and S1 and S2 are

the remaining terms corresponding to the other directions. This

gives rise to the following optimization problem, equivalent to

Equation (6):

min
b,z

F(b)+ G(z) s.t. b = z.

With the corresponding augmented Lagrangian

L(b, z, y) = F(b)+ G(z)+ yT(b2 z)+
Ãh3

2
||b2 z||2,

where y is the Lagrange multiplier for the equality constraint

b = z and Ã is a scalar augmentation parameter, and using

scaled Lagrange multiplier u =
y

Ãh3
, each iteration has the updates

as follows:

bk+1 = argmin
b

F(b)+
Ãh3

2
||b2 zk + uk||

2 (9)

zk+1 = argmin
z

G(z)+
Ãh3

2
||bk+1 2 z+ uk||

2 (10)

uk+1 = uk + bk+1 2 zk+1. (11)

The b update computed in Equation (9) involves a separable

optimization problem that can be solved independently for each

image column along the phase-encoding direction. In PyHySCO,

we use a modified version of the GN-PCG scheme described

above. The only change is the computation of the search direction

(Equation 7), which can now be parallelized across the different

image columns. To exploit this structure, we implement a PCG

method that solves the system for each image column in parallel. In

addition to more parallelism, we observe an increase in efficiency

since the scheme uses different step sizes and stopping criteria for

each image column.

The z update is computed by solving the quadratic problem

(Equation 10) directly. This update is enabled by the structure of

the associated linear system, which is block-diagonal, and each

block is given by a 2D negative Laplacian (from the regularizers)

shifted by an identity (from the proximal term). Assuming

periodic boundary conditions on the images, the blocks in the

approximation itself have an exploitable structure [called Block

Circulant—Circulant Block in Hansen et al. (2006)] and, therefore,

can be inverted efficiently with the Fast Fourier Transform (FFT).

The scaled Lagrange multiplier u is updated at each iteration

as in Equation (11). The augmentation parameter Ã is updated

adaptively as described in Boyd et al. (2011) to keep the relative

primal and dual residuals close.

2.3.3 LBFGS
As a comparison, we provide an implementation of LBFGS

(Liu and Nocedal, 1989), although optimization with LBFGS

Frontiers inNeuroscience 06 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

does not exploit any of the structure or separability of the

optimization problem. LBFGS is a quasi-Newton method that

uses an estimate of the objective function’s Hessian based on a

limited number of previous iterations in solving for the search

direction (Liu and Nocedal, 1989). In our implementation, we

provide an explicitly calculated derivative to an LBFGS solver.1

While computing the objective function, we precompute parts of

the derivative which allows for faster optimization than relying on

automatic differentiation.

2.4 Coding structure of PyHySCO

We implemented PyHySCO in PyTorch (Paszke et al., 2019)

following the overall code structure visualized in the diagrams

in Figures 4A, B for the objective function and optimization,

respectively. The main classes of PyHySCO are the loss function,

which is implemented in EPIMRIDistortionCorrection,

and the optimization, which is defined in EPIOptimize. The

other classes and methods, described in detail in the following,

implement the components of the loss function evaluation and

optimization schemes.

2.4.1 Data storage and the image model
The input pair of images with opposite phase encoding

directions are loaded and permuted such that the distortion

dimension is the last, as this is where PyTorch expects the batch

dimension for parallelizing operations. Information on the input

images is stored in an object of type DataObject. This class

stores information on the image size, domain, voxel size, how to

permute the data back to the input order, and the ImageModel

for each input image. The ImageModel abstract class defines the

structure and required methods for an image model, including

storing the original data and providing a method eval that

returns the data interpolated on the given points. We provide

the default implementation Interp1D, a piecewise linear one-

dimensional interpolation parallelized in the last dimension. The

DataObject for a given input pair is then stored in the

EPIMRIDistortionCorrection object.

2.4.2 The correction model
The mass-preserving correction model (Equation 1) is

implemented in the method mp_transform, a class method of

EPIMRIDistortionCorrection. The method takes as input

an ImageModel and a field map. The geometric deformation is

computed by using an averaging LinearOperator to compute

the field map values in the cell centers and adding this to a

cell-centered grid to obtain the deformed grid defined by this field

map. Using the ImageModel, the image is interpolated on this

deformed grid. The intensity modulation term is computed using a

finite difference LinearOperator. The two terms are multiplied

together element-wise before returning the corrected image. The

default implementation of the LinearOperator objects for

1 https://github.com/hjmshi/PyTorch-LBFGS

averaging and finite difference are given as one-dimensional

convolutions, parallelized in the last dimension.

2.4.3 Regularization terms
The intensity regularization term is computed within the

EPIMRIDistortionCorrection class in the method

phi_EPI which computes the result of applying Ç, as defined

in Equation (3), element-wise to the result of applying the finite

difference operator to the field map, as computed in the correction

model. This function acts as a barrier term, ensuring that the

derivative of the field map in the distortion dimension is in

the range (–1, 1).

The smoothness regularization term is implemented in a

QuadRegularizer object, which defines the evaluation of

a quadratic regularization term of the form of Equation (5)

using a positive semi-definite LinearOperator as H. By

default, H is a discretized negative Laplacian applied via a

three-dimensional convolution.

In the ADMM optimizer, the regularizer structure differs

to account for the splitting in Equation (8). The objective

function for the b update in Equation (9) is computed in

EPIMRIDistortionCorrection where the computation of

S3 is a one-dimensional Laplacian in the distortion dimension

applied via a one-dimensional convolution. The proximal term

is computed through a TikRegularizer object, a Tikhonov

regularizer structure. The objective function for the z update

in Equation (10) is a QuadRegularizer object, where

the LinearOperator H is a two-dimensional Laplacian

corresponding to S2 and S3. This operator is implemented

in FFT3D, which defines an operator applying a convolution

kernel diagonalized in Fourier space (Cooley et al., 1969). This

implementation allows for easily inverting the kernel while solving

for z.

2.4.4 Hessian and preconditioning
For the Gauss-Newton and ADMM optimizers, an

approximate Hessian and preconditioner are additionally

computed. The parts of the Hessian are computed in

EPIMRIDistortionCorrection during objective function

evaluation, and the Hessian can be applied through a matrix-vector

product. Similarly, a Preconditioner can be computed during

objective function evaluation and is accessible through a returned

function applying the preconditioner to its input. By default, we

provide a Jacobi preconditioner in the class JacobiCG.

2.4.5 Initialization
The EPIMRIDistortionCorrection class has a

method initialize, returning an initial guess for the field

map using some InitializationMethod. We provide

an implementation of the proposed parallelized Chang and

Fitzpatrick initialization in InitializeCF. The implementation

computes the one-dimensional transport maps in parallel

using a linear spline interpolation. In practice, the parallelized

initialization gives a highly non-smooth initial field map, so

the method optionally applies a blurring operator using a

Frontiers inNeuroscience 07 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

FIGURE 4

(A) The class structure of the PyHySCO loss function. The main class representing the loss function is EPIMRIDistortionCorrection. Purple

classes are abstract, and blue classes are concrete. Solid arrows indicate inheritance. Dashed arrows indicate dependencies and class objects that are

attributes. (B) The class structure of PyHySCO optimization. The main class deûning optimization is EPIOptimize. Solid arrows indicate inheritance.

Dashed arrows indicate dependencies and class objects that are attributes. UML diagram of PyHySCO showing the classes and relationships for the

(A) loss function and (B) optimization. A EPIMRIDistortionCorrection object deûning the loss function is an attribute of every EPIOptimize

object deûning the optimization scheme.

3-by-3-by-3 Gaussian kernel with a standard deviation of 1.0

to promote a smoother optimized field map. Applying the blur

to the field map is implemented using the fast FFT convolution

operator FFT3D.

2.4.6 Optimization
The minimization of the objective function defined in a

EPIMRIDistortionCorrection object happens in a subclass

of EPIOptimize, which takes the objective function object as

Frontiers inNeuroscience 08 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

FIGURE 5

(A) The worküow of the PyHySCO toolbox from setup through optimization and distortion correction. (B) An example of using the PyHySCO toolbox

from a Python script. (C) The help message for the PyHySCO command line interface. This interface allows the use of PyHySCO as a part of existing

MRI post-processing pipelines. The usage and worküow of PyHySCO.

Frontiers inNeuroscience 09 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

TABLE 1 Details of data used in validation. LR/RL is left-to-right and right-to-left phase encoding, and AP/PA is anterior-to-posterior and

posterior-to-anterior phase encoding.

Dataset No. of subjects Image size Resolution PE directions

3T 20 168× 144× 111 1.25× 1.25× 1.25mm3 LR/ RL

7T 20 200× 200× 132 1.05× 1.05× 1.05mm3 AP/ PA

Simulated 20 320× 320× 256 0.7× 0.7× 0.7mm3 AP/ PA

Further details of acquisition parameters are in Van Essen et al. (2012).

TABLE 2 Validation of the Chang and Fitzpatrick initialization.

Chang and Fitzpatrick Chang and Fitzpatrick (blur) Multilevel

Initial After opt Initial After opt Initial After opt

3T

Runtime (s)
5.78 11.43 6.31 15.36 41.69 55.34

±1.26 ±1.46 ±0.60 ±3.90 ±1.71 ±2.84

Opt. Time (s)
0.27 4.34 0.28 6.78 42.43 48.65

±0.01 ±0.67 ±0.02 ±0.67 ±4.04 ±3.95

Relative 96.44 83.90 79.71 82.75 67.04 81.96

Improvement ±1.13 ±3.43 ±3.43 ±3.49 ±5.15 ±3.51

Loss Value
1.05e09 2.84e07 1.76e08 2.56e07 4.82e07 2.51e07

±2.66e08 ±7.49e06 ±5.20e07 ±7.66e06 ±1.70e07 ±7.54e06

Smoothness 3.50e06 5.08e04 5.28e05 3.85e04 6.89e04 3.47e04

Reg. Value ±8.81e05 ±1.23e04 ±1.54e05 ±1.21e04 ±2.98e04 ±1.08e04

7T

Runtime (s)
7.61 13.55 8.32 19.72 58.73 77.79

±1.99 ±2.04 ±2.79 ±2.91 ±6.24 ±5.72

Opt. Time (s)
0.61 5.09 0.63 10.16 30.38 40.50

±0.02 ±1.23 ±0.02 ±0.85 ±2.63 ±3.87

Relative 96.53 86.01 75.09 85.76 69.12 85.42

Improvement ±1.47 ±5.15 ±3.97 ±5.10 ±8.28 ±5.08

Loss Value
3.48e09 5.28e07 4.50e08 4.14e07 7.77e07 4.02e07

±1.15e09 ±2.01e07 ±2.47e08 ±1.95e07 ±3.01e07 ±1.82e07

Smoothness 1.16e07 9.52e04 1.36e06 5.63e04 8.21e04 5.03e04

Reg. Value ±3.83e06 ±2.64e04 ±7.74e05 ±1.91e04 ±4.07e04 ±1.48e04

Simulated

Runtime (s)
10.62 80.29 16.59 106.47 173.20 47.98

±0.57 ±9.96 ±0.64 ±11.21 ±27.06 ±8.38

Opt. Time (s)
3.51 64.45 3.61 89.17 125.35 157.95

±0.03 ±10.02 ±0.15 ±11.48 ±24.88 ±28.79

Relative 94.64 76.82 75.34 76.27 55.01 73.63

Improvement ±1.26 ±5.09 ±3.44 ±5.18 ±5.66 ±5.39

Loss Value
5.10e08 6.31e07 2.11e08 6.07e07 8.17e07 5.83e07

±9.51e07 ±1.46e07 ±4.30e07 ±1.39e07 ±2.08e07 ±1.33e07

Smoothness 1.67e06 1.06e05 5.84e05 9.53e04 6.18e04 7.50e04

Reg. Value ±3.14e05 ±2.94e04 ±1.24e05 ±2.71e04 ±1.70e04 ±2.20e04

We compare the runtime, relative improvement, smoothness value, and loss function value at initialization and after optimization with Gauss-Newton for the proposed parallelized Chang and

Fitzpatrick initialization, the proposed initialization with an additional Gaussian blur, and the multilevel initialization used in HySCO (Ruthotto et al., 2013). For each metric, we report the

mean and standard deviation in the 3T, 7T, and simulated datasets. The multilevel initialization is timed on CPU in Matlab, and the Chang and Fitzpatrick initializations and all optimizations

are timed on GPU in Python. The Chang and Fitzpatrick-based initializations provide a comparable quality while decreasing runtime compared to the multilevel initialization, and the Chang

and Fitzpatrick with Gaussian blur promotes a smoother field map.

Frontiers inNeuroscience 10 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

FIGURE 6

Example ûeld maps (Subject ID 826353) at initialization (top row) and after optimization with Gauss-Newton (bottom row). The ûrst column uses the

proposed Chang and Fitzpatrick initialization scheme. The middle column uses the same scheme with an additional Gaussian blur to promote

smoothness. The right column uses the coarse-to-ûne multilevel initialization scheme from HySCO with ûve levels, and the ûnal ûeld map is

optimized at the original image resolution. The multilevel initialized ûeld map is smooth by construction and further optimized to improve the relative

image distance at the full resolution. The Chang and Fitzpatrick initialization accurately corrects the distortions but is not smooth in the

non-distortion dimensions unless blurred with a Gaussian. After the ûne-level optimization, all ûeld maps are visually similar.

input. During optimization, the OptimizationLogger

class is used to track iteration history, saving it to a log file

and optionally printing this information to standard output.

PyHySCO includes implementations of the LBFGS, Gauss-

Newton, and ADMM solvers described previously. Each of

the classes LBFGS, GaussNewton, and ADMM provide a

run_correction method that minimizes the objective

function using the indicated optimization scheme. The LBFGS

implementation uses the explicitly computed derivative from

EPIMRIDistortionCorrection. For LBFGS, we use the

norm of the gradient reaching a given tolerance as stopping

criteria, or the change in loss function or field map between

iterations falling below a given tolerance. The GaussNewton

implementation uses a conjugate gradient solver implemented in

the class PCG. Our Gauss-Newton implementation uses the same

stopping criteria as LBFGS. The ADMM implementation solves the

b update in Equation (9) using GaussNewton with a parallelized

conjugate gradient solver in BlockPCG. The z update in Equation

(10) is solved directly through the inverse method inv of the

operator used to define the QuadRegularizer for this term,

efficiently implemented using FFTs in FFT3D. As stopping criteria,

the ADMM iterations will terminate if the change in all of b, z, and

u from the previous iteration falls below a given tolerance.

2.4.7 Image correction
The optimal field map, stored as Bc in the EPIOptimize

object after run_correction is completed, can be

used to produce a corrected image or pair of images.

The apply_correction method of EPIOptimize

implements both a Jacobian modulation correction and

a least squares correction. The Jacobian modulation

correction is based on the model of Chang and Fitzpatrick

(1992) as implemented in the mp_transform method

of EPIMRIDistortionCorrection. This correction

method computes and saves two corrected images, one for each

input image.

The field map can also be used in a least squares correction

similar to the correction in Andersson et al. (2003), implemented in

LeastSquaresCorrection. In this correction, the estimated

field map determines a push-forward matrix that transforms the

true image to the distorted image given as input. This gives rise to

a least squares problem for the true image, given the input images

and push forward matrix.

2.5 PyHySCO usage and workûow

The workflow of PyHySCO is illustrated in Figure 5A alongside

examples of using PyHySCO in a Python script (Figure 5B) and

through the command line (Figure 5C). Running PyHySCO from

a user-defined Python script allows for more control of the

inputs and outputs from PyHySCO methods. The command line

interface allows the user to pass configuration options directly from

the command line, which enables our EPI distortion correction

tool to be easily used as a part of the existing command line

based MRI post-processing pipelines such as the FMRIB Software

Library (FSL) toolbox (Smith et al., 2004). Executing PyHySCO

requires the user to provide, at a minimum, the file paths for the

input pair of images with opposite phase encoding directions and

Frontiers inNeuroscience 11 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

TABLE 3 The speed and quality of optimization in PyHySCO on GPU and CPU with LBFGS, Gauss-Newton, and ADMM.

LBFGS GN-PCG ADMM

CPU GPU CPU GPU CPU GPU

3T

Runtime (s)
104.45 23.13 27.37 10.37 98.54 11.58

±70.74 ±4.61 ±4.53 ±0.87 ±30.15 ±2.23

Opt. Time (s)
100.28 16.70 23.13 4.38 94.53 5.63

±70.82 ±4.49 ±4.53 ±0.68 ±30.20 ±2.15

Relative 81.47 82.32 82.74 82.74 82.76 82.77

Improvement ±3.71 ±3.40 ±3.50 ±3.50 ±3.31 ±3.30

Loss Value
7.90e07 2.56e07 2.56e07 2.56e07 3.09e07 3.10e07

±7.99e07 ±7.72e06 ±7.69e06 ±7.69e06 ±8.51e96 ±8.56e06

Smoothness 2.13e05 3.72e04 3.85e04 3.85e04 5.62e04 5.65e04

Reg. Value ±2.56e05 ±1.18e04 ±1.21e04 ±1.21e04 ±1.65e04 ±1.71e04

7T

Runtime (s)
141.44 36.23 31.71 13.62 158.64 15.25

±117.38 ±7.76 ±3.18 ±2.38 ±46.99 ±3.15

Opt. Time (s)
135.72 29.23 26.84 6.57 152.69 8.34

±116.29 ±7.88 ±3.15 ±2.30 ±46.64 ±2.91

Relative 80.75 85.74 85.76 85.76 85.87 85.85

Improvement ±6.91 ±4.99 ±5.10 ±5.10 ±4.99 ±4.99

Loss Value
2.25e08 4.25e07 4.14e07 4.14e07 4.43e07 4.43e07

±2.22e08 ±2.00e07 ±1.95e07 ±1.95e07 ±1.99e07 ±1.95e07

Smoothness 6.38e05 6.00e04 5.63e04 5.63e04 6.68e04 6.66e04

Reg. Value ±7.01e05 ±2.18e04 ±1.91e04 ±1.91e04 ±2.18e04 ±3.68e04

Sim.

Runtime (s)
6344.93 143.77 1094.96 55.26 7687.28 52.72

±649.21 ±6.47 ±135.20 ±3.86 ±4596.31 ±18.01

Opt. Time (s)
6320.43 125.95 1070.65 37.60 7662.55 35.15

±649.01 ±6.40 ±135.69 ±4.54 ±4596.38 ±17.92

Relative 75.45 75.44 76.28 76.28 74.93 75.00

Improvement ±5.40 ±5.35 ±5.19 ±5.18 ±5.59 ±5.34

Loss Value
6.03e07 6.00e07 6.08e07 6.08e07 6.08e07 6.12e07

±1.44e07 ±1.41e07 ±1.40e07 ±1.40e07 ±1.40e07 ±1.43e07

Smoothness 9.06e04 8.94e04 9.56e04 9.56e04 8.97e04 9.12e04

Reg. Value ±2.94e04 ±2.74e04 ±2.74e04 ±2.72e04 ±2.79e04 ±2.77e04

We report for each dataset and optimizer the mean and standard deviation of total runtime (including loading and saving data), optimization time, improvement in distance between corrected

images relative to input image, loss value, and smoothness regularizer value. Gauss-Newton achieves a similar correction quality in less time than LBFGS or ADMM on both CPU and GPU.

which dimension (1, 2, or 3) is aligned with the phase encoding

direction. The modularity of PyHySCO additionally allows for

configuring options such as the scalar hyperparameters in Equation

(6); implementation of operators, regularizers, and interpolation;

optimizer and associated optimization parameters; and the image

correction method.

Regardless of execution through a script or the command line,

PyHySCO stores the input images in a DataObject object, the

loss function in an EPIMRIDistortionCorrection object,

and the optimizer in an object of a subclass of EPIOptimize.

The field map is initialized from the method initialize

in EPIMRIDistortionCorrection, and the field map is

optimized by calling the method run_correction in the

optimizer object. Finally, the method apply_correction in

EPIOptimize applies the field map to correct the input images

and saves the result to one or more NIFTI file(s).

3 Results

We demonstrate PyHySCO’s effectiveness through extensive

experiments using real and simulated data from the Human

Connectome Project (Van Essen et al., 2012) and validate the

initialization scheme and the implementation of optimization

algorithms. Section 3.1 describes the datasets and Section 3.2

introduces our evaluation metrics. Section 3.3 demonstrates the

Chang and Fitzpatrick initialization scheme. The experiments

in Section 3.4 compare the performance of the three optimization

Frontiers inNeuroscience 12 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

algorithms implemented in PyHySCO on CPU and GPU hardware.

Section 3.5 compares the performance of PyHySCO in single and

double-precision arithmetic on CPU and GPU hardware. Section

3.6 compares PyHySCO with existing tools, HySCO and TOPUP

(Andersson et al., 2003; Ruthotto et al., 2013).

3.1 Validation datasets

The data used in the following experiments is from the Human

Connectome Project (Van Essen et al., 2012). We validate our

methods and tool on 3T and 7T diffusion-weighted imaging

data from the HCP 1200 Subjects Release, with 20 subjects

randomly chosen for each field strength. Table 1 provides details

of the datasets.

We also evaluate ourmethods on simulated data. This data only

contains susceptibility artifact distortions, thus it shows how our

tool performs without the influence of other factors, e.g., patient

movement between scans. To simulate the distortions, we use a

pair of magnitude and phase images for a subject in HCP and

generate the field map using FSL’s FLIRT and PRELUDE tools

(Smith et al., 2004). Considering the physical model of Chang and

Fitzpatrick (1992), the field map b can be used to define the push-

forward matrices that show how the intensity value at x is pushed

forward to x + b(x) in the distortion direction +v as well as the

opposite direction 2v. By applying the push-forward matrices to a

T2-weighted image for the subject, we generate a pair of distorted

images. For the simulated data, we then have a reference value for

the field map and an undistorted, true image.

3.2 Metrics

The quality of correction results is measured using the

relative improvement of the distance between a pair of corrected

images. Particularly, we calculate the sum-of-squares distance (SSD,

Equation 2) of the corrected image pair relative to the SSD of the

input pair. This metric is a useful surrogate for the correctness of

the field map in the absence of a ground truth (Graham et al., 2017).

Additionally, we take the value of the smoothness regularization

term S(b) as a measure of how smooth the resulting field map is,

with lower values being better.

We report the runtime in seconds of PyHySCO. The runtime is

measured as the wall clock time using the Linux time command

when calling the correction method from the command line. This

time, therefore, includes the time taken to load and save the

image data. In some cases, we also report the optimization time

only, without loading and saving data, as measured by Python’s

timemodule.

3.3 Validity of Chang and Fitzpatrick
initialization

We compare the results of PyHySCO using the one-

dimensional parallelized Chang and Fitzpatrick initialization to

those of the multi-level initialization used in HySCO (Ruthotto

TABLE 4 Details of optimization for PyHySCO optimizers LBFGS, Gauss

Newton, and ADMM.

LBFGS GN-PCG ADMM

3T

Iterations
455.30 8.400 36.05

±52.80 ±0.92 ±10.37

Stopping

Criteria

(grad/loss/field

map/max iter)

9/3/0/8 0/20/0/0 0/0/20/0

Func. Evals
463.30 9.40 37.05

±54.12 ±0.92 ±10.37

Hessian Evals N/A
92.40 437.50

±10.08 ±140.30

Inner Iterations N/A
10.0000 11.0269

±0.00 ±1.02

Loss Value
2.56e07 2.56e07 3.10e07

±7.72e06 ±7.69e06 ±8.56e06

7T

Iterations
405.00 7.50 56.75

±65.61 ±0.87 ±17.01

Stopping

Criteria

(grad/loss/field

map)

14/3/0/3 0/20/0/0 0/0/20/0

Func. Evals
415.35 8.50 57.75

±68.00 ±0.87 ±17.01

Hessian Evals N/A
82.25 339.05

±9.15 ±101.55

Inner Iterations N/A
9.9722 4.9771

±0.12 ±0.08

Loss Value
4.25e07 4.14e07 4.43e07

±2.00e07 ±1.95e07 ±1.95e07

Simulated

Iterations
497.65 20.05 109.35

±5.88 ±1.83 ±64.52

Stopping

Criteria 1/0/0/19 0/18/2/0 0/0/20/0

(grad/loss/field

map)

Func. Evals
532.35 21.05 110.35

±28.27 ±1.83 ±64.52

Hessian Evals N/A
220.55 1872.15

±20.13 ±1417.11

Inner Iterations N/A
10.0000 15.1681

±0.00 ±3.69

Loss Value
6.00e07 6.08e07 6.12e07

±1.41e07 ±1.40e07 ±1.43e07

For each dataset, we report the average and standard deviation number of iterations, count

of stopping criteria used (gradient tolerance/ loss function change tolerance/ field map

change tolerance/ maximum iterations), average and standard deviation number of function

evaluations, average and standard deviation number of Hessian evaluations, average and

standard deviation number of inner iterations, and average and standard deviation loss value.

Gauss-Newton achieves a similar quality of correction with less computation than LBFGS or

ADMM.

Frontiers inNeuroscience 13 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

TABLE 5 The speed and quality of PyHySCO optimization with Gauss-Newton on three di�erent GPUs and a CPU in both single (ûoat 32) and double

(ûoat 64) precision arithmetic.

RTX A6000 Quadro RTX 8000 Titan RTX Intel Xeon E5-4627

(GPU) (GPU) (GPU) (CPU)

Double Single Double Single Double Single Double Single

3T

Runtime (s)
12.7262 9.5750 13.4800 7.8854 13.1178 7.5820 34.3328 27.1305

±0.68 ±0.58 ±1.23 ±0.91 ±1.31 ±0.98 ±4.26 ±3.09

Optimization 6.7947 4.1562 7.0133 2.1065 6.7862 1.9327 27.8682 23.2062

Time (s) ±0.51 ±0.39 ±1.25 ±0.90 ±1.25 ±0.62 ±3.10 ±3.07

Relative 82.7486 82.7393 82.7486 82.7393 82.7486 82.7393 82.486 82.7393

Improvement ±3.49 ±3.50 ±3.49 ±3.50 ±3.49 ±3.50 ±3.49 ±3.50

Loss Value
2.560e07 2.562e07 2.560e07 2.562e07 2.560e07 2.562e07 2.560e07 2.562e07

±7.66e06 ±7.69e06 ±7.66e06 ±7.69e06 ±7.66e06 ±7.69e06 ±7.66e06 ±7.69e06

Smoothness 3.848e04 3.851e04 3.848e04 3.851e04 3.848e04 3.851e04 3.848e04 3.851e04

Reg. Value ±1.21e04 ±1.21e04 ±1.21e04 ±1.21e04 ±1.21e04 ±1.21e04 ±1.21e04 ±1.21e04

7T

Runtime (s)
17.2494 11.9028 21.0102 9.3140 18.6522 9.4680 82.1059 33.4020

±0.94 ±0.44 ±6.31 ±0.99 ±2.84 ±2.19 ±7.64 ±4.15

Optimization 10.1298 5.7460 11.9937 2.2579 10.9617 2.9775 72.1380 28.5530

Time (s) ±0.95 ±0.42 ±3.55 ±0.64 ±2.85 ±2.11 ±6.82 ±4.09

Relative 85.7618 85.7641 85.7618 85.7642 85.7618 85.7642 85.7618 85.7638

Improvement ±5.10 ±5.10 ±5.10 ±5.10 ±5.10 ±5.10 ±5.10 ±5.10

Loss Value
4.143e07 4.140e07 4.143e07 4.140e07 4.143e07 4.140e07 4.1432e07 4.1410e07

±1.95e07 ±1.95e07 ±1.95e07 ±1.95e07 ±1.95e07 ±1.95e07 ±1.95e07 ±1.95e07

Smoothness 5.634e04 5.628e04 5.634e04 5.628e04 5.634e04 5.628e04 5.634e04 5.629e04

Reg. Value ±1.91e04 ±1.91e04 ±1.91e04 ±1.91e04 ±1.91e04 ±1.91e04 ±1.91e04 ±1.91e04

Sim.

Runtime (s)
106.92 50.26 127.38 24.17 125.25 23.60 851.18 417.56

±11.42 ±3.52 ±13.42 ±1.31 ±14.87 ±3.78 ±107.41 ±55.33

Optimization 89.53 35.53 104.47 7.93 105.78 9.32 827.06 402.04

Time (s) ±11.56 ±4.13 ±13.88 ±0.92 ±14.84 ±3.81 ±108.91 ±56.58

Relative 76.27 76.28 76.27 76.28 76.27 76.28 76.27 76.28

Improvement ±5.18 ±5.18 ±5.18 ±5.18 ±5.18 ±5.18 ±5.18 ±5.18

Loss Value
6.07e07 6.08e07 6.07e07 6.08e07 6.07e07 6.08e07 6.07e07 6.08e07

±1.39e07 ±1.40e07 ±1.39e07 ±1.40e07 ±1.39e07 ±1.40e07 ±1.39e07 ±1.40e07

Smoothness 9.53e04 9.56e04 9.53e04 9.56e04 9.53e04 9.56e04 9.54e04 9.56e04

Reg. Value ±2.71e04 ±2.72e04 ±2.71e04 ±2.73e04 ±2.71e04 ±2.73e04 ±2.71e04 ±2.73e04

The relative improvement, loss value, and smoothness value are evaluated in double precision in all cases. The results are shown for both 3T and 7T data from the Human Connectome Project

(Van Essen et al., 2012) and simulated data. There is a great speedup when calculating in single precision without losing the quality of correction, and the speedup of PyHySCO using a GPU is

clear compared to the CPU.

et al., 2013) both at initialization and after optimization with

Gauss-Newton. The multi-level optimization of HySCO solves

the optimization problem on a coarse grid and uses the result

as the initialization of optimization on a finer grid, continuing

until the original image resolution is reached; this follows the

guidelines of Modersitzki (2009, Chapter 9.4). In our experiments,

we use five levels of initialization. The multi-level initialization

gives a field map that is smooth by construction and improves the

distance reduction as the grid becomes more fine. The field map

from the PyHySCO Chang and Fitzpatrick initialization drastically

lowers the relative error between the input images, a relative

improvement of over 96% on real data and 94% on simulated

data. However, the parallelized one-dimensional computations

lead to a lack of smoothness in the resulting field map. The

smoothness can be improved by applying a Gaussian blur to

the field map from the Chang and Fitzpatrick initialization. This

field map is smoother after initialization and gives a smoother

field map after optimization. These results are comparable in

Frontiers inNeuroscience 14 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

relative error and smoothness to the field map optimized using

the multilevel initialization of HySCO. Our one-dimensional

parallelized initialization, even if adding additional Gaussian blur, is

much faster to compute than the multilevel initial field map, given

the ability to parallelize computations. PyHySCO initialization

on a GPU with the additional blur takes less than 1 s on real

data and >3 s on simulated data. In comparison, the multi-

level initialization on a CPU takes 30–40 s on real data and over

2 min on simulated data. The mean and standard deviation of

relative improvement, smoothness value, loss function value, and

runtime are reported in Table 2 across all datasets. The examples

of these field maps before and after optimization are shown

in Figure 6.

3.4 A comparison of PyHySCO Optimizers
on GPU and CPU

We compare the results of PyHySCO using GN-PCG, ADMM,

and LBFGS on both GPU and CPU architectures. Table 3 shows

the runtimes and correction quality of each optimizer on CPU and

GPU. All optimizers achieve a similar correction quality regarding a

relative improvement of image distance, loss value, and smoothness

regularizer value. However, GN-PCG has faster runtime on both

CPU and GPU. On real data, GN-PCG took 10–13 s on average

on GPU and 27–31 s on average on CPU, while ADMM took

11–15 s on GPU and 98–158 s on CPU, and LBFGS took 23–36

s on GPU and 104–141 s on CPU. Table 4 shows optimization

metrics, including the number of iterations, stopping criteria,

number of function evaluations, number of Hessian evaluations,

and number of inner iterations if applicable. Consistent with its

faster runtime, optimization with GN-PCG achieves a similar loss

value with less computation as measured by objective function and

Hessian evaluations. Figures 7–9 show the field map and corrected

images of each optimizer for one example subject from each

dataset. The field maps and corrected images are visually similar

across optimizers.

3.5 Single precision vs. double precision on
GPU and CPU

We show the validity of PyHySCO using the Chang and

Fitzpatrick initialization and GN-PCG in both double precision

(64 bit) and single precision (32 bit) arithmetic on three

different GPU architectures and a CPU architecture. These

results are reported in Table 5. Since GPU architectures are

optimized for the speed of lower precision calculations, we see

a significant speedup when using single precision instead of

double precision. However, there is a risk of lower accuracy

or propagating errors when performing calculations in single

precision, as it uses fewer bits to approximate floating point values.

Empirically, we observed that the quality of our results is not

significantly impacted by using single-precision arithmetic. We

also observed consistent results across different GPU architectures:

a Quadro RTX 8000, Titan RTX, and RTX A6000. Because

PyHySCO is optimized to parallelize computations on GPU, the

TABLE 6 The speed and quality of optimization for TOPUP, HySCO, and

PyHySCO.

PyHySCO HySCO TOPUP

3T

Runtime (s)
10.37 65.06 4022.56

±0.87 ±8.64 ±73.11

Relative 82.74 78.98 54.36

Improvement ±3.50 ±6.39 ±17.08

Loss Value
2.56e07 4.13e07

N/A

±7.69e06 ±1.38e07

Smoothness 3.85e04 7.84e04
N/A

Reg. Value ±1.21e04 ±3.01e04

7T

Runtime (s)
13.62 120.92 3713.51

±2.38 ±19.61 ±63.04

Relative 85.76 80.43 74.51

Improvement ±5.10 ±10.46 ±9.13

Loss Value
4.14e07 5.87e07

N/A

±1.95e07 ±2.48e07

Smoothness 5.63e04 8.03e04
N/A

Reg. Value ±1.91e04 ±3.68e04

Simulated

Runtime (s)
55.26 757.65 30854.18

±3.86 ±96.26 ±568.11

Relative 76.28 69.53 17.56

Improvement ±5.18 ±5.10 ±28.14

Loss 6.08e07 6.07e07
N/A

Value ±1.40e07 ±1.51e07

Smoothness 9.56e04 6.10e04
N/A

Reg. Value ±2.72e04 ±1.60e04

Relative

Error

14.48 19.70 16.37

(Field Map) ±7.71 ±11.70 ±3.60

SSIM 91.80 86.91 80.15

(Field Map) ±0.03 ±0.05 ±0.08

SSIM 99.87 99.95 99.96

(T2w Image) ±0.0017 ±0.0003 ±0.0002

PyHySCO uses Gauss Newton and optimizes in single precision onGPU.HySCO and TOPUP

optimize on CPU using the default configurations. The results are reported for 3T and 7T data

from the Human Connectome Project (Van Essen et al., 2012) and the simulated distortion

data.

runtimes are faster on the GPUs compared to the Intel Xeon

E5-4627 CPU.

3.6 A comparison of PyHySCO with HySCO
and TOPUP

We compare the runtime, relative improvement, and resulting

images after correction using PyHySCO to those given by TOPUP

(Andersson et al., 2003) as implemented in FSL (Smith et al., 2004)

Frontiers inNeuroscience 15 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

FIGURE 7

Visualization of resulting ûeld maps and images for one subject from the 3T dataset (Subject ID: 211619). The ûrst column in the top half shows the

input data. The remaining columns show the results from PyHySCO using LBFGS, GN-PCG, and ADMM compared with TOPUP and HySCO. For each

optimization, the top two rows are the pair of images with opposite phase encoding directions, and the third row shows the absolute di�erence (with

inverted color) between the pair of images. The bottom row shows the ûeld maps estimated for each method. PyHySCO achieves similar image

distance and ûeld map smoothness improvements in less computational time.

Frontiers inNeuroscience 16 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

FIGURE 8

Visualization of resulting ûeld maps and images for one subject from the 7T dataset (Subject ID: 825048). The ûrst column in the top half shows the

input data. The remaining columns show the results from PyHySCO using LBFGS, GN-PCG, and ADMM compared with TOPUP and HySCO. For each

optimization, the top two rows are the pair of images with opposite phase encoding directions, and the third row shows the absolute di�erence (with

inverted color) between the pair of images. The bottom row shows the ûeld maps estimated for each method. PyHySCO achieves similar image

distance and ûeld map smoothness improvements in less computational time.

Frontiers inNeuroscience 17 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

FIGURE 9

Visualization of resulting ûeld maps and images for one subject from the simulated dataset (Subject ID: 105014). The ûrst column in the top half

shows the input data and the second column shows the ground truth T2w image and ûeld map. The remaining columns show the results from

PyHySCO using LBFGS, GN-PCG, and ADMM, TOPUP, and HySCO. For each optimization, the top two rows are the pair of images with opposite

phase encoding directions, and the third row shows the absolute di�erence (with inverted color) between the pair of images. The bottom row shows

the ûeld maps estimated for each method. PyHySCO achieves similar image distance and ûeld map smoothness improvements in less computational

time.

Frontiers inNeuroscience 18 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

using the default configuration,2 and HySCO (Ruthotto et al., 2013)

as implemented in the ACID toolbox for SPM using the default

parameters. HySCO is also based on the optimization problem

Equation (6), while TOPUP uses a slightly different objective

function. This makes it difficult to compute the smoothness and

loss function values for TOPUP.

Table 6 reports the runtime and correction quality for

PyHySCO using GN-PCG, HySCO, and TOPUP. On real 3T

and 7T data, PyHySCO achieves lower loss and higher relative

improvement between corrected images than HySCO and higher

relative improvement than TOPUP. The runtime on CPU for

real data is 1–2 min for HySCO and over 1 h for TOPUP, while

PyHySCO on GPU has runtimes of 10–13 s. For the simulated

dataset, PyHySCO requires an average of 1 min on GPU, HySCO

requires an average of 12.6 min on CPU, and TOPUP requires an

average of 8.5 h on CPU. Using the ground truth field maps from

the simulated dataset, PyHySCO achieves the lowest average field

map relative error of 14.48% compared to 19.70% for HySCO and

16.36% for TOPUP. PyHySCO also achieves the highest structural

similarity (SSIM;Wang et al., 2004) with the ground truth fieldmap

of 91.80 compared to 86.91 for HySCO and 80.15 for TOPUP. All

three methods average a structural similarity of over 99 with the

ground truth T2-weighted image. Figures 7–9 show the field map

and corrected images for one example subject from each dataset.

The results of the methods are similar, and the resulting field maps

are comparable to those of the existing tools, HySCO and TOPUP,

while PyHySCO is considerably faster.

4 Discussion

The PyHySCO toolbox accurately and robustly corrects

susceptibility artifacts in spin-echo EPIs acquired using RGP

acquisition. In numerous experiments conducted with real and

simulated data, PyHySCO achieves similar correction quality to

leading RGP toolboxes, TOPUP and HySCO, while having a time-

to-solution in the order of timings reported for pre-trained deep

learning approaches. Compared to the latter class of methods, it

is important to highlight that PyHySCO does not require any

training and is based on a physical distortion model, which helps

generalize to different scanners, image acquisition parameters,

and anatomies.

PyHySCO’s modular design encourages improvements and

contributions. The toolbox is based on PyTorch, which provides

hardware support and other functionality, including automatic

differentiation. In our experiments, correction quality is hardware

and precision-independent, but a considerable speedup is realized

on GPUs with single precision (32-bit) arithmetic. The reduced

computational time is mostly attributed to the effective use of

multithreading and parallelism on modern hardware.

PyHySCO uses the one-dimensional correction of Chang and

Fitzpatrick (1992) to initialize the non-linear optimization.

In our numerical experiments, the scheme is fast and

2 The default TOPUP conûguration performs upsampling requiring the

dimensions to be a multiple of 2. The conûguration for TOPUP with images

of the 3T data set does not perform upsampling due to the odd number of

slices in the image volumes.

effective and we provide further insights through optimal

transport theory. The initial estimate of the field map already

substantially reduces the distance between the images with

opposite phase encoding directions. In our experiments, the

non-smoothness of the initial field map can be corrected by

applying a Gaussian blur and a few optimization steps to the full

image resolution.

The three optimization algorithms of PyHySCO achieve

comparable correction results but have different computational

costs. The ADMM algorithm takes advantage of the separable

structure of the optimization problem to enhance parallelism

but requires more iterations than GN-PCG. While this results

in longer runtimes in our examples, the method could be

more scalable for datasets of considerably higher resolution.

For the relatively standard image sizes of about 200 × 200 ×

132, the default GN-PCG algorithm is most effective. Both

customized optimization algorithms are more efficient than our

comparison, LBFGS.

PyHySCO can be interfaced directly in Python or run in

batch mode via the command line. The latter makes it a drop-in

replacement for other RGP tools in MRI post-processing pipelines.

The speed of PyHySCO relative to the existing tools makes

it uniquely positioned to enable online distortion correction in

applications where real-time decisions are necessary. For example,

the speed of EPI acquisition along with the speed of PyHySCO

distortion correction enables real-time distortion-free imaging

useful for intra-operative guidance (see, e.g., Hall and Truwit, 2008;

Roder et al., 2021; Yang et al., 2022). Additionally, PyHySCO can

play a crucial role in the furthering of emerging fields such as fetal

and neonatal imaging (see, e.g., Malamateniou et al., 2013; Afacan

et al., 2019; Christiaens et al., 2019). In this application, EPI is

popular for reducing the effects of uncontrollable subject motion,

and fast distortion correction using PyHySCO can enable faster

intervention if necessary.

5 Conclusion

PyHySCO offers RGP-based correction with high accuracy

at a cost similar to pre-trained learning-based methods. Our

implementation is based on PyTorch and makes efficient use

of modern hardware accelerators such as GPUs. We show the

accuracy and efficiency of PyHySCO on real and simulated three-

dimensional volumes of various field strengths and phase encoding

axes. Our results show that PyHySCO achieves a correction of

comparable quality to leading physics-based methods in a fraction

of the time.

Data availability statement

Publicly available datasets were analyzed in this study.

This data can be found at: https://www.humanconnectome.org.

The source code, examples, and documentation for PyHySCO

are available at the following repository: https://github.com/

EmoryMLIP/PyHySCO. The Python package for PyHySCO can be

installed via pip and be downloaded from: https://pypi.org/project/

PyHySCO/.

Frontiers inNeuroscience 19 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

Ethics statement

Ethical approval was not required for the study involving

humans in accordance with the local legislation and institutional

requirements.Written informed consent to participate in this study

was not required from the participants or the participants’ legal

guardians/next of kin in accordance with the national legislation

and the institutional requirements.

Author contributions

AJ: Investigation, Software, Validation, Visualization,

Writing—original draft. LR: Investigation, Software,

Writing—review & editing.

Funding

The author(s) declare that financial support was received for

the research, authorship, and/or publication of this article. AJ was

supported by the National Science Foundation Graduate Research

Fellowship under Grant No. 1937971. The work was also supported

in part by the NSF awards DMS 1751636 and DMS 2038118.

Acknowledgments

We used an AI-enabled spell and grammar checker to improve

the writing in the manuscript.

Conûict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher9s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Afacan, O., Estroff, J. A., Yang, E., Barnewolt, C. E., Connolly, S. A., Parad, R. B.,
et al. (2019). Fetal echoplanar imaging: promises and challenges. Top. Magnet. Reson.
Imag. 28, 245–254. doi: 10.1097/RMR.0000000000000219

Alkilani, A. Z., Çukur, T., and Saritas, E. U. (2023). FD-Net: an unsupervised deep
forward-distortion model for susceptibility artifact correction in EPI. arXiv preprint
arXiv:2303.10436. doi: 10.48550/arXiv.2303.10436

Andersson, J. L. R., Skare, S., and Ashburner, J. (2003). How to correct susceptibility
distortions in spin-echo echo-planar images: application to diffusion tensor imaging.
NeuroImage 20, 870–888. doi: 10.1016/S1053-8119(03)00336-7

Antun, V., Renna, F., Poon, C., Adcock, B., and Hansen, A. C. (2020). On
instabilities of deep learning in image reconstruction and the potential costs of AI. Proc.
Nat. Acad. Sci. U. S. A. 117, 30088–30095. doi: 10.1073/pnas.1907377117

Bowtell, R., McIntyre, D., Commandre, M., Glover, P., and Mansfield, P. (1994).
Correction of geometric distortion in echo planar images. Soc. Magn. Res. Abstr. 2:411.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011). Distributed
optimization and statistical learning via the alternating directionmethod ofmultipliers.
Found. Trends Machine Learn. 3, 1–122. doi: 10.1561/2200000016

Cai, L. Y., Yang, Q., Hansen, C. B., Nath, V., Ramadass, K., Johnson, G. W.,
et al. (2021). Prequal: an automated pipeline for integrated preprocessing and quality
assurance of diffusion weighted MRI images. Magnet. Reson. Med. 86, 456–470.
doi: 10.1002/mrm.28678

Chang, H., and Fitzpatrick, J. M. (1992). A technique for accurate magnetic-
resonance-imaging in the presence of field inhomogeneities. Med. Imag. IEEE Trans.
11, 319–329.

Chen, Z., Pawar, K., Ekanayake, M., Pain, C., Zhong, S., and Egan, G. F. (2022). Deep
learning for image enhancement and correction in magnetic resonance imaging–state-
of-the-art and challenges. J. Digit. Imag. 9, 1–27. doi: 10.1007/s10278-022-00721-9

Christiaens, D., Slator, P. J., Cordero-Grande, L., Price, A. N., Deprez,
M., Alexander, D. C., et al. (2019). In utero diffusion MRI: challenges,
advances, and applications. Top. Magnet. Reson. Imag. 28, 255–264.
doi: 10.1097/RMR.0000000000000211

Clark, I. A., Callaghan, M. F., Weiskopf, N., Maguire, E. A., and Mohammadi, S.
(2021). Reducing susceptibility distortion related image blurring in diffusion MRI EPI
data. Front. Neurosci. 15:706473. doi: 10.3389/fnins.2021.706473

Cooley, J. W., Lewis, P. A., and Welch, P. D. (1969). The fast fourier transform and
its applications. IEEE Trans. Educ. 12, 27–34.

Dávid, G., Fricke, B., Oeschger, J. M., Ruthotto, L., Fritz, F. J., Ohana, O., et
al. (2024). Acid: a comprehensive toolbox for image processing and modeling of

brain, spinal cord, and ex vivo diffusion MRI data. BioRxiv. doi: 10.1101/2023.10.13.
562027

Duong, S., Phung, S. L., Bouzerdoum, A., Taylor, H. B., Puckett, A., and Schira,
M. M. (2020a). Susceptibility artifact correction for sub-millimeter fMRI using inverse
phase encoding registration and T1 weighted regularization. J. Neurosci. Methods
336:108625. doi: 10.1016/j.jneumeth.2020.108625

Duong, S. T., Phung, S. L., Bouzerdoum, A., and Schira, M. M. (2020b).
An unsupervised deep learning technique for susceptibility artifact correction
in reversed phase-encoding EPI images. Magnet. Reson. Imag. 71, 1–10.
doi: 10.1016/j.mri.2020.04.004

Duong, S. T. M., Phung, S. L., Bouzerdoum, A., Ang, S. P., and Schira, M. M.
(2021). Correcting susceptibility artifacts of MRI sensors in brain scanning: a 3D
anatomy-guided deep learning approach. Sensors 21:72314. doi: 10.3390/s21072314

Esteban, O., Daducci, A., Caruyer, E., O’Brien, K., Ledesma-Carbayo, M. J.,
Bach-Cuadra, M., et al. (2014). “Simulation-based evaluation of susceptibility
distortion correction methods in diffusion MRI for connectivity analysis,” in 2014
IEEE 11th International Symposium on Biomedical Imaging (ISBI) (Beijing: IEEE),
738–741.

Graham, M. S., Drobnjak, I., Jenkinson, M., and Zhang, H. (2017). Quantitative
assessment of the susceptibility artefact and its interaction with motion in diffusion
MRI. PLoS ONE 12:e0185647. doi: 10.1371/journal.pone.0185647

Gu, X., and Eklund, A. (2019). Evaluation of six phase encoding based susceptibility
distortion correction methods for diffusion MRI. Front. Neuroinformat. 13:76.
doi: 10.3389/fninf.2019.00076

Hall, W. A., and Truwit, C. L. (2008). Intraoperative MR-guided neurosurgery. J.
Magnet. Reson. Imag. 27, 368–375. doi: 10.1002/jmri.21273

Hansen, P., Nagy, J., and O’Leary, D. (2006). Deblurring images: matrices, spectra,
and filtering. Fundament. Algorit. 2006:74. doi: 10.1137/1.9780898718874

Hestenes, M. R., and Stiefel, E. (1952). Methods of conjugate gradients for solving
linear systems. J. Res. Nat. Bur. Stand. 49, 409–436.

Holland, D., Kuperman, J. M., and Dale, A. M. (2010). Efficient correction of
inhomogeneous static magnetic field-induced distortion in echo planar imaging.
NeuroImage 50, 175–183. doi: 10.1016/j.neuroimage.2009.11.044

Hu, Z., Wang, Y., Zhang, Z., Zhang, J., Zhang, H., Guo, C., et al. (2020). Distortion
correction of single-shot EPI enabled by deep-learning. NeuroImage 221, 117–170.
doi: 10.1016/j.neuroimage.2020.117170

Irfanoglu, M. O., Modi, P., Nayak, A., Hutchinson, E. B., Sarlls, J., and Pierpaoli, C.
(2015). Dr-buddi (diffeomorphic registration for blip-up blip-down diffusion imaging)

Frontiers inNeuroscience 20 frontiersin.org

Julian and Ruthotto 10.3389/fnins.2024.1406821

method for correcting echo planar imaging distortions. Neuroimage 106, 284–299.
doi: 10.1016/j.neuroimage.2014.11.042

Liu, D. C., and Nocedal, J. (1989). On the limited memory BFGS method for large
scale optimization.Math. Progr. 45, 503–528.

Macdonald, J., and Ruthotto, L. (2017). Improved susceptibility artifact correction
of echo planarMRI using the alternating directionmethod ofmultipliers. J. Math. Imag.
Vis. 60, 268–282. doi: 10.1007/s10851-017-0757-x

Malamateniou, C., Malik, S., Counsell, S., Allsop, J., McGuinness, A., Hayat, T., et al.
(2013). Motion-compensation techniques in neonatal and fetal MR imaging. Am. J.
Neuroradiol. 34, 1124–1136. doi: 10.3174/ajnr.A3128

Modersitzki, J. (2009). FAIR: Flexible Algorithms for Image Registration, Vol. 6.
Philadelphia, PA: Society for Industrial and Applied Mathematics.

Nocedal, J., and Wright, S. J. (1999). Numerical Optimization. Berlin: Springer.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“Pytorch: an imperative style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems, eds. H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett (Red Hook, NY: Curran Associates, Inc.), 32.

Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., and Nichols, T. E. (2007).
Statistical Parametric Mapping: The Analysis of Functional Brain Images. Cambridge,
MA: Elsevier.

Peyré, G., and Cuturi, M. (2017). Computational Optimal Transport. Center for
Research in Economics and Statistics Working Papers, 2017-86. Hanover, MA: Now
Publishers.

Roder, C., Haas, P., Tatagiba, M., Ernemann, U., and Bender, B. (2021). Technical
limitations and pitfalls of diffusion-weighted imaging in intraoperative high-field MRI.
Neurosurg. Rev. 44, 327–334. doi: 10.1007/s10143-019-01206-0

Ruthotto, L., Kugel, H., Olesch, J., Fischer, B., Modersitzki, J., Burger, M., et al.
(2012). Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic
resonance images. Phys. Med. Biol. 57, 5715–5731. doi: 10.1088/0031-9155/57/
18/5715

Ruthotto, L., Mohammadi, S., Heck, C., Modersitzki, J., and Weiskopf, N. (2013).
“Hyperelastic susceptibility artifact correction of DTI in SPM,” in Bildverarbeitung fuer
die Medizin, eds. H.-P. Meinzer, T. M. Deserno, H. Handels, and T. Tolxdorff (Berlin;
Heidelberg: Springer), 344–349.

Saad, Y. (2003). IterativeMethods for Sparse Linear Systems. Philadelphia, PA: SIAM.

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens,
T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural
MR image analysis and implementation as FSL. Neuroimage 23, S208–S219.
doi: 10.1016/j.neuroimage.2004.07.051

Snoussi, H., Cohen-Adad, J., Commowick, O., Combes, B., Bannier, E., Leguy, S., et
al. (2021). Evaluation of distortion correction methods in diffusion MRI of the spinal
cord. arXiv [Preprint]. arXiv:2108.03817.

Stehling,M. K., Turner, R., andMansfield, P. (1991). Echo-planar imaging:magnetic
resonance imaging in a fraction of a second. Science 254, 43–50.

Tax, C. M., Bastiani, M., Veraart, J., Garyfallidis, E., and Irfanoglu, M. O. (2022).
What’s new and what’s next in diffusion mri preprocessing. NeuroImage 249:118830.
doi: 10.1016/j.neuroimage.2021.118830

Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E., Bucholz,
R., et al. (2012). The human connectome project: a data acquisition perspective.
Neuroimage 62, 2222–2231. doi: 10.1016/j.neuroimage.2012.02.018

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality
assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13,
600–612. doi: 10.1109/TIP.2003.819861

Wu, M., Chang, L.-C., Walker, L., Lemaitre, H., Barnett, A. S., Marenco, S., et al.
(2008). “Comparison of EPI distortion correction methods in diffusion tensor MRI
using a novel framework,” in International Conference on Medical Image Computing
and Computer-Assisted Intervention (Berlin: Springer), 321–329.

Yang, J. Y.-M., Chen, J., Alexander, B., Schilling, K., Kean,M.,Wray, A., et al. (2022).
Assessment of intraoperative diffusion EPI distortion and its impact on estimation of
supratentorial white matter tract positions in pediatric epilepsy surgery. NeuroImage
35:103097. doi: 10.1016/j.nicl.2022.103097

Zahneisen, B., Aksoy, M., Maclaren, J., Wuerslin, C., and Bammer, R.
(2017). Extended hybrid-space sense for EPI: off-resonance and eddy current
corrected joint interleaved blip-up/down reconstruction. NeuroImage 153, 97–108.
doi: 10.1016/j.neuroimage.2017.03.052

Zahneisen, B., Baeumler, K., Zaharchuk, G., Fleischmann, D., and Zeineh,
M. (2020). Deep flow-net for EPI distortion estimation. Neuroimage 217:116886.
doi: 10.1016/j.neuroimage.2020.116886

Frontiers inNeuroscience 21 frontiersin.org

	PyHySCO: GPU-enabled susceptibility artifact distortion correction in seconds
	1 Introduction
	2 Methods
	2.1 Mathematical Formulation
	2.2 Parallelized one-dimensional initialization
	2.3 Optimization Algorithms
	2.3.1 GN-PCG: Gauss-Newton with Jacobi-Preconditioned Conjugate Gradient solver
	2.3.2 Alternating Direction Method of Multipliers (ADMM)
	2.3.3 LBFGS

	2.4 Coding structure of PyHySCO
	2.4.1 Data storage and the image model
	2.4.2 The correction model
	2.4.3 Regularization terms
	2.4.4 Hessian and preconditioning
	2.4.5 Initialization
	2.4.6 Optimization
	2.4.7 Image correction

	2.5 PyHySCO usage and workflow
	3 Results
	3.1 Validation datasets
	3.2 Metrics
	3.3 Validity of Chang and Fitzpatrick initialization
	3.4 A comparison of PyHySCO Optimizers on GPU and CPU
	3.5 Single precision vs. double precision on GPU and CPU
	3.6 A comparison of PyHySCO with HySCO and TOPUP

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note

	References

