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Abstract

This short, self-contained article seeks to introduce
and survey continuous-time deep learning approaches
that are based on neural ordinary differential equa-
tions (neural ODEs). It primarily targets readers
familiar with ordinary and partial differential equa-
tions and their analysis who are curious to see their
role in machine learning. Using three examples from
machine learning and applied mathematics, we will
see how neural ODEs can provide new insights into
deep learning and a foundation for more efficient al-
gorithms.

Deep learning has been behind incredible break-
throughs, such as voice recognition, image classifica-
tion, and text generation. While these successes are
undeniable, our mathematical understanding of deep
learning is still developing. More rigorous insight is
needed to overcome fundamental challenges, includ-
ing the interpretability, robustness, and bias of deep
learning, and lower its environmental and computa-
tional costs.
Let us define deep learning informally as machine

learning methods that use feed-forward neural net-
works with many (i.e., more than a handful) lay-
ers. While most traditional approaches use a finite
number of layers, we will focus on more recent ap-
proaches that conceptually use infinitely many lay-
ers. We will explain those approaches by defining
differential equations whose dynamics are modeled by
trainable neural network components and whose time
roughly corresponds to the depth of the network.
Using three examples from machine learning and

applied mathematics, we will see how continuous-
depth neural network architectures, defined by ordi-
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nary differential equations (ODEs), can provide new
insights into deep learning and a foundation for more
efficient algorithms. Even though many deep learn-
ing approaches used in practice today do not rely on
differential equations, I find many opportunities for
mathematical research in this area. As we shall see,
phrasing the problem continuously in time enables
one to borrow numerical techniques and analysis to
gain more insight into deep learning, design new ap-
proaches, and crack open the black box of deep learn-
ing. We shall also see how neural ODEs can approx-
imate solutions to high-dimensional, nonlinear opti-
mal control problems.

This article targets readers familiar with ordinary
and partial differential equations and their analysis
and who are curious to see their role in machine
learning. Therefore, rather than drawing a complete
picture of state-of-the-art machine learning, which is
shooting at moving targets, we seek to provide foun-
dational insights and motivate further study. To this
end, we will inevitably take shortcuts and sacrifice
being up-to-date for clarity. Even though designing
efficient numerical algorithms is critical to translat-
ing the theoretical advantages of the continuous-time
viewpoint into practical learning approaches, we will
keep this topic for another day and provide some ref-
erences for the interested reader.

While giving a complete picture of the research ac-
tivity at this interface between differential equations
and deep learning is beyond the scope of this paper,
we seek to capture the key ideas and provide a head
start to those eager to learn more. This paper aims
to illustrate the foundations and some of the benefits
of continuous-time deep learning using a few hand-
picked examples related to the author’s activity in
the area. This article is an unedited and extended
version of an article under review at AMS Notices
and contains a few additional references.
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Deep Neural Networks in Con-

tinuous Time

Before we begin, let us introduce the main mathe-
matical notation of deep learning for this paper and
motivate continuous-time architectures.
Throughout this paper, F¹ : Rn → R

m denotes a
neural network with the subscript ¹ ∈ Rp represent-
ing its parameters, often called weights. We will see
that there are different ways of defining F¹. For ex-
ample, a common choice is the L-layer feed-forward
network that maps the input x0 = x ∈ R

n to the
output F¹(x) = xL via the layers

xl+1 = Ãℓ (Wlxl + bl) , ∀l = 0, . . . , L− 1. (1)

Here, the activation functions Ãl are applied element-
wise, and the parameters of the lth layer, ¹l, consist
of the weight matrix Wl and the weight vector bl. To
define F¹, one must choose the number of layers, acti-
vation functions, and the sizes of the weight matrices
and vectors, collectively called hyperparameters. Ex-
cept for the number of columns in W0, which must be
n, and the number of rows inWL−1, bL−1, which must
be m, the remaining sizes can be adjusted arbitrarily.
With an effective way to choose hyperparameters

and identify the model weights, deep networks are
perhaps the most efficient high-dimensional function
approximators today. Their versatility has enabled
their use across various tasks. For example, neu-
ral networks have been used in supervised learning
to fit given inputs to corresponding outputs, in rein-
forcement learning to predict optimal actions, and in
generative modeling to match simple latent distribu-
tions to a complex distribution available only through
samples. The success of neural networks across these
tasks is rooted in their approximation properties. For
example, it can be shown that networks with one hid-
den layer are universal approximators. Since we will
use these networks as an important building block
later, let us define them as

f¹(x) = W1 tanh(W0x+ b0) + b1, (2)

whose parameter, ¹, consists of the weight matri-
ces W0 ∈ R

k×n,W1 ∈ R
m×k, weight vectors b0 ∈

R
k, b1 ∈ Rm, and whose activation is the hyperbolic

tangent function. In other words, for every ϵ > 0,
there is a width, k, such that they approximate con-
tinuous functions to a given accuracy ϵ > 0. Since
the width needed to achieve the desired accuracy can
be impractically large, most applications today prefer

narrower but deeper architectures. This is supported
by theoretical results such as in [KL19], which show
that as L grows, the model becomes more expressive
and can be a universal approximator even with a fi-
nite width.

Increasing the depth of neural networks such as the
one in (1) to realize approximation results is easier
said than done. In practice, it often becomes more
and more challenging to identify model weights that
accurately approximate the function of interest. For
example, it is difficult to approximate the identity
function with a network like (1).

Residual neural networks (ResNets) provide an al-
ternative way to define very deep networks and con-
siderably improved the state-of-the-art in computer
vision applications recently [HZRS1603]. Their key
innovation is often called a skip connection that
turns, for example, (2) into the residual layer

r¹(x) = x+ f¹(x). (3)

Such a ResNet layer can learn the identity map by
the trivial choice f¹ ≡ 0. Consequently, increasing
the network depth by adding residual layers often
improves the approximation result since the weights
of the new layers can be chosen to approximate the
identity.

One way to motivate deep neural networks that are
continuous in time is to view r¹(x) in (3) as a forward
Euler approximation of z(1) where z solves the initial
value problem

d

dt
z = f¹(t)(z), t ∈ (0, 1], z(0) = x. (4)

Here, t is an artificial time, and with the notation
¹(t), we seek to suggest that the weights can be
modeled as functions of time; see [E1703, HR17].
This viewpoint was popularized in the machine learn-
ing community by the work [CRBD18], which also
coined the term Neural ODEs and demonstrated sev-
eral new use cases. It is important to remember
that ResNets and Neural ODEs are different: one
is discrete, and the other is continuous. Their rela-
tion has been discussed and analyzed in more detail
in [MPP+20, SAP22]. We also note that when the
features, x, represent functions (e.g., voice, image, or
video data) the above model can mimic partial dif-
ferential equations [RH18].
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Supervised Learning in Continu-

ous Time

In this section, we show how using continuous-time
models for supervised learning leads to learning prob-
lems that can be analyzed and solved using tools from
optimal control.
In supervised learning, the goal is to learn F¹ that

approximates the relation between labeled input-
output pairs (x, y) ∼ D assumed to be independent
samples from some data distribution D. Once the
hyperparameters of the network are chosen, learning
the weights ¹ is typically phrased as a minimization
problem, such as

min
¹

E(x,y)∼D[ℓ(F¹(x), y)], (5)

with some loss function ℓ whose definition depends
on the task; for example, for data fitting, one can
consider the regression loss ℓ(v, y) = 1

2∥v − y∥2. The
optimization problem is challenging and interesting in
its own right, and we refer to [BCN16] for an excellent
monograph.
A simple way to define a continuous-time model is

to define F¹ as an affine transformation of the termi-
nal state of a neural ODE, that is,

F¹(x) = Wz(1) + b (6)

d

dt
z = f¹(t)(z), t ∈ (0, 1], z(0) = x. (7)

This model can be interpreted as the affine model
(given by the parameters W and b) applied to the
features evolved by the neural ODE, whose dynamics
are governed by the weight function ¹. Note that the
affine function can be omitted when m = n.
Since neural ODEs as in 6 yield an invertible trans-

formation of the data space, it is unsurprising that
many functions cannot be approximated by the model
in (6). In Figure 1, we demonstrate this in one exam-
ple that can also illustrate the role of the ODE in the
supervised learning problem. Shown here is a classifi-
cation example obtained by minimizing a logistic re-
gression loss function. Each data point x is associated
with a label y, either blue or red. The goal is to learn
a function F¹ corresponding to the training data. The
center column of the figure shows the propagated fea-
tures, which are the z(1) associated with each exam-
ple, as well as the hyperplane parameterized by W, b

that seeks to divide the features. The rightmost col-
umn visualizes the predictions of the classifier. While
the predictions are nearly perfect in both rows, upon

close inspection, the limitations of the ODE shine
through in the top row, and it can be seen that the
network was unable to transform the blue and red
points to become linearly separable, which requires a
non-invertible transformation. The need for that is
alleviated by simply padding the input features with
one zero and embedding them into three dimensions.
This phenomenon and the importance of augmenta-
tion are elaborated in [DDT19].

When F¹ is defined as in (6) the minimization prob-
lem (5) becomes an optimal control problem

min
¹,W,b,z

E(x,y)∼D[ℓ(Wz(1) + b, y)],

s.t.
d

dt
z = f¹(t)(z), t ∈ (0, 1]

z(0) = x.

(8)

The relation between learning ¹ and solving an op-
timal control problem has been used to gain insights
and obtain more efficient algorithms. Universal ap-
proximation results of continuous-time models are de-
rived in [LLS22] by analyzing their flow maps. On
the computational side, it is worth mentioning the
approach in [LCTW18], which uses control theory
to derive new learning algorithms, and [BCE+19],
which studies the continuous and discrete versions
of the learning problem and proposes schemes that
can learn time discretizations and embed other con-
straints.

With an architecture continuous in time, it is also
possible to provide a PDE perspective of the su-
pervised learning problem (8). Following the pre-
sentation in [WYSO20], let us take a macroscopic
viewpoint and consider the space of examples rather
than individual data points. To this end, we model
the neural network predictions as a function u :
R

n × [0, 1] → R
m whose evolution is governed by

the transport PDE with velocity f¹. In doing so, we
formulate supervised learning as a PDE-constrained
optimization problem

min
u,¹,W,b

E(x,y)∼D[ℓ(u(x, 1), y)],

s.t. ∂tu(z, t) + f¹(t)(z)
¦∇u(z, t) = 0

u(z, 0) = Wx+ b.

(9)

To verify that the problems are equivalent, note
that (6) defines the characteristic curves of the trans-
port equation and therefore

u(x, 1) = u(z(0), 1)

= Wz(1) + b

= F¹(x) ≈ y.
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Figure 1: Illustration of a continuous-time model for binary classification. Left column: input features
and labels. Center column: propagated features given by the final state of ODE and hyperplane given by
W, b. Right column: Labels predicted by the neural network. The rows show two instances of the problem
using the original two-dimensional and augmented features (padded with one zero), respectively. While both
models agree closely around the samples, we highlight some errors of the original model that arise from the
restriction to invertible maps in n = 2. This example demonstrates that augmenting overcomes the need
for a non-invertible mapping. Note that the models may not be reliable in regions with no data points, for
example, in the top right corner of the domain.

Since the dimensionality of the feature space is usu-
ally larger than two or three, problem (9) is in-
tractable. However, this viewpoint can provide new
insights and motivate improved learning algorithms.
For example, [WYSO20] showed that adding some
amount of viscosity to the PDE constraint in (9) can
increase the robustness of classifiers to random per-
turbations of the inputs. They also proposed an ef-
ficient method based on the Feyman-Kac formula to
scale to high dimensions. The interpretation also al-
lows us to build bridges to optical flow and image
registration, which may yield further understanding
in the future.

Continuous-Time Generative

Models

This section illustrates the advantages of continuous-
time models for building flexible generative models.
In generative modeling, one learns complicated, of-

ten high-dimensional, data distributions from exam-
ples. The goal typically is to enable sampling and
sometimes includes estimating the densities of given
examples. Rather than mapping input points to cor-
responding output points, as in supervised learning,

a generative model maps a tractable reference distri-
bution to a target distribution. In deep generative
modeling, this mapping is called a generator, and it
is represented by a deep neural network.

While the choice of reference distribution is arbi-
trary (as long as it is easy to sample from), most com-
monly, it is a standard Gaussian. To motivate the use
of continuous-time models, we will set the dimension
of the latent distribution, n, equal to the data dis-
tribution, m. We also assume both distributions are
proper in Rn, which enables the use of normalizing
flows ; see [KPB20] for a recent review. When this as-
sumption is violated (as is common in practice), other
generative models, such as variational autoencoders
or generative adversarial networks, are typically su-
perior; a general introduction to generative modeling
is given in [RH21]. We illustrate the generative mod-
eling problem in Figure 2.

Under these assumptions, the idea of normalizing
flows is to learn a diffeomorphic generator that maps
reference to target; that is, we seek to find an invert-
ible F¹ such that both F¹ and F−1

¹ are continuously
differentiable. Since the reference distribution is a
standard Gaussian, its density, which we denote by
ÃX , is easy to compute. To estimate the density of a
point y from the unknown target distribution under

4



Figure 2: Illustrating the generative modeling prob-
lem. Given samples from the target distribution (rep-
resented by blue dots), we try to find an invertible
transformation (represented by red lines) to a simple
target distribution (a standard Gaussian).

the current generator F¹, we can use the change of
variable formula

ÃY (y) = ÃX(F−1
¹ (y)) · det∇F−1

¹ (y). (10)

Maximum likelihood training aims to find a parame-
ter ¹ that maximizes the expected likelihood over all
the samples. One typically considers minimizing the
expected negative log-likelihood

Ey

[

1

2
∥F−1

¹ (y)∥2 − log det
(

∇F−1
¹ (y)

)

]

, (11)

where the first term is (up to an additive constant)
the negative log-likelihood of the standard normal
ÃX . Even though the functional is convex in F−1

¹ , it is
not convex in ¹ once we approximate it with a neural
network. Therefore, numerical optimization schemes
are required to compute an approximate minimizer.
The most critical question for normalizing flows is

choosing the neural network architecture F¹. For ex-
ample, even though the classical multi-layer percep-
tion (1) can approximate any generator, it is gener-
ally not invertible, so it cannot be trained using (11).
Trading off the expressiveness of the model with in-
vertibility and computational considerations has led
to various approaches. A key idea to build normal-
izing flows is to concatenate finitely many layers de-
signed to have easy-to-compute inverses and Jaco-
bian log determinants. However, this construction
can limit expressiveness, and often, many layers are
needed to approximate mappings in high dimensions.
As discussed in more detail in [RH21], one can some-
times increase the approximation power of F−1

¹ by

sacrificing the computational efficiency of evaluating
the generator F¹ or vice versa.

Approaches that define the generator using a
continuous-time model are known under the term
continuous normalizing flows [GCB+18]. When defin-
ing F¹(x) = z(1) as the terminal state of the neural
ODE (4) and f¹ is sufficiently regular so that the
ODE solution is defined uniquely, we can, at least for-
mally, compute the inverse of the generator by inte-
grating backward in time and defining F−1

¹ (y) = w(0)
where

d

dt
w = f¹(t)(w), t ∈ [0, 1), w(1) = y. (12)

One should always be careful when reversing the time
in an ODE since, in general, it should not be assumed
that the ODE is stable both forward and backward.
However, in practice, using fairly arbitrary neural
networks to represent f¹ has been found to induce
negligible errors.

Let us also comment on the evaluation of the Ja-
cobian log-determinant. When we define F−1

¹ (y) =
w(0) as above, the instantaneous change of variables
formula from [CRBD18, Appendix A] implies

log det(∇F−1
¹ (y)) =

∫ 1

0

tr∇f¹(t)(w)dt. (13)

Numerically integrating the trace of the Jacobian us-
ing quadrature rules is often computationally more
efficient than computing its log determinant. The
computation of the log determinant can also be com-
bined with the numerical ODE solver used to com-
pute the inverse of the generator.
The training of the continuous-time generator F¹

can now be phrased as an optimal control problem

min
¹,w

Ey

[

1

2
∥w(0)∥2 −

∫ 1

0

tr∇f¹(t)(w)dt

]

s.t.
d

dt
w = f¹(t)(w), t ∈ [0, 1),

w(1) = y.

(14)

It turns out that this control problem admits in-
finitely many solutions. As we shall see in the follow-
ing section, it is possible for two different networks

f
(1)
¹ and f

(2)
¹ to yield the same generator but fol-

low different trajectories; impatient readers may skip
ahead to Figure 3. Even though one often cannot
see the differences in the created samples, realizing
the non-uniqueness allows one to bias the search to-
ward generators with more regular trajectories. It
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also bridges generative modeling and optimal trans-
port, which has a rich theory and long history.
The idea of penalizing transport costs has

been investigated and shown practical benefits
in [YK20,FJNO2011,OFLR21]. Since optimal trans-
port in high dimensions is difficult, a tractable ap-
proach is to penalize transport costs, for example, by
adding the functional

POT[w, f¹] =

∫ 1

0

³

2
∥f¹(t)(w)∥

2dt (15)

to the objective function in (14). Here, the parame-
ter ³ balances matching the distributions (for ³ j 1)
and minimizing the transport costs (for ³ k 0). It is
possible to show that we obtain the optimal transport
map for an appropriate choice of ³ and that trajec-
tories become straight. This regularity can translate
to practical benefits since the ODEs for the generator
and its inverse become trivial to solve.
Adding transport costs to the generative modeling

problem also provides exciting opportunities to ana-
lyze the training problem. To give a glimpse into this
area, we note that the training problem can be writ-
ten on the macroscopic level as the PDE-constrained
optimization problem

min
Ä,¹

∫

Rn

∫ 1

0

³

2
∥f¹(t)(x)∥

2Ä(t, x)dt− log Ä(1, x)ÃY (x)dx

s.t. ∂tÄ(t, x) +∇ ·
(

f¹(t)(x)Ä(t, x)
)

= 0,

Ä(0, x) = ÃX(x).

(16)

Here, the PDE constraint for t ∈ (0, 1] is given by the
continuity equation. The formulation above is a re-
laxed version of the classical dynamic optimal trans-
port formulation [BB00]. To be concrete, above the
terminal constraint Ä(1, x) = ÃY is relaxed, and de-
viations are penalized by the second term of the ob-
jective. Similar to the dynamic OT problem, (16)
can be reformulated into a convex variational prob-
lem, which can provide further insight but becomes
impractical when the growth of n requires nonlinear
function approximators.

Neural ODEs for Potential Mean

Field Games

This section showcases Neural ODE’s promise for
overcoming the limitations of other numerical meth-
ods for simulating interactions within large popula-
tions of agents playing a non-cooperative game.

To show how neural ODEs arise naturally in the
mean field limit of many games, let us generalize (16)
to include objective functions that contain more gen-
eral cost terms in, for example, using the objective
functional

J [Ä, f¹] =

∫ 1

0

∫

Rn

L(x, f¹)Ä(t, x)dxdt

+

∫ 1

0

F(Ä(t, ·))dt+ G(Ä(1, ·)),

(17)

which consists of running cost given by the function
L : Rn × Rn → R and the functional F , and a ter-
minal cost functional G. Given an initial state of the
population density ÃX , finding the optimal strategy
f¹ amounts to solving the mean field game

min
Ä,¹

J [Ä, f¹]

s.t. ∂tÄ(t, x) +∇ ·
(

f¹(t)(x)Ä(t, x)
)

= 0,

Ä(0, x) = ÃX(x),

(18)

where the continuity equation models the evolution of
the population density Ä. This more general version
of (16) can be used to model various non-cooperative
differential games played by a large population of ra-
tional agents. Furthermore, the formulation allows
one to analyze and solve a larger set of generative
models beyond continuous normalizing flows [ZK23].
Some examples are listed in Table 1. Also, we provide
two one-dimensional instances motivated by optimal
transport and crowd motion to illustrate our problem
setup and notation in Figure 3. For simplicity, we fo-
cus the observation on deterministic games but note
that neural network techniques have also been pro-
posed for stochastic MFGs governed by the Fokker
Planck equation [LFL+21].
It is important to note that solving (18) in general

remains a daunting task, especially when the dimen-
sion of the state space, n, is larger than three or four.
In these cases, the curse of dimensionality affects tra-
ditional numerical methods that rely on meshes or
grids to solve the continuity equation in (18). Unfor-
tunately, many realistic use cases of MFGs arising in
economics, social science, and other fields require con-
siderably larger n to capture the state of the agents.
Deriving a neural ODE formulation for approxi-

mating the solution of a class of MFGs requires some
calculus and theoretical tools. Here, we will briefly
overview our approach in [ROL+20]. A key quantity
for analyzing and solving the mean field game is its
value function Φ : R×Rn → R. An intuitive way to
define it is via a microscopic perspective. Let x ∈ Rn

6



L(x, f¹) F(Ä) G(Ä)

optimal transport (OT)
³

2
∥f¹∥

2 KL(Ä, ÄY )

crowd motion
³

2
∥f¹∥

2 +Q(x)

∫

Ä log(Ä)dx

normalizing flow Ey[− log(Ä)]

normalizing flow+OT
³

2
∥f¹∥

2
Ey[− log(Ä)]

Table 1: Examples of different potential mean field games that can be modeled via (18). We also recom-
mend [ZK23] for a more exhaustive list, including score-based diffusion and Wasserstein gradient flows.

optimal transport

πX

x(1), x(2), . . .

z(1)(1), z(2)(1), . . .

ρ(1, ·)

crowd motion

Figure 3: Illustration of potential mean field game
versions of relaxed dynamic optimal transport (left)
and crowd motion problems (right). Both cases use
the standard Gaussian reference ÃX (top) and the
same Gaussian mixture as the target (bottom). As
expected, in the optimal transport case, the trajecto-
ries are straight, whereas in the crowd motion case,
the agents are curved to avoid an obstacle in the cen-
ter of the domain. This example also shows that dif-
ferent dynamics can produce the same map F¹.

be the state of an arbitrary agent at time t ∈ [0, 1).
Then, the value function Φ denotes the optimal cost
to go for this agent and can be written as

Φ(t, x) =min
¹,z

Jt[f¹, Ä, z],

s.t.
d

dt
z = f¹(s)(z), s ∈ (t, 1]

z(t) = x

(19)

where Ä is the population density at the equilibrium,
and we define the single-agent objective functional

Jt[f¹, Ä, z] = G(z(1), Ä(1, z(1)))

+

∫ T

t

(

L
(

z, f¹(s)(z)
)

+ F (z, Ä(s, z))
)

ds
(20)

with F and G denoting the L2 derivatives of F and
G, respectively. This makes this an MFG in potential
form and ensures that solving the problem from the
microscopic and macroscopic perspective leads to the
same solution.
Evaluating Jt in (20) requires the agent to estimate

the equilibrium density resulting from the collective
behavior of the agents around its current trajectory.
To this end, we solve the continuity equation in (18).
Fortunately, characteristic curves of the continuity
equation coincide with the trajectories of the agents.
Hence, rather than solving the continuity equation
everywhere to compute the density, we can update
the densities along the trajectories as the agent’s state
evolves. Since most of the common choices listed in
Table 1 require the log of the density, let us note that
along the curves z(·) we have

log Ä(t, z(t)) = log ÃX(x)−

∫ t

0

tr∇f¹(s)(z)ds. (21)

This allows us to eliminate the continuity equation
in problem (19) without requiring a grid or a mesh.
The resulting Lagrangian approach also has a crucial
computational advantage since we can compute the
trajectories and objective function values for several
agents in parallel without the need to communicate.
The above observations and our experience from

the previous section could also be used to obtain a
neural ODE approach for potential mean field games.
However, the learned solution may violate some theo-
retical properties. For example, the Pontryagin Max-
imum Principle shows that the optimal control, f∗,
is related to the value function via the feedback form

f∗(x) = −∇pH(x,∇Φ(t, x)). (22)

Here, the Hamiltonian H is the Fenchel dual of the
running cost L defined by

H(x, p) = sup
f∈Rn

{

−p¦f − L(x, f)
}

. (23)
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For many choices of L that arise in practice, including
the examples in Table 1, H can be computed analyt-
ically.

Even when the neural network can approximate
the optimal policy, in our experience, finding weights
such that properties such as (22) approximately hold
is non-trivial. Clearly, choosing the network weights
randomly will not yield an approximation that satis-
fies the feedback form, which means we must solve the
learning problem well. Therefore, whenH is available
and straightforward to compute, we can approximate
Φ¹ with a scalar-valued neural network and define the
control implicitly via (22). Since the value function
contains all the information about the MFG solution,
approximating it directly can provide helpful insight.

Approximating the value function directly also al-
lows us to incorporate more prior knowledge into the
training problem. It is known that the value function
solves the Hamilton Jacobi Bellman (HJB) equations

−∂tΦ¹(t, x) +H(x,∇Φ¹(t, x)) = F (x, Ä(t, x)),

Φ¹(1, x) = G(x, Ä(1, x)).
(24)

Here, the −∂t emphasizes that this equation is back-
ward in time. Lasry and Lions have shown that solv-
ing the above PDE in conjunction with the continuity
equations is the necessary and sufficient condition for
the problem [LL0703]. Even though solving (24) in
high dimensions is affected by the curse of dimen-
sionality, we can monitor the violations of the HJB
equations along the trajectories and penalize them
using some functional PHJB.

To summarize the above observations, we can train
the scalar deep neural network, Φ¹, that approxi-
mates the value functions via the optimal control
problem

min
¹

Ex∼ÃX
[J [f¹, Ä, z] + ´PHJB[Φ¹, Ä, z]]

s.t.
d

dt

(

z

log(Ä(t, z))

)

=

(

f¹(z)
−tr∇f¹(z)

)

z(0) = x, log Ä(0, x) = log ÃX(x).

(25)

Discussion and Outlook

We demonstrated how differential equations can be
used to build continuous-time deep learning ap-
proaches. We highlighted a few ways this could lead
to new insights and more efficient algorithms for su-
pervised machine learning, generative modeling, and
solving high-dimensional mean field games.

The key step is to transform the feature space in-
crementally using an ODE whose dynamics are rep-
resented by a deep neural network. Conceptually,
this leads to infinitely deep networks whose artificial
time loosely corresponds to the depth of the network.
This relation is not precise since, depending on the
choice of f¹, the dynamics of the ODE can be scaled
arbitrarily and even depend on trainable parameters.
One can consider continuous-time architectures as in-
finitely deep, which sets them apart from traditional
networks consisting of finitely many layers.

Earlier works on continuous-time learning that
bring in ideas from differential equations include, for
example, [RMKK+92]. Some of the ideas in this
work resemble the ones popularized by [CRBD18],
but the latter contained other novel ideas, for ex-
ample, the use of differential equations for generative
models later extended in [GCB+18]. The renewed in-
terest in continuous-time models is probably related
to the growth of computational resources, advances
in numerical methods for solving ODEs and optimal
control problems arising in their training, and larger
datasets.

We inevitably omitted many important topics to
keep the presentation short and coherent. Impor-
tant examples of continuous-time architectures not
governed by ODEs are the controlled differential
equations [KMFL20] and non-local networks driven
by fractional differential equations [AKLV20]. The
above viewpoint can be extended to PDE architec-
tures for input features that can be seen as grid func-
tions.

More could also be said about numerical meth-
ods for continuous-time deep learning. An impor-
tant question is whether first to optimize and then
discretize (as, for example, in [CRBD18, GCB+18])
or first to discretize and then optimize (as, for ex-
ample, done in [OFLR21]). In a first-optimize-then-
discretize setting, one solves the adjoint ODE to
compute the gradient of the loss function with re-
spect to the weights, the key ingredient for optimiza-
tion algorithms. While this allows some flexibility
in choosing the numerical integrators for the forward
and adjoint equation (e.g., one can use different step
sizes), the adjoint method requires storing or recom-
puting the entire trajectory of the features, which
is computationally infeasible. In a discretize-then-
optimize approach, one selects a numerical time in-
tegrator and integration points to discretize the neu-
ral ODE (4) and obtains a finite-dimensional opti-
mization problem. Differentiating the discretized loss
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function with respect to the weights is possible us-
ing automatic differentiation (also known as back-
propagation) or analytically using the chain rule. The
choice of the time integrator is crucial and provides
opportunities to design novel network architectures
that resemble ResNets but can be tailored to the net-
work model; for example, one can mimic hyperbolic
systems and use symplectic time integrators to en-
sure forward and backward stability [HR17] and save
memory costs. An excellent in-depth discussion of
these two paradigms in the context of neural ODEs
is provided in [GKB19]. Some additional numerical
results for time-series regression and generative mod-
eling can be found in [OR20].
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