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Abstract—Given a dynamical system with constrained outputs,
the maximal admissible set (MAS) is defined as the set of all initial
conditions such that the output constraints are satisfied for all time. It
has been previously shown that for discrete-time, linear, time-invariant,
stable, observable systems with polytopic constraints, this set is a
polytope described by a finite number of inequalities (i.e., has finite
complexity). However, it is not possible to know the number of inequal-
ities a priori from problem data. To address this gap, this contribution
presents two computationally efficient methods to obtain upper bounds
on the complexity of the MAS. The first method is algebraic and is
based on matrix power series, while the second is geometric and is based
on Lyapunov analysis. The two methods are rigorously introduced, a
detailed numerical comparison between the two is provided, and an
extension to systems with constant inputs is presented.

Index Terms—Maximal admissible set, admissibility index, finite
determination, Cayley-Hamilton Theorem, Lyapunov analysis.

I. INTRODUCTION

Consider a discrete-time linear time-invariant system

x(t+ 1) = Ax(t)

y(t) = Cx(t)
(1)

where t ∈ Z+ is the discrete time index, x(t) ∈ Rn is the state
vector, and y(t) ∈ Rq is the output vector. The output is required
to satisfy the constraint

y(t) ∈ Y (2)

where Y is a compact polytope with the origin in its interior. This
paper is concerned with the set of all initial conditions for which
(2) is satisfied for all time, that is:

O∞ = {x0 : CAtx0 ∈ Y,∀t ≥ 0} (3)

This set, which is referred to as the maximal admissible set (MAS)
[1], is an invariant set that has been broadly employed in the
control literature, for example, as a terminal constraint in the Model
Predictive Control (MPC) optimization problem to guarantee closed-
loop stability [2], [3], or in Reference Governors and Command
Governors to guarantee infinite-horizon constraint satisfaction [4],
[5]. This set also plays a major role in the analysis of constrained
systems and in set-theoretic methods in control, see e.g., [6], [7].
The properties and computations of this set, as well as its extensions
to other classes of systems, have also received much attention in the
literature, see e.g., [8]–[15]. The topic of characterizing invariant sets
is of continuing interest, see, e.g., the recent publications [16]–[19].
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In the paper [1], it was shown that if (1) is asymptotically stable
and the pair (A,C) is observable, then O∞ is a compact polytope
which is finitely determined, i.e., it can be described by a finite
number of inequalities:

O∞ = {x0 : CAtx0 ∈ Y, t = 0, . . . , t∗} (4)

where t∗, referred to as the admissibility index of MAS, is the last
“prediction time-step” required to fully characterize the MAS. One
difficulty, which the current paper seeks to overcome, is that t∗

is not known a priori from problem data. To find it, one would
need to construct the MAS iteratively by adding inequalities one
time-step at a time and checking for redundancy of the newly added
constraints. Once all the newly added constraints are redundant,
t∗ has been found. To carry out the redundancy check, Linear
Programs (LPs) must be solved, which renders the construction of
MAS computationally demanding for high dimensional systems,
those with slow dynamics, those with constraint sets of high
complexity, and in situations where O∞ must be computed in
real-time, e.g., to accommodate changing models or constraints.

To fill this gap, this paper provides two methods to obtain an
upper bound on t∗. This allows one to replace t∗ in (4) by its
upper bound, thereby eliminating the need to solve LPs during
the construction of MAS (at the expense of having potentially
redundant inequalities in the set description). In addition to speeding
up the computation of MAS, knowledge of such an upper bound
is helpful for defining the memory and processing requirements
to store and employ the MAS for the purpose of control.

The first method for finding an upper bound on t∗ is algebraic
and leverages matrix power series to express the output at a time
t as a linear combination of outputs at previous times, which helps
us determine the time-step after which the constraints become
redundant. The second method is geometric and relies on the
decay rate of a quadratic Lyapunov function towards a constraint-
admissible ellipsoidal level set. Both methods are computationally
efficient and do not rely on optimization solvers. To the best of our
knowledge, the first method is new and is the key contribution of
this work. The second method is inspired by the existing literature
(see e.g., [5], [20]); however, it is presented here in complete details
with explicit bounds, and several enhancements to it are proposed.

The upper bounds obtained from the two methods are compared
against the true value of t∗ using a Monte Carlo study. It is shown
that the first method results in a tighter upper bound as compared
with the second method for all the random systems considered.

Finally, the two methods are extended to systems with constant
inputs, which have been studied extensively in the literature on
reference and command governors:

x(t+ 1) = Ax(t) +Bu

y(t) = Cx(t) +Du
(5)
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where u ∈ Rm is a constant input. The definition of MAS for (5)
is similar to (3), but modified to account for the input:

O∞ = {(x0, u) : y(t) ∈ Y,∀t ≥ 0} (6)

It is shown in [1] that this set is generally not finitely determined (i.e.,
it cannot be described by a finite number of inequalities). However,
a finitely-determined, positively-invariant inner approximation can
be obtained by tightening the steady-state constraint:

Õ∞ = {(x0, u) : y(∞) ∈ (1− ϵ)Y, y(t) ∈ Y, t = 0, . . . , t∗} (7)

where ϵ ∈ (0,1) is typically a small number. In (7), y(∞) = H0u,
where H0 is the DC gain. Similar to the unforced case, the
admissibility index, t∗, for this case is not known a priori from
problem data. We thus extend the two methods described previously
to find upper bounds on t∗. As we show, the upper bounds depend
explicitly on the value of ϵ. A Monte Carlo study similar to the one
described above is conducted to compare the two methods. Similar
to the case of unforced systems, Method 1 results in tighter upper
bounds for all random systems considered.

The outline of this paper is as follows. Section II presents the
two methods described above for the unforced case and provides
a numerical study to compare them. Section III extends the results
to the case of systems with constant inputs. Conclusions and future
works are provided in Section IV.

The notation in this paper is as follows: Z+, R, Rn, Rn×n, and C
denote the set of non-negative integers, real numbers, n-dimensional
vectors of real numbers, n × n matrices with real entries, and
complex numbers, respectively. For a symmetric matrix P = PT,
we say it is positive definite and writeP ≻ 0 if all the eigenvalues of
P are strictly positive. We use the variables t ∈ Z+, t∗ ∈ Z+, and
m ∈ Z+ to denote the discrete time index, the admissibility index of
MAS, and the upper bound on the admissibility index, respectively.

II. MAIN RESULTS: UNFORCED SYSTEMS

Consider system (1) with constraint (2). Our goal is to obtain
an upper bound on t∗ in (4). This section presents two methods to
obtain such an upper bound. The first method, which we refer to
as “Method 1”, is based on a matrix power series expansion and
the second, which we refer to as “Method 2”, is based on Lyapunov
analysis. Throughout this paper, we assume the following:

Assumption 1. System (1) is asymptotically stable and the pair
(A,C) is observable. Furthermore, the constraint set in (2) is
described by

Y := {y : −ylj ≤ yj ≤ yuj , j = 1, . . . , q} (8)

where yj is the j-th element of y, ylj > 0 defines the lower limit
for yj, and yuj > 0 defines the upper limit for yj.

Assumption 1 reflects the commonly encountered requirements of
asymptotic stability and observability within the MAS literature. For
a comprehensive examination of the limitations and generalizability
of these assumptions, please refer to [1]. The box-constraint
assumption in (8) is introduced for the sake of clarity of our
presentation. However, note that any compact polyhedral constraint
set with origin in its interior defined by s ≤ Sy ≤ s can
be transformed into box constraints by redefining the output as
ȳ = Sy, which effectively modifies the output equation in (5) to

ȳ(t) = C̄x(t) + D̄u, where C̄ = SC and D̄ = SD (of course, for
the results of the paper to still hold, the redefined output must satisfy
the observability assumption in Assumption 1).

A. Method 1: Matrix Power Series

The general idea behind this method is to first expand At in
terms of lower powers of A. This expansion allows us to express the
output y(t) in (1) as a linear combination of the outputs at previous
times. We show that if there exists an integer m such that the
sum of the coefficients in the expansion of Am+1 is “sufficiently
small”, then m is an upper bound on t∗. We then show that such an
expansion always exists thanks to the Cayley-Hamilton Theorem,
and provide an algorithm for finding such m.

We begin by stating the main result of this section.

Theorem 1. Consider system (1) with constraint (2), and suppose
Assumption 1 holds. Suppose there exists an integer m, m ≥ 0,
such that Am+1 can be expanded as:

Am+1 =

m∑
i=0

αiA
i (9)

where αi ∈ R, i = 0, . . . ,m, satisfy the following condition:∑
αi>0

αi − γ
∑
αi<0

αi ≤ 1 (10)

where γ is the largest asymmetry in the constraints, i.e.,

γ = max
j

{
max

{yuj
ylj

,
ylj
yuj

}}
(11)

Then, m is an upper bound on the admissibility index, t∗, of the
MAS for (1)–(2); that is, t∗ ≤ m.

Proof. To show that m, as defined in the theorem, is an upper
bound on t∗, we must prove that y(t) ∈ Y for t ≤ m implies that
y(t) ∈ Y for all t ≥ m+ 1, i.e., the latter inequalities are implied
by the former and, hence, redundant. We prove this assertion using
mathematical induction.

Induction base case: Assume y(t) ∈ Y for t ≤ m and show
that y(m + 1) ∈ Y. To show this, note that the j-th output,
starting from an initial condition, x0, can be expanded using Eq. (9):
yj(m+ 1) = CjA

m+1x0 =
∑m

i=0 αi(CjA
ix0). The assumption

y(t) ∈ Y for t ≤ m implies that CjA
ix0 in the above sum

satisfies: −ylj ≤ CjA
ix0 ≤ yuj . Thus, if αi > 0, we have

that −αiy
l
j ≤ αiCjA

ix0 ≤ αiy
u
j , and if αi < 0, we have that

αiy
u
j ≤ αiCjA

ix0 ≤ −αiy
l
j. Thus, summation over i results in:

−ylj
∑
αi>0

αi+yuj
∑
αi<0

αi ≤ yj(m+1) ≤ yuj
∑
αi>0

αi−ylj
∑
αi<0

αi

To ensure that −ylj ≤ yj(m+ 1) ≤ yuj , it suffices for αi to satisfy:

−ylj ≤ −ylj
∑
αi>0

αi + yuj
∑
αi<0

αi (12)

yuj
∑
αi>0

αi − ylj
∑
αi<0

αi ≤ yuj (13)

or if we divide both sides of (13) by yuj > 0, and both sides of (12)

by −ylj < 0, it suffices that
∑

αi>0 αi −
yu
j

yl
j

∑
αi<0 αi ≤ 1 and
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∑
αi>0 αi −

yl
j

yu
j

∑
αi<0 αi ≤ 1. Both of these inequalities hold as

they are implied by (10). Thus, −ylj ≤ yj(m+ 1) ≤ yuj . Since j
was arbitrary, we have that y(m+ 1) ∈ Y, as desired.

Induction main step: Assume y(t) ∈ Y for t ≤ k, where
k ≥ m + 1, and show that y(k + 1) ∈ Y. We again write the
j-th output: yj(k+ 1) = CjA

k+1x0 but now decompose Ak+1 =
Am+1Ak−m. We thus obtain: yj(k + 1) = CjA

m+1Ak−mx0 =∑m
i=0 αi(CjA

i+k−mx0). The assumption y(t) ∈ Y for t ≤ k
together with 0 ≤ i + k − m ≤ k imply that CjA

i+k−mx0 in
the above sum satisfies: −ylj ≤ CjA

i+k−mx0 ≤ yuj . The rest of
the proof from this point on follows the same arguments as in the
induction base case. This concludes the proof.

Remark 1. In the case of symmetric constraints, the expression
in Theorem 1 can be further simplified. Specifically, suppose that
ylj = yuj ,∀j in (8). Then, γ = 1 and so condition (10) becomes:∑

i

|αi| ≤ 1 (14)

Remark 2. If all the coefficients in the expansion of Am+1 are posi-
tive, then (10) becomes

∑
i αi ≤ 1,which is completely independent

of the constraint set (i.e., independent of the C matrix, ylj, and yuj ).

We now prove the existence of, and a develop a method to
construct, the expansion in (9) satisfying condition (10). We first
recall some facts from linear algebra. The characteristic polynomial
of any square matrixA ∈ Rn×n is defined as∆(s) := det(sI−A).
It is an n-th degree polynomial whose roots are the eigenvalues,
λi ∈ C, of A. We can thus write:

∆(s) = (s−λ1) · · · (s−λn) = sn+ cn−1s
n−1+ . . .+ c1s+ c0

(15)
The Cayley-Hamilton theorem states that any square matrix satisfies
its own characteristic polynomial:

Theorem 2 (see [21]). Let A ∈ Rn×n be a matrix and let ∆(s)
be its characteristic polynomial. Then, ∆(A) = 0.

This result allows us to express An as a finite power series in
lower powers of A:

An = −c0I − c1A− . . .− cn−1A
n−1 (16)

where ci are the coefficients in (15) and are uniquely defined.
Similarly, An+1 can be expanded in the same powers of A:

An+1 = A(An) = −c0A− . . .− cn−2A
n−1 − cn−1A

n

= (c0cn−1)I + (−c0 + c1cn−1)A+ . . .+

(−cn−2 + cn−1cn−1)A
n−1

Generalizing the above to any t ≥ n, one can expand At as:

At =
n−1∑
i=0

βi(t)A
i (17)

where βi(t) denotes the i-th coefficient in the expansion of the
t-th power of A. Note that expansion of At in lower powers of
A is generally not unique, but βi(t) in (17) are, by construction,
uniquely defined.

To simplify the presentation, we stack the coefficients of the t-th
power into a vector and denote it by β(t):

β(t) = [β0(t) · · · βn−1(t)]
T ∈ Rn

The following theorem characterizes β(t) and its convergence
properties as t → ∞.

Theorem 3. Let A ∈ Rn×n be any square matrix and let
β(t), t ≥ n, be the vector of coefficients in the expansion of At, as
defined above. Then, β(t) satisfies the difference equation

β(t+ 1) =


0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
...

0 0 · · · 1 −cn−1

β(t) (18)

with initial condition β(n) = [−c0 · · · − cn−1]
T . In addition, if

A is asymptotically stable, then limt→∞ β(t) = 0.

Proof. The initial condition is already shown in Eq. (16). To derive
the recursion, suppose At =

∑n−1
i=0 βi(t)A

i, where βi(t) are given.
To find β(t+ 1) in terms of β(t), we expand At+1 as follows:

At+1 = A(At) = A
n−1∑
i=0

βi(t)A
i = βn−1(t)A

n +
n−2∑
i=0

βi(t)A
i+1

= −βn−1(t)c0I +

n−1∑
i=1

(−βn−1(t)ci + βi−1(t))A
i

where, in the first line, An is replaced using (16). Thus,
β0(t+ 1) = −βn−1(t)c0 and βi(t+ 1) = −βn−1(t)ci + βi−1(t)
for i = 1, . . . , n− 1. This coincides with recursion (18).

To prove that β(t) → 0 as t → ∞, note that the matrix in (18)
is exactly the observable canonical form of matrix A, see [21] for
details. Thus, it has the same eigenvalues as A. Therefore, the
recursion in (18) corresponds to an asymptotically stable dynamical
system and, hence, β(t) must converge to 0.

It can be shown that recursion (18) effectively performs Euclid’s
division and computes the remainder polynomial when the
denominator is ∆(s). Thus, we could have arrived at the above
recursion for β, as well as the proof that β → 0, using polynomial
and rational function models [22] as an alternative approach1.

The above theorem guarantees the existence of an integer m such
that the coefficients of the expansion of Am+1 as defined in (9)
satisfy condition (10). To see this, compute β(t) using the recursion
in (18) for increasing t starting from t = n, and stop when∑

βi(t)>0

βi(t)− γ
∑

βi(t)<0

βi(t) ≤ 1 (19)

Note that such t always exists, because according to Theorem 3,
β(t) → 0 as t → ∞ and thus the left hand side of (19) can be made
arbitrarily small. Such t corresponds to m+1 in Theorem 1, where
the αi in (10) are related to βi(t) in (19) as follows: αi = βi(t)
for i = 0, . . . , n− 1 and αi = 0 for i = n, . . . ,m. This leads to
Algorithm 1 for finding an upper bound for t∗.

The above results allow us to say more about the value of t∗

itself in the case of first order systems.

Theorem 4. Consider (1) withA ∈ R (i.e., a first order system) and
assume Assumption 1 holds. If A > − 1

γ , then t∗ = 0. In particular,
if the constraints are symmetric (i.e., γ = 1 in (11)), then t∗ = 0.

1We acknowledge an anonymous reviewer for this suggestion.
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Algorithm 1 Compute upper bound, m, on t∗ using Method 1
Input: A,ylj, yuj

1: Compute the Cayley-Hamilton coefficients, ci, using (15), and
γ using (11).

2: Set t = n and initialize β(n) as in Theorem 3.
3: If β(t) satisfies (19), then: m = t− 1, STOP.
4: Increment t by 1. Compute β(t) using (18). Go to step 3.

Proof. From (16), it follows that A = −c0 and from Theorem 3,
β(t) ∈ R satisfies β(1) = −c0 = A. Asymptotic stability of A
and condition A > − 1

γ imply that − 1
γ < β(1) < 1. Using this

condition, it can be seen that, regardless of sign of β(1), (19) is
satisfied for t = 1. Per Algorithm 1, an upper bound on t∗ is
therefore m = 0, which implies that t∗ = 0.

This theorem suggests that the MAS for some first order systems
is particularly straightforward to construct.

We conclude this section with a few remarks.

Remark 3. The Cayley-Hamilton-based expansion in (17) provides
only one possible expansion for Am+1 in Theorem 1. There may
be other expansions that lead to smaller upper bounds for t∗.

Remark 4. The Cayley-Hamilton-based upper bound sheds light
on the conditions under which t∗ may be large. Specifically, as the
recursion in Theorem 3 suggests, the upper bound on t∗ depends on
the eigenvalues of A. If the spectral radius of A is large (i.e., there
is an eigenvalue close to the boundary of the unit disk), the upper
bound on t∗ (and likely t∗ itself) will be large. On the other hand, if
the spectral radius is small, then the upper bound will be small (and
thus t∗ must also be small). Thus, there is a relationship between
t∗ and the spectral radius of A, which we examine numerically in
Section II-C. An interesting implication of this is the following: if A
is obtained by discretizing a continuous-time model, the eigenvalues
of A approach the origin as the sampling period increases, leading
to smaller values for the upper bound on t∗ and thus smaller
values for t∗. Thus, there is also a relationship between t∗ and the
sampling rate used for the discretization.

B. Method 2: Lyapunov Level Sets

The second method to find an upper bound on t∗ relies on
Lyapunov level sets. We begin by defining two sets:

X = {x : Cx ∈ Y} (20)

which is the inverse image of Y in the x-space, and

On−1 = {x0 : CAtx0 ∈ Y, t = 0, . . . , n− 1} (21)

which is the set of all initial conditions such that the constraints are
satisfied for the first n time-steps. From these definitions, we have:

O∞ ⊆ On−1 ⊆ X

The set X is not generally compact, but it is shown in [1] that, under
Assumption 1, O∞ and On−1 are. The compactness of On−1 is
the main reason why it is employed in the analysis that follows.
If X itself is compact, then On−1 may be replaced by X in the
subsequent presentation.

Define the quadratic Lyapunov function

V (x) = xTPx (22)

where P = PT ≻ 0 is the solution of the discrete Lyapunov
equation

ATPA− P = −Q (23)

for a given Q = QT ≻ 0. For each real number r > 0, the r-th
level set of V (x), defined by

Ωr = {x : V (x) ≤ r}, (24)

is an ellipsoid and is positively invariant with respect to the
dynamics of (1), see [21], [23].

The key idea behind Method 2 is to first find two level sets
of V (x): one that is inscribed in X, denoted by Ωr1 , and one that
circumscribesOn−1, denoted byΩr2 . One way to quantify an upper
bound on t∗ is to find the longest time it takes for any initial state
within On−1 to enter Ωr1 . Indeed, if x(t) ∈ Ωr1 , then x(t) ∈ X
and thus y(t) ∈ Y for all future times due to the invariance of
Ωr1 . However, instead of On−1, we consider initial states within
Ωr2 ⊃ On−1, which allows for simple computations using the
ellipsoidal mathematics at the expense of making the upper bound
less tight. We now formally examine the above ideas, and then
provide a method to find a suitable matrixQ for the problem at hand.

Theorem 5. Consider system (1) with Lyapunov function (22)–(23)
and constraint (2), and suppose Assumption 1 holds. Define
r1, r2 ∈ R as follows:

r1 = max{r : Ωr ⊂ X}, r2 = min{r : On−1 ⊂ Ωr}

Then, r2 ≥ r1 and an upper bound for t∗ is given by:

m = floor

(
log(r1r2 )

log(σ)

)
(25)

where the floor operator returns the previous largest integer,

σ = 1− λmin(Q)

λmax(P)
, (26)

and λmin (λmax) denotes the smallest (largest) eigenvalue.

Proof. First, note that r1 exists because X is convex and non-empty
and has the origin in its interior, and r2 exists because On−1 is
compact. Second, note that Ωr1 ⊂ O∞ because Ωr1 is an invariant,
constraint-admissible set and O∞ contains all such sets (see [1]).
Thus, we have the following inclusions: Ωr1 ⊂ O∞ ⊂ On−1 ⊂
Ωr2 , which means that r2 ≥ r1, as required. The rest of the proof
leverages the following fact from linear algebra: for any P =
PT ≻ 0, we have that λmin(P)xTx ≤ xTPx ≤ λmax(P)xTx,
where λmin and λmax are well-defined because the eigenvalues of a
symmetric, positive-definite matrix are all real. Given V (x) in (22),
we can thus write −xTx ≤ − V (x)

λmax(P) , and show that the change in
the Lyapunov function along the trajectories of the system satisfies:

V (x(t+ 1))− V (x(t)) = (Ax(t))TP(Ax(t))− x(t)TPx(t)

= x(t)T (ATPA− P)x(t) = −x(t)TQx(t)

≤ −λmin(Q)x(t)Tx(t) ≤ −λmin(Q)

λmax(P)
V (x(t))

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3382601

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hamid-Reza Ossareh. Downloaded on June 06,2024 at 22:05:10 UTC from IEEE Xplore.  Restrictions apply. 



The above can be rewritten as:

V (x(t+ 1)) ≤ σV (x(t)) ⇒ V (x(t)) ≤ σtV (x(0)) (27)

where σ is as defined in the Theorem.
We now determine the longest time it takes for any initial

condition within Ωr2 to enter Ωr1 . Note that any x(0) ∈ Ωr2

satisfies V (x(0)) ≤ r2. Therefore, V (x(t)) ≤ σtr2. Furthermore,
to ensure x(t) ∈ Ωr1 , we must have V (x(t)) ≤ r1. Therefore, we

set V (x(t)) ≤ σtr2 ≤ r1, which implies that t >
log(

r1
r2

)

log(σ) . Any
integer t satisfying this inequality must be larger than t∗. Thus, to
obtain the tightest upper bound, we apply the floor operator to the
right hand side of this inequality, which completes the proof.

Procedures for computing r1 and r2 in the theorem are
well-established, see, e.g., [24]. Specifically, r1 can be found by

r1 = min
j

(min{ylj, yuj })2

cjP−1cTj
(28)

To find r2, On−1 can first be converted from the H-representation
(i.e., half-space description) to V-representation (i.e., vertex
description) [25]. Let the vertices of On−1 in the V-representation
be denoted by vj. Then, r2 can be found by

r2 = max
j

{vTj Pvj} (29)

It remains to find a suitable Q to solve for P using (23). We
approach this problem by analytically finding Q that results in
the smallest σ in Theorem 5 and thus the fastest decay rate of the
Lyapunov function along the system trajectories (see Eq. (27)).
Note that this is not necessarily the Q that results in the globally
minimal value for the upper bound on t∗. Other possible approaches
for selecting Q include solving an optimization problem to find a
Q that minimizes the upper bound; finding a Q such that Ωr1 has
the largest volume; or finding the Q such that Ωr2 has the smallest
volume. These approaches, however, require nonlinear program or
second-order cone program solvers, which is what we seek to avoid.
Furthermore, our numerical studies showed that choosing Q to
minimize σ led to the best possible upper bound in most situations.

Theorem 6. The scalar σ in Theorem 5 satisfies 0 ≤ σ < 1.
Furthermore, the matrix Q that results in the smallest σ is
Q = I, and the corresponding value of σ is σ = ρ(A)2, where
ρ := maxi |λi(A)| is the spectral radius of A.

Proof. To prove the first part, note that V (x(t + 1)) ≥ 0 and
V (x(t)) ≥ 0 in Eq. (27). Thus, σ ≥ 0. To show σ < 1, note that
λmin(Q), λmax(P) > 0. Thus, λmin(Q)

λmax(P) > 0, which implies that

σ = 1− λmin(Q)
λmax(P) < 1.

To prove the second part, we must find Q to maximize λmin(Q)
λmax(P) .

By linearity of the Lyapunov equation in (23), normalizing Q by
any scalar normalizes P by the same scalar. Therefore, without
loss of generality, one can normalize Q such that λmin(Q) = 1,
which implies that Q ⪰ I or Q− I ⪰ 0. Since λmin(Q) = 1, it
now suffices to find a Q to minimize λmax(P).

It is known that the solution, P , of the Lyapunov equation (23)
can be expressed as [21]:

P(Q) =
∞∑
t=0

(AT )tQAt (30)

We can thus write: P(Q) − P(I) =
∑∞

t=0(A
T )t(Q − I)At.

Since Q− I ⪰ 0, we have that P(Q)− P(I) ⪰ 0 or equivalently,
P(Q) ⪰ P(I). Thus λmax(P(Q)) ≥ λmax(P(I)) so to minimize
the largest eigenvalue of P , one must take Q = I.

Finally, to show that the choice of Q = I leads to σ = ρ(A)2,
we again leverage (30) and redefine Ā = ATA. We then apply
the spectral mapping theorem from linear algebra to conclude that
λi(P) =

∑∞
t=0 λi(Ā)

t = 1
1−λi(Ā)

. Since λi(Ā) = (λi(A))
2, we

have thatλmax(P) = 1
1−ρ(A)2 , which implies thatσ = ρ(A)2.

The above leads to Algorithm 2 for finding an upper bound for t∗.

Algorithm 2 Compute upper bound, m, on t∗ using Method 2
Input: A,C, ylj, yuj

1: Compute P using (23) with Q = I. Compute σ = ρ(A)2

2: Compute r1 using (28).
3: Construct On−1 as in (21), convert to V-representation, and

compute r2 using (29).
4: Compute m using expression (25).

C. Numerical Comparison

This section presents a comparative analysis of the upper bounds
provided by Algorithm 1 for Method 1 (i.e., the power series-based
method) and Algorithm 2 for Method 2 (i.e., the Lyapunov-based
method). Since this comparison cannot be carried out analytically,
we conduct a Monte Carlo study of randomly-generated systems
using Matlab 2020b.

To generate each random system with diverse characteristics,
we first randomly generate n, the order of the system, by sampling
the uniform distribution between 1 and 8. We then generate
a state-space model with that order by using Matlab’s drss
command, which returns Lyapunov stable systems with possibly
repeated and/or complex poles. The drss function employs the
following procedure. It first generates random pole locations, with a
5% probability of repeated poles and a 50% probability of complex
poles until the number of poles equals the system order. The real
poles and the magnitude of the complex poles are sampled from
the standard uniform distribution while the phase of the complex
poles is sampled from the uniform distribution between 0 and π.
The drss function then creates a change of basis matrix, whose
elements are obtained from the standard uniform distribution, and
accordingly creates the A matrix through a similarity transformation.
The elements of the B, C, and D matrices are finally generated by
sampling the standard normal distribution. Some of these elements
are forced to 0 afterwards with a probability of 0.25.

For each system computed by the drss function, we reject
systems for which the spectral radius is greater than 0.999 and the
smallest singular value of the observability matrix is less than 0.0001
to ensure that Assumption 1 is robustly satisfied. For simplicity, we
assume a single output (i.e., q = 1) and symmetric constraints yu1 =
yl1 = 1. Using the above methodology, we generate a total of 16,000
random systems. We assume that the input satisfies u = 0, which
makes each system have the form (1). For each system, we compute
t∗ using the algorithm described in [1]. We also compute the upper
bounds on t∗ using Algorithms 1 and 2. We denote these upper
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Fig. 1. Histograms of m1 − t∗ and m2 − t∗ (i.e., the tightness of each upper
bound) obtained using our Monte Carlo study. In the legend, µ, σ, and mdn refer
to the mean, standard deviation, and median, respectively.
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Fig. 2. Comparison between the upper bound provided by Methods 1, m1, and
by Method 2, m2. Interestingly, m1 ≤ m2 in all cases.

bounds by m1 and m2 respectively, where the subscript refers to the
respective method. To compare the upper bounds against the true
value of t∗, we construct the histograms ofmi−t∗, i = 1,2, as seen
in Fig. 1. In addition to the histograms, a point by point comparison
between the two methods is provided in Fig. 2. As can be seen
from the data, Method 1 performs well overall, with a median of
0 (i.e., for at least half of the random systems, the upper bound is
tight). Furthermore, interestingly, Method 1 outperforms Method 2
in all cases. Investigation of this observation is an interesting topic
for future research.

From these figures, it may appear that the upper bounds are too
conservative for some systems, which, per Remark 4, could be
attributed to the large spectral radius of those systems. This can be
easily confirmed with our Monte Carlo study, as seen in Fig. 3a for
Method 1. To investigate further, we normalize both t∗ and its upper
bound m1 to allow for a fair comparison between the different sys-
tems. The normalization is achieved by scaling t∗ and m1 by log(ρ),
where ρ = maxi(|λi(A)|) is the spectral radius. Taking logarithms
is inspired by the fact that continuous-time poles and discrete-time
poles are related through z = esTs , where Ts is the sample time. As-
suming Ts = 1 to allow for direct comparison between the systems,
we obtain s = log(z). Thus, scaling by log(ρ) normalizes each t∗ or
m by the “continuous-time time constant” of the system. The results
are reported in Fig. 3b. As can be seen, in the normalized coordinates,
the spread is narrow and the upper bound is not as conservative as
it appeared before. Similar plots can be generated for Method 2.

In the above Monte Carlo study, symmetric constraints were
assumed. We have also examined asymmetric constraints and found
that the conclusions are similar, namely m1 is a tighter bound than
m2 even in the asymmetric case. We omit the full details due to
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(a) m1−t∗ vs. spectral radius, ρ. The
larger the ρ, the more conservative the
upper bound may be.
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Fig. 3. Analysis of the upper bounds obtained using Method 1.

space limitations.
As a final remark, we acknowledge that the quantitative results

presented above depend on the distributions from which the random
systems are sampled. However, the observation that Method 1 yields
tighter bound as compared to Method 2 appears to be generically true
and is also confirmed by other numerical experiments we performed.

III. MAIN RESULTS: SYSTEMS WITH CONSTANT INPUT

We now extend the results in the previous section to the forced
system (5) with constraint (2). As explained in Section I, the
MAS for this system may not be finitely determined. However, by
tightening the steady-state constraint, a finitely-determined inner
approximation, denoted by Õ∞, can be obtained, see Eq. (7). For a
given steady-state margin ϵ > 0, our goal is to obtain upper bounds
on t∗ such that all constraints after time-step t∗ are guaranteed to
be redundant in (7). Similar to the unforced case, we assume that
Assumption 1 holds. Furthermore, we assume that the input u is
constant for all time.

A. Method 1: Matrix Power Series

Similar to the case of unforced systems, the general idea behind
this method is finding an expansion of At, with “sufficiently small”
coefficients, in terms of lower powers of A. The key difference with
the unforced case is that the origin is no longer the equilibrium of
the forced system, so we must perform a change of coordinates to
shift the equilibrium to the origin. Furthermore, recall from (7) that
the steady-state constraint is tightened by (1− ϵ), which introduces
additional complexities.

The equilibrium of (5) is given by x(∞) = (I − A)−1Bu
and y(∞) = H0u, where H0 = C(I − A)−1B +D is the DC
gain from u to y. Note that the matrix inverse exists thanks to the
asymptotic stability of A. We define a new state vector z(t) to shift
the equilibrium to the origin: z(t) := x(t)− (I −A)−1Bu. In the
new coordinate system, the dynamics are described by:

z(t+ 1) = Az(t)

y(t) = Cz(t) +H0u
(31)

The output thus evolves as y(t) = CAtz(0) +H0u, which is used
below. We now state the main result of this section.
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Theorem 7. Consider system (5) with constraint (2) and constant
input u, and suppose Assumption 1 holds. Suppose there exists
an integer m, m ≥ 0, such that Am+1 can be expanded as in (9),
where αi satisfy:(

1 + γ(1− ϵ)
) ∑

αi>0

αi −
(
γ + (1− ϵ)

) ∑
αi<0

αi ≤ ϵ (32)

and γ is defined in (11). Then, t∗ ≤ m.

Proof. The proof is similar to that of Theorem 1 with some differ-
ences, which we highlight. As in Theorem 1, we use mathematical
induction to prove that y(t) ∈ Y for t ≤ m implies that y(t) ∈ Y
for t ≥ m+ 1. For the sake of brevity, we only discuss the base
case of the induction argument, as the proof of the induction step is
similar. For the base case, we assume that y(t) ∈ Y for t ≤ m and
show that y(m+ 1) ∈ Y. To show this, we write the j-th output as:
yj(m + 1) = CjA

m+1z0 +H0u =
∑m

i=0 αi(CjA
ix0) +H0u.

We add and subtract
∑m

i=0 αiH0u to this expression to obtain:
yj(m+1) =

∑m
i=0 αi(CjA

ix0 +H0u) +H0u−
∑m

i=0 αiH0u.
The assumption y(t) ∈ Y for t ≤ m implies that CjA

ix0 +H0u
in the first sum satisfies: −ylj ≤ CjA

ix0 + H0u ≤ yuj .
Furthermore, the assumption y(∞) ∈ (1 − ϵ)Y implies that
−(1 − ϵ)ylj ≤ H0u ≤ (1 − ϵ)yuj . Thus, breaking up the sum
into positive and negative values of αi as we did in the proof of
Theorem 1, we obtain the following bounds on yj(m+ 1):

−ylj(1− ϵ)− ylj
∑
αi>0

αi + yuj
∑
αi<0

αi − yuj (1− ϵ)
∑
αi>0

αi+

ylj(1− ϵ)
∑
αi<0

αi ≤ yj(m+ 1) ≤ yuj (1− ϵ) + yuj
∑
αi>0

αi−

ylj
∑
αi<0

αi + ylj(1− ϵ)
∑
αi>0

αi − yuj (1− ϵ)
∑
αi<0

αi

To ensure that −ylj ≤ y(m+ 1) ≤ yuj , we set the left inequality to
be greater than −ylj and the right inequality to be smaller than yuj .
We then divide the left inequality by −ylj and the right inequality
by yuj and simplify terms to obtain the result.

Remark 5. In the case of symmetric constraints, i.e., ylj = yuj ,∀j
in (8), we have that γ = 1 and so (32) becomes:∑

i

|αi| ≤
ϵ

2− ϵ
(33)

Note that the right hand side tends to 0 and 1, as ϵ tends to 0 and 1,
respectively.

As in the unforced case, the Cayley-Hamilton based expansion
of Section II can be employed to obtain the expansion in Theorem 7
and thus obtain an upper bound on t∗. An algorithm similar to
Algorithm 1 can be constructed for this purpose, wherein condition
(19) is replaced with:(

1+γ(1−ϵ)
) ∑

βi(t)>0

βi(t)−
(
γ+(1−ϵ)

) ∑
βi(t)<0

βi(t) ≤ ϵ (34)

We conclude this section with two remarks.

Remark 6. In condition (34), the smaller the ϵ (i.e., the steady-state
tightening), the smaller the right hand side, and therefore the
smaller the βi(t) must be to satisfy the condition. According to
Theorem 3, smaller βi(t)’s are achieved with larger t’s. Therefore,

the upper bound on t∗ (and likely t∗ itself) grows as ϵ becomes
small. Furthermore, if ϵ ≪ 1 (which is typical in applications), (34)
can be approximated by∑

i

|βi(t)| ≤
ϵ

1 + γ

which implies that |βi(t)| ≪ 1. Thus, for the same constraints
ylj, y

u
j , and the same matrices A and C, βi(t)’s that satisfy this

condition are likely smaller than those that satisfy (19). Thus, the
upper bound on t∗ (and likely t∗ itself) is larger in the forced case
than the unforced case.

Remark 7. Note that condition (19) for the unforced case and (34)
for the forced case become identical when ϵ = 1 (this forces u = 0
due to H0u ∈ (1− ϵ)Y, which makes intuitive sense). In this sense,
Method 1 in the forced case is a proper extension of Method 1 in
the unforced case.

B. Method 2: Lyapunov Level Sets

The second method, which relies on Lyapunov level sets to find
an upper bound on t∗, requires only minor modifications compared
to the input-free case. We first extend the definition of On−1 in
(21) to account for the input in system (31), where we tighten the
steady-state constraint similar to (7):

Õn−1 =
{
(z0, u) : CAtz0 +H0u ∈ Y, t = 0, . . . , n− 1,

H0u ∈ (1− ϵ)Y
}
. (35)

As in the case of On−1, this set is a compact polytope. We have
the following result.

Theorem 8. Consider system (5) with constant input u, Lyapunov
function (22)–(23), and constraint (2), and suppose Assumption 1
holds. Define r1, r2 ∈ R as follows:

r1 = max
{
r : Ωr ⊂ ϵX

}
(36)

r2 = min
{
r : ProjzÕn−1 ⊂ Ωr

}
, (37)

where Projz denotes the projection onto z-coordinates. Then, an
upper bound on t∗ is given by expression (25).

Proof. Suppose (z(0), u) ∈ Õn−1. Then, by (35) and (37), z(0) ∈
Ωr2 and H0u ∈ (1− ϵ)Y. By the same arguments as in the proof
of Theorem 5 applied to (31), z(t) starting from such z(0) satisfies
z(t) ∈ Ωr1 for all t ≥ m, where m is given by (25) with r1 and r2
given by (36)–(37). This, together with (36), implies that z(t) ∈ ϵX
or, equivalently, Cz(t) ∈ ϵY for all t ≥ m, which implies that
y(t) in (31) satisfies: y(t) = Cz(t)+H0u ∈ ϵY⊕ (1− ϵ)Y = Y,
where ⊕ denotes the Minkowski set addition. To summarize,
the n set inclusions, CAtz(0) + H0u ∈ Y, t = 0, . . . , n − 1,
coupled with H0u ∈ (1 − ϵ)Y, make redundant the inequalities
corresponding to y(t) ∈ Y for t ≥ m. Thus t∗ ≤ m.

Procedures for computing r1 and r2 in the theorem are similar to
those in Section II. Specifically, given ϵ ∈ (0,1), r1 can be found by

r1 = min
j

(min{ϵylj, ϵyuj })2

cjP−1cTj
(38)

To find r2, we first compute Õn−1 using (35) and convert it into the
V-representation. Let the vertices of Õn−1 in the V-representation be
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denoted by vj ∈ Rn+m, where the first n components correspond
to the z-coordinates and the next m components correspond to the
u-coordinates. Then, r2 can be found by

r2 = max
j

{v̄Tj Pv̄j} (39)

where v̄j ∈ Rn is a vector consisting of the first n components of vj.
An algorithm similar to Algorithm 2 can be constructed to find

the upper bound using Theorem (8). To this end, steps 2 and 3 of
the algorithm must be modified as follows: in step 2, replace Eq.
(28) with (38) and, in step 3, replace On−1 in (21) by Õn−1 in (35)
and Eq. (29) by (39).

Remark 8. Note that r1 and r2 in (36)–(37) are smaller than those
defined in Theorem 5 because ϵ < 1. This means that the upper
bound computed using Algorithm 2 for the forced case is generally
larger than that for the unforced case. Furthermore, note that if
ϵ = 1, then the unforced case and the forced case become identical.
This makes intuitive sense because if ϵ = 1, then u = 0 to ensure
H0u ∈ (1− ϵ)Y. In this sense, Method 2 in the forced case can
be seen as the proper extension of Method 2 in the unforced case.

C. Numerical Comparison

We performed a Monte Carlo study similar to the one presented
in Section II-C to compare the upper bound obtained using Method
1 (Algorithm 1 modified as described in Section III-A) with that
obtained using Method 2 (Algorithm 2 modified as described in
Section III-B). For this purpose, we choose ϵ = 0.01, and use
the same 16,000 random systems described in Section II-C but
this time allow u ≠ 0. For each system, we compute t∗ using the
algorithm described in [1], as well as the two upper bounds, which
we denote by m1 for Method 1 and m2 for Method 2. We made
the following observations.

First, comparing the actual value of t∗ in the forced case with
that in the unforced case (Section II-C), we see that t∗ in the forced
case is larger than the t∗ in the unforced case for all the random
systems considered, which is an interesting observation. Second,
similar to the true value of t∗, we find that the upper bounds in
the forced case are always larger than those in the unforced case
(presented in Section II-C), which is consistent with Remark 6.
Third, narrowing our attention to the upper bounds for the forced
case, we computed m1 − t∗ and m2 − t∗, whose median values
are, respectively, 23 and 42. More importantly, we observe that,
similar to the unforced case, Method 1 outperforms Method 2 in
all the random systems considered.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented two computationally efficient methods
to obtain upper bounds on the admissibility index of Maximal
Admissible Sets for discrete-time LTI systems. The first method
is algebraic and is based on matrix power series, while the second
is geometric and is based on Lyapunov level sets. It was shown that
Method 1 outperforms Method 2, and that the upper bounds (and
likely the admissibility index itself) depend on the spectral radius
of matrix A and also the steady-state tightening, ϵ, in the case of
systems with constant inputs.

Future work will investigate the reason why Method 1
outperformed Method 2 in our numerical study. Another topic for

future research is to find other power series expansions (beyond
what is provided by the Cayley-Hamilton method) to further
improve the upper bounds in Method 1. Upper bounds for the
admissibility index of robust maximal admissible set for systems
with disturbances is another avenue of future research.
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