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Johnson-Schwartzman gap labelling
for ergodic Jacobi matrices

David Damanik, Jake Fillman, and Zhenghe Zhang

Abstract. We consider two-sided Jacobi matrices whose coefficients are obtained by continu-
ous sampling along the orbits of a homeomorphism on a compact metric space. Given an ergodic
probability measure, we study the topological structure of the associated almost sure spectrum.
We establish a gap labelling theorem in the spirit of Johnson and Schwartzman. That is, we
show that the constant value the integrated density of states takes in a gap of the spectrum must
belong to the countable Schwartzman group of the base dynamics. This result is a natural com-
panion to a recent result of Alkorn and Zhang, which established a Johnson-type theorem for
the families of Jacobi matrices in question.

1. Introduction

In this paper we are interested in the spectra of Jacobi matrices with dynamically
defined coefficients, including the singular case where the off-diagonal entries are
allowed to vanish. It is well known that the topological structure of these spectra can
range from connected sets (i.e., sets without any interior gaps) to sets given by a finite
union of non-degenerate compact intervals all the way to Cantor-type sets (i.e., sets
with empty interior). A very useful tool that has been deployed in the Schrédinger
case, which corresponds to the case where the off-diagonal elements of the Jacobi
matrix in question are identically equal to one, is gap labelling theory. Using the
well-known fact that the set of growth points of the integrated density of states (IDS)
coincides with the almost sure spectrum, and hence on each gap of the spectrum, the
IDS takes a constant value that can be used to /abel this gap in a unique fashion,
gap labelling theory provides useful ways to interpret these values of the IDS in gaps,
which are in fact heavily restricted by the base dynamics. Two common interpretations
are based on K-theory [2—6] and the Schwartzman homomorphism [13], respectively.
In either case, it follows that there is an at most countable set of values, which is
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completely determined by the base dynamics, such that for all continuous sampling
functions used to generate the coefficients of the operator by sampling along orbits,
the values of the IDS in gaps of the spectrum must belong to the countable set in
question.

Both approaches to gap labelling theory have their advantages and disadvant-
ages. The K-theory approach has a much broader scope, but explicit computations
of the label set can be difficult; compare [4, Sections 5 and 6]. On the other hand, the
approach based on the Schwartzman homomorphism has a more limited scope, but the
computations of labels appear to be easier in this setting. We refer the reader to the
recent survey [11] for background and more information. We also want to emphasize
that the ability to carry out explicit computations in several cases of interest has led
to various new results about spectra of dynamically defined Schrédinger operators;
compare, for example, [11, 12]. In particular, examples have been found where the
label set is as small as it can possibly be (equal to the integers), which has the imme-
diate consequence that the spectrum has no interior gaps for any continuous sampling
function.

The approach to gap labelling based on the Schwartzman homomorphism was
developed in the Schrodinger case by Johnson [13]. It uses as a critical input that there
are continuous invariant sections for the associated energy-dependent cocycle for any
energy in the complement of the spectrum. This input is one particular aspect of what
is now called Johnson’s theorem, which characterizes the complement of the spectrum
as the set of energies where an exponential dichotomy holds. Johnson’s theorem is
proved in the Schrodinger case in the paper [13] as well. However, a corresponding
result in the Jacobi matrix case was not available until recently.

Alkorn and Zhang showed in [1] that there is a version of Johnson’s theorem for
Jacobi matrices. Their work establishes such a result both in the case of a fixed Jacobi
matrix and in the case of a dynamically defined family of Jacobi matrices. In the latter
setting, Marx had an earlier result under more restrictive assumptions [15], whereas
the Alkorn—Zhang result holds in complete generality. As [1] and [15] have shown,
the suitable replacement of the concept of exponential dichotomy in the case of Jacobi
matrices is the concept of a dominated splitting, which can be used to characterize the
complement of the spectrum; see Subsection 2.2 for more details.

As Johnson’s theorem and the Johnson—Schwartzman gap labelling are really
companion results in the Schrodinger case, it is a natural goal to work out Johnson—
Schwartzman gap labelling for Jacobi matrices, now that the Alkorn—Zhang extension
of Johnson’s theorem is available for Jacobi matrices. This is precisely what the
present paper seeks to accomplish.

We will state the desired result in Theorem 1.1 below. Let us first describe the
setting in which it holds and the key quantities it involves.
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A (whole-line) Jacobi matrix is an operator of the form
[Jul(n) = a(n — Du(n —1) + bm)u@m) +am)u(n +1), ueC% nez, (1.1)

where a(n) € C and b(n) €R for n € Z. A half-line Jacobi matrix on Z4+ ={0,1,2,...}
is given by (1.1) for n € Z with the boundary condition u(—1) = 0. For N € N, an
N x N Jacobi matrix acts on £2({0,1,...,N —1})) = C¥ via(l.1)forO0<n <N — 1
with boundary conditions u(—1) = u(N) = 0.

In the whole- and half-line cases, we will assume a = {a(n)} and b = {b(n)} are
bounded sequences so that (1.1) defines a bounded self-adjoint operator in £2(Z) in
the whole-line case and ¢?(Z ) in the half-line case. On one hand, this is a common
assumption. On the other hand, it is forced by the particular setting in which we work,
namely, that in which the sequences a and b are generated by continuously sampling
points in a compact metric space.

Let us introduce this setting more precisely. Let (€2, T') be a topological dynamical
system, that is, €2 is a compact metric space and 7: Q2 — €2 is a homeomorphism.
Given g € C(2,R), p € C(2,C), and w € 2, we consider the family of Jacobi
matrices {J, }wegq. acting in £2(Z), given by

ap(n) = p(T"w), byn)=q(T"w), necZ, (1.2)
that is,
[Joy¥](n) = p(T" ') (n — 1) + q(T"w)¥ (n) + p(T"w)y(n +1).  (1.3)

We will call a family {J,} as defined above a ropological family of Jacobi matrices.

While most of the paper works under these assumptions, we will also briefly dis-
cuss the case where 7' is merely continuous, but not invertible. In this case one can
define half-line Jacobi matrices, acting in £2(Z ), in the following way:

p(T" o)y (n —1) + q(T"w)Y (n) + p(T"w)Y(n +1) n=1,

q(@)¥(0) + p(w)y (1) n=0.
1.4)
We will explicitly say when we drop the assumption that 7" is a homeomorphism.

[Jo¥](n) = {

Fix a T-ergodic Borel probability measure p on 2. We assume
supp i = 2, (1.5)

where supp ¢ denotes the topological support of j, that is, the smallest closed set hav-
ing full p-measure. Let us mention that assumption (1.5) is non-restrictive, since one
can always replace the dynamical system (2, T') by (supp i, T |supp 10 )- The density of
states measure (DOSM) is given by

1
/de = lim /fd/ca,,N = lim —Tr(f(Jwxp,n))), p-ae owc2, (1.6)
N—o0 N—oco N
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and the integrated density of states (IDS) is then given by

k(E) = /)((_OO,E] dk. (1.7)

The following statements are well known and not hard to check:

(1) thereis a fixed compact set ¥ = X, , 4 € R such that ¥ = o(J,,) for p-a.e.
w € Q;

(2) p-a.e. w has a dense orbit in 2. One has ¥ = o (J,) for any w with a dense
orbit;

(3) supp(x) = X

(4) k is constant on each connected component of R \ X.

In view of the items above, it is natural to associate to each gap of X the constant value
assumed by k on the gap; this value is called the label of the gap. Gap-labelling theory
attempts to characterize valid labels of gaps in terms of the topology and dynamics of
the underlying system.

Our main result is the Johnson—Schwartzman gap-labelling theorem for ergodic
Jacobi matrices.

Theorem 1.1 (Gap labelling for ergodic Jacobi matrices). Let {J,}weq be a topolo-
gical family of Jacobi matrices defined over the ergodic topological dynamical system
(R2,T, w) withsuppu = Q. Forall E € R\ X, k(E) belongs to (2, T, u) N[0, 1],
where (2, T, 1) denotes the Schwartzman group of (2, T, ).

Remark 1.2. In the event that p(w) > 0 for all w € €2, one can prove Theorem 1.1
in a very similar fashion to Johnson’s arguments in [13]. Let us emphasize that The-
orem 1.1 contains no assumption on p at all. In particular, p need not be uniformly
positive, log-integrable, or even nonzero a.e. with respect to the ergodic measure.

For the reader’s convenience, let us briefly recall the construction of the Schwartz-
man group; we direct the reader to the original papers [13,17], the survey [11], and the
book [10] for additional details. Let (€2, T, i) be an ergodic topological dynamical
system. The suspension of (€2, T, i), denoted (X, 7, v), is given by

X = Qx [0.1]/((@.1) ~ (Tw.0)).
1

/ fdv = [ / F(w. 1)) dp(w) dt.

X 0 Q

and © denotes the translation flow in the second factor of X. Let C#(X, T) denote the
set of equivalence classes in C(X, T) modulo homotopy. The Schwartzman homo-
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morphism %,: C#(X, T) — R is defined by

Fullgh = tim 20 e (18)

where (]Sx is any lift of ¢: 7 = ¢(r'x) to a map R — R. The Schwartzman group is
then the range of this homomorphism:

AR, T, 1) = Fp(CHX, T)). (1.9)

For later use, we also note that it is sometimes helpful to identify the circle T with
the real projective line RP! and to use maps into RP! to characterize the range of
the Schwartzman homomorphism. Concretely, identifying 6 € T with span{(cos 76,
sinf)T}in RP!,if ¢ € C(X,RIP1), then one has

1
Fo(¢) = lim —ALg  vae x, (1.10)
t—o0 Tt g

where Aklr’gb]qﬁx denotes the net change in the argument of ¢, on the interval [a, b]
and ¢ (1) = ¢ (1’ x) as before. Naturally, one has

AR = §u(1) — $:(0)

where ¢, is any lift of ¢, .

For ease of reference, let us make some applications of Theorem 1.1 to specific
choices of base dynamics explicit. The three examples we discuss are of wide interest
and the spectra of the associated Schrodinger operators and some Jacobi matrices have
been studied extensively; compare, for example, [8, 10, 16] and references therein.
The computation of the relevant Schwartzman group for each of them is covered by
the following general result from [11]. Consider Ty p: T > T w+— Aw + b,
where A € SL(d,Z), b € T4. Suppose /i is T4 p-ergodic with supp(u) = T<. Then,
according to [11, Theorem 8.1] we have that

AT, Typ, 1) = {mb +n:n € Z andm € Z¢ Nker(I — A*)}. (1.11)

Based on this result in combination with Theorem 1.1 we obtain the following corol-
laries.

Corollary 1.3 (Gap labelling for quasi-periodic Jacobi matrices). Let {J,}weq be a
topological family of Jacobi matrices defined over a minimal translation on a finite-
dimensional torus: Q = 'Ed, deN,T= Ta:Td — Td, o~ o+ o, wherea € T4
has rationally independent entries, u = Leb. Then, for all E € R\ X, k(E) belongs
toZ% + 7.
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Proof. Setting A = I, the identity matrix, and b = o, we observe that T4 = Ty, and
hence the statement follows from Theorem 1.1 and (1.11) since Z¢ Nker(I — A*) =
74, ]

Corollary 1.4 (Gap labelling for Jacobi matrices generated by the skew shift). Let
{Jw}weq be a topological family of Jacobi matrices defined by the standard skew
shift: Q = T2 T =Ty T?2 - T2, (w1, 02) T — (01 + o, 01 + w2) T, wherea € T
is irrational, u = Leb. Then, forall E € R\ X, k(E) belongs to Zo + Z.

1 0 o
A—|:1 1j| and b—|:0j|,

we observe that T4, = T, and hence the statement follows from Theorem 1.1
and (1.11) since Z2 Nker(I — A*) = Z & {0}. ]

Proof. Setting

Corollary 1.5 (Gap labelling for Jacobi matrices generated by the cat map). Let
{Jo}weq be a topological family of Jacobi matrices defined by the cat map: Q = T?,
T =T T? = T2 (01,02)" = Qwy + w2, w1 + w2)T, u = Leb. Then, for all
E e R\ X, k(E) belongs to Z. In particular, for all choices of continuous sampling
functions g € C(T?,R) and p € C(T?,C), the associated almost sure spectrum %.
is connected, that is, it has no interior gaps.

2 1 0
A—|:1 1] and b—|:0:|,

we observe that T4 , = T, and hence the first statement follows from Theorem 1.1
and (1.11) since ker(I — A*) is trivial.

The second statement following immediately from the first because on any interior
gap of X, the IDS must take a value strictly between 0 and 1, which is impossible
because only integers are allowed values. |

Proof. Setting

Schwartzman groups are computed for several additional examples in [11] and
give, in combination with Theorem 1.1, gap labelling results for the topological fam-
ilies of Jacobi matrices defined over them.

Additionally, the recent work [12] discussed Schrodinger operators generated by
the doubling map on the circle and showed that the associated almost sure essential
spectra are always connected. We show here that this result extends to the Jacobi
matrix case when the off-diagonals are bounded away from zero. The doubling map
Tym: T — T is given by Tw = 2w. The normalized Lebesgue measure ;1 = Leb on
T is known to be ergodic. As Ty, is continuous but not invertible, we can proceed as
above and associate for given g € C(T,R), p € C(T,C), and w € T half-line Jacobi
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matrices as in (1.3) by setting a,,(n) = p(Tj @) and by, (n) = q(T} w) forn € Z .
There is now an almost sure essential spectrum, X, that is, for p-almostevery w € T,
we have 0ess(Jp) = X. Under the additional assumption that the range of the off-
diagonal sampling function p is contained in C* = C \ {0}, this set does not have
any gaps, as the following theorem shows.

Theorem 1.6 (Absence of spectral gaps for doubling map Jacobi matrices). Consider
the doubling map Tyy,: T — T. Then, for every p € C(T,C*) and every g € C(T,R),
the associated Lebesgue almost sure essential spectrum X of the associated half-line
Jacobi matrices is connected.

Remark 1.7. (a) For the Schrodinger case, ¢ = 1, this result was obtained in [12].

(b) A similar statement holds for general linear expanding maps of the circle,
o — mo, with an integer m > 2. The proof is analogous to the proof we give in the
special case m = 2.

(c) Our proof needs the assumption that the off-diagonal sampling function avoids
zero, and hence the result is limited to the case of Jacobi matrices whose off-diagonals
are bounded away from zero. On a technical level, the proof of the result crucially
uses the stable section of the associated cocycle at an energy in a gap of the essen-
tial spectrum, as it is this section that is independent of the past and hence can be
defined for non-invertible base dynamics. On the other hand, Johnson—Schwartzman
gap labelling requires a framework associated with an invertible dynamical system
and hence in order to invoke it one needs to pass from the doubling map to the Smale
solenoid. One then does have an unstable section, but as this section is no longer
independent of the past, the more intricate topology of the solenoid places fewer
restrictions on the rotation number. In particular, using the unstable section one is
unable to see why the rotation number must be an integer. If p takes the value zero,
the stable section cannot be used to evaluate the Schwartzman homomorphism, and
hence this case eludes our argument. We will revisit this discussion and give more
details in Remark 4.1, after having given the proof of Theorem 1.6.

2. Preliminaries

2.1. Oscillation theory for Jacobi matrices

In this section we briefly recall oscillation theory for finite and half-line Jacobi
matrices with positive off-diagonal entries. This does not use the underlying dynam-
ics, so we leave the ergodic setting and consider a deterministic Jacobi matrix. For
N € N, we denote by Jy the set of N x N Jacobi matrices with a(n) > 0 for all
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0 <n < N — 1. We write Joo for the half-line Jacobi matrices with a(n) > 0 for all
nezs.

Let us first consider the case N = o0o. Given E € R, consider the solution u g of
Ju = Eu satisfying u(0) = 1 and interpolate linearly between consecutive integers
to get a function ug: [0, 00) — R. Form € N, let

F(E) =#{x € (0,m):ug(x) = 0}, 2.1

that is, Fy,,(E) denotes the number of zeros of u g in the open interval (0, ). On the
other hand, if N < oo, choose a(N — 1) > 0 arbitrarily and use this to define u g (n)
forO <n < Nsothatug(—1) =0,ug(0) = 1and, forall0 <n < N — 1,

am—NDugm—1)+bm)ugn)+am)ugn +1) = Eug(n), 2.2)

which we note defines ug(n) for all 0 < n < N. As before, interpolate linearly
between consecutive integers and let F, (E) denote the number of zeros of the inter-
polated u g in the interval (0, m).
Forany 1 <m < N + 1, define J,, to be the restriction of J to [0, m) N Z, that
is,
b(0) a(0)
a(0) b(1)
o . (2.3)
b(m—2) a(m-—2)
a(m—2) bm-—1)

The oscillation theorem establishes a relationship between these objects: the num-
ber of eigenvalues of J,, that exceed E is precisely Fy,(E).

Theorem 2.1 (Oscillation theorem). Let N € N U {oo} and J € Jn be given. For
any E andanym e Nwith1l <m < N + 1,

Fu(E) = #[0(J) N (E. 00)]. 2.4)
Proof. This is a well-known result; see e.g., [18, Section 2] or [19, Chapter 4]. n

Remark 2.2. Let us point out the following: the right-hand side of (2.4) is fully
determined by J,, and E, and it is in particular independent of a(m — 1). On the
other hand, the left-hand side of (2.4) seemingly depends on a(m — 1), as the solution
u g used in the definition of F,(E) depends on it. The resolution of this conundrum
is that, while the solution on the interval in question depends on a(m — 1), the number
of zeros of its interpolation does not, so long as a(m — 1) > 0. This simple observation
will play a key role in our proof of Theorem 1.1 in cases where the off-diagonal terms
vanish and the infinite Jacobi matrix splits into finite blocks. These blocks will then
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naturally take the form (2.3) and hence define an expression as in the right-hand side
of (2.4). We can then equate this expression via an application of Theorem 2.1 with
the left-hand side of (2.4) by simply pretending that the block in question is continued
to the right with positive off-diagonal terms!

2.2. The Alkorn-Zhang extension of Johnson’s theorem

In this section we briefly summarize some relevant material from the paper [1] by
Alkorn and Zhang, which proved a general version of Johnson’s theorem for Jacobi
matrices, both deterministic and dynamically defined. We begin with the definition of
M(2, C)-cocycles that enjoy a dominated splitting and then state a result that uses
this notion to characterize the set of energies outside the spectrum of a dynamically
defined Jacobi matrix for an initial point that has a dense orbit.

Let €2 be a compact metric space €2, 7 be a homeomorphism 2 — €2, and B €
C(2,M(2,C)) be a continuous cocycle map, where M (2, C) denotes the set of 2 x 2
matrices with complex entries. Iterates of the cocycle are given by

Bo(w) =1, Bu(w)=B(T" 'w).--B(Tw)B(w), neN,

In the following definition, we identify z € CP! = C U {oo} with a one-dimensional
subspace of C2 spanned by (1,z) T and oo with the one spanned by &, := (0,1)T.

Definition 2.3. Let (2, T) and B be as above. Then we say (7, B) has a domin-
ated splitting if there are two continuous maps E*, E': @ — CP! with the following
properties:

(1) B(w)[E*(w)] € E(Tw) and B(w)[E*(w)] € E*(Tw) for all w € Q;
(2) there are N € Z and p > 1 such that

I By (@)ul > pl By (@)s]

for all w € © and all unit vectors # € E(w) and § € E3(w).

Remark 2.4. Condition (2) above clearly implies that B(w)E"(w) # {6} for all
w € 2, which together with condition (1) implies

B(w)E"(w) = E"(Tw) forallw € Q. 2.5)
We also note that Condition (2) clearly forces E"(w) # E*(w) for all w and hence
C? = E(w) ® E*(w)

for every w € Q.
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It is often sufficient to identify some invariant continuous section, and Remark 2.4
shows that the unstable section E" can serve the desired purpose. This will indeed
be sufficient for our proof of Theorem 1.1. However, there are scenarios where it
is crucial to also have the corresponding properties for the stable section E°, and in
particular

B(w)E¥(w) = E¥(Tw) forallw € Q. (2.6)

Indeed, our proof of Theorem 1.6 relies on this in an essential way.
A sufficient condition for the stable section to be truly invariant is given in the
following proposition.

Proposition 2.5. Let (2, T) and B be as above and suppose that (T, B) has a dom-
inated splitting in the sense of Definition 2.3. If det B(w) # 0 for every w € S, then
the stable section is invariant, that is, it satisfies (2.6).

Proof. From the definition of dominated splitting, one has B(w)E*(w) € ES(Tw) for
each w. The assumption det B(w) # 0 implies that B(w)E*(w) is a one-dimensional
subspace of the one-dimensional space E*(Tw), which forces B(w)E*(w) = E*(Tw),
as promised. |

In the setting of Jacobi matrices, we will consider the one-parameter family of
cocycle maps (cf. [1, Section 5]) given by

_ o (T—1
BE (v) = [E (@) —p(T ‘”)}, EeC,weQ. 2.7)
p(w) 0
Let
DS :={E € C:(T, B¥) has a dominated splitting}. (2.8)

Then we have [1, Theorem 7]:

Theorem 2.6. Consider the Jacobi operators J,, w € 2, given by (1.3). Assume that
T is topologically transitive and let wo be any point that has a dense orbit. Then

P(Jup) = DS.

In particular, if | is a fully supported ergodic measure on 2 and X denotes the asso-
ciated almost-sure spectrum, then & = R\ DS.

Let us briefly discuss the relationship between BZ and solutions of J,u = Eu,
as this will be important later. We do not exhaustively discuss all possibilities, just
the two that are relevant in the proof of the main results. First, if p(T"w) # 0 for all
n € 7, then one can readily check

u(n) u(n + 1):|

BE(T”a))[u(n - 1)] = p(T"a))|: () (2.9)
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for each n € Z and any two consecutive entries determine u uniquely. On the other
hand, if p(T""w) =0for--- <n_; <ng <ni <---and p(T"w) # 0 for all other
n € Z, then u is uniquely determined by {u(n, 4+ 1)},ez and one still has (2.9) for all
n ¢ {n;}rez. For n = n,, one has

E pn, u(nr) _n
B=(T w)[u(nr B 1)] = 0.

3. Proof of the main theorem

In this section we prove our main result, Theorem 1.1. Throughout the discussion,
we assume (€2, T') is topologically transitive, wo has a dense orbit, and p is a fully
supported T'-ergodic Borel probability measure on 2. Suppose Jy = Jp 4.0 1S the
ergodic Jacobi matrix generated by @ € 2 and the sampling functions p, q.

Remark 3.1. As mentioned in the introduction, the assumption that u is fully suppor-
ted implies that p-a.e. @ € €2 has dense T -orbit and hence the almost-sure spectrum
¥ coincides with the spectrum of any J,, for which w has a dense orbit. Moreover, by
strong operator approximation, one has ¥ 2 o(J,) for all w € Q.

The cocycle map B is defined by (2.7) and the spectrum of Jw, (and hence also
the almost-sure spectrum of the family {J,},eq) is characterized by Theorem 2.6 as
the set of E € R for which (T, BZ) does not enjoy a dominated splitting.

The first step in the proof of Theorem 1.1 is to reduce to the case of non-negative
off-diagonal terms. To this end, we want to argue that we can pass from the off-
line sampling function p to the non-negative off-diagonal sampling function |p|. To
express this fact, let us make the dependence of the IDS k& and the almost sure spec-
trum ¥ on the sampling functions p and g explicit in the following proposition.

Proposition 3.2. We have kp 4 = k|p 4 and Zp 4 = X5 4.

Proof. Note first that the almost sure spectrum is determined by the IDS via £, ;, =
supp(dkp ), and hence kp 4 = k|p| 4 implies X, ; = X, ,. We can therefore focus
on the first identity.

Recall from (1.6) that the DOSM «,, 4 is the almost sure weak limit of the finitely
supported measures that place point masses of weight 1/N at the eigenvalues of
Jp(z,)w ‘= X10,N)Jp.q.0 X[0,n) (counted with multiplicity) and that the IDS is the accu-
mulation function associated with the DOSM, see (1.7). Thus, the identity k, , =
k|p|,4 follows once we show that J, ;Z?w and J \;1\\,21 » are unitarily equivalent for every
N € N and every o € Q. h
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To see that they are indeed unitarily equivalent, define {4, }nez., , by
Ao=1, Ayyy = Age A T70), 3.1

with the convention e~ A%2(0) = ] Note that for each n € Z, we have |A,| = 1, and
hence A, = A, !, which will be used below.

A short calculation shows that with A@Y) = diag(Ag,...,AN—1), we have
N N N) _ (V)
(AW, AN = o . (3.2)

Indeed, for 0 < m,n < N — 1, we have

q(T"w), m=n,
Ans1Anp(T"w), m=n-+1,
A—1Anp(T" tw), m=n-1,

, |m —n| > 2,

(Sm. (AN T AN,y =

=]

q(T"w), m=n,
|p(T"w)|, m=n-+1,
Ip(T" 'w)|, m=n-—1,

0, |m —n| > 2,

— (N)
- (‘Sm, J‘p‘,q,w8ﬂ)7

where we used (3.1) in the second step. The assertion follows from (3.2) since A
is unitary. u

Proof of Theorem 1.1. Due to Proposition 3.2 we may assume without loss of gener-
ality that

p>0. (3.3)

By Theorem 2.6,
0(Jp) =R\DS =%

for a.e. w and moreover for any w having a dense orbit.

Given E € DS, write E*, E: Q@ — CP! for the unstable and stable sections,
respectively. Since p is real-valued, E", E* are real sections, that is, E*(w), E*(w) €
RP! for all w.

Recall from Remark 2.4 that the unstable section E" is genuinely invariant in the
sense that

BE (w)E'(w) = E*(Tw); (3.4)
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compare also [1, Lemma 10 and Remark 5]. Thus, (since we need to pass to an inter-
polated object on the suspension), it is crucial for us to work with E", in contrast to
the Schrodinger setting, in which one can freely work with either section.

Now, consider the suspension X = Q x [0, 1]/((w, 1) ~ (Tw,0)). Define BE for
t €[0,1] by

cos Z0(t) —sin Z0(t)
[sin%@(t) cosgza(t) ] 0<t=<1/3,
BE = | [MOE a@) 1] 1/3<1<2/3,  (35)
E—q(w) ~[(1=n@)+n@®) p(T ' w)] ]
[(l—n(t))+n(t)p(w) 0 2/3<t=1

where 6, 1, and 71 increase continuously from O to 1 on their respective domains. Then
define
A(w.t) = BE (0)E"(w).

Observe that A(w, t) is continuous and well defined with values in RP 1 and one has
Aw,1) = A(Tw,0) 3.6)

by invariance. The important ingredients that lead to this observation are the follow-
ing:

G if0<t <1, Alw,t) is well defined since the determinant of BtE cannot

vanish, which follows from (3.3) and (3.5);
(i) ifr =1,then A(w,1) = BE (w)E"(w) = E*(Tw) = A(Tw,0) € RP!; com-
pare Remark 2.4.

Thus, A descends to give a well-defined map A: X — RP! to which we may
apply the Schwartzman homomorphism. Let us note that one can equivalently define
X as the quotient of 2 x R by (w,t + n) ~ (T"w, t), so we may write A(w, t) and
A([w,t]) fort € R\ [0, 1] below as this is sometimes convenient.

To conclude, it suffices to show that

Fv([A]) =1 —k(E), (3.7

since Z C U by standard reasoning (see, e.g., [11]). There are two cases to consider,
based on the behavior of the off-diagonal generating function.

Case 1: p is positive p-a.e. This part follows from the line of reasoning in the
Schrodinger case by passing to a suitable full-measure set. To keep the paper more
self-contained, let us sketch the main steps. The assumption p > 0 p-a.e. implies
that there is a set 2, of full u-measure such that all off-diagonal elements of J,, are
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strictly positive for each w € €2,. For each w € €2,, one can argue exactly as in the
proof of [11, Theorem 1.1] to see that

lim —AAOrg’ Aw,") = 1 —k(E), (3.8)

t—00

where AEfr:gb] denotes the net change in argument on the interval [a, b] and we pass to
a full-measure subset one more time if necessary to ensure the existence of the limit
(compare (1.10) and surrounding discussion). For the reader’s convenience, let us
describe this in more detail. Given w € Q. consider u g 4, the solution of J,u = Eu
satisfying u(—1) = 0, u(0) = 1, denote

iE on) = span{(ug »(n),ug »(n —1)) T} € RP!

for n € 7, and then put iig ,(n +t) = BE(T"w)iig »(n) for 0 <t < 1. Note that
this is well-defined on account of (2.9), which implies

g o +1) = BE(T"w)iig »(n) = BE(T"w)iig »(n).

From the explicit form of the homotopy BE, one can verify that

1
| AR WO | = # € ZN 0 m)sgnus.o() # senupo(j + D} (3.9)

for each n € N such that ug ,,(n — 1) # 0. To relate this back to A, note that our
choice of w € Q, implies that BE (T"w) is invertible for all n € Z, from which one
deduces

A g o () = AN (@) + 0(1) (3.10)

as t — oo. Thus, (3.8) follows from (3.9), (3.10), (1.7), and Theorem 2.1.
From (3.8), one deduces immediately that

lim —Affrg’]/\(rsx) = 1—k(E) (3.11)

t—oo g1t

for v-a.e. x. In view of (1.10), this implies (3.7).

Case 2: p vanishes on a set of positive -measure. In this case, ergodicity implies
that there exists Q1 € Q of full u-measure such that J, is a direct sum of finite
Jacobi matrices for all € Q1. There is also a full-measure set 22 such that

Ko.N — k weakly for all w € Q2. (3.12)

Consider w € , := Q! N Q2 andchoose --- <n_; <ng <ny <---sothatag,(n) =
p(T"w) = 0 if and only if n = n, for some r. Thus,

J, = @ Jr, (3.13)
r
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where J; = Jul[n,+1,n,,,] is 2 finite Jacobi matrix for each r. Indeed, writing ¢, =
Np4+1— Ny, Jp is an £, x £, matrix.
By assumption, £ ¢ X, which gives

E¢o(Jy) (3.14)

by Remark 3.1.
Without loss of generality, assume n¢ = 0. Notice that by (1.7), (3.12), and (3.13),
we have N1
X0 #o () 0 (. o0)
N—0o o
For each block J;, consider the Dirichlet solution u, defined on [n,,n,4+1 + 1] by
ur(ny;) =0,ur(n, +1) =1, and

= 1—k(E). (3.15)

a(n—Duy(n—1) +b(mu,(n) +amu,(n +1) = Euy(n), n, +1=n=<n,;4,
(3.16)
where d(n) = a,(n) forn, <n <n,;;andda(n,41) = 1." Note that this is the point
in the proof where Remark 2.2 is relevant.
If

Sri=#n, + 1= j <npprisgnu,(j) # sgnu,(j + 1)} (3.17)

denotes the number of sign changes of u, on [n, + 1, 1,41 + 1] N Z, then The-
orem 2.1 implies
Jfr =#o(Jr) N (E,00)]. (3.18)

Notice that
EY(T" *lw) = span(é;) r € Z, (3.19)

which can be seen directly from the form of the cocycle, a(n,) = 0, and E" # {6}.
We claim that

1
fr= A5 A @), (3.20)

In view of (3.15), (3.18), and the definition of the Schwartzman homomorphism,
(3.20) implies (3.7), so all that remains is to demonstrate (3.20).

First, notice that (3.19) together with the explicit interpolated form of BZE implies
that the right-hand side of (3.20) is always a non-negative integer, that is,

1 1
Al A | = —al T A, ). (3.21)

'Note here that u, is a Dirichlet solution associated with a block for which a(n,4+1) = 1, so
U, is not an eigenvector of the original block, J;. Indeed, it cannot be such a solution because
E ¢ o(J;) as noted in (3.14).
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Next, observe from (3.19) and induction that
EY(T™w) = span{(u,(m), u,(m — 1)}, n, +1<m <ny41. (3.22)
Finally, for ¢ € [2/3, 1] one has

BE(BE ]_1:[ E - q(w) —[(l—n(t))+n(t)p(T‘1w)]]
e 15273 (1= 1) + 1) p(©) 0
0 1
X[—l E—q(w)]

_ [(1 — (1)) + () p(T" ' w) % }
0 [1—=n@®]+n@)p(@)]

which (for 7(¢) € [0, 1)) preserves the half-planes Hy = {(x,y)": £y > 0} and the
semi-axes A+ = {(x,0)": £x > 0}. Consequently, by the same argument as in the
previous case, one has

1
[ AR A @, | =, 4+ 1 < misenun () # senus (G + D) (323)

for any n, <m < n,4; such that u,(m) # 0. As discussed earlier, E ¢ o(J,), which
implies u(n,41) # 0. Thus, (3.20) follows from (3.21) and (3.23). [

Remark 3.3. (a) Let us remark that, although the proof in Case 1 follows the same
lines as in the Schrédinger case since one passes to a full-measure set on which one
can apply standard oscillation theory, the recent work [1] is still a crucial new ingredi-
ent, since one needs the existence of the invariant sections for the case min p(w) = 0.

(b) Let us comment also that we found the result in Case 2 rather serendipitous;
prior to working out the proof, there were nontrivial reasons to be concerned. Let us
describe this in more detail. On one hand, everything must be exact; one cannot give
up any errors at any point, because, as soon as one gives up an O(1) error on any
block, the positive density of the set of zeros of the off-diagonal elements causes a
nontrivial error in the thermodynamic limit defining the integrated density of states.
On the other hand, in Case 1, one has to give up errors at two steps. First, one incurs
an O(1) error in approximating the (change in argument of the interpolation of) the
Dirichlet solution with that of the unstable section (cf. (3.10)). Second, one incurs an
error in approximating the number of sign flips of the Dirichlet solution by the number
of half-rotations of the corresponding interpolated object (cf. (3.9)).

Thus, there are two fortuitous circumstances that facilitate the proof in Case 2.
First, the unstable section precisely (projectively) coincides with the Dirichlet solu-
tion on the blocks (eq. (3.22)) and second, one has an exact expression relating the
change in argument of the interpolated object to the sign flips of the Dirichlet solution
(eq. (3.20)). Thus, all of the moving parts fit together surprisingly nicely.



Johnson—Schwartzman gap labelling for ergodic Jacobi matrices 313

4. Absence of spectral gaps for the doubling map

In this section we give the proof of Theorem 1.6. Recall that the theorem extends the
main result from [12] from the case p = 1to p € C(T, C \ {0}). We will follow
the general strategy from [12] and explain the necessary changes. However, for the
convenience of the reader, we briefly sketch all steps of the argument, even those that
do not require any changes relative to [12].

Suppose we are given sampling functions p, ¢ as in the statement of Theorem 1.6.
Sampling orbits of the doubling map 7', this gives rise to the family of one-sided
Jacobi matrices {J,}weT, and we are interested in the Lebesgue almost surely com-
mon essential spectrum X, ;. In order to show that it is connected, we will pass to an
associated family {fa; }seq of two-sided Jacobi matrices, defined over an invertible
extension (Q, 7~“) of the doubling map.

Let us begin by recalling the construction of the standard (Smale—Williams) solen-
oid; see [7, Section 1.9] or [14, Section 17.1] for additional background. Consider the
solid torus T given by

T=TxD, whereD = {(x,y) e R%: x>+ y? < 1}.
Choose A € (0, 1/2) and define the transformation F: T — T by
1 1
Flw,x,y) = (Zw,)tx + 3 cos(Qrw), Ay + 3 sin(27m))>.

Then the map F is injective and the set

[e.e]
S=F"®)

n=0
is a compact F-invariant subset of T on which F is a homeomorphism; the set
S is called the (standard) solenoid. Note that the projection to the first component,
mi(w,x,y) = w, sends S onto T and the induced transformation on T is given by
the doubling map, that is, 7y o F' = T o . In other words, setting Q=8T= Fls
we obtain the desired invertible extension (Q, T) of the doubling map. There is then a
natural ergodic extension of Lebesgue measure on T to the space €, which we denote
by ji. In addition to being ergodic, fi has full topological support, that is,

supp fi = Q. 4.1
The measure i can be viewed as both the Sinai—-Ruelle-Bowen measure and as the
Bowen—Margulis measure. Locally, i is the product of the (1/2, 1/2)-Bernoulli meas-
ure on the Cantor fibers and the Lebesgue measure on the circle. Consequently, ji pro-
jects to Lebesgue measure under 7y :

(1)« (1) = pe. (4.2)
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Given the sampling functions p and ¢ defined on T, we consider sampling func-
tions on the solenoid as follows:

p: Q — R, (w,x,y) — p(w) 4.3)
and
Q> R, (0.x,y) > q(). 4.4)
On the solenoid, the cocycle we may consider takes the form
(T,BE):QxC? > QxC?, (&.0)~ (Td, BE(@)D).
where
4.5)

BE:Q - GL(2.C), &+ [E ~4(T@) —WD)}

p(T(@)) 0
Notice that relative to the standard definition, we have to shift the arguments here; see
the comment after (4.12) below for the reason.

We are now ready for the proof of Theorem 1.6.

Proof of Theorem 1.6. Let both p € C(T,C*) and ¢ € C(T, R) be given, associate
sampling functions on €2 via (4.3) and (4.4), and consider the family

[Twxn¥1n) = 5T Yo, x, Y)Y (n — 1) + G(T" (. x, ) (n)
+ p(T"(w,x, )Y (n +1). (4.6)

We denote the associated density of states measure by K 5 5, the associated integ-
rated density of states by k55, and the associated fi-almost sure spectrum of Jg
by X5 5. As before, we have

5.4 = SuppRzg. @7
It is not difficult to check that for @ = (w, x,y) € S and n € Z, we have
p(T"®) = p(T"w) and G(T"®) = q(T"w). (4.8)

This in turn implies that

S5 =Spq- 4.9)

Thus, the theorem will follow from (4.7) and (4.9) once we show that for every
EecR\Z,;, =R\ iﬁ,q, we must have

kya(E)€Z, (4.10)

as this implies that either £ < min iﬁ,é = min X, 4 or £ > max iﬁ,q = max X 4,
so it follows that X, , has no interior gaps.
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Invoking Proposition 3.2, we can assume without loss of generality that p is real-
valued, as we have k5; = k|55 and S55 = 555 (along with (4.3)). This will
ensure that all stable and unstable sections below corresponding to the real energy E
will be real as well.

Since Ee R\ X,, =R\ iﬁ’q, Theorem 2.6 implies that (7, BE) has a domin-
ated splitting (recall BE denotes the cocycles as in (4.5)). As usual, denote the stable
and unstable sections by E®, E": Q — RPL

As we are now in the case of invertible matrices, Proposition 2.5 implies that the
stable section is genuinely invariant, that is,

BE(@)E(®) = E(T®). (4.11)

Of course, we have the related (non-invertible) cocycle (7, BE ) defined by

E—-q(Tw) —p(w)
BE:Q — GL(2,R), 4.12
~aem. o [F S0 1
and (T, BE)" = (T, Bf ) for n € Z . Here it becomes clear why we had to shift
in (4.5) above, as T~ does not exist.
As a consequence of (4.8), we find that for ® = (w,x,y) € S andn € Z 4, we

have
BE(») = BE (w). (4.13)

Now, let X = X(T,T) =T x [0, 1]/((a) 1) ~ (Tw,0)) be the suspensmn of the
doubling map (T, 7') and let X = X(Q T) Q x [0,1]/((@, 1) ~ (T, 0)) be the
suspension of the standard solenoid (Q, T). Moreover, let U denote the suspension
of ji. Notice that

X > X, [(0.x,y).5] > [0,s]

is continuous. Following the terminology of [12], we say that 43 eC ()? , T) factors
through X if there is ¢ € C(X, T) such that ¢ = ¢ o y, that is, ¢([(w, x, y), s]) =
¢([w, s]) for all (w, x,y) € Q and s € [0, 1]. The following was shown in [12]:

$ € C(X,T) factors through X = A;([p]) € Z. (4.14)

Define B ,E for arbitrary ¢ € R by using a homotopy to the identity in a way similar
to (3.5). Then use BtE to produce a continuous section A*: X — RP! by

AT(@,s]) = BEAT (@), @eQ,sel01] (4.15)

The reader may then verify (see [12] for details) that the map AT from 4.15) is
well defined and continuous, and that it depends only on the first coordinate of @, that
is, there exists a continuous map A*: T — RP! such that At (@) = AT (w) for every
o= (w,x,y) € Q.
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Thus, At factors through X, and hence A5(AT) € Z by (4.14). Arguing as in
the proof of Theorem 1.1, 1 — k5 z(E) = 25(A™T), so A (A+) € Z yields (4.10) and
completes the proof. ]

Remark 4.1. Let us address the obvious question whether Theorem 1.6 still holds
if the assumption p € C(T, C \ {0}) is dropped. In short, this is unclear to us. Two
statements are fundamentally true.

(i) Our proof relies on the fact that the stable section depends only on the future,
that is, on the forward iterates of a point ® = (w, x, y) under 7~", and in addition the
sampling functions evaluated along the forward iterates then actually only depend
on w (i.e., they are independent of x, y). This in turn allows us to view the stable
section as being defined on T, which in turn leads to a “trivial” topology.

(i1) As soon as p is allowed to take the value zero, the stable section will no longer
be defined as a map into RP!, then interpreted as a map into T, and hence it cannot
be used to view the associated rotation number at the energy in question from the
perspective of the Schwartzman homomorphism.

Accepting (i) and (ii) one is naturally limited to working with the unstable section,
but the latter clearly depends on the past, and hence on the components x and y of
@ as well. Consequently, one cannot reduce to maps with trivial topology in order to
evaluate the rotation number in a gap. In other words, it is unclear whether it neces-
sarily takes integer values there, and hence the extension of Theorem 1.6 to general

. . . 2
p € C(T, C) remains an interesting open problem.”
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>While this paper was in production, this obstacle was overcome by computing the
Schwartzman group related to affine homeomorphisms of connected groups [9].
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