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Graphical Abstract

Abstract

Artificial meat is an eco-friendly alternative to real meat that is marketed to have a similar taste and feel. The mechanical
roperties of artificial meat significantly influence our perception of taste, but how precisely the mechanics of artificial meat
ompare to real meat remains insufficiently understood. Here we perform mechanical tension, compression, and shear tests
n isotropic artificial meat (Tofurky® Plant-Based Deli Slices), anisotropic artificial meat (Daring™ Chick’n Pieces) and

anisotropic real meat (chicken) and analyze the data using constitutive neural networks and automated model discovery. Our
study shows that, when deformed by 10%, artificial and real chicken display similar maximum stresses of 21.0 kPa and 21.8 kPa
in tension, -7.2 kPa and -16.4 kPa in compression, and 2.4 kPa and 0.9 kPa in shear, while the maximum stresses for tofurky
were 28.5 kPa, -38.3 kP, and 5.5 kPa. To discover the mechanics that best explain these data, we consulted two constitutive
neural networks of Ogden and Valanis–Landel type. Both networks robustly discover models and parameters to explain the
complex nonlinear behavior of artificial and real meat for individual tension, compression, and shear tests, and for all three
tests combined. When constrained to the classical neo Hooke, Blatz Ko, and Mooney Rivlin models, both networks discover
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shear moduli of 94.4 kPa for tofurky, 35.7 kPa for artificial chick’n, and 21.4 kPa for real chicken. Our results suggests that
artificial chicken succeeds in reproducing the mechanical properties of real chicken across all loading modes, while tofurky
does not, and is about three times stiffer. Strikingly, all three meat products display shear softening and their resistance to
shear is about an order of magnitude lower than their resistance to tension and compression. We anticipate our study to inspire
more quantitative, mechanistic comparisons of artificial and real meat. Our automated-model-discovery based approach has the
potential to inform the design of more authentic meat substitutes with an improved perception of taste, with the ultimate goal
to reduce environmental impact, improve animal welfare, and mitigate climate change, while still offering the familiar taste and
texture of traditional meat. Our source code, data, and examples are available at https://github.com/LivingMatterLab/CANNs.
© 2023 Elsevier B.V. All rights reserved.

Keywords: Artificial meat; Automated model discovery; Constitutive modeling; Ogden model; Valanis–Landel model; Constitutive artificial neural
networks

1. Motivation

Plant-based meat substitutes, or artificial meats, are an increasingly popular alternative to animal consumption.
riven by a growing push for environmental sustainability [1], public health, and animal welfare [2], the global
arket for plant-based meat substitutes is projected to reach $85 billion by 2030 from $4.6 billion in 2018 [3].
evertheless, there is persistent reluctance to adopt plant-based alternatives [4], in part due to the failure of
eat replacements to adequately mimic the aesthetic and experiential qualities of conventional farmed meat [5,6].

ndeed, approaches to engineered artificial meat products vary widely and result in a large array of appearances
nd textures [7,8]. Robust characterization of the constitutive behavior of meat substitutes may well be the key to
uccessfully engineer plant-based alternatives that approximate the properties of farmed meats [9]. The mechanical
roperties of artificial meat products influence our oral processing and inform our sensory perception [10,11]. To
stablish quantitative insight into the mechanical behavior of plant-based meat substitutes, we compare two existing
roducts, Tofurkey® Plant-Based Deli Slices and Daring™ Artificial Chick’n Pieces, to real chicken. We test all three
eat products in tension, compression, and shear [12]. To provide an unbiased analysis, we then adopt constitutive

eural networks [13,14] to autonomously discover a material model that explains the relationship between stress
nd deformation [15,16].

Constitutive neural networks are a new paradigm to discover the model, parameters, and experiments to best
escribe a material, entirely without human interaction [17]. In classical mechanics, the gold standard practice is
o a priori select a model based on qualitative observations, for example, the shape of an experimental curve, the
xpected material behavior, or simply user preference [18]. However, the choice of the model inherently limits the
t to the data and, more importantly, the flexibility of the type of equation that characterizes the material behavior.
n standard machine learning, neural networks approximate the data to any degree of accuracy, but typically fail
o provide any physical insight at all [19]. Constitutive neural networks combine the best of both words by hard-
iring constitutive constraints into the network design [20–22] and allow us to automatically screen a wide range
f potential models while ensuring thermodynamic consistency [16,23,24].

To automatically discover the best model and parameters for artificial and real meat, we compared two distinct
rincipal-stretch-based constitutive neural network architectures: the first is configured with strictly power law
gden type terms [25] and the second is expanded to include exponential and logarithmic Valanis–Landel type

erms [26,27]. Furthermore, both architectures contain the popular neo Hooke [28], Blatz Ko [29], and Mooney
ivlin [30,31] models as special cases. The Ogden type network allows us to extract the classical shear modulus

or comparison with the literature [32], whereas the Valanis–Landel type network demonstrates to which extent
dditional exponential and logarithmic terms can improve model discovery [17]. We train both networks on new
ension, compression, and shear data from two distinct meat substitutes and systematically compare them to real
eat. This study is the first to characterize the mechanics of artificial meat products – fully autonomously and
nbiased – without having to manually select a model and then fit its parameters to data.
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Fig. 1. Mechanical testing of artificial and real meat. Tofurky® deli slices, Daring™ artificial chick’n, and real meat, from left to right,
tested in uniaxial tension using the Instron 5848 test device, top, and in compression and shear using the AR-2000ex torsional rheometer,
bottom. The artificial chick’n and real chicken were along the fiber direction in all testing modes.

2. Methods

2.1. Mechanical testing

We tested two types of artificial meat, Tofurkey® deli alices and Daring™ artificial chick’n, and, for comparison,
one type of real meat, chicken. For each meat type, we tested n = 5 samples in tension, compression, and shear.
Fig. 1 illustrates our test setup for all nine mechanical tests.

2.1.1. Sample preparation
For the tension tests, we prepared strip samples of 2 cm in width to match the width of the specimen holder. We

aligned the fiber direction of the artificial and real chicken with the direction of loading. For the compression and
shear tests, we prepared cylindrical samples of 8 mm diameter using a biopsy punch to extract full-thickness cores
from the center of each material. We aligned the fiber direction of the artificial and real chicken with the long axis
of the cylindrical punch.

2.1.2. Sample testing
For all test modes, we tested the samples raw and at room temperature at 25 ◦C. We performed all uniaxial

ension tests using an Instron 5848 (Instron, Canton, MA) with a 100 N load cell, see Fig. 1, top row. We mounted
he sample, applied a small pre-load of 0.5 N, and calibrated the initial gage length L . We then increased the
tretch quasi-statically at a rate of λ̇ = 0.2%/s for t = 50 s to a total stretch of λ = 1.1 We performed all uniaxial
ompression and shear tests using an AR-2000ex torsional rheometer (TA Instruments, New Castle, DE), see Fig. 1,
ottom row. We mounted the sample, applied a small pre-load of 0.5 N, and calibrated the initial gage length L .
e then compressed the tofurky samples quasi-statically at the rheometer’s minimum rate of 10 µ m/s and the real

hicken and artificial chick’n samples at a rate of λ̇ = 0.2%/s for t = 50 s, all to a total stretch of λ = 0.9. For
the shear tests, we applied a small compressive pre-load and calibrated the initial gage length L . We then rotated
the sample quasi-statically at φ̇ at a shear rate of γ̇ = 0.2%/s for t = 50 s, to a total shear of γ = 0.1. To prevent
slippage of the samples during the shear tests, we used a sandpaper-covered base plate of 20 mm diameter and a

sandpaper-covered top plate of 8 mm diameter.
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2.1.3. Analytical methods and data processing
For each sample and each test mode, we used MATLAB (Mathworks, Natick, MA, USA) to smooth the curves

sing smoothingspline and SmoothingParam = 1. We interpolated the fit curve over 20 equally spaced points
n the ranges 1.0 ≤ λ ≤ 1.1 for tension, 1.0 ≥ λ ≥ 0.9 for compression, and 0.0 ≤ γ ≤ 1.0 for shear. Finally, we

averaged the five interpolated curves to obtain the mean, standard error of the mean, and standard error.

2.2. Kinematics

During testing, particles X of the undeformed sample map to particles x of the deformed sample via the
deformation map ϕ such that x = ϕ(X). Similarly, line elements dX of the undeformed sample map to line
elements dx of the deformed sample via the deformation gradient F such that dx = F · dX . The deformation
radient F is the gradient of the deformation map ϕ with respect to the undeformed coordinates X . Its spectral
epresentation introduces the principal stretches λi and the principal directions N i and ni in the undeformed and
eformed configurations, where F · N i = λi ni , and

F = ∇Xϕ =
∑3

i=1 λi ni ⊗ N i . (1)

ere we assume that all three types of meat are perfectly incompressible, and their Jacobian, J = det(F), always
emains equal to one, J = 1. For simplicity, we also assume that all samples are isotropic and have three principal
nvariants,

I1 = λ2
1 + λ

2
2 + λ

2
3 and I2 = λ2

1λ
2
2 + λ

2
2λ

2
3 + λ

2
1λ

2
3 and I3 = λ2

1 λ
2
2 λ

2
3 = J 2 , (2)

hich are linear, quadratic, and cubic in terms of the principal stretches squared. The principal stretches depend
n the type of experiment. This study is based on tension, compression, and shear experiments and, as a first
pproximation, assumes a homogeneous behavior of the sample.

.2.1. Tension and compression
In the tension and compression experiments, we apply a stretch λ = l/L , that we calculate as the ratio between

he current and initial sample lengths l and L . We can write the deformation gradient F in matrix representation
s

F =

⎡⎣ λ 0 0
0 1/

√
λ 0

0 0 1/
√
λ

⎤⎦ with λ = l/L , (3)

nd immediately identify the principal stretches,

λ1 = λ and λ2 = 1/
√
λ and λ3 = 1/

√
λ . (4)

n tension and compression, the first and second invariants and their derivatives are

I1 = λ2
+ 2/λ and I2 = 2λ+ 1/λ2 with ∂λ I1 = 2 λ− 2/λ2 and ∂λ I2 = 2 − 2/λ3 . (5)

.2.2. Shear
In the shear experiment, we apply a torsion angle φ, that translates into the shear stress, γ = r/L φ, by

ultiplying it with the sample radius r and dividing by the initial sample length L . We can write the deformation
radient F in matrix representation as

F =

⎡⎣ 1 γ 0
0 1 0
0 0 1

⎤⎦ with γ = r/L φ , (6)

nd calculate the principal stretches,

λ1 =
1
2γ +

√
1 +

1
4γ

2 and λ2 = 1 and λ3 =
1
2γ −

√
1 +

1
4γ

2 . (7)

n shear, the first and second invariants and their derivatives are

I = 3 + γ 2 and I = 3 + γ 2 with ∂ I = 2 γ and ∂ I = 2 γ . (8)
1 2 γ 1 γ 2
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2.3. Constitutive equations

Constitutive equations relate a stress like the Piola or nominal stress P , the force per undeformed area that is
commonly measured in experiments, to a deformation measure like the deformation gradient F. Here we assume
that all three types of meat are hyperelastic and incompressible. For hyperelastic materials that satisfy the second
law of thermodynamics, we can express the Piola stress, P = ∂ψ(F)/∂F, as the derivative of the Helmholtz free
energy function ψ(F) with respect to the deformation gradient F, modified by a pressure term, −p F-t, to ensure
perfect incompressibility,

P =
∂ψ

∂F
− p F-t . (9)

Here the hydrostatic pressure, p = −
1
3 P : F acts as a Lagrange multiplier that we determine from the boundary

onditions. Instead of formulating the free energy function directly in terms of the deformation gradient ψ(F), we
can either express it in terms of the invariants, ψ(I1, I2, I3), to yield the following expression for the Piola stress,

P =
∂ψ

∂ I1

∂ I1

∂F
+
∂ψ

∂ I2

∂ I2

∂F
− p F-t , (10)

or in terms of the principal stretches, ψ(λ1, λ2, λ3), to result in the following Piola stress,

P =

3∑
i=1

∂ψ

∂λi
ni ⊗ N i − p F-t . (11)

ere we focus on principal-stretch based constitutive models.

. Neural network modeling

Motivated by these kinematic and constitutive considerations, we reverse-engineer two families of principal-
tretch based neural networks that satisfy the conditions of thermodynamic consistency, material objectivity, material
ymmetry, incompressibility, constitutive restrictions, and polyconvexity by design [14,24]. Instead of building these
onstraints into the loss function [33,34], we hardwire them directly into our network input, output, architecture, and
ctivation functions [16] to satisfy the fundamental laws of physics. We compare two different network architectures,
n Ogden type network in Section 3.1 and a Valanis–Landel type network in Section 3.2. Special members of
his family represent well-known constitutive models, including the neo Hooke [28], Blatz Ko [29], and Mooney
ivlin [30,31] models, for which the network weights gain a clear physical interpretation [17,32].

.1. Ogden type neural network

Our first neural network is inspired by the Ogden model [25] and uses a free energy function that is parameterized
n terms of the principal stretches, λ1, λ2, λ3,

ψ =

n∑
k=1

µk

αk
[λαk

1 + λ
αk
2 + λ

αk
3 − 3] =

n∑
k=1

µk

αk

3∑
i=1

[λαk
i − 1] with µ =

1
2

n∑
k=1

αk µk . (12)

In this general form, the Ogden model consists of n terms and introduces 2n parameters, n stiffness-like parameters
µi and n nonlinearity parameters αi , which collectively translate into the classical shear modulus µ from linear
theory [35]. Motivated by the free energy function (12), we reverse-engineer a hyperelastic, perfectly incompressible,
isotropic, principal-stretch-based Ogden type neural network [32]. The network takes the deformation gradient F
for tension and compression (3) or shear (6) as input and computes the associated principal stretches λ1, λ2, λ3
using (4) or (7). From these stretches, it determines n = 20 Ogden terms, with fixed exponential coefficients, here
ranging from α1 = −30 to αn = +30 in increments of three, that make up the n nodes of the hidden layer of the
model. The sum of all Ogden terms defines the strain energy function ψ as the network output. Fig. 2 illustrates
our Ogden type network with n = 20 nodes, for which the free energy function takes the following form,

ψ=
∑3

i=1w1 [ λ−30
i −1]+w2 [ λ−27

i −1]+w3 [ λ−24
i −1]+w4 [ λ−21

i −1]+w5 [ λ−18
i −1]

+w6 [ λ−15
i −1]+w7 [ λ−12

i −1]+w8 [ λ−9
i −1]+w9 [ λ−6

i −1]+w10 [ λ−3
i −1]

+w11 [ λ+3
i −1]+w12 [ λ+6

i −1]+w13 [ λ+9
i −1]+w14 [ λ+12

i −1]+w15 [ λ+15
i −1]

+18 +21 +24 +27 +30

(13)
+w16 [ λi −1]+w17 [ λi −1]+w18 [ λi −1]+w19 [ λi −1]+w20 [ λi −1] .
5
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Fig. 2. Ogden type constitutive neural network. The network represents a 20-term Ogden model with fixed exponents αk ranging from
−30 to +30 in increments of three. It takes the deformation gradient F as input and computes the three principal stretches λ1, λ2, λ3.

rom them, it calculates the Ogden terms for the 20 nodes of the hidden layer, multiplies them by the network weights wk , and sums up
ll terms to the strain energy function ψ(F) as output. The derivative of the strain energy function defines the Piola stress, P = ∂ψ/∂F,
hose components P11 or P12 enter the normal force N or torque M in the loss function to minimize the error between the model and the

ension, compression, and shear data.

ere, wk are the network weights and
∑3

i=1[λαk
i − 1] are the activation functions. From the free energy (13), we

alculate the stress using Eq. (11), P =
∑3

i=1 ∂ψ/∂λi ni ⊗ N i − p F-t, in terms of the derivative of the free energy
with respect to the stretches λi ,

∂ψ

∂λi
=−30 w1 λ−31

i − 27 w2 λ−28
i − 24 w3 λ−25

i − 21 w4 λ−22
i − 18 w5 λ−19

i
−15 w6 λ−16

i − 12 w7 λ−13
i − 9 w8 λ−10

i − 6 w9 λ−4
i − 3 w10 λ

−4
i

+ 3 w11 λ
+2
i + 6 w12 λ

+5
i + 9 w13 λ

+8
i + 12 w14 λ

+11
i + 15 w15 λ

+14
i

+18 w16 λ
+17
i + 21 w17 λ

+20
i + 24 w18 λ

+23
i + 27 w19 λ

+26
i + 30 w20 λ

+29
i .

(14)

The network weights wk are non-negative [23], and relate to the stiffness-like parameters µk and fixed exponential
coefficients αk as wk = µk/αk ≥ 0. For our specific network with n = 20, the αk coefficients are αk = 3k − n − 13
for k ≤ 10 and αk = 3k − n − 10 for k ≥ 11. For this particular network, we recover the classical shear modulus µ
from the linear theory in terms of the stiffness-like parameters µk as µ =

1
2 [−30µ1−27µ2−· · · .+27µ19+30µ20],

or, equivalently, in terms of the network weights wk as µ =
1
2 [302w1+ 272w2+ · · · .+ 272w19+ 302w20]. During

raining, our network autonomously identifies the best subset of activation functions from ( 2n
− 1) = 1, 048, 575

ossible combinations of terms, and discovers the best model from more than a million possible models. At the
ame time, it naturally trains the weights of the less important terms to zero.

.2. Valanis-Landel type neural network

Our second neural network is inspired by the Valanis Landel model [26], which postulates that the free energy
unction ψ can be expressed as the sum of any function subfunction f of the principal stretches, λ1, λ2, λ3,

ψ = f (λ1) + f (λ2) + f (λ3) =
3∑

i=1

f (λi ) . (15)

Comparisons with experimental data showed that logarithmic subfunctions f (λi ) = 2µ ln(λi − 1) with derivatives

f/∂λi = 2µ ln(λi ) perform well in fitting uniaxial and biaxial data from natural rubber [26]. Other possible choices

6
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Fig. 3. textbfValanis–Landel type neural network. The network takes the deformation gradient F as input and computes the three principal
stretches λ1, λ2, λ3. From them, it calculates the positive and negative second and fourth powers, ( ◦ )+2, ( ◦ )+4, ( ◦ )−2, ( ◦ )+4 in the first
idden layer, multiplies them with their weights w1,(◦), calculates their Ogden type terms, exponentials, logarithms in the second hidden
ayer, multiplies them with their weights w2,(◦), and adds all terms to the strain energy function ψ(F) as output. The derivative of the strain
nergy function defines the Piola stress, P = ∂ψ/∂F, whose components P11 or P12 enter the normal force N or torque M in the loss
unction to minimize the error between the model and the tension, compression, and shear data.

or the subfunction are the classical Ogden model [25] from Eq. (12), f (λi ) = µ/α [ λαi −1 ], or exponential functions
n the stretch, f (λi ) = a [ exp(λαi − 1) − 1]. Motivated by the free energy function (15) and these considerations
or the subfunction f (λi ), we reverse-engineer a hyperelastic, perfectly incompressible, isotropic, principal-stretch
ased Valanis–Landel type neural network. Similar to the Ogden type network, the Valanis–Landel type network
akes the deformation gradient F for tension and compression (3) or shear (6) as input and computes the associated

principal stretches λ1, λ2, λ3 using (4) or (7). From these stretches, it calculates the positive and negative second and
fourth powers, ( ◦ )+2, ( ◦ )+4, ( ◦ )−2, ( ◦ )+4 and, for all four, calculates the Ogden type, exponential, and logarithmic
terms. To give the network the additional freedom to discover larger Ogden type powers, we also include two terms,
[λ

−w(◦)
i − 1] and [λ

+w(◦)
i − 1], with trainable exponents, −w(◦) and +w(◦), resulting in a total of n = 4× 3+ 2 = 14

terms. The sum of all Valanis–Landel terms defines the strain energy function ψ as the network output. Fig. 3
illustrates our Valanis–Landel type network for which the free energy function takes the following form,

ψ=
∑3

i=1 [w2,1 w1,1 [λ−2
i − 1]+w2,3 [ exp(w1,3 [λ−2

i − 1]) − 1]−w2,4 [ ln (1 − w1,4 λ
−2
i )]

+w2,5 w1,5 [λ−4
i − 1]+w2,6 [ exp(w1,6 [λ−4

i − 1)] − 1]−w2,7 [ ln (1 − w1,7 λ
−4
i )] + w2,2[λ

−w1,2
i − 1]

+w2,8 w1,8 [λ+2
i − 1]+w2,10 [ exp(w1,10 [λ+2

i − 1)] − 1]−w2,11 [ ln (1 − w1,11λ
+2
i )]

+w2,12w1,12 [λ+4
i − 1]+w2,13 [ exp(w1,13 [λ+4

i − 1)] − 1]−w2,14 [ ln (1 − w1,14λ
+4
i )] + w2,9[λ

+w1,9
i − 1]]

(16)

Here w1,k are the unit-less network weights from the first hidden layer and w2,k are the stiffness-type network
weights from the second hidden layer as shown in Fig. 3. From the free energy (16), we calculate the stress using
Eq. (11), P =

∑3
i=1 ∂ψ/∂λi ni ⊗ N i − p F-t, in terms of the derivative of the free energy ψ with respect to the

principal stretches λi ,

∂ψ

∂λi
=−2w2,1 w1,1 λ

−3
i −2w2,3 w1,3 λ

−3
i exp(w1,3 [λ−2

i − 1])− w2,4 w1,4 λ
−3
i /[1 − w1,4 λ

−2
i ]

−4w2,5 w1,5 λ
−5
i −4w2,6 w1,6 λ

−5
i exp(w1,6 [λ−4

i − 1])−2w2,7 w1,7 λ
−5
i /[1 − w1,7 λ

−4
i ] − w2,2w1,2λ

−w1,2−1
i

+2w2,8 w1,8 λ
+1
i +2w2,10w1,10λi exp(w1,10[λ+2

i − 1])+ w2,11w1,11λi /[1 − w1,11λ
+2
i ]

+4w2,12w1,12λ
+3
i +4w2,13w1,13λ

+3
i exp(w1,13[λ+4

i − 1])+2w2,14w1,14λ
+3
i /[1 − w1,14λ

+4
i ] + w2,9w1,9λ

+w1,9−1
i

(17)
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The network has 14 unit-less weights w1,(◦) between the two hidden layers and 14 stiffness-type weights w2,(◦) after
the second hidden layer, with four redundant weights (w2,1w1,1), (w2,5w1,5), (w2,8w1,8), (w2,12w1,12), resulting in a
otal of 24 independent weights.

.2.1. Special cases
Our constitutive neural network in Fig. 3 is a generalization of popular constitutive models. Specifically, we

obtain the following one- and two-term models by setting the remaining network weights to zero.

The neo Hooke model [28] only uses the fixed exponent +2. Its free energy function is

ψ =
1
2 µ [ λ+2

1 + λ+2
2 + λ+2

3 − 3 ] , (18)

nd its shear modulus is µ = 2w1,8w2,8.

he Blatz Ko model [29] only uses the fixed exponent −2. Its free energy function is

ψ =
1
2 µ [ λ−2

1 + λ−2
2 + λ−2

3 − 3 ] (19)

and its shear modulus is µ = 2w1,1w2,1.

he Mooney Rivlin model [30,31] is a combination of both with fixed exponents −2 and +2. Its free energy function
s

ψ =
1
2 µ1 [ λ−2

1 + λ−2
2 + λ−2

3 − 3 ] + 1
2 µ2[ λ+2

1 + λ+2
2 + λ+2

3 − 3 ] , (20)

and its shear modulus is µ = µ1 + µ2 with µ1 = 2w1,1w2,1 and µ2 = 2w1,8w2,8.

he general two term Ogden model [25] uses two free exponents, −α1 = −w1,2 and +α2 = +w1,9. Its free energy
unction is

ψ =
1
2 µ1 [ λ−α1

1 + λ
−α1
2 + λ

−α1
3 − 3 ] 4/α2

1 +
1
2 µ2 [ λ+α2

1 + λ
+α2
2 + λ

+α2
3 − 3 ] 4/α2

2 , (21)

and its shear modulus is µ = µ1 + µ2 with µ1 =
1
2 w

2
1,2w2,2 and µ2 =

1
2 w

2
1,9w2,9.

.3. Loss function

Our constitutive neural networks learn the network weights, w = w1, . . . , wk , by minimizing a loss function L
hat penalizes the mean squared error, the L2-norm of the difference between model and data divided by the number
f training points ntrain,

L =
1

ntrain

ntrain∑
i=1

∥ N (λi ) − N̂i ∥
2
+ ∥ M(φi ) − M̂i ∥

2
→ min . (22)

pecifically, the loss function contains the mean squared error between the normal forces of the model N (λi ) and
he stretch–force pairs, {λ, N̂ }i of the tension and compression experiments, and between the torque of the model
M(φi ) and the torsion angle–torque pairs, {φ, M̂}i of the shear experiment. To reduce potential overfitting, we also
tudy the effects of Ridge or L2 regularization,

L =
1

ntrain

ntrain∑
i=1

∥ N (λi ) − N̂i ∥
2
+ ∥ M(φi ) − M̂i ∥

2
+ α ∥W∥

2
2 → min . (23)

here α is the penalty parameter or regularization coefficient and ∥W∥
2
2 =

∑
k w

2
k is the weighted L2 norm.

.3.1. Tension and compression
In the tension and compression experiments, the data are the recorded as stretch–force pairs, {λ, N̂ }i and the

odel output is the normal force as a function of the stretch N (λi ), which we calculate by integrating the normal
omponent of the network model stress P11 across the cross section, dA = r dr dθ , of the sample [36],

N (λ) =
∫ 2π∫ r

P11 r dr dθ = 2π
∫ r

P11 r dr . (24)

0 0 0

8
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The normal stress P11 follows from the general stress Eq. (9), evaluated in the principal stretch space, Pi i =

[∂ψ/∂ I1][∂ I1/∂λi ] + [∂ψ/∂ I2][∂ I2/∂λi ] − [1/λi ] p, for i = 1, 2, 3, using an invariant-based formulation. Here, p
enotes the hydrostatic pressure that we determine from the zero normal stress condition, P22 = 0 and P33 = 0,

as p = [2/λ][∂ψ/∂ I1]+ [2λ+ 2/λ2][∂ψ/∂ I2], to obtain the following explicit uniaxial stress–stretch relation for a
yperelastic, isotropic, incompressible material,

P11 =

[
2
∂ψ

∂ I1
+

1
λ

∂ψ

∂ I2

] [
λ−

1
λ2

]
. (25)

Alternatively, we can evaluate the general stress Eq. (9), in the principal stretch space, Pi i = ∂ψ/∂λi − p/λi for
= 1, 2, 3, using a principal-stretch-based formulation. Here, p denotes the hydrostatic pressure that we determine

from the zero normal stress condition, P22 = 0 and P33 = 0, as p = −2λ ∂ψ/∂λ, to obtain an explicit equation for
the normal stress,

P11 =
∂ψ

∂λ
[ 1 + 2λ ] , (26)

where ∂ψ/∂λ is the derivative of the free energy ψ with respect to the applied stretch λ according to equations
or (16) or (17). From Eqs. (25) and (26) we conclude that the normal stress is constant across the cross section,
independent of the radius r , and we can evaluate the normal force explicitly as,

N (λ) = P11 π r2 , (27)

where the cross section area is A = π r2 for cylindrical compression samples and we replace this term by A = b t
for rectangular tension samples. This implies that we can translate the recorded stretch–force pairs {λ, N̂ } into
stretch–stress pairs {λ, P̂11} pairs with

λ =
l
L

= F11 and P̂11 = N/A . (28)

3.3.2. Shear
In the shear experiment, the data are the recorded as torsion angle–torque pairs, {φ, M̂}i and the model output

is the torque as a function of the torsion angle M(φi ), which we calculate by integrating the shear component of
the network model stress P12 times its moment arm r across the cross section, dA = r dr dθ , of the sample [36],

M(φ) =
∫ 2π

0

∫ r

0
P12 r2dr dθ = 2π

∫ r

0
P12 r2 dr . (29)

The shear stress P12 follows from the general stress Eq. (9), and we obtain the following explicit shear stress–stretch
relation for a hyperelastic, isotropic, incompressible material,

P12 = 2
[
∂ψ

∂ I1
+
∂ψ

∂ I2

]
γ with γ =

r
L
φ (30)

nlike the normal stress in Eqs. (25) and (26), the shear stress in Eq. (30) is not constant across the cross section
ut varies with the radius r . In other words, the derivatives dψ(r )/dI1 and dψ(r )/dI2 can be functions of the radius
through the explicit dependence on the shear strain, γ = rφ/L . This implies that we can obtain a relation between

he torque M and the torsion angle φ,

M =
4π
L

∫ r

0

[
dψ(r )

dI1
+

dψ(r )
dI2

]
r3 dr φ , (31)

but we cannot simplify the integral any further. Here, we evaluate the integral along the radius r using numerical
integration [37]. For example, using the trapezoidal rule,

∫ r
0 f (r )dr ≈ r [ f (0) + f (r )]/2, we obtain the following

xplicit relations between the torque M , torsion angle φ, shear F12, and shear stress P12,

M =
πr4

L

[
dψ
dI1

+
dψ
dI2

]
φ = πr3

[
dψ
dI1

+
dψ
dI2

]
F12 =

πr3

2
P12 . (32)

hese equations are exact for the popular examples of the neo Hooke and Blatz Ko models with ψ = µ [I1 − 3] / 2
nd ψ = µ [I − 3] / 2, for which we recover the classical explicit linear relations between the torque M , torsion
2

9
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angle φ, shear γ , and shear stress P12,

M =

[
πr4

2L

]
µφ =

[
πr3

2

]
µγ =

[
πr3

2

]
P12 . (33)

or this special case, we can translate the recorded torsion angle–torque pairs {φ, M̂} into shear stretch–stress pairs
{γ, P̂12} with

γ =
r
L
φ = F12 and P̂12 =

2
πr3 M . (34)

raditionally, rheometer tests have been performed on stiff materials with small deformations, well in the linear
egime, and have assumed this linear constitutive behavior a priori. For hyperelastic soft materials, with finite
eformations and a nonlinear constitutive behavior [38], depending on whether the shear stress–stretch curve is
oncave or convex, Eqs. (32) to (34) might very well under- or over-estimate the shear stress P̂12.

Motivated by these considerations, we reparameterize the loss function in terms of the mean squared error between
the normal stresses of the model P11(λi ) and the stretch–stress pairs, {λ, P̂11}i of the tension and compression
experiments, and between the shear stress of the model P12(γi ) and the shear-stress pairs, {γ, P̂12}i of the shear
experiment, both scaled by the maximum absolute stress, maxi { ∥ P̂11,i ∥ } or maxi { ∥ P̂12,i ∥ }, supplemented by L2
regularization,

L =
1

ntrain

ntrain∑
i=1

 P11(λi ) − P̂11,i

maxi {∥ P̂11,i ∥}


2

+

 P12(γi ) − P̂12,i

maxi {∥ P̂12,i ∥}


2

+ α ∥W∥
2
2 → min . (35)

here α is the penalty parameter or regularization coefficient and ∥W∥
2
2 =

∑
k w

2
k is the weighted L2 norm.

e train the network by minimizing the loss functions (35) or and learn the network parameters wk using the
DAM optimizer, a robust adaptive algorithm for gradient-based first-order optimization, and constrain the weights

o always remain non-negative, wk ≥ 0.

.4. Training and testing data

We train and test our Ogden and Valanis–Landel networks using tension, compression, and shear data from the
ofurky, artificial chick’n, and real chicken as reported in Table 1. We perform single-mode training using a single
oading case, either tension, compression, or shear, as training data and the remaining two cases as held-out test
ata. We perform multi-mode training using all three loading cases simultaneously as training data.

. Results

.1. Experimental results

Fig. 4 reports the tension, compression, and shear data for the tofurky, artificial chick’n, and real chicken
onverted into stretch–stress and shear-stress pairs using Eqs. (28) and (34) with trapezoidal-rule type numerical

integration. The means ± standard error of the means reveal that there is a relatively small sample-to-sample
ariation. Notably, tofurky displays the stiffest response of all three materials, in all three modes, in tension,
ompression, and shear. Artificial chick’n and real chicken exhibit similar mechanical behaviors. We use the mean
urves and values reported in Table 1 to train and test our neural networks.

.2. Ogden type mechanics of artificial and real meat

Fig. 5 illustrates the automatically discovered constitutive models for tofurky using the twenty term isotropic,
erfectly incompressible Ogden type network from Fig. 2. The three rows illustrate the Piola stress as a function
f the stretch or shear for tension, compression, and shear. The first three columns indicate single-mode training
or tension, compression, and shear, with training on the diagonal and testing on the off-diagonal. The last column
hows the results of multi-mode training with all loading modes as training data. Each graph reports the goodness
f fit R2 for either training or testing. The circles indicate the experimental data, while the color-coded regions
10
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Table 1
Tofurky, artificial chick’n, and real chicken tested in tension, compression, and shear. Stresses are reported as means from the loading
and unloading curves of n samples tested in the ranges 1.0 ≤ λ ≤ 1.1 for tension, 1.0 ≥ λ ≥ 0.9 for compression 0.0 ≤ γ ≤ 0.1 for shear.

tofurky chick’n chicken

tension comp shear tension comp shear tension comp shear
n = 5 n = 5 n = 5 n = 5 n = 5 n = 5 n = 5 n = 5 n = 5

λ P11 λ P11 γ P12 λ P11 λ P11 γ P12 λ P11 λ P11 γ P12
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

1.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000
1.005 2.498 0.995 -1.602 0.005 0.525 1.005 1.826 0.995 -0.616 0.005 0.306 1.005 1.579 0.995 -1.190 0.005 0.127
1.010 4.536 0.990 -3.230 0.010 1.019 1.010 3.303 0.990 -1.216 0.010 0.552 1.010 2.802 0.990 -2.316 0.010 0.215
1.015 6.358 0.985 -4.830 0.015 1.436 1.015 4.614 0.985 -1.746 0.015 0.755 1.015 3.834 0.985 -3.259 0.015 0.281
1.020 8.062 0.980 -6.428 0.020 1.819 1.020 5.853 0.980 -2.246 0.020 0.931 1.020 4.772 0.980 -4.207 0.020 0.345
1.025 9.706 0.975 -8.074 0.025 2.182 1.025 7.041 0.975 -2.713 0.025 1.095 1.025 5.691 0.975 -5.221 0.025 0.401
1.030 11.242 0.970 -9.717 0.030 2.502 1.030 8.171 0.970 -3.077 0.030 1.241 1.030 6.593 0.970 -6.118 0.030 0.451
1.035 12.752 0.965 -11.405 0.035 2.823 1.035 9.243 0.965 -3.433 0.035 1.377 1.035 7.513 0.965 -7.007 0.035 0.497
1.040 14.208 0.960 -13.121 0.040 3.114 1.040 10.265 0.960 -3.845 0.040 1.503 1.040 8.454 0.960 -7.931 0.040 0.538
1.045 15.620 0.955 -14.854 0.045 3.383 1.045 11.288 0.955 -4.246 0.045 1.616 1.045 9.408 0.955 -8.725 0.045 0.577
1.050 16.990 0.950 -16.668 0.050 3.640 1.050 12.275 0.950 -4.631 0.050 1.722 1.050 10.402 0.950 -9.439 0.050 0.616
1.055 18.313 0.945 -18.538 0.055 3.879 1.055 13.237 0.945 -5.011 0.055 1.821 1.055 11.424 0.945 -10.196 0.055 0.648
1.060 19.573 0.940 -20.434 0.060 4.105 1.060 14.208 0.940 -5.335 0.060 1.913 1.060 12.450 0.940 -10.958 0.060 0.679
1.065 20.797 0.935 -22.422 0.065 4.312 1.065 15.169 0.935 -5.613 0.065 1.995 1.065 13.516 0.935 -11.694 0.065 0.713
1.070 22.036 0.930 -24.485 0.070 4.511 1.070 16.111 0.930 -5.907 0.070 2.066 1.070 14.618 0.930 -12.413 0.070 0.743
1.075 23.209 0.925 -26.594 0.075 4.697 1.075 17.001 0.925 -6.205 0.075 2.130 1.075 15.737 0.925 -13.122 0.075 0.770
1.080 24.342 0.920 -28.808 0.080 4.870 1.080 17.869 0.920 -6.475 0.080 2.191 1.080 16.913 0.920 -13.823 0.080 0.798
1.085 25.427 0.915 -31.048 0.085 5.038 1.085 18.696 0.915 -6.708 0.085 2.246 1.085 18.080 0.915 -14.430 0.085 0.822
1.090 26.513 0.910 -33.375 0.090 5.190 1.090 19.504 0.910 -6.908 0.090 2.298 1.090 19.273 0.910 -15.015 0.090 0.844
1.095 27.542 0.905 -35.823 0.095 5.337 1.095 20.285 0.905 -7.074 0.095 2.351 1.095 20.547 0.905 -15.710 0.095 0.869
1.100 28.543 0.900 -38.297 0.100 5.465 1.100 20.999 0.900 -7.231 0.100 2.395 1.100 21.803 0.900 -16.446 0.100 0.888

Fig. 4. Tofurky, artificial chick’n, and real chicken tested in tension, compression, and shear. Stresses are reported as means ± standard
error of the means from the loading and unloading curves of n = 5 samples tested in the ranges 1.0 ≤ λ ≤ 1.1 for tension, 1.0 ≥ λ ≥ 0.9
for compression 0.0 ≤ γ ≤ 0.1 for shear.

designate the contributions of the twenty model terms to the free energy function ψ . Warm red-type colors indicate
that the exponential power is negative, while cold blue-type colors indicate that the exponential power is positive.

Table 2 shows the discovered weights and shear modulus of 80.08 kPa for multi-mode training. First, we observe
that for single-mode training, the model succeeds in fitting the individual sets of training data with R2

train values
of 0.9940, 0.9997, and 0.9826 for tension, compression, and shear. Second, for single-mode training, the model is
unable to predict all test data well. Third, the network is able to find an adequate fit of the data for multi-mode
11
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Fig. 5. Tofurky data and Ogden type model. Nominal stress as a function of stretch or shear strain for the network with 20 nodes from
Fig. 2. Training individually with tension, compression, or shear data from the tofurky, as well as with all three load cases simultaneously.
Circles represent the experimental data. Color-coded regions designate the contributions of the 20 model terms to the stress function according
to Fig. 2. Coefficients of determination R2 indicate goodness of fit for train and test data.

Fig. 6. Artificial chick’n data and Ogden type model. Nominal stress as a function of stretch or shear strain for the network with 20
nodes from Fig. 2. Training individually with tension, compression, or shear data from the artificial chick’n, as well as with all three load
cases simultaneously. Circles represent the experimental data. Color-coded regions designate the contributions of the 20 model terms to the
stress function according to Fig. 2. Coefficients of determination R2 indicate goodness of fit for train and test data.
12
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i

Table 2
Tofurky, artificial chick’n, and real chicken and discovered
Ogden type models and parameters. Models and parameters are
discovered for simultaneous training with tension, compression,
and shear data using the Ogden type neural network from Fig. 2.
Summary of the weights wk , shear moduli µ =

1
2 [302w1 +

272w2+....+272w19+302w20], and goodness of fit R2 for training
in tension, compression, and shear.

tofurky chick’n chicken
ten+com+shr ten+com+shr ten+com+shr

n = 5, 5, 5 n = 5, 5, 5 n = 5, 5, 5

[kPa] [kPa] [kPa]

w1 0.0080 0.0000 0.0141
w2 0.0003 0.0000 0.0000
w3 0.0003 0.0000 0.0000
w4 0.0146 0.0000 0.0000
w5 0.0358 0.0000 0.0000
w6 0.0575 0.0000 0.0000
w7 0.0784 0.0000 0.0000
w8 0.0962 0.0000 0.0000
w9 0.1060 0.0000 0.0000
w10 0.0834 0.0000 0.0000
w11 0.0920 0.0000 0.0000
w12 0.1280 0.0000 0.0000
w13 0.1282 0.0000 0.0000
w14 0.1166 0.0000 0.0000
w15 0.0972 0.0000 0.0000
w16 0.0714 0.0132 0.0000
w17 0.0402 0.0239 0.0000
w18 0.0044 0.0276 0.0000
w19 0.0001 0.0244 0.0000
w20 0.0000 0.0150 0.0334

µ = 80.08 kPa µ = 31.00 kPa µ = 21.39 kPa

R2
t 0.8627 0.6079 0.3226

R2
c 0.9641 0.7627 0.3424

R2
s 0.8337 0.8567 0.0000

training, with training fit R2
train of 0.8627, 0.9641, and 0.8337 for tension, compression, and shear. Fourth, single-

mode training with tension finds negative red-type terms, while the other modes find both negative and positive
terms. Lastly, when trained with only the tension data, the network discovers a single negative term, the orange
λ−18

i term in the left column, while for the other loading modes, it discovers a wide range and number of terms.
Fig. 6 illustrates the automatically discovered models for artificial chick’n using the twenty term isotropic,

perfectly incompressible Ogden type network from Fig. 2. Table 2 shows the discovered weights and shear modulus
of 31.00 kPa for multi-mode training. First, we note that for single-mode training, the model succeeds in fitting the
individual sets of training data with R2

train values of 0.9967, 0.9409, and 0.9705 for tension, compression, and shear.
Second, for single-mode training, the model performs well in predicting the shear data for training on compression
with R2

test of 0.9682. Third, the network finds a moderately good fit of the data for multi-mode training, with training
fit R2

train of 0.6079, 0.7627, and 0.8567 for tension, compression, and shear. Fourth, single-mode training with tension
or shear finds negative red-type terms, while single-mode training with compression or multi-mode training finds
positive blue-type terms. Lastly, all types of training discover a small subset of the twenty total possible terms
even without additional regularization, with between one to five terms visibly contributing to the stress function.
Multi-mode training discovers only five positive terms from λ+18

i to λ+30
i .

Fig. 7 illustrates the automatically discovered models for real chicken using the twenty term isotropic, perfectly
ncompressible Ogden type network from Fig. 2. Table 2 shows the discovered weights and shear modulus of

21.39 kPa for multi-mode training. First, we observe that for single-mode training, the principal-stretch-based model
2
succeeds in fitting the individual sets of training data with Rtrain values of 0.9994, 0.9764, and 0.9727 for tension,

13
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Fig. 7. Real chicken data and Ogden type model. Nominal stress as a function of stretch or shear strain for the network with 20 nodes
from Fig. 2. Training individually with tension, compression, or shear data from the real chicken, as well as with all three load cases
simultaneously. Circles represent the experimental data. Color-coded regions designate the contributions of the 20 model terms to the stress
function according to Fig. 2. Coefficients of determination R2 indicate the goodness of fit for train and test data.

compression, and shear. Second, for single-mode training, the model performs well in predicting the tension data
for training on compression with R2

test of 0.9827. Third, the network is unable to find a single model to fit the
data for multi-mode training, with training fit R2

train of 0.3226, 0.3424, and 0.0000 for tension, compression, and
hear. Fourth, for single-mode training with tension, the discovered terms are primarily negative red-type terms, for
ingle-mode training with compression the terms are primarily positive blue-type terms, for single-mode training
ith shear there are both positive and negative terms, and multi-mode training also find both positive and negative

erms. Lastly, all types of training discover a small subset of the twenty total possible terms even without additional
egularization, with between two to seven terms visibly contributing to the stress function. Multi-mode training
iscovers only two terms, the dark blue and dark red λ−30

i and λ+30
i terms in the right column.

4.3. Valanis-Landel type mechanics of artificial and real meat

Fig. 8 illustrates the automatically discovered constitutive models for tofurky using the fourteen term isotropic,
perfectly incompressible, Valanis–Landel type network from Fig. 3 with a penalty parameter of 0.001 for L2
regularization. First, for single-mode training, the model succeeds in fitting the individual sets of training data
with R2

train values of 0.9993, 1.0000, and 0.9989 for tension, compression, and shear, respectively. In tension,
the negative exponent trains to −14.42, while the positive exponent is not activated significantly. In compression,
both exponents train to non-zero values, −11.43 and +13.14. In shear, they train to comparable values of −13.76
and +12.83. Second, for single-mode training, the model performs moderately well in predicting the tension data
for training on compression with R2

test of 0.6908 and for predicting compression data for training on shear with
R2

test of 0.7257. Third, the network is able to find a good fit to the data for multi-mode training, with training fit
R2

train of 0.8753, 0.9583, and 0.8268 for tension, compression, and shear, respectively. In multi-mode training, the
exponents train to −23.25 and +16.43. Fourth, single mode training on tension data activates primarily the red-
colored negative exponent while the other training modes activate both the red- and turquoise-colored exponents

with large contributions to the stress function.

14
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Fig. 8. Tofurky data and Valanis–Landel type model. Nominal stress as a function of stretch or shear strain for the network with 14
nodes from Fig. 3. Training individually with tension, compression, or shear data from the tofurky, as well as with all three load cases
simultaneously, both with L2 regularization. Circles represent the experimental data. Color-coded regions designate the contributions of the
14 model terms to the stress function according to Fig. 3. Coefficients of determination R2 indicate goodness of fit for train and test data.

Fig. 9. Artificial chick’n data and Valanis–Landel type model. Nominal stress as a function of stretch or shear strain for the network with
4 nodes from Fig. 3. Training individually with tension, compression, or shear data from the artificial chick’n, as well as with all three load
ases simultaneously, both with L2 regularization. Circles represent the experimental data. Color-coded regions designate the contributions
f the 14 model terms to the stress function according to Fig. 3. Coefficients of determination R2 indicate goodness of fit for train and test
ata.
15
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Table 3
Tofurky, artificial chick’n, and real chicken and discovered Valanis-
Landel type models and parameters. Models and parameters are
discovered for simultaneous training with tension, compression, and shear
data using the Valanis-Landel type neural network from Fig. 3. Tofurky
weights for regularization parameter α = 0.1 from Fig. 11. Artificial
chick’n and real chicken weights for α = 0.001 from Figs. 9 and 10.
Summary of the weights wk and goodness of fit R2 for training in tension,
compression, and shear.

tofurky chick’n chicken
ten+com+shr ten+com+shr ten+com+shr

n = 5, 5, 5 n = 5, 5, 5 n = 5, 5, 5

w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa]

w•,2 21.1903 0.1344 – – 42.2298 0.0035
w•,5 0.5859 0.0936 0.2263 0.2472 – –
w•,7 0.4987 0.0150 0.6254 0.5753 – –
w•,9 20.5410 0.1768 – – – –
w•,12 0.6302 0.1011 0.2362 0.3915 – –
w•,14 0.4918 0.0123 0.6254 0.7066 0.6481 0.7864

R2
t 0.8753 0.5368 0.2821

R2
c 0.9583 0.9352 0.2857

R2
s 0.8268 0.8345 0.0000

Fig. 9 illustrates the automatically discovered constitutive models for artificial chick’n using the fourteen term
sotropic, perfectly incompressible, Valanis–Landel type network from Fig. 3 with a penalty parameter of 0.001 for

L2 regularization. Table 3 shows the discovered weights for multi-mode training. First, for single-mode training,
the model succeeds in fitting the individual sets of training data with R2

train values of 0.9998, 0.9867, and 0.9989 for
tension, compression, and shear, respectively. In tension, the negative exponent trains to −12.89, while the positive
exponent is not activated significantly. In compression, the positive exponent trains to +10.13, while the negative
exponent is not activated significantly. In shear, both exponents contribute with comparable values of −9.23 and
+9.19. Second, for single-mode training, the model performs moderately well in predicting the shear data for training
on compression with R2

test of 0.8649 and for predicting compression data for training on shear with R2
test of 0.7257.

Third, the network finds a moderately good fit to the data for multi-mode training, with training fit R2
train of 0.5368,

0.9352, and 0.8345 for tension, compression, and shear, respectively. Fourth, multi-mode training does not activate
either of the power terms and only discovers four terms that contribute to the stress function, the yellow λ−4

i term,
the green ln(λ−4

i ) term, the blue λ+4
i term, and the dark blue ln(λ+4

i ) term in the right column.
Fig. 10 illustrates the automatically discovered constitutive models for real chicken using the fourteen term

sotropic, perfectly incompressible, Valanis–Landel type network from Fig. 3 with a penalty parameter of 0.001 for
L2 regularization. Table 3 shows the discovered weights for multi-mode training. First, for single-mode training,
the model succeeds in fitting the individual sets of training data with R2

train values of 0.9999, 0.9949, and 0.9995 for
tension, compression, and shear, respectively. In tension, the exponents train to −8.90 and +12.43. In compression,
the positive exponent trains to +11.15, while the negative exponent is not activated significantly. In shear, both train
to −8.32 and +9.96. Second, for single-mode training, the model performs well in predicting the compression data
for training on tension with R2

test of 0.9774 and in predicting tension data for training on compression with R2
test of

0.9773. Third, the network is unable to find an adequate fit of the data for multi-mode training, with training fit
R2

train of 0.2821, 0.2857, and 0.0000 for tension, compression, and shear, respectively. In multi-mode training, the
red trains to −42.23. Fourth, single-mode training discovers a wide range and number of terms while multi-mode
training only discovers two terms, the red λ−n

i term and the dark blue ln(λ+4
i ) term in the right column.

Fig. 11 illustrates the effect of added L2 regularization in multi-mode training for tofurky. The L2 penalty
arameter α varies between 0.100, 0.010, 0.001, 0.000. Table 3 summarizes the discovered weights for multi-mode
raining with the α = 0.100 parameter. First, the variation in the number of discovered terms ranges from eight

ith zero penalty, on the right, to four with the largest penalty, on the left. With a penalty parameter of 0.1, the
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Fig. 10. Real chicken data and Valanis–Landel type model. Nominal stress as a function of stretch or shear strain for the network with
14 nodes from Fig. 3. Training individually with tension, compression, or shear data from the real chicken, as well as with all three load
cases simultaneously, both with L2 regularization. Circles represent the experimental data. Color-coded regions designate the contributions
of the 14 model terms to the stress function according to Fig. 3. Coefficients of determination R2 indicate goodness of fit for train and test
data.

Fig. 11. Tofurky data and Valanis–Landel type model with L2 regularization. Nominal stress as a function of stretch or shear strain
for the network with 14 nodes from Fig. 3. Training simultaneously with tension, compression, and shear data from the tofurky with L2
regularization with varying penalty parameters of 0.100, 0.010, 0.001, 0.000. Circles represent the experimental data. Color-coded regions
designate the contributions of the 14 model terms to the stress function according to Fig. 3. Coefficients of determination R2 indicate
goodness of fit for train and test data.
17
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Table 4
Special cases of neo Hooke, Blatz Ko, Mooney Rivlin and two term Ogden models. Tofurky,
artificial chick’n, and real chicken parameters discovered for simultaneous training with tension,
compression, and shear data. Summary of the non-zero weights from Fig. 3 and detailed
in Eq. (16), the shear moduli µ, and the goodness of fit R2 for the training data.

neo Hooke Blatz Ko Mooney Rivlin two term Ogden
ten+com+shr ten+com+shr ten+com+shr ten+com+shr

n = 5, 5, 5 n = 5, 5, 5 n = 5, 5, 5 n = 5, 5, 5

tofurky tofurky tofurky tofurky

w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,1 – – 5.9076 7.9925 4.7677 4.9647 – –
w•,2 – – – – – – 17.2699 0.2276
w•,8 5.8016 8.1390 – – 4.7512 4.9566 – –
w•,9 – – – – – – 16.7643 0.3366

µ = 94.4382kPa µ = 94.4322kPa µ = 94.4404kPa µ = 81.2357kPa

R2
t 0.8778 0.8777 0.8778 0.8717

R2
c 0.9286 0.9286 0.9286 0.9734

R2
s 0.7329 0.7330 0.7329 0.8147

chick’n chick’n chick’n chick’n

w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,1 – – 3.5607 5.0121 2.8604 3.0039 – –
w•,2 – – – – – – 6.9378 0.0000
w•,8 3.2035 5.5691 – – 2.4797 3.7308 – –
w•,9 – – – – – – 25.3849 0.0973

µ = 35.6814kPa µ = 35.6934kPa µ = 35.6867kPa µ = 31.3620kPa

R2
t 0.0000 0.0000 0.0000 0.6175

R2
c 0.0776 0.0757 0.0768 0.7540

R2
s 0.9126 0.9124 0.9125 0.8501

chicken chicken chicken chicken

w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,1 – – 3.6488 3.9291 2.7300 2.6278 – –
w•,2 – – – – – – 37.7361 0.0070
w•,8 3.7860 3.7870 – – 2.6912 2.6611 – –
w•,9 – – – – – – 41.9500 0.0106

µ = 28.6748kPa µ = 28.6731kPa µ = 28.6709kPa µ = 14.3255kPa

R2
t 0.0000 0.0000 0.0000 0.4013

R2
c 0.0275 0.0274 0.0272 0.1676

R2
s 0.0000 0.0000 0.0000 0.0000

four discovered terms are the red λ−n
i term, the turquoise λ+n

i term, the yellow λ−4
i term, and the blue λ+4

i term,
with the first two terms dominating in the left column. The exponents train to −21.19 and +20.54. Second, with
an increasing penalty parameter α, the red and turquoise power terms contribute more to the stress function while
all other terms contribute less. Third, increasing the penalty parameter has a negligible effect on the combined fit
of the data with R2

train values varying by less than 0.01 across all penalty parameters and loading modes.

4.4. Neo Hooke, Blatz Ko, and Mooney Rivlin mechanics of artificial and real meat

Fig. 12 illustrates the automatically discovered parameters for tofurky when the Valanis–Landel type network
1 µ

∑3 [ λ+2
− 1 ], dark red Blatz Ko term,
from Fig. 3 is restricted to the green neo Hooke term, ψ = 2 i=1 i
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Fig. 12. Tofurky data and special cases of neo Hooke, Blatz Ko, Mooney Rivlin, and two term Ogden models. Nominal stress as a
function of stretch or shear strain for the Valanis–Landel type network from Fig. 3 trained with all three load cases simultaneously. Circles
represent the experimental data. The neo Hooke model uses only the +2 term, the Blatz Ko the −2 term, the Mooney Rivlin the −2 and
+2 terms, and the two term Ogden the −n and +n terms. Color-coded regions designate the +2, −2, +2/−2, and +n/−n model terms to
the stress function according to Fig. 3 multiplied by the weights from Table 4. Coefficients of determination R2 indicate goodness of fit for
train data.

ψ =
1
2 µ

∑3
i=1[ λ−2

i −1 ], dark red and green Mooney Rivlin terms, ψ =
1
2 µ1

∑3
i=1[ λ−2

i −1 ]+ 1
2 µ2

∑3
i=1[ λ+2

i −1 ],
nd red and turquoise Ogden terms, ψ =

1
2 µ1

∑3
i=1[ λ−α1

i −1 ] 4/α2
1+

1
2 µ2

∑3
i=1[ λ+α2

i −1 ] 4/α2
2 , and simultaneously

rained with tension, compression, and shear data. First, the neo Hooke, Blatz Ko, and Mooney Rivlin models all
rovide notably similar fits to the data, with R2

train values of 0.8777 or 0.8778, 0.9286, and 0.7329 or 0.7330 in
ension, compression, and shear. Second, the two term Ogden model is able to discover a better simultaneous fit
ith a significant improvement for the shear data. The R2

train values are 0.8717, 0.9734, and 0.8147. The negative
gden exponent trains to −α1 = −17.27, while the positive Ogden exponent trains to +α2 = +16.76.
Table 4 shows the weights, shear moduli µ, and goodness of fit R2 when the Valanis–Landel type network from

ig. 3 is restricted to the neo Hooke, Blatz Ko, Mooney Rivlin, or two ±n Ogden terms and trained on all three
oading modes simultaneously. The shear modulus of artificial chick’n is 35.6814 kPa, 35.6934 kPa, 35.6867 kPa,
nd 31.3620 kPa for the neo Hooke, Blatz Ko, Mooney Rivlin, and two term Ogden models. For comparison, the
hear modulus of real chicken is 28.6748 kPa, 28.6731 kPa, 28.6709 kPa, and 14.3255 kPa for the neo Hooke, Blatz
o, Mooney Rivlin, and two term Ogden models. First, while all models provide an adequate fit of the tension and
ompression tofurky data, the two term Ogden provides the best fit to the shear data with R2

train values of 0.8717,
.9734, and 0.8147. Second, for artificial chick’n, the neo Hooke, Blatz Ko, and Mooney Rivlin models are not able
o provide an adequate fit with R2

train values of 0.0000, 0.0757–0.0776, and 0.9124–0.9126 for tension, compression,
nd shear. The two term Ogden models finds a better fit with R2

train values of 0.6175, 0.7540, and 0.8501 in tension,
ompression, and shear. Third, none of the four models provide an adequate fit for real chicken. Of all four models,
he two term Ogden provides the best fit with R2

train of 0.4013, 0.1676, and 0.0000 in tension, compression, and
hear. Taken together, the two term Ogden model outperforms the neo Hooke, Blatz Ko, and Mooney Rivlin models
or tofurky, artificial chick’n, and real chicken.
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5. Discussion

Artificial meat is marketed as an eco-friendly, plant-based protein that is an alternative to traditional meat sources
ut with similar taste and texture [5,6]. Without a doubt, the mechanical properties of both real and artificial meat
nfluence our eating experience [10,11]. To quantify the mechanical properties of artificial meat, we investigated
ofurky® deli slices and Daring™ artificial chick’n, and compared them to real chicken. The tofurky was quite thin,
nly 1–1.5 mm thick on average, and was a rather isotropic, homogeneous material without distinct fiber directions.
he artificial chick’n had distinct sheets, and we tested it in tension, compression, and shear parallel to the fiber
irection as shown in Fig. 1. For each meat type, we performed five tests per sample in tension, compression, and
hear, and found that the standard error of the mean for each testing mode was small. This suggests that the mean
f the tension, compression, and shear data is a robust characteristic of the material properties of each product.

onstitutive neural networks automate the process of model discovery
To date, no unified constitutive model exists to characterize the mechanical behavior of artificial meat products.

o discover a mathematical model that best describes the behavior of artificial and real meat in tension, compression,
nd shear, we compared two different neural networks, an Ogden type network, Fig. 2, which we have previously
uccessfully used to discover the best model for human brain tissue [32], and a new Valanis–Landel type network
hat includes some of the Ogden type features, but also exponential and logarithmic terms, Fig. 3. Both networks
erformed well in single-mode fitting, and the Valanis–Landel model slightly outperformed the Ogden type model
cross all loading modes and all meat products. Both networks performed decently at predicting selective modes.
he Ogden type network was able to predict shear from compression data for artificial chick’n and tension from
ompression data for real chicken. The Valanis–Landel type network was able to predict shear from compression
ata and compression from shear data for artificial chick’n and compression from tension data and tension from
ompression data for real chicken. For multi-mode training, the Ogden type network discovered a better overall fit
o the data for real chicken, while the Valanis–Landel type network discovered a better model for artificial chick’n.
he models performed equally well in simultaneously fitting the tofurky tension, compression, and shear data with
difference in cumulative R2

train values of less than 0.0001.

he discovered models feature similar terms
The Ogden network features 20 different terms and discovers the best model out of a selection of 220

− 1 =

, 048, 575 possible combinations of terms, meaning out of more than one million models. The Valanis Landel
etwork features 14 different terms and discovers the best model out of a selection of 214

− 1 = 16,383 possible
combinations of terms, out of more than ten thousand models. Yet, when comparing both types of networks, we
found that the Valanis Landel type network is generally more versatile: It contains a strong subset of Ogden type
terms with fixed and flexible exponents and spans a richer functional base overall. Interestingly, the Valanis Landel
type network consistently discovers a similar subset of six terms for both artificial and real meat, while the weights
of the other terms train to zero. All terms in the powers of two, [λ−2

i − 1], [exp(λ−2
i − 1) − 1], [ln(1 − λ−2

i )],
λ+2

i − 1], [exp(λ+2
i − 1) − 1], [ln(1 − λ+2

i )], and all exponential terms, [exp(λ−2
i − 1) − 1], [exp(λ−4

i − 1) − 1],
exp(λ+2

i −1)−1], [exp(λ+4
i −1)−1], train to zero and are not present in any of the discovered models for combined

ension, compression, and shear training. For tofurky, we robustly discover the general two term Ogden model with
exible exponents in red and turquoise,

ψ tofurky
=

∑3
i=1

1
2 µ1 [ λ−α1

i − 1] 4/α2
1 +

1
2 µ2 [ λ+α2

i − 1] 4/α2
2,

with two unit-less negative and positive exponents, −α1 = −21.19 and +α2 = +20.54, and two stiffness-like
parameters, µ1 = 30.17 kPa and µ2 = 37.30 kPa. For artificial chick’n, we discover a four-term model in terms of
the stretches to the negative and positive fourth power, λ−4

i and λ+4
i , either plain, in yellow and blue, or combined

with the classical Valanis Landel logarithm, in green and dark blue,

ψchick′n
=

∑3
i=1

1
2 µ1 [λ−4

i − 1] + 1
2 µ2 [λ+4

i − 1] − 1
2 µ3 [ ln (1 − β1 λ

−4
i )]/β1 −

1
2 µ4 [ ln (1 − β2 λ

+4
i )]/β2

with two unit-less exponents β1 = 0.63 and β2 = 0.63 and four stiffness-like parameters µ1 = 0.11 kPa,
µ2 = 0.18 kPa µ3 = 0.72 kPa, and µ4 = 0.88 kPa. For real chicken, we discover a two-terms model with one
Ogden term with a negative exponent in red, and one Valanis Landel logarithm in dark blue,

chicken ∑3 1 µ [ λ−α − 1] 4/α2
−

1 µ [ln(1 − β λ+4)]/β ,
ψ = i=1 2 1 i 2 2 i
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with two unit-less exponents −α = −42.23 and β = 0.65 and two stiffness-like parameters µ1 = 3.12 kPa and
µ2 = 1.02 kPa. With the naked eye, and by touch, we immediately notice that artificial chick’n and real chicken
are transversely isotropic with a single pronounced fiber direction. This creates an extremely low resistance to
shear, about ten times lower than to axial loading which both our hyperelastic isotropic networks had difficulties
to train on. In retrospect, it seems intuitive that we never discover any of the exponential terms: The concave shear
softening nature of all three types of meat is in stark contrast to the convex strain stiffening behavior of collagenous
soft tissues [35,39–41], and rules out the exponential light red, light green, light blue, and dark blue terms of the
Valanis Landel network for real and artificial meat. Strain softening seems to be much better represented by the red
and turquoise classical Ogden-type terms with relatively large exponentials. At the same time, extreme exponentials
on the order of ±20 and above will likely not generalize well to stretch and shear ranges beyond the training regime
of 10% deformation, where the stress contributions of these terms will simply explode. This implies that we need
to be extremely careful when extrapolating beyond the training regime, especially when using Ogden type terms
with large exponentials.

Tofurky is three times stiffer than artificial chick’n and real chicken
When restricting the Valanis–Landel type network to its neo Hooke, Blatz Ko, Mooney Rivlin, and two-term

Ogden model building blocks, and training on the tension, compression, and shear data simultaneously, we recover
the classical shear modulus of tofurky, artificial chick’n, and real chicken. The neo Hooke, Blatz Ko, and Mooney
Rivlin models all discovered identical shear moduli for tofurky with 94.4 kPa, artificial chick’n with 35.7 kPa, and
real chicken with 21.4 kPa. Notably, we consistently discovered lower values for the two-term Ogden with shear
moduli of tofurky with 81.2 kPa, artificial chick’n with 31.4 kPa, and real chicken with 14.3 kPa. This highlights
that the choice of model has a significant impact on the mechanical moduli, even on the simplest of all, the shear
modulus, which was up to 50% smaller when fit with the two-term Ogden model. Yet, the general trend remains
the same across all four models: Of all three meat types, tofurky is the most isotropic and homogeneous and
also displays the stiffest behavior. Both artificial chick’n and real chicken are anisotropic with a pronounced fiber
direction, along which they display a similar behavior in tension, compression, and shear, and are only a third as
stiff as tofurky.

Limitations and future work
While we solidly and robustly discovered models and parameters for artificial and real meat products, our pilot

study has a few limitations: First, we performed all tests on uncooked samples, but note that tofurky and artificial
chick’n simply need to be warmed up whereas real chicken needs to be cooked. During cooking, the muscle fibers of
real meat contract, cause a loss of water, and change the perceived tenderness of the meat [42]. Second, the tofurky
deli slices are generally isotropic and homogeneous, but very thin. As a result, we tested the deli slices in the in-plane
direction for tension and perpendicular to the in-plane direction for compression and shear, which might explain the
varying stiffnesses for the different modes. Third, the artificial chick’n displays significant thickness variations and
heterogeneous fiber sheets. When compressing the chick’n samples beyond 10%, the sheets collapsed on each other
and the material response is no longer hyperelastic [43]. Fourth, the real chicken had a distinct fiber direction [44]
that made it simple to cut similarly sized samples, but difficult to test in compression where chicken displayed
a very soft, almost Jello-like consistency. Fifth, while assuming incompressibility is a reasonable first step, we
would like to quantify the degree of compressibility in the future and represent it in our neural network through
the third invariant. To capture the anisotropy of artificial chick’n and real chicken, we would like to extend our
network to include the fourth and fifth invariants [45,46], similar to a previous network for skin [18]. Ideally, in the
future, we would like to perform tension, compression, and shear experiments on the same samples using a single
triaxial testing device, rather than using separate samples and separate instruments for separate testing modes [12].
We envision that performing additional tests will more robustly inform our network architecture, and allow us to
combine successful terms of the Ogden type and Valanis–Landel type networks to a single set of terms and a single
unified constitutive neural network to reliably and accurately discover the best model and parameters for artificial

and real meat.
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6. Conclusion

Plant-based meat substitutes are an increasingly popular alternative to animal consumption. The mechanical
ehavior of artificial meat directly influences our perception of taste through texture, consistency, and stiffness,
nd ultimately shapes our sensory experience and enjoyment of the product. However the mechanical properties of
rtificial meat and their comparison to real meat remain incompletely understood. Here we performed mechanical
ension, compression, and shear tests on isotropic and anisotropic artificial and real meat and analyzed the data using
ustom-designed constitutive neural networks. Constitutive neural networks are a new, powerful and easy-to-use
echnology to discover the model and parameters that best explain a wide variety of soft matter systems. Especially
or newly engineered materials like artificial meet for which the best model is not yet known, they allow us to
apidly screen thousands of potential model candidates and – entirely without bias and human interaction – select
he best model. We compared two different constitutive neural networks, of Ogden type and Valanis–Landel type,
nd demonstrated that both can robustly fit the experimental data from tofurky, artificial chick’n, and real chicken in
ension, compression, and shear. By design, both networks contain the classical neo Hooke, Blatz Ko, and Mooney
ivlin models as special cases for which they robustly discover shear moduli of 94.4 kPa for tofurky, 35.7 kPa for
rtificial chick’n, and 28.7 kPa for real chicken. This suggests that artificial chicken successfully reproduces the
echanical properties of real chicken across all loading modes, while tofurky does not and is about three times

s stiff. We observed that all three meat products displayed shear softening with concave stress–stretch curves,
nd, more importantly, that their resistance to shear was about an order of magnitude lower than their resistance to
ension and compression. Our new neural network-based automated model discovery can quantify the mechanics of
rtificial and real meat and has the potential to inform the design of plant-based meal substitutes. Understanding the
echanics of artificial meat offers the potential to revolutionize food production, address environmental concerns,

nd ensure a sustainable future for our planet.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

ata availability

Our source code, data, and examples will be made available at https://github.com/LivingMatterLab/CANNs.

Acknowledgments

This work was supported by a NSF Graduate Research Fellowship to Skyler St. Pierre, and by the NSF CMMI
proposal 2320933 Automated Model Discovery for Soft Matter, the Stanford School of Engineering Covid-19
Research and Assistance Fund, and the Stanford Bio-X IIP seed grant to Ellen Kuhl.

References
[1] C. Clifford Astbury, Health and sustainability of everyday food, Nature Food 4 (2023) 357, http://dx.doi.org/10.1038/s43016-023-

00761-6.
[2] M.J. Post, S.L. Levenberg, D.L. Kaplan, N.G. Genovese, J. Fu, C.J. Bryant, N. Negowetti, K. Verzijden, P. Moutsatsous, Scientific,

sustainability and regulatory challenges of cultured meat, Nature Food 1 (2020) 403–415, http://dx.doi.org/10.1038/s43016-020-0112-z.
[3] UBS Global, The food revolution, UBS Insights (2019) URL https://www.ubs.com/global/en/wealth-management/insights/chief-

investment-office/sustainable-investing/2019/food-revolution.html.
[4] A. Mullen, The price is right for artificial meat, Nature Food 3 (2022) 813, http://dx.doi.org/10.1038/s43016-022-00629-1.
[5] C. Hartmann, M. Siegrist, Consumer perception and behaviour regarding sustainable protein consumption: A systematic review, Trends

in Food Sci. Technol. 61 (2017) 11–25, http://dx.doi.org/10.1016/j.tifs.2016.12.006.
[6] J.B. Nezlek, C.A. Forestell, Meat substitutes: Current status, potential benefits, and remaining challenges, Curr. Opin. Food Sci. 47

(2022) 1008–1090, http://dx.doi.org/10.1016/j.cofs.2022.100890.
[7] B.L. Dekkers, R.M. Boom, A.J. van der Goot, Structuring processes for meat analogues, Trends Food Sci. Technol. 81 (2018) 25–36,

http://dx.doi.org/10.1016/j.tifs.2018.08.011.
[8] J. He, N.M. Evans, H. Liu, S. Shao, A review of research on plant-based meat alternatives: Driving forces, history, manufacturing,

and consumer attitudes, Compr. Rev. Food Sci. Food Saf. 19 (2020) 2639–2656, http://dx.doi.org/10.1111/1541-4337.12610.
[9] N. Jonkers, J.A.W. van Dommelen, M.G.D. Geers, Intrinsic mechanical properties of food in relation to texture parameters, Mech.

Time Depend. Mater. 26 (2022) 323–346, http://dx.doi.org/10.1007/s11043-021-09490-4.
22

https://github.com/LivingMatterLab/CANNs
http://dx.doi.org/10.1038/s43016-023-00761-6
http://dx.doi.org/10.1038/s43016-023-00761-6
http://dx.doi.org/10.1038/s43016-023-00761-6
http://dx.doi.org/10.1038/s43016-020-0112-z
https://www.ubs.com/global/en/wealth-management/insights/chief-investment-office/sustainable-investing/2019/food-revolution.html
https://www.ubs.com/global/en/wealth-management/insights/chief-investment-office/sustainable-investing/2019/food-revolution.html
https://www.ubs.com/global/en/wealth-management/insights/chief-investment-office/sustainable-investing/2019/food-revolution.html
http://dx.doi.org/10.1038/s43016-022-00629-1
http://dx.doi.org/10.1016/j.tifs.2016.12.006
http://dx.doi.org/10.1016/j.cofs.2022.100890
http://dx.doi.org/10.1016/j.tifs.2018.08.011
http://dx.doi.org/10.1111/1541-4337.12610
http://dx.doi.org/10.1007/s11043-021-09490-4


S.R. St. Pierre, D. Rajasekharan, E.C. Darwin et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116236
[10] M. Fiorentini, A.J. Kinchla, A.A. Nolden, Role of sensory evaluation in consumer acceptance of plant-based meat analogs and meat
extenders: A scoping review, Foods 9 (2020) http://dx.doi.org/10.3390/foods9091334.

[11] Y. Pascua, H. Koç, E.A. Foegeding, Food structure: Roles of mechanical properties and oral processing in determining sensory texture
of soft materials, Curr. Opin. Colloid Interface Sci. 18 (2013) 324–333, http://dx.doi.org/10.1016/j.cocis.2013.03.009.

[12] S. Budday, G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck, J. Kohnert, M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, G.A. Holzapfel,
Mechanical characterization of human brain tissue, Acta Biomater. 48 (2017) 319–340, http://dx.doi.org/10.1016/j.actbio.2016.10.036.

[13] K. Linka, M. Hillgärtner, K.P. Abdolazizi, R.C. Aydin, M. Itskov, C.J. Cyron, Constitutive artificial neural networks: A fast
and general approach to predictive data-driven constitutive modeling by deep learning, J. Comput. Phys. 429 (2021) 110010,
http://dx.doi.org/10.1016/j.jcp.2020.110010.

[14] G.A. Holzapfel, K. Linka, S. Sherifova, C. Cyron, Predictive constitutive modelling of arteries by deep learning, J. R. Soc. Interface
18 (2021) 20210411, http://dx.doi.org/10.1098/rsif.2021.0411.

[15] M. Flaschel, S. Kumar, L. De Lorenzis, Unsupervised discovery of interpretable hyperelastic constitutive laws, Comput. Methods Appl.
Mech. Engrg. 381 (2021) 113852.

[16] K. Linka, E. Kuhl, A new family of Constitutive Artificial Neural Networks towards automated model discovery, Comput. Methods
Appl. Mech. Engrg. 403 (2023) 115731, http://dx.doi.org/10.1016/j.cma.2022.115731.

[17] K. Linka, S.R. St. Pierre, E. Kuhl, Automated model discovery for human brain using Constitutive Artificial Neural Networks, Acta
Biomater. 160 (2023) 134–1510, http://dx.doi.org/10.1016/j.actbio.2023.01.055.

[18] K. Linka, A. Buganza Tepole, G.A. Holzapfel, E. Kuhl, Automated model discovery for skin: Discovering the best model, data, and
experiment, Comput. Methods Appl. Mech. Engrg. 410 (2023) 116007, http://dx.doi.org/10.1101/2022.12.19.520979.

[19] M. Alber, A. Buganza Tepole, W. Cannon, S. De, S. Dura-Bernal, K. Garikipati, G.E. Karniadakis, W.W. Lytton, P. Perdikaris, L.
Petzold, E. Kuhl, Integrating machine learning and multiscale modeling: Perspectives, challenges, and opportunities in the biological,
biomedical, and behavioral sciences, Npj Digit. Med. 2 (2019) 115, http://dx.doi.org/10.1038/s41746-019-0193-y.

[20] J.N. Fuhg, N. Bouklas, R.E. Jones, Learning hyperelastic anisotropy from data via a tensor basis neural network, J. Mech. Phys. Solids
168 (2022) 105022.

[21] D.K. Klein, M. Fernandez, R.J. Martin, P. Neff, O. Weeger, Polyconvex anisotropic hyperelasticity with neural networks, J. Mech.
Phys. Solids 159 (2022) 105703.

[22] F. Masi, I. Stefanou, P. Vannucci, V. Maffi-Berthier, Thermodynamics-based artificial neural networks for constitutive modeling, J.
Mech. Phys. Solids 147 (2021) 04277.

[23] F. As’ad, P. Avery, C. Farhat, A mechanics-informed artificial neural network approach in data-driven constitutive modeling, Internat.
J. Numer. Methods Engrg. 123 (2022) 2738–2759, http://dx.doi.org/10.1002/nme.6957.

[24] V. Tac, F. Sahli Costabal, A. Buganza Tepole, Data-driven tissue mechanics with polyconvex neural ordinary differential equations,
Comput. Methods Appl. Mech. Engrg. 398 (2022) 115248, http://dx.doi.org/10.1016/j.cma.2022.115248.

[25] R.W. Ogden, Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids,
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 326 (1972) 565–584, http://dx.doi.org/10.1098/rspa.1972.0026.

[26] K. Valanis, R.F. Landel, The strain-energy function of a hyperelastic material in terms of the extension ratios, J. Appl. Phys. 38 (1967)
2997–3002, http://dx.doi.org/10.1063/1.1710039.

[27] K.C. Valanis, The Valanis–Landel strain energy function elasticity of incompressible and compressible rubber-like materials, Int. J.
Solids Struct. 238 (2022) 111271, http://dx.doi.org/10.1016/j.ijsolstr.2021.111271.

[28] L. Treloar, Stresses and birefringence in rubber subjected to general homogeneous strain, Proc. Phys. Soc. (1926-1948) 60 (1948) 135,
http://dx.doi.org/10.1088/0959-5309/60/2/303.

[29] P.J. Blatz, W.L. Ko, Application of finite elastic theory to the deformation of rubbery materials, Trans. Soc. Rheol. 6 (1962) 223–252,
http://dx.doi.org/10.1122/1.548937.

[30] M. Mooney, A theory of large elastic deformation, J. Appl. Phys. 11 (1940) 582–592, http://dx.doi.org/10.1063/1.1712836.
[31] R.S. Rivlin, Large elastic deformations of isotropic materials IV. Further developments of the general theory, Phil. Trans. R. Soc. A

241 (1948) 379–397, http://dx.doi.org/10.1098/rsta.1948.0024.
[32] S.R. St. Pierre, K. Linka, E. Kuhl, Principal-stretch-based constitutive neural networks autonomously discover a subclass of Ogden

models for human brain tissue, Brain Multiph. 4 (2023) 100066, http://dx.doi.org/10.1101/2023.01.14.524079.
[33] R. Eggersmann, L. Stainier, M. Ortiz, S. Reese, Model-free data-driven computational mechanics enhanced by tensor voting, Comput.

Methods Appl. Mech. Engrg. 373 (2021) 113499, http://dx.doi.org/10.1016/j.cma.2020.113499.
[34] S. Rezaei, A. Harandi, A. Moeineddin, B.X. Xu, R. S., A mixed formulation for physics-informed neural networks as a potential solver

for engineering problems in heterogeneous domains: comparison with finite element method, Comput. Methods Appl. Mech. Engrg.
401 (2022) 115616, http://dx.doi.org/10.1016/j.cma.2022.115616.

[35] G. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley, 2000, http://dx.doi.org/10.1023/A:
1020843529530.

[36] S. Hartmann, Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions, Int. J. Solids
Struct. 38 (2001) 7999–8018.

[37] M. Flaschel, H. Yu, N. Reiter, J. Hinrichsen, S. Budday, P. Steinmann, S. Kumar, L. De Lorenzis, Automated discovery of interpretable
hyperelastic material models for human brain tissue with EUCLID, 2023, http://dx.doi.org/10.48550/arXiv.2305.16362, arXiv.

[38] J. Hinrichsen, N. Reiter, L. Bräuer, F. Paulsen, S. Kaessmair, S. Budday, Inverse identification of region-specific hyperelastic material
parameters for human brain tissue, 2022, bioRxiv.

[39] N. Famaey, G. Sommer, J. Vander Sloten, G.A. Holzapfel, Arterial clamping: finite element simulation and in vivo validation, J. Mech.

Behav. Biomed. Mater. 12 (2012) 107–118, http://dx.doi.org/10.1016/j.jmbbm.2012.03.010.

23

http://dx.doi.org/10.3390/foods9091334
http://dx.doi.org/10.1016/j.cocis.2013.03.009
http://dx.doi.org/10.1016/j.actbio.2016.10.036
http://dx.doi.org/10.1016/j.jcp.2020.110010
http://dx.doi.org/10.1098/rsif.2021.0411
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb15
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb15
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb15
http://dx.doi.org/10.1016/j.cma.2022.115731
http://dx.doi.org/10.1016/j.actbio.2023.01.055
http://dx.doi.org/10.1101/2022.12.19.520979
http://dx.doi.org/10.1038/s41746-019-0193-y
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb20
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb20
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb20
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb21
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb21
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb21
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb22
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb22
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb22
http://dx.doi.org/10.1002/nme.6957
http://dx.doi.org/10.1016/j.cma.2022.115248
http://dx.doi.org/10.1098/rspa.1972.0026
http://dx.doi.org/10.1063/1.1710039
http://dx.doi.org/10.1016/j.ijsolstr.2021.111271
http://dx.doi.org/10.1088/0959-5309/60/2/303
http://dx.doi.org/10.1122/1.548937
http://dx.doi.org/10.1063/1.1712836
http://dx.doi.org/10.1098/rsta.1948.0024
http://dx.doi.org/10.1101/2023.01.14.524079
http://dx.doi.org/10.1016/j.cma.2020.113499
http://dx.doi.org/10.1016/j.cma.2022.115616
http://dx.doi.org/10.1023/A:1020843529530
http://dx.doi.org/10.1023/A:1020843529530
http://dx.doi.org/10.1023/A:1020843529530
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb36
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb36
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb36
http://dx.doi.org/10.48550/arXiv.2305.16362
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb38
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb38
http://refhub.elsevier.com/S0045-7825(23)00360-2/sb38
http://dx.doi.org/10.1016/j.jmbbm.2012.03.010


S.R. St. Pierre, D. Rajasekharan, E.C. Darwin et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116236
[40] D. De Kegel, J. Vastmans, H. Fehervary, B. Depreitere, J. Vander Sloten, N. Famaey, Biomechanical characterization of human dura
mater, J. Mech. Behav. Biomed. Mater. 79 (2018) 122–134, http://dx.doi.org/10.1016/j.jmbbm.2017.12.023.

[41] A. Menzel, A fibre reorientation model for orthotropic multiplicative growth, Biomech. Model. Mechanobiol. 6 (2006) 303–320,
http://dx.doi.org/10.1007/s10237-006-0061-y.
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