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ARTICLE INFO ABSTRACT

Dataset link: https://doi.org/10.5281/zenodo.1 The two fundamental concepts of materials theory, pseudo potentials and the assumption of
0066805 a multiplicative decomposition, allow a general description of inelastic material behavior.
Keywords: The increase in computer performance enabled us to thoroughly investigate the predictive
Automated model discovery capabilities of ever more complex choices for the potential and the Helmholtz free energy.
Hyperelasticity Today, however, we have reached a point where materials and their models are becoming
Viscoelasticity increasingly sophisticated. This raises the question: How do we find the best model that
Constitutive neural networks includes all inelastic effects to explain our complex data? Constitutive Artificial Neural Net-
?ecl“rr_el?t neural networks works (CANN) may answer this question. Here, we extend the CANNSs to inelastic materials
nelasticity

(iCANN). Rigorous considerations of objectivity, rigid motion of the reference configuration,
multiplicative decomposition and its inherent non-uniqueness, choice of appropriate stretch
tensors, restrictions of energy and pseudo potential, and consistent inelastic evolution guide
us towards the general architecture of the iCANN satisfying thermodynamics per design. We
combine feed-forward networks of the Helmholtz free energy and pseudo potential with a
recurrent neural network approach to take time dependencies into account. Specializing the
general iCANN to visco-elasticity, we demonstrate that the iCANN is capable of autonomously
discovering models for artificially generated data, the response of polymers at different stretch
rates for cyclic loading as well as the relaxation behavior of muscle data. Since the design
of the network is not limited to visco-elasticity, iCANNs might help to autonomously identify
the inelastic phenomena of the material and subsequently select the most appropriate model.
Here, our focus is on providing a thermodynamically consistent framework for inelastic material
behaviors and how to incorporate this framework into neural networks in an architecture-
based manner. Our source code, data, and examples are available at Holthusen et al. (2023a)
(https://doi.org/10.5281/zenodo.10066805).

1. Motivation

In computational mechanics, traditional neural networks can be used to replace ‘hand-crafted’ material models. However, as they
do not incorporate any thermodynamical knowledge into the network’s architecture, they may learn the relation between strains and
stresses well, but often fail to predict the material behavior outside the training regime. Unphysical predictions of stress outside the
training regime can already be observed in the case of uniaxial tensile tests of hyperelastic materials (see e.g. Linka and Kuhl [1]).
In the latter mentioned work, the authors trained a traditional neural networks using Treloar’s data [2], where the loss is defined as
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Nomenclature

a, A Scalar

a First order tensor

A Second order tensor
I Identity tensor
SO(s) Special orthogonal group
AT Transpose of A

Al Inverse of A

sym (A) J(A+aT)

tr (A) Trace of A

det (A) Determinant of A
dev (A) A-TA

exp (A) Exponential of A

e tr (A)

A 3 (tr (A7 —tr (4%))
1A det (A)

.IZA % tr (dev (A)z)

JA S tr (dev (A))

the difference between the stress predicted by the network and the experimentally observed one. The corresponding stretch serves as
input for the network. Although the network is capable of adequately describing the stress within the training regime, an unphysical
decrease in stiffness is predicted with further stretching beyond the training regime. In a similar manner, Wang et al. [3] studied the
performance of traditional neural networks in the case of inelastic material behavior, in particular visco-elasticity. They observed
unphysical predictions for several uniaxial relaxation tests. During relaxation, the stress is expected to monotonically decrease while
the overall stretch is hold constant. However, the traditional neural network predicts a non-smooth stress during relaxation and even
an increase in stress. This is in clear contradiction to thermodynamics for standard materials. Another issue of traditional neural
networks is that they typically require a rather huge amount of solution data of the underlying problem for the training process.
This can be an obstacle whenever the acquisition of data from real experiments or realistic micromechanical simulations is either
not feasible or too costly.

For this reason, neural networks were developed in which — in one way or the other — prior knowledge about the underlying
physics of the problem is incorporated. This is done with the aim of requiring less data and improving the predictive capabilities of
the trained network. One prominent approach in this direction are Physics-Informed Neural Networks, also called PINNs [4]. PINNs
and PINN-like approaches' incorporate physical constraints to the formulation by adding additional terms to the loss function.
This strategy facilitates the training process by narrowing the admissible solution space and assists the optimizer in finding a
network behaving physically more reasonably, i.e. showing better extrapolation capabilities, which strictly obey thermodynamics.
Typically, PINNs and PINN-like approaches are used for solving partial differential equations, i.e. whole (initial-)boundary value
problems, as an alternative to, e.g., the finite element method (for several recent examples in the context of solid mechanics, see
Rao et al. [5],Zhang et al. [6],Amini Niaki et al. [7],Cai et al. [8],Haghighat et al. [9],Vahab et al. [10],Henkes et al. [11],Rezaei
et al. [12],Harandi et al. [13],Niu et al. [14]). Much less frequently, PINNs are also used to replace constitutive models. For
instance, Haghighat et al. [15] present a PINN framework which is able to characterize and discover yield surfaces and flow rules in
geometrically linear elasto-plasticity, showing how to deal with complex inequality constraints in the loss function. Eghbalian et al.
[16] develop a surrogate model approximating classical elasto-plastic constitutive relations that can be used for large deformations
via integration into a hypoelastic-based plasticity framework. However, as mentioned e.g. by Weber et al. [17] PINNs and PINN-like
approaches only weakly enforce physical laws during training, such as the strong form of linear momentum in case of boundary value
problems or the second law of thermodynamics for constitutive material models. Thus, there is no guarantee that any prediction
will satisfy these physical laws a priori.

In a completely different direction, so-called (material) model-free approaches have been developed that rely only on experimen-
tal data [18,19]. Compared to a combination of constitutive knowledge and machine learning algorithms, such purely data-driven
methods have the clear advantage that only minimal and generally accepted laws (such as basic kinematic relationships and force
equilibrium in a mechanical context) are assumed as given and no complicated (and possibly error-prone) constitutive equations need
to be formulated at all. On the downside, the large amount of data required for the success of such methods can be disadvantageous
— a property shared with traditional neural network approaches. These methods have already been extended to inelasticity (see

1 We refer here to neural network approaches which also add physical constraints to the loss function, but are not explicitly referred to as PINNs in the
corresponding papers.
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e.g. Eggersmann et al. [20],Ibanez et al. [21]). Nevertheless, their successful applicability in the case of complex multi-dimensional
and history-dependent problems or problems with non-unique solutions is not yet thoroughly investigated. Hence, they are subject
of intensive research in various directions (see e.g. Eggersmann et al. [22],Ciftci and Hackl [23],Zschocke et al. [24],Kuang et al.
[25], to name only a few).

As a very promising alternative to PINNs and PINN-like approaches described above, neural networks have been developed that
embed physical constraints into the architecture of the networks. For instance, Thermodynamics-based Artificial Neural Networks
(TANNSs) developed by Masi et al. [26] and the Mechanics-Informed Artificial Neural Networks (MIANNSs) by As’ad et al. [27] follow
this approach. The latter approaches were already extended to account for inelastic materials by employing the concept of state
variables. For instance, Masi and Stefanou [28] also include the transition between different scales while Masi and Stefanou [29]
overcome the need of an incremental time-discretization scheme. In As’ad and Farhat [30], MIANNs were extended to account for
visco-elasticity. For completeness, recent studies explored the capabilities of symbolic regression in constitutive modeling in more
detail. As in the case of physically-guided neural networks such as the former mentioned ones, thermodynamics are taught to the
symbolic regression algorithm. Thus, symbolic regression provides interpretable hyperelastic models in terms of stretch invariants
(see, for instance, Abdusalamov et al. [31,32,33], and Hou et al. [34]. For a brief comparison of physics-embedded neural networks
and symbolic regression, the interested reader is referred to the work of Hou et al. [34]. Another way of proceeding is to work with
traditional neural networks in the first place but to enforce the constraints a posteriori, as suggested e.g. by Kalina et al. [35].
These types of networks obey fundamental physical laws, such as the second law of thermodynamics. Therefore, these approaches
are very much in line with our goal of not wanting to design neural networks that completely discard all the knowledge of physical
and thermodynamical principles having been accumulated over centuries. Instead, it is our strong belief that we should better teach
networks the mentioned principles already beforehand. Consequently, as the specific expressions (so to say the active terms within
the network) of the Helmholtz free energy combined with an inelastic potential give rise to the amount of (possibly inelastic) material
phenomena, such networks may reveal all the effects for us in the data by finding the best thermodynamically consistent models.

Recently, these considerations have led to a novel development. The basic idea is as follows: instead of laboriously deducing
which specific phenomena are actually taking place in a material by manually analyzing experimental data and setting up a
corresponding biased material model (which is likely either too simplistic or too complex, depending on the developer’s level of
experience), a constitutive model is automatically discovered that optimally only reflects the material phenomena truly present in
the data. One representative following this idea is the framework EUCLID developed by Flaschel et al. [36,37]. Basically, EUCLID is
an intelligent algorithm using unlabeled data and sparse regression techniques to select and link only those candidates from a large
pre-formulated library of constitutive models (generalized standard materials) which are actually necessary to describe the data.
For an overview of particular choices for at least the Helmholtz free energy, we kindly refer the interested reader to Steinmann
et al. [38]. In Flaschel et al. [39], it has been shown (for the case of small deformations) that such an approach can be used to
successfully identify a model for a material whose material class was previously completely unknown.

The approach followed by EUCLID gives rise to the idea of networks based on constitutive knowledge. Instead of laboriously
identifying the relations between the entire strain and stress tensor, we can employ constitutive relations. Thus, we only have
to discover a scalar function, the Helmholtz free energy, and design our network in such a way that constitutive principles are
strictly ensured. In a more general context, the idea of function learning networks, known as equation learner (EQL), was proposed
by Martius and Lampert [40]. These networks provide a physically interpretable function (e.g. the Helmholtz free energy) by
particular choices of activation functions, and thus, help us to understand the underlying phenomenon. The improved version of EQL
networks by Sahoo et al. [41], called EQL*, includes division operation and enhances the model selection to increase the efficiency
of the identification procedure. These networks have already found their way into the identification of partial differential equations,
e.g. in Long et al. [42]. Since the scope of this contribution is on designing neural networks for inelastic material behavior at finite
strains, we kindly refer the interested reader for a review of hybrid models generally combining machine learning and physics to Rai
and Sahu [43], including EQL/EQL".

A somehow related strategy to EQL/EQL~ networks in a mechanical context is pursued by Constitutive Artificial Neural Networks,
also known as CANNs [44-46]. In contrast to most other neural networks, which discover the constitutive relations, CANNs aim
to formulate a physically reasonable, yet general expression for the Helmholtz free energy by a particular choice of the network
architecture. Here we take advantage of the fact that the Helmholtz free energy is considered to be a smooth and differentiable
function. Thus, a Taylor series with respect to the invariants of the right Cauchy-Green tensor can be performed, which is less
restrictive compared to pre-formulating a library of constitutive models. Similar to EQL/EQL* networks, custom-designed activation
functions ensure that, for example, convexity is guaranteed and at the same time expand the range of possible functional forms.
However, the architecture of the network is specifically designed for mechanical problems, i.e. the network is not fully connected
due to convexity requirements. Moreover, kinematic, thermodynamic, and physical constraints (such as those given by the second
law of thermodynamics, material objectivity, material symmetry, etc.) are rigorously considered in the design of the network’s
inputs and outputs. Consequently, through appropriate training, the network will autonomously recognize which components of this
parameterized energy are actually needed to describe the data. The main novelty is that, in special cases, the network will be able
to exactly represent known constitutive models from the literature; in general, however, it will generate a previously completely
unknown material model that describes the data even more accurately and leads to better predictions [1,47]. Important in this
context is also the fact that the network learns a set of physically interpretable parameters, which is clearly advantageous. However,
a critical missing link is to expand this concept to inelastic materials.

Today, there are nearly as many approaches to model inelastic material behavior as there are inelastic phenomena. Some of
them are only useful for individual effects, such as visco-elasticity. Therefore, we should not ask ourselves how we can fuse all
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these approaches into one model; instead, what is the most general approach? What are the essential steps to describe inelastic
effects? Once these general mechanisms are found, the question of inelasticity, e.g. plasticity, is merely a question of specializing
the approach and not a question of changing the model. For solids, we identify the concepts of internal state variables [48] and
pseudo/dissipation potentials of stress [49] as universal and perfectly complementary approaches. The former concept allows to
distinguish between elastic (reversible) strains associated with the amount of elastically stored energy and inelastic (irreversible)
strains related to the dissipation. In the finite strain theory, the assumption of a multiplicative decomposition of the deformation
gradient into elastic and inelastic parts is advantageous, well-known, widely accepted in the continuum mechanics community, and
able to capture a broad range of material behaviors (see Kroner [50],Lee [51],Mandel [52],Sidoroff [53],Rodriguez et al. [54],Lion
[55],Haupt and Sedlan [56],Menzel et al. [57],Bammann and Solanki [58],Latorre and Montéans [59], and Reina and Conti [60]
among many others). It is worth noting that none of these parts generally satisfies the compatibility condition, and thus, cannot be
derived from an elastic and/or inelastic motion field, so they should not be misunderstood as second-order gradient-like tensors such
as the deformation gradient. The latter concept follows from sound thermodynamic considerations that are valid for rate-dependent
(see e.g. Lion [61,62],Reese and Govindjee [63], and Besson [64]) and -independent (see e.g. Miehe [65],Badreddine et al. [66])
materials and can be easily extended to induced anisotropy (see e.g. Hill and Orowan [67],Benzerga and Besson [68]). Similar
to the Helmholtz free energy, which gives us the relationship between strains and stresses, the pseudo potential reveals how the
thermodynamic driving force influences the microstructure and, thus, determines the inelastic rate (see Maugin and Muschik [69]).
The charm of this combination lies in the fact that the potential can be interpreted mechanically in a way similar to the volumetric—
isochoric split [70], and further, that restricting the potential to be zero-valued, positive, and convex satisfies thermodynamical
requirements a priori (see Germain et al. [71]). Actually, the approach is in line with that for generalized standard materials
(see Halphen and Nguyen [72]), with the difference that the dissipation potential is formulated directly in terms of stress-like
quantities.

Objective and outline. In this contribution, we present a new framework for model discovery that extends Constitutive Artificial
Neural Networks (CANNs) to general inelastic material behavior (from now on called iCANNs). Our new iCANN assumes a
multiplicative decomposition of the deformation gradient and is, thus, capable to capture finite deformations and deformation
rates. To satisfy thermodynamics a priori, we derive the inelastic rates from a pseudo potential that depends on the thermodynamic
driving force. In Section 2, we briefly review the fundamentals of thermodynamics for inelastic materials in general. To this end,
we introduce universally valid restrictions on the Helmholtz free energy as well as the pseudo potential. Our considerations lead us
to the architecture of the network in Section 3. In analogy to CANNs, we use a feed-forward network for the pseudo potential, the
underlying concept of which is inherently generic and holds for any type of inelasticity. We subsequently embed the feed-forward
networks of the energy and pseudo potential into a recurrent neural network environment. Thus, we obtain a modular structure for
iCANNs, which we specialize to visco-elasticity for illustrative purposes in Section 4. In Section 5, we investigate the performance
of our iCANN using artificially generated data, the visco-elastic behavior of polymers subjected to cyclic loading, and the relaxation
behavior of muscle data. We continue with a discussion of our approach and mention its limitations in Section 6, before providing
concluding remarks and an outlook in Section 7.

2. Generalization: Constitutive framework for inelastic materials

To ensure a thermodynamically consistent and objective formulation of our inelastic constitutive network, we will briefly recall
the basic principles of continuum mechanics. Our two main model ingredients, from which all constitutive relations are derived,
are the Helmholtz free energy, v, and the pseudo potential, g,, which must satisfy all these principles. Therefore, we introduce
a motion, ¢, that relates material points with position vector x, in the reference configuration defined at a fixed moment in time
to points in the current configuration, x = ¢ (xo, t), at time 7 (see Marsden and Hughes [73]). Since ¢ is a bijective function, the
motion is invertible, i.e., x, = ¢! (x,). By linearizing the (inverse) motion, we obtain the deformation gradient as well as its inverse
(see Holzapfel [74])

_ 99 (xo.1) o 097 (D)

F : s
dx 0x

with I > 0. 1
Note that we may also include higher gradients of motion to describe the relative change between two points, but this is not
considered in this work (see Bertram and Forest [75]).

Objectivity. The principle of objectivity or frame indifference restricts the choice of constitutive equations so that they must be
independent of the observer. Mathematically, this is equivalent to a rigid body motion of the current configuration (see Ogden [76]).
Thus, we can introduce a second motion, ¢* (xo, t), and its inverse, ¢* - (x* R t), as well as the translation and rigid rotation of the
current position x* (xq,1) = Q¥ ()x (x¢,1) + ¢*(t) with Q € SO(3). Since the reference configuration remains the same for both

motions, we conclude that ¢~! = (p*:1 and differentiate both with respect to x
gt (x*.1 + 99! (x.t
o7 (x%1) oxt _ 997! (x.1) Fr_O'F @
dxt 0x ox
—_——
= F+!
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which gives us the transformation of the deformation gradient when the observer changes.

Rigid motion of the reference configuration. Analogous to objectivity, a rigid motion of the reference configuration discusses
under which alternative choices of reference configuration the response of the material must remain unchanged (see Chadwick
[771). If we assume a rigid body motion of the reference configuration and subsequently apply the same deformation, i.e., the
relative distance between all points is changed the same as without the rigid motion, the behavior of the material must be
invariant. Consequently, we can introduce a motion, ¢* (xg, 1), which accounts for a translated and rotated reference configuration,
ie., xg = Q%x, + c* with 0¥ € SO(3). Since both ¢ and ¢* yield to the same current configuration, we find the following (cf. [78])

op* (x¥,1) 6_x§ _ g (x0:1)
6x§ 0x, - 0x,

——
=:F#

F* = Fo"" . 3)

Multiplicative decomposition and rotational non-uniqueness. Regardless of whether the material exhibits visco-elastic behavior,
undergoes elasto-plastic deformations, or grows and remodels itself, all these phenomena have in common that the (elastic) stresses
arise from the elastically stored energy. Therefore, we utilize the multiplicative decomposition

F=F,F, with [0 >0 )

of the deformation gradient into elastic, F,, and inelastic, F;, parts. This decomposition is applied in various fields of mechanics
of inelastic materials, for instance, visco-elasticity (see Sidoroff [53],Lubliner [79]), elasto-(visco)plasticity (see Kroner [50],Eckart
[801, and Lee [51]), damage (see e.g. Schiitte and Bruhns [81],Dorn and Wulfinghoff [82]), phase transformation (see Christ and
Reese [83],Evangelista et al. [84], and Sengupta and Papadopoulos [85]) as well as growth and remodeling (see Rodriguez et al.
[54],Lubarda and Hoger [86]). However, since none of these parts can be derived from motion in general, they should not be
misinterpreted as gradients. Unfortunately, due to the fact that the introduced intermediate configuration is fictitious, we find that
the decomposition (4) suffers from an inherent rotational non-uniqueness, i.e.,

F=F,0" Q"F,=: F*F* with Q" € SO(@3) ©)

is equivalent to (4). As a consequence, the multiplicative decomposition into elastic and inelastic parts is not unique, which is
illustrated in Fig. 1. Thus, neither F, nor F; can be obtained in general, as there is an infinite number of possible combinations.
However, any constitutive law must be independent of this non-uniqueness (see, for instance, the brief but precise discussion
by Casey [87]).

Elastic and inelastic stretch tensors. In the case of elastic materials, objectivity constrains the Helmholtz free energy to be a
function of the right stretch tensor U = +1/C, where C = FTF is the right Cauchy Green tensor, while a rigid motion of the
reference configuration may lead to a dependence on the left stretch tensor V = +\/E, where B = FFT is the left Cauchy Green
tensor. If we superimpose both considerations, we find y, to be a scalar-valued isotropic function of its argument. In order to find
suitable stretch measures in the case of inelasticity, we superimpose the findings of Egs. (2), (3), and (5), i.e.,

F+>:<# — Q+F6Q*T Q*F,'Q#T . (6)
N — N——
= F}* =F f#
At this point, we assume y to be a function of elastic and inelastic arguments. However, analogously to elasticity, it remains to
find suitable elastic and inelastic stretch tensors. Therefore, we employ the polar decompositions of F, = R, U, and F; = V;R; with
R,.R; € SO(3) into their rotational and symmetric stretch parts. We insert these relations into the definitions of F}* and Ff# and
find the following (cf. [88])

U:* — Q*UeQ*T, V;k# — QXV,Q*T (7)

where U and Vf# are the stretch parts of F* and Ff#, respectively. Consequently, the Helmholtz free energy as an isotropic
function of U, and V, satisfies the requirements of objectivity, rigid motion of the reference configuration as well as rotational
non-uniqueness, since both U, and V; transform in a similar way if subjected to these three requirements. Nevertheless, contrary
to their invariants, it is important to note that both tensors are still not unique.

Thermodynamically consistent evaluation. The above considerations have shown us how to design the Helmholtz free energy
as a function of stretches. Now, in order to obtain a thermodynamically consistent material response when subjected to arbitrary
loading, we must satisfy the Clausius-Planck inequality D := —y, + %S : € > 0. In the latter, S denotes the second Piola-Kirchhoff
stress tensor. In line with the discussion led to Eq. (7), we can state the following general form of the Helmholtz free energy

Vo=V (Ce’Bi) : ®



H. Holthusen et al. Computer Methods in Applied Mechanics and Engineering 428 (2024) 117063

For convenience, we expressed y in terms of the elastic right Cauchy Green tensor, C, = Uﬁ, and the inelastic left Cauchy Green
tensor, B; = Vl.z. We then evaluate the Clausius-Planck inequality for the Helmholtz free energy (8)

=X =X
——
10wy 1, oYy oy
S—2F1Z2FT): Z¢C+|2C -2—B,|: D, >0 9
< ’ace'> P ¢oC, ~ 0B, ' = ®
=T

and, under consideration of the arguments of Coleman and Noll [89,90],Coleman and Gurtin [91], end up with the state law
_ —1 0¥y o-T s ; —1 . .

S = 2F; ﬁF ;' . Noteworthy, we employed the symmetry of the relative stress, I', to reduce F;F;" to its symmetric part,

D, =sym(F,F i’l) (see Svendsen [92]). In contrast to I', neither the elastic Mandel-like stress, X, nor the backstress, X, are generally

symmetric. Moreover, we recognize that then subjected to the three requirements mentioned, neither the thermodynamically

consistent driving forces T+# = 0*xQ*, X** = Q*XQ*", and I'"* = Q*I'Q*", nor the inelastic deformation rate D =

Q*D,-Q*T are unique in the sense of Eq. (7).

Evolution equation. It remains to choose an evolution equation for D; such that the remaining Inequality (9), I : D; > 0, is
fulfilled for arbitrary processes. To this end, we introduce a pseudo potential in terms of the thermodynamically consistent driving
force, g, = g (I'), which is also a scalar-valued isotropic function. Next, the evolution equation is assumed to be (cf. [49])

D =y=F (10)

where y > 0 introduces a time-scale into the model. Depending on the inelastic phenomenon modeled, y might be interpreted as
a relaxation time (visco-elasticity) or Lagrange multiplier (elasto-plasticity). In case of growth, the concept of homeostatic surfaces
(see Lamm et al. [93]) allows the interpretation of y. For the time being, we constrain g, to be convex, non-negative and zero-
valued at the origin, i.e., gy(0) = 0. Hence, the dissipation inequality is satisfied (see Germain et al. [71]), which will be discussed
in more detail in Section 2.2. In addition, it is worth mentioning that many potentials found in literature assume g, to be a positive
homogeneous function of degree a > 0. Thus, it is straightforward to prove that D > 0, since I' : D; = ay g (I') (cf. [94]).

Inelastic phenomenon. The theoretical considerations so far hold for any inelastic material behavior that can be modeled by the
multiplicative decomposition. For specializing this general framework to a specific inelastic phenomenon, e.g. elasto-plasticity, y
in Eq. (10) needs to be determined accordingly. In material modeling, we usually distinguish between constrained and unconstrained
phenomena. In the former, y acts as a Lagrange multiplier subjecting the material to an additional constraint, @(I"), which usually
depends on the relative stress. In case of elasto-plasticity, damage and phase transformation, we distinguish between elastic
(@(I') < 0) and inelastic regimes (@(I') = 0).? The work of Lamm et al. [93] introduces the concept of homeostatic surfaces,
i.e. @(I') = 0 must always be satisfied, allowing the interpretation of y for growth and remodeling. In contrast, visco-elasticity is
modeled as an unconstrained problem. Here we identify y as the reciprocal of the relaxation time and consider it to be constant or
most likely a function of stress. In this regard, Ricker et al. [95] provide a comprehensive overview of suitable functional choices.

Co-rotated configuration. We observed that none of the tensors defined with respect to the intermediate configuration are unique.
A consequence of this is that none of the partial derivatives with respect to C,, B;, and I' can be obtained using algorithmic
differentiation. This is a pity, because in our neural network we only want to design general functions of both y, and g, that
are capable of finding the best model to explain the experimental data without implementing additional pull-backs (see Simo and
Miehe [96],Dettmer and Reese [97]). To this end, we use the co-rotated formulation introduced by Holthusen et al. [98], which has
proven advantageous when combined with algorithmic differentiation. The fundamental idea is to rotate all non-unique tensors to
their co-rotated counterparts, (s) = Ri’l(-)Ri (see Fig. 1),
- _, 0y -

_ ] P 9
¢,=ui'cur!, B=c, 3=20,"2 x=2¢, b=y

, =y —. an
ac, aC; ST

In the latter equation, C; = Fl.TFl- =U ,2 is the inelastic right Cauchy Green tensor and I' = X — X is the co-rotated relative stress.
Employing the right polar decomposition of F; = R;U;, we obtain the inelastic right stretch tensor U, (see Fig. 1). Since all tensors
and their co-rotated counterparts are similar, both w(C,, B;) = w(C,,C;) and g(I') = g(I') maintain the same functional structure. It
is interesting to note that ¥ and the Kirchhoff stress, FSFT, share the same eigenvalues (see Dettmer and Reese [97]). Hence, the
pseudo potential expressed in terms of I is physically reasonable, which is considered an advantage. Finally, the state law reads
§ =207 SUT (cf. [90,91], and [48]).

2 For references, see the literature cited in the subsection ‘Multiplicative decomposition and rotational non-uniqueness’.
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Fig. 1. Multiplicative decomposition of the deformation gradient, F, into elastic, F,, and inelastic, F;, parts as well as their arbitrarily rotated counterparts
F; and F;. Further, F, = R,U, possesses its polar decomposition. Configurations: rc — reference configuration, ic — intermediate configuration, ic* — arbitrarily
rotated intermediate configuration, cic — co-rotated intermediate configuration, cc — current configuration.
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2.1. Helmholtz free energy: How strains cause stresses

So far, we have seen that, in addition to kinematics, the Helmholtz free energy function is the essential function that tells us
how to go from strains to all the stresses we need. Further, objectivity, rigid motion of the reference configuration, and rotational
non-uniqueness led us to the conclusion that y,, must be an isotropic function of C, and C;. Thus, we can express the Helmholtz
free energy in terms of its irreducible integrity basis (see Spencer [99],Boehler [100], and Zheng [101])

= c, ,C, ,C,
wo=w (C..C,) = v (11 1S 1S I I I 1 T 1 TE ) 12)
with the mixed invariants I, = tr (C,C;), Is = tr <C§CI>, Ig = tr (C,C?), and I = tr C‘jCi2 . The constitutive artificial neural
network that we design will learn the energy that best explains the experimental data by identifying the most valuable terms of a
generic form for the Helmholtz free energy (see Linka and Kuhl [1]). The goal of this section is therefore to design such a generic
function satisfying thermodynamics.

Isotropy. Within this contribution, we will only consider isotropic materials, i.e., any directionally dependence is excluded. As
kinematic hardening shifts the pseudo potential in the principal stress space, we neglect any influence of C;, thus reducing the
energy to y (C,) =y (I ¢ I2 e,I3 ) Furthermore, considering the energy as sufficiently smooth and infinitely differentiable, we
can express it in terms of a Taylor series y = Z?;,k:o a; (1 lcf —3) (Izc ¢ —3) (ISC ¢ — 1)k at the elastically undeformed state C, = I.
Since the free energy is zero in the undeformed state, we can conclude that ay,, = 0. However, within the network that we will
design, it is not possible, from a numerical point of view alone, to consider an infinite number of terms. Unfortunately, this may
violate fundamental conditions the energy must fulfill, namely

lim y—>+c0 and lim w — +co. (13)
15 o 1N 0
as well as
lim w > +oc0 and/or  lim y — +oo. (14
1l > © 12 > o

Volumetric—isochoric split. To c1rcumvent these issues, we exploit the volumetrlc—lsochorlc spht (see Flory [70]) and assume the

2
elastic energy to take the form y = y/“"(I ¢ I f) + 1//""'([ ¢) where I =1 f/(I 9)3 and I = 12 f/(I3 ¢)3. This allows us to
choose the following polynomial forms for the energy terms (cf. [1 02])

n m _ _ 14 . ~
pio = 3 N o (=3 (5 =37,y = Y Uy - 1+ W) (15)
i=0 j=0 k=0

where we introduced W(I “) in order to ensure the requirements (13). The isochoric response, y*°, addresses the second
requirement (14). Similar to agyo and for mechanical convenience, we find that ¢y, = d, = 0 as well as W (1) = 0. In addition



H. Holthusen et al. Computer Methods in Applied Mechanics and Engineering 428 (2024) 117063

(@)

V4
AN 4
. V4
T
r <0 x>0

f(x) <0 fl(x) >0

Fig. 2. If a scalar function f(x) is convex, non-negative, and zero-valued, then it is always true that x % >0..

to the Helmholtz free energy being zero in the undeformed state, mechanics tells us that the same must hold for the stress. For the

=C, =C,
. . .. c 1. . e 1k . . al ¢ al, ¢ .
isochoric response, this is naturally ensured by vanishing gradients of the modified invariants, i.e., ﬁ = % o= 0. Since
. e E;W([C'E) e o=
the first term of the volumetric response, uyc - 1)%k satisfies this condition as well, we conclude that —C3 must be zero for
aIce
_ 3
1S =1.

3

Design of isochoric energy. Lastly, we pay attention to the isochoric part of the energy, w'°(I IC", f ¢). We choose a generalized
Mooney-Rivlin approach (see Mooney [103],Rivlin and Rideal [104], and Bower [105])
n _ m .
v = Y o (I =37 + Y ¢ (I ¢ = 3) (16)
i=0 Jj=0
which is in line with the CANN framework by Linka and Kuhl [1],Linka et al. [44].° A physical argument for this choice of invariants
and the underlying mechanical assumptions can be found in Sansour [106],Pelliciari et al. [107]. Note that the additive split
of Eq. (16) can also be motivated by convexity arguments, since it is easier to prove that the sum of convex functions is convex
(cf. [108]). However, it should be noted that (I 1C ¢ —3)' is a polyconvex function, but (izc ¢ —3)/ is generally not.

2.2. Pseudo potential: How elastic stresses lead to inelastic strains

The previous section discussed several conditions that the free energy must satisfy to describe materials thermodynamically
consistent. Within our overall recurrent neural network, we incorporate both a feed-forward network for the energy and a feed-
forward network for the pseudo potential. The aforementioned conditions for the energy must be embedded into the design of
the associated architecture of the feed-forward network. Next, we will discuss the design of our second scalar function necessary to
describe inelastic materials, the pseudo potential g(I'). As an isotropic function, we can express the potential in terms of its integrity

basis as well, i.e., g(I') = g(IT, er,Jf).
Set of invariants. The choice of stress invariants is by no means unique. For instance, choosing the principal stresses, which is
the case for the yield criterion by Tresca [109], is possible as well. However, as will be discussed below, we will observe that this

choice of invariants is vividly reflected in the evolution of inelastic strains. For the subsequent discussions, it is useful to take the
following into account

oIt art

N — —:r=1r

ol ol

aJT _ aJr i

ﬁ:dev(l"), # cr=2Jf a7)
oJf ) oIl

— =34l

or 7

In the latter equation, the first invariant accounts for the hydrostatic pressure, the second takes the amount of shear stresses into
account, and the third contains information about the direction and state of stress.* As for the free energy, we need to design a

3 Noteworthy, Abdusalamov et al. [31] follow a similar approach for model discovery by means of symbolic regression.
4 In materials theory, Lode’s angle is often used instead of the third stress invariant (cf. [110]).
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generic formulation of the pseudo potential. Since this is considered to be smooth and continuously differentiable, the Taylor series
seems to be a suitable tool to inspire such a formulation. Note that we use the expansion to find a reasonable and mathematically
suitable formulation of the potential rather than to identify the (possible) real potential. Therefore, we expand the pseudo potential
by a Taylor series at the origin I' = 0, i.e, g = X7, riu(I])'(J) ) (J5)¥. Expanding the Taylor series at I =0isby no means a
unique choice. In contrast to the Taylor series of y, where it can be reasonably assumed that C, is close to identity, I' might be
far from zero. Unfortunately, in this case a high number of Taylor series terms would be required. Although one might consider to
expand g close to the actual value I at the current time step, this is not possible in practice as we have to uniquely find the values
of r;;. Regardless of whether we set up a ‘hand-crafted’ material model or discover a constitutive neural network, we therefore
have to choose a single point of expansion for all time steps. In our case, it seems most reasonable to choose zero, since the value
of ry is based on thermodynamic considerations, see the discussion below. To reduce the issue in question, we could either use
more Taylor terms, which is considered disadvantageous as the parameter identification would be more challenging, or broaden the
functional space by applying custom-designed activation functions, which will be discussed in more detail in Section 3.

Thermodynamic consistency. As already mentioned in Section 2, the pseudo potential must be chosen such that the potential
(cf. [71])

(i) is zero-valued at the origin.

Therefore, we choose ry,, = 0 in the Taylor series of g. In practice, we could add any constant term to the potential and still
get a thermodynamically consistent model. However, due to the fact that the potential can give rise to the dissipated energy, a
zero-valued potential seems most reasonable and is a common choice.

(ii) is convex.

For similar argumentations as in the previous section, we therefore omit all mixed variant terms. Consequently, the Taylor series
reduces to

a _ p ~
g= Y roo UV + Y rop0 () +
i=0 j=0

K
ook Uk =1 gD + g2 (1)) + g3 (I). (18)
k=0
Hence, the feed-forward network architecture of the potential is not fully connected as well.

(iii) is non-negative.

Since JZF >0, g, in Eq. (18) always satisfies this condition, and further, also the requirements (i) and (ii). Unfortunately, both
1 1F and JSF might be negative, and thus, all odd values of i and k can lead to negative sub-potentials g, and g;. Since we do not
want to exclude odd values a priori, we need to ensure non-negativity as well as (i) and (ii) through appropriate custom-designed
activation functions within the feed-forward network of our potential. The fulfillment will therefore be guaranteed by design. We
will introduce our choice of functions in Section 3. Alternatively, one may use input convex neural networks (see Amos et al. [111]),
as for instance used by As’ad and Farhat [112].

These three requirements together lead to a potential that has its global minimum at its origin. In order to briefly illustrate why
this leads to thermodynamically consistent, inelastic materials in general, we recall the reduced dissipation inequality, I' : D; > 0,
the evolution Eq. (10), the derivatives of the stress invariants (17), and the choice of our potential (18), viz.

I (ag1(1{>1r+zagz<J{>ﬂ+3ag;(J{)JF)>
et R R

Ir:D;,=y = =
! ogi 7?2 aJr

i 19
1 2

(1)

. R . . . . 9 I
Since the derivative of the sub-potentials with respect to their corresponding arguments, e.g. - and I lr , always have the

same sign due to the requirements (i)-(iii), their product is always positive. Fig. 2 illustrates this 1‘)roperty qualitatively. Hence,
we generally fulfill thermodynamics.

Effect of stress invariants on inelastic evolution. To motivate the choice of invariants as well as sub-potentials also from a more

mechanical point of view, we additionally consider the inelastic volume, I3F i, or rather its evolution over time. In this context, we
found the analytical expression <I3F i ) =1 3U "tr (D), revealing that the evolution over time can be expressed in terms of the evolution

Eq. (10). With this expression at hand, it becomes obvious that the inelastic volume ratio is related to the hydrostatic pressure, I 1F ,

g al)

which seems intuitive. This means that as long as =0, the volume ratio must remain constant. For our specific choice made

- 1
in Eq. (18), we found that g, (1 lr ) # const. is strongly related to the volume ratio over time. In addition, from a computational point

of view, this guides our choice of time discretization schemes for the evolution equation, which will be discussed in Section 4.
3. Inelastic constitutive artificial neural networks

The previous sections have set the physical boundaries for the constitutive equations to obtain thermodynamically consistent
results. In the following, we will design an iCANN architecture that inherently satisfies these requirements. We will discuss the
inputs and outputs in each time step, the general network architecture as well as the feed-forward architectures of the energy and
potential networks including their individual activation functions.

iCANN inputs and outputs. Within a time step, the overall inputs for both networks are C and the time increment Ar. Moreover,
since our aim is to discover history-dependent materials, the inelastic stretches, U, are passed through the hidden states. In addition,
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Fig. 3. Schematic illustration of recurrent neural network for iCANN. The history dependence of the material is taken into account by the hidden state of the
recurrent neural network. Thus, the inelastic stretches, U;, as well as the previous total stretches, C, are propagated through time. Fig. 4 illustrates the iCANN
architecture in each time step.
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Fig. 4. Schematic illustration of the iCANN architecture. Color code: blue — current inputs; orange — basic calculation; red - feed-forward network; yellow —
hidden state variables; purple — time discretization (Eq. (27)); green — current output. It is important to note that the feed-forward networks for both y, and
v,,, have the same weights. Thus, there is no double set of weights for the energy. The architecture of the energy network is illustrated in Fig. 5, Fig. 7 shows
the architecture of the feed-forward network of the potential. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

as we will discuss in detail in Section 4, we will use an explicit time integration scheme. Thus, C corresponding to the last time
step is passed through the hidden states as well. While C, serves as the input for the energy network, the input for the potential
network is I'. Furthermore, considering the constitutive requirements of objectivity, rigid motion of the reference configuration,
and rotational non-uniqueness, the basis for both networks are the invariants of these tensors.

Network architecture. The network architecture combines a recurrent neural network with two individual feed-forward networks
for the Helmholtz free energy as well as the pseudo potential. Both feed-forward networks are inspired by the classical CANN
approach (see Linka et al. [44]). As alluded in Linka and Kuhl [1], both networks are not fully connected. Fig. 3 illustrates
schematically the recurrent architecture at sequential time steps. Noteworthy, At does not have to be constant rather it is the

10
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Fig. 5. Schematic illustration of the feed-forward network architecture of the elastic and compressible Helmholtz free energy, y, within the recurrent neural
network. The first layer computes the invariants, the second employs the volumetric—isochoric split, the third generates the powers (+)' and (+)?, and the fourth
applies the custom-designed activation functions identity (s) and the exponential exp(s) — 1. Note that the network is not fully connected by design.

increment between the previous, 7,, and current time step , ¢, ;. For instance, at 7, | we find 4r =, —1,. To solve the evolution
Eq. (10), we integrate explicitly in time. If the evolution equation were solved implicitly, this would require additional iterations to
solve for the inelastic stretch tensor, which would certainly increase the numerical effort during training. A more detailed illustration
of the iCANN structure is provided in Fig. 4.First, from the previous values C, := C(t = t,) and U; := U,;(t = t,) we obtain the
previous elastic right Cauchy Green tensor, C‘e”. We then evaluate the Helmholtz free energy, v, := w(r =1t,), to obtain the relative
stress at the previous time step, which is required for an explicit integration of the evolution equation. Then, the pseudo potential
at the previous time step, g,, can be evaluated from which we obtain the right hand side of the explicit time-discretized evolution
equation (cf. Eq. (10)) by means of algorithmic differentiation. The result of this time integration allows us to obtain the current
value U; = U,(t =1,,). Finally, we can update the elastic right Cauchy Green tensor, Ce,,+ ,» and also evaluate our Helmholtz
free energy at the current time step, v, , from which we derive the current second Piola-Kirchhoff stress, .S, , using algorithmic
differentiation. For the numerical implementation it is crucial that y,, and y,,,, are evaluated with exactly the same set of weights.
Otherwise we will not learn a unique set of weights for the Helmholtz free energy.

Helmholtz free energy feed-forward network. The feed-forward network for the energy that we are using is shown in Fig. 5.
We extend the CANN structure of Linka and Kuhl [1] to compressible solids by decoupling the volumetric and isochoric response
(cf. Eq. (15)).° Due to this decoupling and the discussions in Section 2, our network is considered not fully connected. Within this
contribution, the explicit form we choose for W(I3C ¢) is taken from Ogden and Hill [113].° Thus, the equation for the Helmholtz

5 We kindly refer the interested reader to the aforementioned publication for a more detailed explanation.
® For an overview of alternative choices, the reader is referred to Hartmann and Neff [108].
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free energy within our networks takes the form
W (ilef, iZC”, ]f“) = w”’ (I~CE -3)+ w;tz [exp(w‘{il (iIC“ -3) - 1]
+wl (0 =37 +u¥, [exp<w‘ff2 (% -3 - 1]
+ w5 = 3) + w [exp(w*;f3 (i -3)- 1]

w;'j (ife —3P2+ wgs [exp(w‘l" (ie" -3%) - 1] (20)

w e\ .
+w?, (13 ) — 14w S| +.

J

W(IC“)

As discussed in Section 2.1, we approximate the energy by a Taylor series within one layer of the network. The subsequent layer
applies particularly designed activation functions, which can be thought of as custom-designed activation functions (see As’ad et al.
[271). This allows us to broaden the functional space, while using less high numbers of exponents of the power series in Eq. (16).
In line with Linka and Kuhl [1], we utilize the following custom-designed activation functions: linear () and exponential exp(e) — 1.
These functions are monotonic, continuous, continuous differentiable, and zero at the origin.

As shown in Fig. 5, we introduce two types of weights here. The first, w and w , control the shape of the activation function,
while the second, w and w ,» scale the individual contribution. Note that due to the linearity of the first activation function, we
can reduce the welghts to one single weight for the linear activation, e.g., w In order to ensure physically reasonable results, all
weights except w3 | are constraint to be greater or equal to zero. Noteworthy, = 0 would violate Eq. (14), however, any solid
material is considered to be resistant agalnst volumetric deformations. Thus, thls case can be excluded a priori. Nevertheless, to be
sure about this, one could restrict w3,1 to be greater than zero.

Pseudo potential feed-forward network. We use a similar structure to that of the CANN to design the feed-forward architecture
of the pseudo potential. The underlying idea is to find a general expression for the potential that is physically interpretable and
that also satisfies the requirements given in Section 2.2 by design. Therefore, we custom-design activation functions that satisfy a
zero-value potential for zero stress, are convex for inputs of any power since we expand the potential by a Taylor series, and are
non-negative for any positive and negative arguments. One possible set of activation functions we are choosing is shown in Fig. 6:
absolute value abs(e), natural logarithm of the hyperbolic cosine In(cosh(s)), and the hyperbolic cosine cosh(s) — 1. Like the activation
functions for the energy, these functions are continuous and continuously differentiable. Moreover, to guarantee convexity, we do
not use a fully-connected feed-forward network, i.e., we do not include mixed products of the invariants (cf. Eq. (18)).

It remains that we introduce a set of possible weights. To this end, we take inspiration from the CANN design, which means
we introduce two types of weights. On the one hand, the shape of each activation function is controlled by a weight, w‘g and,
in addition, the individual contribution of each function is scaled by a second weight, w . Due to the properties of the absolute
activation function, a weight controlling the shape is redundant. Thus, we can again reduce the set of weights, since only one weight
is needed for this very activation function. We also restrict the range of values of the weights to be greater than or equal to zero
for thermodynamic considerations. All of these considerations lead us to the design of the potential network shown schematically
in Fig. 7, or its explicit form

g (Ilr,erJz) = wg abs(lf) + wg ln(cosh(w’i1 11]_—)) + ng [cosh(wf2 11’_") - 1]
+ s abs((U)) + w InCeosh? (] )+ wS ¢ [eoshof, (1) = 1]
7 abs()) + 1w In(cosh(uef Jf» + w0, [cosmwf AR 1]

abs((J{ )?) + w§ || In(cosh(w? (JF ) + wt

10 18(

212 [cosh(w

Ihh-1] @1
abs(Jf) + wg ln(cosh(wl 073 )) + w2 s [cosh(wl 1073 ) ]

Lo aDS(ID?) + wh | Inceosh(ue? || (TTV) +ws [cosh(win i - 1]

which can be interpreted as the sum of convex potentials. In a more general context, this design is a generic convex potential
(cf. [114])

()= (Bt <r>>”>’l’ @

i=1

with ‘p-norm’ equal to one. In the latter equation, f; are convex functions of the stress I'. Noteworthy, since our custom-designed
activation functions are all positive, one could exclude the abs(e) in Eq. (22). Remarkably, changing the ‘p-norm’ regularizes the
corners of intersecting yield criteria/potentials. Furthermore, varying the ‘p-norm’ allows us to consider a wider range of pseudo
potentials using the same set of activation functions, which is seen as an easy way to extend our approach. In case we wold like to

12
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Fig. 6. Particular choices of custom-designed activation functions for the pseudo potential, g, with linear, quadratic, and cubic inputs. As required, all functions
are convex, non-negative, and zero-valued.

implement the ‘p-norm’ into the network of the pseudo potential, we would introduce an additional weight for it and restrict it to
be greater than zero.

The purpose of CANNs is to provide a simple network architecture, which is also physically sound and interpretable. The
extension made to iCANNs by the use of recurrent neural networks for the history dependence as well as the network of the pseudo
potential follows exactly this way. All quantities within the ‘overall’ network are physically interpretable” and can be clearly assigned
to the influence of strains on stresses (Section 2.1) or to the influence of stresses on inelastic strains (Section 2.2). More precisely,
the weights w¥ reflect the resistance of the material to deformation (see Eq. (9) and the corresponding assumption on ), while the

rate of inelastic flow is described by w$ (see Eq. (10)). The interested reader is referred to the work of Linka and Kuhl [1] where it
is shown how to link CANNs and known constitutive models from the literature.

4. Specialization: Incompressibility, visco-elasticity and time discretization

In the previous chapters we have discussed the constitutive properties of general inelastic materials from a theoretical point
of view as well as its particular implementation and incorporation into a recurrent neural network. In the following, we will now
specify the material equations and architecture of the network for the application of visco-elastic material behavior.

Incompressibility and loadings. For the time being, we restrict ourselves to the case of incompressible material behavior,
ie., I3C = 1. In order to ensure this condition within our studies, we add a Lagrange term, —p(I3C - 1) = —p(I CepCi _ 1), to the
overall Helmholtz free energy . In the latter, p can be interpreted as the hydrostatic pressure and is calculated from the boundary
conditions. It is important to note that although the overall material behavior is incompressible, the elastic response might not.
Only if 13C " =1 remains constant, we obtain elastic incompressibility. Furthermore, we only investigate coaxial loads, i.e., uniaxial

loading (C = diag [CH, 1/4/Cy1s 1/\/C11]), equibiaxial loading (C = diag [Cy;,Cyy, 1/C},|), and pure shear (C = diag [Cyy, 1,1/Cyy])
(see Steinmann et al. [38]). Hence, the principal axes do not rotate during loading, and thus, both C, and C; are diagonal tensors
as well (cf. [115]). Finally, we calculate p by the condition that S;; = 0 must hold for each of these loading cases.

Maxwell element. In terms of rheology, visco-elastic material behavior can be represented as a spring and dashpot element in

serial connection, which is schematically illustrated in Fig. 8. Additionally, since we consider incompressible behavior, we find the
following overall energy

wo = wNUC,) - pUL TS - 1) (23)

— - — — Neq (@ —
where yNed belongs to the spring element. Noteworthy, having Eq. (11) in mind, we observe that ' = ¥ - X =2 Cea"’Tq(c") = 3N,

Thus, we realize that the driving force for inelastic effects, ENcq, is independent from the Lagrange multiplier, p, and express the

reduced dissipation inequality as 3N P > 0 for the case of visco-elastic, incompressible material behavior. In addition, we can
. _ Neq(@ _ _

rewrite the state law per Maxwell element as SN =2U;! %U; T_pcl.

Moreover, as discussed in Section 2, for discovering the viscous response, we need to specify the evolution Eq. (10). For the time
being, we consider y to be constant.

Reduction of Maxwell element. For the studies we will conduct within this contribution, we design the feed-forward network of
the Helmholtz free energy of the Maxwell element, wN4(C,), to be the very same as shown in Eq. (20) without any further terms.
Consequently, the weights of this network are: 4 (w'K) + 8 (wZ) + 2 (wg’) = 14 weights in total. In contrast, since the amount of
experimental data is limited, we reduce the form of the potential shown in Eq. (21), which was for example also used by Tac et al.

7 For instance, they can be identified as the shear or bulk modulus of the material.
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cosh(e) — 1

Fig. 7. Schematic illustration of the feed-forward network architecture of the pseudo potential, g, within the recurrent neural network. The first layer computes the
invariants, the second generates the powers (s)! and (+)?, and the third applies the custom-designed activation functions absolute value abs(s), logarithm/hyperbolic
cosine In(cosh(s)), and the hyperbolic cosine cosh(e) — 1. To satisfy convexity a priori, the network is not fully connected by design.

YNea(Ce) g(ENe9)

F. F;

Fig. 8. Schematic illustration of a single Maxwell element. Due to the history dependence and the inelastic evolution, the energy associated with the spring
element, w4, is not instantaneously in equilibrium.
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[116]. In addition, also in line with the latter mentioned work, we replace JfNeq by a scaled version ffNeq =3 JZENeq, yielding the
following potential

Ne ~ 5 Ne 5 5 Ne
<I£ LIE c')zwg1 abs(1E" )+ wh, In(cosh(u? | 12))

+ W abs((Ii )2)+w In(cosh(w? 3(12 “52)) 24
+ @ abs(Jz )+wm1n(cosh(wmJgS ).

Thus for the potential we have in total: 3 (wg )+ 6 (wg ) = 9 weights. Noteworthy, in comparison to Eq. (21), the relations

27 =3 w27 and w1 s =3 w1 5 hold. At this point, an additional weight for the relaxation time, 1, would increase the overall
number of weights in our network to 24. However, considering Eq. (10), we realize that this welght is obsolete if the relaxation
time is constant, since the weights wz, can be considered to have the dimension ‘stiffness divided by time’. Hence, the time-scale is
included in the potential. Although this might be unintuitive in terms of mechanics, we can reduce the numerical effort within the

training process of our network without changing the underlying constitutive framework.

Visco-elastic solid. A Maxwell element is not well suited to model visco-elastic solids. Therefore, to learn the materials’ responses
of different solids in Section 5, we utilize a common approach in continuum mechanics. Here, we connect three Maxwell elements
and an equilibrium spring in parallel, where the equilibrium spring behaves purely elastically. As a result, the Helmholtz free energy
can be expressed as
& ¢,
wo= Y (wlfeq(éeg —p(Iy I, - 1)) +yPIaC ) - pIe - 1) (25)
a=1

together with the potential

Neq Ncq
& = Z &a ( ’ 2 > (26)

with a denoting the contribution of each Maxwell element. Fig. 9 schematically illustrates the iCANN used here. Note that the
energy, w4, depends solely on the right Cauchy Green tensor, C. Since the determinant of the latter is always equal to one here,
we do not need to consider the invariant I3 € within the equilibrium energy term. Thus, w4 is designed in analogy to Eq. (20), but
without W(I Y (cf. [1]). In summary, our VlSCO elastic solid neural network contains 3 x 23 (Maxwell element) + 1 x 12 (equilibrium

A (. _ oyBaC 1) _
W"‘—“)U C1>+2WT—pC1.3

spring) = 81 weights and the state law reads S = Z;lzl (2 U,.‘ i<,

Time discretization. Regardless the material behavior of interest, we need to discretize the evolution equation within the time
interval ¢ € [,.1,4,]. As discussed in Section 2.2, we have to choose an algorithm that preserves the inelastic volume in absence of
1 12 . Therefore, we will use the class of exponential integrators, and further, we will integrate explicitly in time (cf. [78]). For our
purpose within this contribution, this choice is sufficient and easier in terms of the numerical implementation. Exploiting that the
exponential satisfies the identity exp (BAB") = Bexp(A) B™! if B is invertible and further algebraic reformulations (cf. [98]), we
obtain the following

C,. =U, exp (At2I_),~n) U,. U, =+/C,, 27)

with the time interval Ar := r,,, —1,. We recognize that the derivatives in Eq. (17) are all coaxial, and, due to exp(A+ B) =
exp (A) exp (B) for coaxial arguments, we can rewrite the exponential in Eq. (27) as

i g, (I ag,(0 N
exp (4r2D;) =exp| At2y ———1 ) exp| 4r2y ———dev (T') ] ...
or{ oJf
ag;(J1) @8
g -
exp | 4t2y 23 ey (dev (I")z)
ogf
where the index n was omitted. Lastly, we take the identity det (exp(A)) = exp(tr(A)) into account, and thus, prove that the
L1 e _ ag](Ilr)

exponential integrator satisfies det (Cim ) = exp (At 6y <_01 T >n> det (Cin )

5. Results

In the following, we apply our Maxwell iCANN (Egs. (23)-(24)) as well as our visco-elastic iCANN (Egs. (25)-(26)) to various
experimental and artificially generated data sets. We implemented our iCANN into the open-source software library TensorFlow
(see Abadi et al. [117]). Since this paper focuses on the design of thermodynamically consistent neural networks rather on questions

8 One could also combine all hydrostatic pressures, p, and p, into one total pressure. However, since the Maxwell elements and the equilibrium spring are
distinct from each other, it is convenient to separate these Lagrange functions then it comes to the numerical implementation.
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Fig. 9. Schematic illustration of a generalized Maxwell element describing a visco-elastic solid. While the overall deformation, F, is the same for the equilibrium,
w4, and each of the non-equilibrium springs, wi®, the elastic parts, F, , may very.

related to the training procedure, we have set the L2-regularizer L, = 0.001 for all simulations. The relationship between potential
overfitting and L2-regularization in the context of CANNs is explored, for example, by Wang et al. [3],St. Pierre et al. [118]. The
loss is expressed in terms of least squares, i.e., the sum of the squared differences between the experimentally observed stresses and
the stress predicted by the iCANN (cf. [3]). In addition, we use two error measures, i.e. the normalized root mean squared error, ¢,
and the coefficient of determination, R?, to evaluate the performance and accuracy of our iCANN

n 2
1 J 1 Ndata 2 Zlnidl” (Su,. - Sll,-)

:? (511.—S1|,> s R? :=max 0,1——2 . (29)
n 4 ! ! = A
| | data ;—1 Z:'ia]la (S—S“i)

In the latter, S|, denotes the iCANN stress response, the experimentally observed stress is indicated by S;;, while ny,, is the

number of data points. Further, |S| = nL Z:’fﬂl‘a |S‘11’| denotes the sum of absolute values of the experimentally observed stress
data -

and § = L Z:’i‘l‘"‘ ~§11i is its mean. In all examples, the ADAM optimizer is used for training the network. The weights we discover

Ndai
during tra‘ir‘ﬁng for each example can be found in Appendix A.1-A.3.

€ .

5.1. Example 1: Artificially generated data

We start by creating artificial data using a Maxwell model. Consequently, the iCANN used corresponds to the Maxwell network
(cf. Egs. (23)-(24)). We use a continuum mechanical model to generate our artificial data. This constitutive framework is closed by
introducing a Helmholtz free energy function of the elastic stretch, a pseudo potential, and the definition of the evolution equation

Neagey = # (€D S\ LK ey o - .
W €,) = 5 (det (Ce)1/3 3 )+ % (det (C,) —1—1n(det (C,))) (30)
sNeq) _ 1 Neq 2 1 s Neq 2
g(Z )_ 4_;4" <dev(£ ) >+ T (2 ) (31
= l ag
D, = TN (32)

In the latter, u = 12.5 [kPa] is the shear modulus, K = 25 [kPa] is the material’s bulk modulus, and = = 10 [s] denotes the relaxation
time. We choose a compressible Neo-Hookean model, while the potential is taken from literature (see Reese and Govindjee [63]).
For the numerical implementation, we use the algorithmic differentiation tool AceGen (see Korelc [119]) and calculate the matrix
exponential by the closed-form expression provided by Korelc and Stupkiewicz [120].

We load the model monotonically using uniaxial tension (Fig. 10(a)), uniaxial compression (Fig. 10(b)), equibiaxial tension
(Fig. 10(c)), pure shear (Fig. 10(d)), and uniaxial cyclic tension/compression (Fig. 10(e)). The first four loadings are relaxation
tests, i.e., the load is applied within 0.5 [s] and then kept constant. For cyclic loading, we utilize three cycles: (i) increase stretch
until Cl™=12atr=047[sl], (ii) increase stretch until Cli*=2latr=12][s], decrease stretch until Cli™=05att=16 [s].

The iCANN is simultaneously trained using the four monotonic relaxation tests (Fig. 10(a)-10(d)). Here, we used 10,000 epochs
for training. We observe that the iCANN is able to discover a model that explains our training data almost exactly, which can be
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Table 1

Normalized root mean squared error, e, corresponding to the
results shown in Fig. 11. The first row represents the results
of training, the remaining three rows are the values of testing.
In [121] no experimental data are provided for the middle rate
with C}\* =9.0 [-].

€ F“ [1/5]
0.05 0.03 0.01
9.0 0.02 - 0.04
Cmx 2.25 0.09 0.07 0.07
1 4.0 0.04 0.05 0.14
6.25 0.16 0.17 0.13

seen qualitatively in the stress-time curves and quantitatively in terms of ¢ and R? (see Fig. 10). We test the performance of the
iCANN using the cyclic data set. The prediction is in almost perfect agreement with the artificially generated data. It is important
to mention that the loading/unloading rate is not constant. This property is accurately reproduced by the model, although only
relaxation tests are used for training.

5.2. Example 2: Discovering a model for the polymer VHB 4910 subjected to cyclic loading

Having validated our network on artificially generated data, we are interested in how well our approach can learn and predict
experimental data. Therefore, we take experimental data from Hossain et al. [121] for the very-high-bond (VHB) 4910 polymer. Note
that these data have already been used in a visco-elastic CANN by Abdolazizi et al. [45]. However, they use a generalized Maxwell
approach to account for visco-elasticity. Contrary to our approach, their CANN is not based on pseudo potentials. Hence, it is not
straightforward to extend it to further inelastic phenomena. Since polymers are considered visco-elastic, we use the visco-elastic
network approach (Egs. (25)-(26)).

Within the experimental investigation, Hossain et al. [121] subjected the material to uniaxial loading—unloading cycles at
different maximum stretches Clr'}a" = {2.25,4.0,6.25,9.0} and three constant stretch rates F;; = {0.01,0.03,0.05} [1 /s].9 For the
maximum stretch C[}™* = 9.0, the authors did not provide any experimental data for the rate Fy; = 0.03 [1 /s]. The experimental
data, which we transferred to the second Piola—Kirchhoff stress as well as the right Cauchy—Green tensor, are shown in Fig. 11. In
addition, the authors derived a classical constitutive model using the material model of Arruda and Boyce [122]. In their ‘hand-
crafted’ model, they studied the performance of both a model with four Maxwell elements and a model with five Maxwell elements.
In order to identify the corresponding material parameters, additional multi-step relaxation tests were conducted by the authors.

Similar to Abdolazizi et al. [45], we are not using any of the multi-step relaxation tests to learn the weights of our iCANN for the
polymer. We set the epochs to 6,000 for this example. However, contrary to the latter mentioned authors, we use less experimental
data for training. Here, we only use the data up to the maximum of C[}™* = 9.0 with the two loading rates Fy; = {0.01,0.05} [1 /s] for
training (Fig. 11(a)). In contrast, Abdolazizi et al. [45] use the data for Cﬂ""‘ = 2.25 as well, but exclude the rate F;; = 0.03 [l/s].
Therefore, any data with a rate of F;; = 0.03 [1 /s] is not seen by the iCANN during training. The remaining nine experimental
curves (Fig. 11(b)-11(d)) serve for testing.

We observe reliable agreements with the results of the training process and the corresponding experimental data, not only
qualitatively but also quantitatively. From a constitutive point of view, this indicates that our generic formulation of energy and
potential is able to find a material model for real experimental data, not only for artificially generated data. The normalized root
squared error for all experiments is provided in Table 1, the coefficient of determination is listed in Table 2. Furthermore, we
recognize sound predictions for the unseen data at stretch levels C|™ = {2.25,4.0}. This is particularly interesting since the data for
the rate at which no training was performed is also accurately predicted. Despite these results, it should be noted that the data for
the maximum stretch C{'iﬂ" = 6.25 (Fig. 11(d)) as well as the lowest strain rate for a maximum stretch Cﬂ“" =4.0 (Fig. 11(c)) are less
closely matched. A plausible explanation for this mismatch was already given by Abdolazizi et al. [45]. Indeed, the experimental
data are inconsistent here at least from a constitutive point of view: For constant loading rates but different maximum stretch levels
applied, the stress—strain curves should be approximately the same. This is not the case here (see Appendix A.5). Thus, an artificial
neural network obeying the laws of constitutive modeling is simply not capable of predicting such results. However, we see this
not as a disadvantage, but rather as an advantage of iCANNs and CANNSs, since inconsistencies in the experimentally measured data
will not seriously affect the discovered model.

To evaluate the performance of our iCANN, Appendix A.5 shows the comparison between the iCANN and the ‘hand-crafted’
model of Hossain et al. [121] (see Fig. 15) as well as the comparison between the iCANN and the visco-elastic CANN developed
by Abdolazizi et al. [45] (see Fig. 16). Overall, it can be said that the performance level of the iCANN is in a similar range to
approaches from the literature. Noteworthy, in contrast to the model from Hossain et al. [121], we only used the cyclic experimental
data for the model discovery analogously to the visco-elastic CANN by Abdolazizi et al. [45].

9 ¢, = F?, for uniaxial loading.
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Fig. 10. Discovering a model for artificially generated data. For training, C), is increased linearly within the first 0.5 seconds until C]}** is reached and then

kept constant for the rest of the simulation. For testing, the specimen is subjected to cyclic loading within five loading intervals.
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Fig. 11. Discovering a model for the experimental data of the polymer VHB 4910 taken from Hossain et al. [121]. Each Fig. 11(a)-11(d) shows loading/unloading

stress—stretch curves at constant deformation rates, F\,, but different maximum applied stretch levels, CJ™*. The experimental data are indicated by dots, the solid
lines correspond to the training results of the network (Fig. 11(a)), and dashed lines represent the testing/prediction of the discovered model (Fig. 11(b)-11(d)).
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Table 2

Coefficient of determination, R?, corresponding to the results
shown in Fig. 11. The first row represents the results of training,
the remaining three rows are the values of testing. In [121]
no experimental data are provided for the middle rate with

Ccmx =90 [-].
R? Fyy [1/s]
0.05 0.03 0.01
9.0 1.00 - 0.99
Cmox 2.25 0.96 0.97 0.97
u 4.0 0.99 0.99 0.88
6.25 0.81 0.80 0.89

5.3. Example 3: Discovering a model for passive skeletal muscle subjected to relaxation

Finally, we are interested in discovering a model for passive skeletal muscle subjected to uniaxial compression. We take the data
of Van Loocke et al. [123], who performed relaxation tests. In total, they performed five different experiments on the same material,
i.e. they varied both the maximum stretch Ci‘}a" ={0.81,0.64,0.49,0.49,0.49} [—] applied for relaxation and the rate of deformation
Fy; = {0.01,0.01,0.01,0.005,0.05} [1/s]. The experimental results used here are the mean of six tests per data set.

Wang et al. [3] studied the performance of a Constitutive Artificial Neural Network combined with a Prony series approach to take
visco-elasticity into account. In their investigations, Wang et al. [3] formulated the architecture of the CANN based on both principal
stretches and the invariants of stretch as published in Linka and Kuhl [1]. For completeness, the results of the Prony-series CANN
for both formulations are provided in Appendix A.6. In addition, the authors compared their CANN model with the performance of
a ‘vanilla’ recurrent neural network, i.e., no physical or constitutive constraints are included in the design of the network. Although
the performance of the training sets was more accurate compared to CANNSs, the predictions generally provided non-physical results,
which were in strong disagreement with thermodynamics. Thus, visco-elastic CANNs outperform classical neural network approaches
because their results are most likely to violate physics. Another aspect investigated by the authors was the influence of increased
data for training. One the one hand, they started by training the network using one experimental curve and test their discovered
model using the remaining four experiments (see Fig. 17). On the other hand, training the network using four experimental data sets
and just using one unseen data set for testing should generally increase the network’s performance (see Fig. 18). In the following,
we will study the same using our iCANN approach. Regardless whether we train on one or on four experiments, we set the epochs
to 5,000 in this example.

Train on one, test on four. To begin with, we train our iCANN on one experimental curve and test on four remaining data sets.
Additionally, we vary the training data set with respect to the five different combination of maximum stretch and rate of deformation.
The models we learned as well as the experimental data are shown in Fig. 12. Table 3 lists the normalized root mean squared error,
while the coefficient of determination is given in Table 4. Generally, we can say that the training data sets are learned well using
our iCANN approach, regardless of which experiment is used for training. Adding up e per column in Table 3, we find the third
column to perform the best (3 ¢ = 1.21). Nevertheless, both the ¢ and R? values of the tests in each column are relatively poor,
suggesting that an optimal model has not yet been discovered. As possible causes we may consider either the limitation of the
number of Maxwell elements to three or the insufficient amount of training data. Regarding the first reason, however, it can be
assumed that no better model will be found if the training data remain the same, since the error measures are already accurate
for the training data. Comparing our results to the Prony-series CANN by Wang et al. [3] in Fig. 17, a similar performance of our
iCANN and Prony-series CANNSs is observed.

Train on four, test on one. Consequently, we increase the data used for training. Our results are illustrated in Fig. 13 where we use
four curves for training and test on the remaining experimental curve. Again, we calculate the normalized root mean squared error
in Table 5 and the coefficient of determination in Table 6. As expected, we generally observe a more accurate learning performance
compared to the setup ‘train on one, test on four’. Overall, both error measurements used here are in a relatively good range for
training and testing. In contrast to the previous setup, where it was difficult to find a model that explained both training and testing,
the results shown in the second and fifth columns agree well with the training data and especially the predictions are in line with
the test data. The best model is discovered in the second column, where we have added up the normalized root mean squared error
Y e = 0.68. In view of the results obtained by Wang et al. [3] for both the principal stretch and invariant-based formulations (see
Fig. 18), our iCANN is capable to predict the test data to a comparable degree of accuracy. As already mentioned above, we might
obtain better results if we increase the number of Maxwell elements, however, this is out of the scope of this contribution.

Regardless whether we train with one or four experiments, our results infer that the choice of the training set is by no means
unique or trivial. Different choices influence the accuracy of prediction capabilities. There are many reasons for this, including the
quality of the measurement during the experimental investigation, the choice of optimizer, or how much information about inelastic
effects is hidden in the data. Nonetheless, the results suggest that iCANNs are not only able to learn the training set well, as is also
the case for ‘vanilla’ networks (cf. [3]), but also provide us with physically reasonable and accurate results when applied outside
the training regime.

20



H. Holthusen et al. Computer Methods in Applied Mechanics and Engineering 428 (2024) 117063

o Data Training --- Testing

OMOOOO OO 1 0000 6-0£& = =0 0000 0 -0 0= = =0 ©oocT T O[O © fRAOPDL-Q L@ = =0

0 —T T T I p— T
%&60’0'0 53"5""b ggooooe 0—6——=0 009 .0-Q -Q = =0 @;ﬁo’o'o'o' 5=5-"6 %@QQQ_Q O D = O
g

—
< 0
el A IS R ®
a -===" ) - o} [} °©
- C‘,"  abemmm-- e Ve
o or o o} © . o ® o
— — o O o ©O OO o O o ©
C/'; 2 cpooo o .Cpooo o 00© o |I: 000 ) .,’Ooo o
72}
175} [0 [ ] o ]
z —4 - 1 s . .
j
=
0]
O T T T T T 1$9) T T T
Lemmmmm———- Q ‘o Q 9
[JRd o ® P ok alinlil © o o) o © o_ .4
v" 0000 ° V27008 07T v 0000 ° 0097 VCCIE
—2 b & ] PxeS) e R oy et
§ g 8" ¢
o o ® o o
| | |
O T [ [ o]
P [ S| o] D ) )
I}f—_ o) P mmm === fo) P o P ———b P o)
e o © "n,-=T o © o © " -=="c "0 o9
—2 K 00 © | hS00 © h 00 O_______ i 250 © 00©
I ;‘939,—‘ J jsfy
o 4 > ©
40 i! o
— i
f
P | P | | P | | | P

I P |
0 100 200 300 0O 100 200 300 O 100 200 300 O 100 200 300 O 100 200 300
Time ¢ [s]

Fig. 12. Train on one, test on four. Experimental data and discovered model for passive skeletal muscle taken from Van Loocke et al. [123]. Each column
represents a combination of training and testing, while each row represents one experimental setup. The experimental setup varies with respect to the maximum

applied stretch C;‘;"“ = {0.81,0.64,0.49,0.49,0.49} [-] and the rate of deformation F” ={0.01,0.01,0.01,0.005,0.05} [s]. The columns vary with respect to the one
experiment used for training.

Table 3

Normalized root mean squared error, ¢, corresponding
to the results shown in Fig. 12. Each column represents
a combination of training and testing, while each row
represents one experimental setup. The colored boxes
indicate the experiment used for training, the remaining
four tests are utilized for testing.

0.60 0.54
Stress 0.35 0.26
Sy, [kPa] - 0.28 0.21
0.22
€ “ Time ¢ [s]
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Coefficient of determination, R?, corresponding to the
results shown in Fig. 12. Each column represents a
combination of training and testing, while each row
represents one experimental setup. The colored boxes
indicate the experiment used for training, the remaining
four tests are utilized for testing.

0.40  0.00 0.00
Stress 076 039  0.66
Sy, [kPa] 0.33 0.68  0.82

029 079  0.49

0.78  0.87
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Fig. 13. Train on four, test on one. Experimental data and discovered model for passive skeletal muscle taken from Van Loocke et al. [123]. Each column
represents a combination of training and testing, while each row represents one experimental setup. The experimental setup varies with respect to the maximum
applied stretch CJ|*™* = {0.81,0.64,0.49,0.49,0.49} [~] and the rate of deformation F,, = {0.01,0.01,0.01,0.005,0.05} [s]. The columns vary with respect to the four
experiments used for training.
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Fig. 14. Experimental data of polymer VHB 4910 provided by [121]. The material is subjected to uniaxial loading—unloading at different maximum stretch
levels, Cf\™*. For constant loading rates, F,,, but different maximum stretch levels applied, the material’s response during loading should be the same.
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Table 5

Normalized root mean squared error, ¢, corresponding
to the results shown in Fig. 13. Each column represents
a combination of training and testing, while each row
represents one experimental setup. The colored boxes
indicate the experiment used for testing, the remaining
four tests are utilized for training.

0.15 0.14 0.07 0.17 0.13

Stress 0.08 | 0.12 0.06 0.07 0.10

S\, [kPa] 0.16 0.16 | 0.25 0.10 0.14
11

0.19 0.18 0.10 0.27 0.21

0.08  0.08 0.05 0.12 | 0.12

€ “ Time ¢ [s]
Table 6

Coefficient of determination, R?, corresponding to the
results shown in Fig. 13. Each column represents a
combination of training and testing, while each row
represents one experimental setup. The colored boxes
indicate the experiment used for testing, the remaining
four tests are utilized for training.

0.89 0.90 0.97 0.85 0.91
Stress 0.97 0.93 0.98 0.98 0.95
S, [kPal 0.90 0.90 0.76 0.96 0.93
0.89 0.90 0.97 0.77 0.87
0.98 0.98 0.99 0.96 0.96

R? “ Time ¢ [s]

6. Discussion and limitations

In this paper, we have designed a general inelastic constitutive artificial neural network that satisfies thermodynamics for all
kinds of inelastic phenomena that can be accounted for by the multiplicative decomposition. To investigate our proposed approach,
we limited our study to the effect of visco-elasticity. In addition, we focused on a thermodynamically sound and flexible theoretical
description of the network rather than on aspects related to the machine learning algorithms themselves. Of course, this leads to
some limitations of this work and leaves room for future investigations, some of which we would like to briefly touch upon.

iCANNs are able to discover a model for visco-elasticity. Our results show that our extension of CANNs by multiplicative
decomposition and pseudo potentials is a suitable approach for viscoelastic materials. The sparse amount of data does not hinder the
successful discovery. Since our pseudo potential, and especially the activation functions, are chosen in a general way that satisfies the
mathematical requirements of thermodynamics, rather than inspired by existing models in the literature, it would be interesting to
compare pseudo potentials used in constitutive modeling to describe certain materials with those discovered by iCANN. Furthermore,
we have fixed the number of Maxwell elements to three. In future studies, it should be investigated how to design an iCANN that
learns whether the number either can be decreased or must be increased.

Are our discovered iCANN models unique? Although we found several models that explain the experimental data well and also
perform accurate in tests compared to standard neural networks, we did not investigate the uniqueness of our solution. Thus, it is
possible that fewer terms in both the Helmholtz free energy and the pseudo potential are needed to explain the data with the same
accuracy. To avoid possible overfitting, it should be investigated to what extent the optimizer’s regularization can help us achieve
this goal, as has already been done in the literature, e.g. by Wang et al. [3],St. Pierre et al. [118], and McCulloch et al. [124] for
the Helmholtz free energy of CANNs.

Specialization to further inelastic phenomena. The network’s architecture is formulated to accommodate a variety of inelastic
phenomena. To investigate the performance of the iCANN, we focused ourselves to the case of visco-elasticity. Future works should
study the ability to explain the data of, for instance, elasto-(visco)plasticity. Such a phenomenon includes some kind of yield criterion,
which distinguishes the elastic from the inelastic regime. Having in mind that one might need multi-surface models, i.e., several
parallel arrangements of iCANNs similar to using several Maxwell elements, we ask ourselves what is an appropriate implementation
strategy. In order to keep the numerical effort during training low and the implementation as simple as possible, we would suggest to
keep an explicit time integration, while the equality and/or inequality constrains are satisfied by Fischer-Burmeister approach (see
e.g. Fischer [125]). For example, such an approach was successfully applied in constitutive modeling by Kiefer et al. [126],Brepols
et al. [127].

Initial and induced anisotropy. We have not considered anisotropy. However, some materials exhibit a pronounced type of
anisotropy, either intrinsic (e.g., fiber reinforced, collagen fibers, etc.) or induced (e.g., anisotropic damage). Since both phenomena
can be constitutively modeled by structural tensors, future work should include this additional tensorial argument. It would be
interesting to study whether the iCANN helps to identify the degree of anisotropy, e.g. the ratio between microvoids and microcracks.
In addition, structural tensors combined with multiplicative decomposition require push-forward operations of the structural tensors
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Fig. 15. Comparison of the results using the ‘hand-crafted’ material model developed by [121] with the results of the iCANN. Hossain et al. [121] used five
Maxwell elements (cyan, densely dashdotted, F;; = 0.05, =.=.= / burgundy, densely dashdotted, F,; = 0.01, =-==) and four Maxwell elements (red, densely
dashdotted, F;; = 0.05, === / olive, densely dashdotted, F,, =0.03, === / purple, densely dashdotted, F|; = 0.01, =«==). The results of the iCANN correspond

to Fig. 11. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Comparison of the results using the visco-elastic CANN by [45] with the results of the iCANN. Abdolazizi et al. [45] ended up with two generalized
Maxwell elements (red, densely dashdotted, F;, = 0.05, =:=:= / olive, densely dashdotted, F,, =0.03, === / purple, densely dashdotted, F,; = 0.01, = =:=). Note
that the approach used by [45] does not rely on the concept of pseudo potentials and is only applicable for Fig. 11. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 17. Train on one, test on four. Comparison of the results using the visco-elastic CANN by Wang et al. [3] using a Prony-series approach with results of
the iCANN. In Wang et al. [3], the formulation of the CANN relies either on the principal stretches or the invariants of C. The results of the iCANN correspond
to Fig. 12.

to the intermediate configuration. This mapping is not unique, see Holthusen et al. [98],Sansour et al. [128] for an overview of
possible choices. This raises the question of whether iCANNs are capable of deciding which mapping is best for certain types of
materials.

How to include multiphysics? Up to now, we only have taken mechanical influences into account. However, almost all engineering
materials behave temperature dependent, e.g., by thermal expansion and/or thermal softening. To account for this phenomenon, we
suggest to use a multiplicative decomposition of the deformation gradient into a thermal part and a mechanical part (see Stojanovié¢
et al. [129],Vujosevic and Lubarda [130]). In addition, the influence of electrochemical fields is of great importance in manufacturing
(see Dorfmann and Ogden [131],Wulfinghoff and Dorn [132], and van der Velden et al. [133]). Moreover, the diffusion of hormones
and nutrients plays an important role in the growth and remodeling of living organisms (see Manjunatha et al. [134]). Hence, it
is highly disable to extend the CANN and iCANN approaches to multiphysical problems. The question is how to find a generic
formulation of our iCANN to account for the interactions between the different fields at the material point level.

How to set up experimental investigations? We have shown that we need less experimental data to discover a model explaining
our data compared to the identification of material parameters used in constitutive modeling. The long-term perspective of iCANN is
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Fig. 18. Train on four, test on one. Comparison of the results using the visco-elastic CANN by Wang et al. [3] using a Prony-series approach with results of
the iCANN. In Wang et al. [3], the formulation of the CANN relies either on the principal stretches or the invariants of C. The results of the iCANN correspond
to Fig. 13.

that by design several inelastic effects are included. This will allow the iCANN to automatically learn the inelastic effects hidden in
the data and provide us with information about the micromechanical processes. Up to now, such an identification requires complex
experimental investigations, e.g. several cyclic tests, relaxation tests etc. In view of our results, the question arises whether and how
experiments have to be conducted in order to generate a maximum of information for the iCANN with as little effort as possible
(see also the results and discussion in Linka et al. [47]).

7. Conclusion and outlook

The inelastic Constitutive Artificial Neural Networks (iCANN) architecture provides a new family of neural networks for the
prediction of inelastic material behavior under finite deformations. This architecture represents a consistent extension of the original
Constitutive Artificial Neural Network (CANN) design and inherits its advantages over classical neural network architectures being
used for constitutive modeling. The overall design of the iCANN is based on sound kinematic and thermodynamic considerations. It
combines well-established principles of continuum mechanics with the power of modern machine learning procedures to provide a
neural network architecture that does not only offer thermodynamic consistency and satisfies principles of materials theory a priori,
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Table 7

Discovered weights for the Helmholtz free
energy feed-forward network. The weights
belong to the results for the artificially gen-
erated data in Section 5.1. The order of
the weights corresponds to the numerical
implementation provided.

Neg

0

"
w'{l 0.16197191
w 0
w‘;’l 0
wy, 0
w;l 4.4753417e-33
w:l 4.5402040e+00
w‘;,s 9.2217451e-01
wy s 0
w;’v7 0
w;z 2.2400634e+00
w; B 0
w;IA 1.5364066e—33
w;x 1.8214491e-33
v

s

Table 8

Discovered weights for the pseudo
potential feed-forward network. The
weights belong to the results for the
artificially generated data in Section 5.1.
The order of the weights corresponds to
the numerical implementation provided.

g
wt | 0
wiy 0
@5 0
ws, 0
w; 0
lllg_7 0.00107837
w3, 0
W 0
w;x 0

but also provides a flexible, modular and interpretable machine learning algorithm. Based on the multiplicative decomposition
of the deformation gradient, this framework uses individual subnets to approximate both, the Helmholtz free energy as well as
a pseudo potential function. This idea enables the network to flexibly adjust to the data provided, and therefore, represents a
generic formulation to explain various kinds of inelastic phenomena. For illustrative purposes, we chose the example of finite visco-
elasticity within this publication. We were able to demonstrate that the iCANN is capable to predict this kind of rate-dependent,
inelastic material response properly, even though the amount of experimental data is sparse. Due to its general constitutive
approach, the iCANN should be specialized for inequality-constrained material behavior (e.g., elasto-plasticity and damage),
equality-constrained behavior (e.g., biological growth), multiphysics (e.g., thermoelasticity), and initial anisotropy (structural
tensors) in future investigations to explore its ability to capture these phenomena as well (see Fig. 14).

Code availability

Our source code and examples are available at [135] (https://doi.org/10.5281/zenodo.10066805)
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Table 9

Discovered weights for the Helmholtz free energy feed-forward network. The weights belong to the
results for the VHB 4910 polymer in Section 5.2. The order of the weights corresponds to the numerical
implementation provided.

wa e phe wye
w‘l’il 0.08989155 0.6867937 0.06954185 2.9327118
w‘l"'3 0.3871473 0.6118265 0.28366846 2.6145873
u"]’tz 0 0.06561667 0 0.03622768
w']"'4 0.01116255 0.21422595 0.01034374 0.17840806
wzll - 3.9390977e-33 —2.5810559e—-33 —1.908444e—-33
w;’l 2.646479 1.0183624 2.3602471 1.0819899
w;’s 3.1516218 0.70885456 2.8352766 1.2915097
w;/,,z 0 0.35119042 0 0.21051936
W;IJ 0.6164215 0.35955966 0.1741371 0.2551231
W;/,z 1.4593441 1.894548 1.1949594 3.15422
wl{() 2.9215317 1.354211 2.65872 2.8406792
w;’A 0.0537339 0.1450241 0.08411078 0.09968195
Wl{g 0.24964914 0.32216933 0.2144338 0.23061126
w';z - 0 0 0
Table 10

Discovered weights for the pseudo potential feed-forward network. The weights
belong to the results for the VHB 4910 polymer in Section 5.2. The order of the
weights corresponds to the numerical implementation provided.

81 & &3
uff | 0 0 0
wfl 0 0 0
wfj 0 0 0
wél 0 0 0
wi» 4 0 0 0
u‘}ij 0.02321647 0.00174507 0.08019841
wi»z 0 0 0
wi»s 0 0 0
wz’f8 0 0 0
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Appendix A

A.1. Discovered weights for artificially generated data
See Tables 7 and 8.

A.2. Discovered weights for VHB 4910 polymer
See Tables 9 and 10.
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Table 11

Discovered weights for the Helmholtz free energy feed-forward network. The weights belong to the best
results for passive skeletal muscle in Section 5.3, i.e., the third column in Fig. 12. The order of the
weights corresponds to the numerical implementation provided.

ya e e pe
w‘{'] 0.10420806 0.01166395 0.00115344 0.01122695
wlilz 0.1841228 0.01309146 0.00347792 0.01664283
wl;fz 0.02560516 0.00111786 0.00250525 0.00101571
wl;'A 0.21253704 0.0157883 0.6823113 0.01311576
wg"] - 5.497631e—34 —2.4178903e—14 —1.6557697e—-05
wl{] 0.06608981 0.04277665 0 4.2320956e—-02
w;s 0.0637252 0.03449954 0 3.4831800e-02
Wl{; 0.06350973 0.01193809 0.02947876 1.5011105e-02
ng 0.07190274 0.01611285 0.06952783 1.8784763e—-02
LUZ'A2 0.09108008 0.01163169 0 1.1191454e-02
wzwﬁ 0.14969026 0.01267746 0 1.6345050e—02
w;"‘4 0.02551797 0 0.0014553 7.9535537e-05
w;x 0.20174257 0 0.52773875 0
w;’l - 0 0 0
Table 12

Discovered weights for the pseudo potential feed-forward network. The weights
belong to the best results for passive skeletal muscle in Section 5.3, i.e., the
third column in Fig. 12. The order of the weights corresponds to the numerical
implementation provided.

&1 & 83
wf | 0 0 0
wt 0 0 0
@ 0 0 0
wt, 4.5470802e-06 0 0
wt, 7.6929213e~13 0 0
@, 1.7541333¢-01 0.5692788 0.15919787
wh, 0 0 0
wh 0 0 0
wh 0 0 0

Table 13

Discovered weights for the Helmholtz free energy feed-forward network. The weights belong to the best results
for passive skeletal muscle in Section 5.3, i.e., the second column in Fig. 13. The order of the weights corresponds
to the numerical implementation provided.

yta e e Wy
w, 0.00138299 0 0 6.044407e—06
w! 0.03045796 0 0 0
w?, 0.07063455 0 0 0
wt, 0.09885824 7.708453e—10 0.00558791 0
w?, - 3.6285916e—33 3.733226e-33 3.766066e—33
w?, 0.02312493 3.51029038e—02 0.02298807 8.7625727e—02
wh, 0.04258661 1.12825185e—02 0.01470857 5.3523790e—02
wh, 0.11215075 2.31756195e—01 0.02367271 8.5964095e—04
w?, 0.12233058 5.45360267e—01 0.04010505 8.0012449e—04
w?, 0.00133567 0 0 5.9973318e—06
w! 0.02934347 0 0 0
w’, 0.0702935 0 0 0
w;fg 0.0983757 7.71025022e—10 0.00552198 0
w? - 0 0 0

S

A.3. Discovered weights for passive skeletal muscle

See Tables 11-14.

A.4. Experimental data of polymer VHB 4910

See Fig. 14.
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Table 14

Discovered weights for the pseudo potential feed-forward network. The weights
belong to the best results for passive skeletal muscle in Section 5.3, i.e., the
second column in Fig. 13. The order of the weights corresponds to the numerical
implementation provided.

81 82 83
wf | 0 0 0
W, 0 0 0
7 0 0 0
Wi, 0 0 0
wh, 4.6914302e-11 0 0
@, 7.3394459-01 0.24998124 0.29360896
ws, 0 0 0
wi 0 0 0
wh 0 0 0

A.5. Comparisons for polymer data

See Figs. 15 and 16.

A.6. Comparisons for muscle data

See Figs. 17 and 18.
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