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ARTICLE INFO ABSTRACT
Dataset link: https://github.com/LivingMatterL, Constitutive modeling is the cornerstone of computational and structural mechanics. In a finite
ab/CANN element analysis, the constitutive model is encoded in the material subroutine, a function that

maps local strains onto stresses. This function is called within every finite element, at each

I;i{z’;;d;d model discovery integration point, within every time step, at each Newton iteration. Today’s finite element
Constitutive neural networks packages offer large libraries of material models to choose from. However, the scientific criteria
Constitutive modeling for appropriate model selection remain highly subjective and prone to user bias. Here we
Hyperelasticity fully automate the process of model selection, autonomously discover the best model and
Material subroutine parameters from experimental data, encode all possible discoverable models into a single

material subroutine, and seamlessly integrate this universal material subroutine into a finite
element analysis. We prototype this strategy for incompressible, isotropic, hyperelastic soft
matter systems that we characterize through a combination of twelve possible terms. These
terms feature the first and second invariants, raised to the first and second powers, embedded
in the identity, exponential, and logarithmic functions, generating 2> = 4096 models in total.
We demonstrate how to integrate these models into a single universal material subroutine that
features the classical neo Hooke, Blatz Ko, Mooney Rivlin, Demiray, Gent, and Holzapfel models
as special cases. Finite element simulations with our new universal material subroutine show
that it specializes well to these widely used models, generalizes well to newly discovered models,
and agrees excellently with both experimental data and previous simulations. It also performs
well within realistic finite element simulations and accurately predicts stress concentrations
in the human brain for six different head impact scenarios. We anticipate that integrating
automated model discovery into a universal material subroutine will generalize naturally
to more complex compressible, anisotropic, inelastic materials and to other nonlinear finite
element platforms. Replacing dozens of individual material subroutines by a single universal
material subroutine that is populated directly via automated model discovery - entirely without
human interaction — makes finite element analyses more accessible, more robust, and less
vulnerable to human error. This could forever change how we simulate materials and structures.

Our source code, data, and examples are available at https://github.com/LivingMatterLab.
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1. Motivation

Material modeling lies at the heart of a finite element analysis and selecting the appropriate material model is key to a successful
finite element simulation [1]. A material model takes the local strains as input and calculates the stresses and their derivatives
as output [2,3]. Nonlinear finite element programs evaluate the material model locally, within every finite element, at each
integration point, within every time step, at each Newton iteration [4,5]. The local stresses and their derivatives then enter the
global force vector and stiffness matrix to calculate the nodal displacements [1]. Modern finite element packages typically provide
a comprehensive suite of built-in material models - linear, polynomial, exponential, or logarithmic — with dozens of models to
choose from [6-10]. This raises the question how we can select the best model and, probably more importantly, to which extent
can we remove user bias throughout this selection process?

Admittedly, selecting the appropriate material model is a difficult task. This is especially true for unexperienced users or
experienced scientists from other disciplines. For hyperelastic materials alone, commercial finite element packages offer the neo
Hooke [11], Blatz Ko [12], Mooney Rivlin [13,14], Yeoh [15], Gent [16], Demiray [17], Holzapfel [18], Ogden [19], and Valanis
Landel [20] models, and continue to add new models as new releases emerge. To complicate matters, most finite element packages
offer their users the flexibility to define their own custom-designed user material subroutines [21]. A user material subroutine is a
modular software component that empowers the user to define and simulate complex material behaviors that cannot be captured
by standard built-in material models. For example, our group has recently characterized different types of artificial meat and
discovered material models that have never been used in any material library [22]. By implementing our own material subroutine,
we can not only accurately model this newly discovered complex material behavior, but also design and functionalize new materials
[23-25]. This customization enhances the fidelity and accuracy of the simulation and enables the analysis of cutting-edge engineering
problems for which standard material models fall short [22,26,27]. With this added flexibility in mind, do we now have to implement
a new material subroutine every time we study a new material? And how do we discover the appropriate functional form that best
describes the material behavior?

Recently, a trend has emerged to autonomously discover the model and parameters that best describe a specific material from
experimental data, without any prior domain knowledge or user bias [28,29]. There are several different strategies to achieve this.
Most of them harness the power and robustness of algorithms developed for machine learning [30]. While some discover models
that are interpretable, others do not.

Non-interpretable approaches closely follow traditional neural networks and typically discover functions of rectified linear unit,
softplus, or hyperbolic tangent type [31]. The first representative of this category uses tensor basis Gaussian process regression,
a special type of regression for isotropic hyperelastic materials that harnesses the representation theorem to a priori ensures
objectivity [32]. In a rather abstract sense, it learns a 3 x 3 mapping that maps the three isotropic invariants onto the three
coefficients of the stress tensor representation [33]. The second uses invariant-based constitutive artificial neural networks that a
priori satisfy thermodynamic consistency by learning a free energy function from which it derives the stress [34,35]. The third uses
neural ordinary differential equations, special neural networks that a priori satisfy objectivity and polyconvexity by directly learning
the derivatives of the free energy function that enter the stress definition [36,37]. While these approaches are straightforward,
provide an excellent approximation of the data, and can be integrated manually within finite element software packages [31,38],
they learn non-interpretable models and parameters and teach us little about the underlying material.

Interpretable approaches discover models that are made up of a library of functional building blocks that resemble traditional
constitutive models. The first representative of this category uses sparse regression and adopts unsupervised learning to discover
interpretable models from a feature library of candidate functions [39,40]. The second uses symbolic regression and genetic
programming to discover mathematical expressions for invariant-based models in the form of rooted trees [41]. Here we combine
features of all five approaches: We use a custom-designed invariant-based constitutive artificial neural network that a priori satisfies
objectivity, thermodynamic consistency, and polyconvexity and autonomously discovers a free energy function that features popular
constitutive terms and parameters with a clear physical interpretation [42-44]. In practice, interpretable models are limited by their
functional form. This implies that they generally approximate data less perfectly than non-interpretable models. At the same time,
interpretable models are a generalization of popular existing constitutive models that — by design — translate smoothly into user
material subroutines for a finite element analysis.

The objective of this work is to integrate automated model discovery into the finite element workflow by creating a single universal
material subroutine that seamlessly incorporates thousands of possible constitutive models. Here we prototype this strategy for
incompressible, isotropic, hyperelastic soft matter systems, but expect that it will generalize naturally to compressible, anisotropic,
inelastic materials. While we motivate this material subroutine from constitutive neural networks [43], the concept generalizes well
to material models discovered via symbolic regression [41] or sparse regression or from feature libraries [39]. In Section 2, we
briefly summarize the governing kinematic and constitutive equations. In Section 3, we introduce our constitutive neural network
for automated model discovery. In Section 4, we translate all possible models of our network into a universal material subroutine
and illustrate its pseudocode within the invariant-based UANISOHYPER_INV environment of the finite element package Abaqus.
In Section 5, we illustrate the features of our user material subroutine by means of three types of examples: four benchmarks with
popular constitutive models, two benchmarks with newly discovered models, and six realistic finite element simulations. We discuss
our results in Section 6 and close with a brief conclusion and outlook in Section 7.

2. Governing equations

To set the stage, we briefly summarize the governing kinematic and constitutive equations [2] and specialize the general
equations to the homogeneous deformation modes of uniaxial tension, uniaxial compression, and simple shear [43].
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2.1. Kinematics

We consider finite deformations and introduce the deformation map ¢ that maps material particles X from the undeformed
configuration to particles, x = @(X), in the deformed configuration [5]. To characterize relative deformations, we introduce the
deformation gradient F, the gradient of the deformation map ¢ with respect to the undeformed coordinates X, and its Jacobian J,

F=Vyxo with J =det(F)>0. )

In the following, we consider isotropic materials and introduce the three principal invariants I, I,, I3 and their derivatives oI,
O b, op I3,

I, = F:F opl = 2F
I, = %[llz—[Ft-F]:[Ft~F]] with opl,= 2[I, F-F-F'-F] )
I, = det(F'.F)=J?2 opls= 2L F7L.

For isotropic, perfectly incompressible materials, the third invariant always remains identical to one, I; = J? = 1. This reduces the
set of invariants to two, I; and I,.

Tension and compression. For the special homogeneous deformation of uniaxial tension and compression, we apply a stretch 4 in
the loading direction, F;; = A; = A. For an isotropic, perfectly incompressible material, we can determine the stretches orthogonal
to the loading direction, Fy, = 4, = A7'/> and F;; = A3 = 47!/, from the constant third invariant, I; = 424242 = 1. The
deformation gradient takes a diagonal form, F = diag{ 4,47'/2,4~1/2}, and introduces the following first and second invariants
and their derivatives,

2 1 . aI, 1 oI, 1
IL=2+= d I, =24+—= th —=2|1-—= d —=2(1-—=|. 3
1 + S am > + =z wi 97 [ /12] and — 3)

Shear. For the special homogeneous deformation of simple shear, we apply a shear strain y in one direction, F;, = y. For an
isotropic, perfectly incompressible material with F,; = F,, = F33 = 1, we obtain the following explicit expressions for the first and
second invariants and derivatives,

oI 0
I,=3+7y* and I,=3+y> with a—}::Zy and —2=2y. 4)
2.2. Constitutive equations

Constitutive equations relate a stress like the Piola or nominal stress P, the force per undeformed area, to a deformation measure
like the deformation gradient F. For a hyperelastic material that satisfies the second law of thermodynamics, the Piola stress,
P = 0y(F)/0F, is the derivative of the free energy w(F) with respect to the deformation gradient F, modified by a pressure term,
—p F'Y, that ensures perfect incompressibility [5],

oy t
P=——-pF". 5
oF P )
Here, the hydrostatic pressure, p = —% P : F, acts as a Lagrange multiplier that that we determine from the boundary conditions.

Instead of formulating the free energy function directly in terms of the deformation gradient y(F), it proofs convenient to express

it in terms of the invariants, y (I, I;), to yield the following explicit representation of the Piola stress,

oy d1 dy d1 d d d
v ol dw 9l F»t=2[l// V/] 4

— 4+ —|F-2==F-F'.F-pFt. 6
ar, Than oL, P ©

T oI, OF " oI, oF

Tension and compression. For the special homogeneous deformation of uniaxial tension and compression, we evaluate the nominal
uniaxial stress P;; using the general stress—stretch relationship for perfectly incompressible materials, P; = [dy/dI,]1[01,/04;] +
[oy/oI,]1[01,/04;]1 — [1/A;1p, for i = 1,2,3 with the invariants in tension and compression from Eq. (3). Here, p denotes the
hydrostatic pressure that we determine from the zero stress condition in the transverse directions, P,, = 0 and P;; = 0, as
p=1[2/41 0y /oI, +[24 +2/4*] 0y /dI,. This results in the following explicit uniaxial stress—stretch relation,

oy 1 oy 1
Pi=2|—+-—||4-=]. 7
1 [611 * /1012] [ 22 @

Shear. For the special homogeneous deformation of simple shear, we evaluate the nominal shear stress P, using the general stress—

stretch relationship for perfectly incompressible materials with the invariants for shear from Eq. (4). This results in the following

explicit shear stress—strain relation,
oy oy ]

P,=2 8
12 [a1l+a12 ®



M. Peirlinck et al. Computer Methods in Applied Mechanics and Engineering 418 (2024) 116534

Fig. 1. Constitutive neural network for isotropic, perfectly incompressible, hyperelastic materials. The network has two hidden layers with four and twelve
nodes and 24 weights. It takes the deformation gradient F as input and computes the first and second invariants [I, — 3] and [/, — 3]. The first layer generates
powers (o)! and (0)* of the two invariants and multiplies them by the network weights w , ;,. The second layer applies the identity (o), the exponential function,
(exp(o) — 1), and the natural logarithm, (—In(1 — (0))), to these powers, multiplies them by the network weights w,, |, and sums them up to calculate the strain
energy function y(F), which defines the Piola stress, P = dy/0F. The network is selectively connected by design to a priori satisfy the condition of polyconvexity.

3. Neural network modeling

Motivated by these kinematic and constitutive considerations, we reverse-engineer a family of invariant-based neural networks
that satisfy the conditions of thermodynamic consistency, material objectivity, material symmetry, incompressibility, constitutive
restrictions, and polyconvexity by design [2,5]. Yet, instead of building these constraints into the loss function of the neural
network [45,46], we hardwire them directly into our network input, output, architecture, and activation functions [42-44] to
explicitly satisfy the fundamental laws of physics.

Fig. 1 illustrates our constitutive neural network for isotropic, perfectly incompressible, hyperelastic materials. The network
has two hidden layers with four and twelve nodes and a total of 24 weights. It takes the deformation gradient F as input and
computes the first and second invariants [} — 3] and [I, — 3]. The first layer applies activation functions f; ; and f,, by generating
the first and second powers (o)! and (o)’ of the two invariants, and multiplies them by the network weights w, ; ;,. The second
layer applies activation functions f,; and f,, and f,; by generating the identity (o), the exponential function, (exp(c) — 1), and the
natural logarithm, (- In(1—(0))), from these powers, and multiplies them by the network weights w, ; ;. The sum of all twelve terms
defines the strain energy function w(F), from which the network calculates its output, the Piola stress, P = dy /0F. Importantly,
the network is only selectively connected to a priori satisfy the condition of polyconvexity. The set of equations for this network
takes the following explicit representation,

wi L) =wy; wiy [ =31 +wyy [exp(wiy [11=3] )=11—=wy3 In(l—w3 [I;-3])
+wyy wiy [ =317 +wys [exp(wys [1=31)=1]—=wys In(1-wyq [1; =31
+wyy wyg [Ip=3] +wyg [exp(wyg [1,=3])—1]1—wy9 In(1-w;g [I,-3])
+ Wy 10wy 50 [ 1 =31 + wy gy [exp(wy gy [ =317) =11 = wyp In(1—wy 4, [, =31%).

©)]

Here one of the first two weights of each row becomes redundant, and we can reduce the set of network parameters from 24 to 20,
W= [y 1031), W) 2, W32, Wy 3, W33, (W) 4 W) 4), W 5, W5, W) 6, W6, (W) 7W) 7), W) g, W) g, W1 9, W) g, (W) 103 10)> W1 115 W) 11> W) 125 W2 12 ]-
Using the second law of thermodynamics, we can derive an explicit expression for the Piola stress from Eq. (6), P = dy /dI,-dI,/dF+
oy /oI, - oI, /0F — pFt,

P = Lwyy wyy + wyy wyg exp(wiy [1;=31) +wyz w3 /[1-w3 [1=-3] ]
+ 201 =31[wyy w4 + wys wys exp(ws (I =31+ wye w1 /[1—wye [I)—31%1]0I,/0F (10)
+ [wyg w7 + wyg wig explwg [1p—=3]) +wygwig /[1-wyy [1;-3] |
+ 21 = 31wy 190y 10+ Wa 1 Wy 1y exp(wy gy [1 =31 + wypwy g /11— wyp [, =31 11 01,/9F,
and correct it by the pressure term, —p F~t, with p = —1 P : F. The constitutive neural network learns its weights, = {wi 2110}

by minimizing a loss function L that penalizes the error between the model we want to discover and the experimental data. We
characterize this error as the mean squared error, the L,-norm of the difference between model P(F;) and data f’,-, divided by the
number of training points n,

Mirn

LO:F)= = Y | P(F) — P, |? - min. an

trn =1
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We train the network by minimizing the loss function (11) and learn the network weights 6 = {w, ,;_j,} using the ADAM optimizer,
a robust adaptive algorithm for gradient-based first-order optimization. To comply with physical constraints, we constrain all weights
to always remain non-negative, w; ; > 0.

4. Universal material subroutine

Our objective is to create a seamless simulation pipeline from experiment — via discovered model and parameters — to simulation.
To smoothly integrate our discovered model and parameters, we create a universal material subroutine that translates the local
deformation, for example in the form of the deformation gradient F, into the current stress, for example the Piola stress P. This
subroutine operates on the integration point level. Conveniently, some finite element codes provide the option to define a material
subroutine that works directly with the strain invariants and returns the first and second derivatives of the free energy function
to calculate the stresses and their derivatives [21]. Towards this goal, we express the free energy function y from Eq. (9) in the
following abstract form.

wy (o) (o)! [1,-3]
- . 0))—1 0)? I,-3
w=) Wy frr (f1;(fo;)swiyg)  with  f,= expv) (2)) fi= ©) fo= (1 =3] (12)

k

/ —In(1 —. w; (0))

O [I;—1]

Here f, maps the deformation gradient F onto a set of shifted invariants, [I;, — 3], [I, — 3], [/3 — 11, [I4 — 1], [I5 — 1], that ensure
that the strain energy function is zero in the underformed reference configuration, f, raises these invariants to the first, second,
or any higher order power, (o), (0)?, (0)?, and f, applies the identity (o), exponential, (exp(o) — 1), logarithm, —In(1 — (o)), or any
other thermodynamically admissible function to these powers. The material subroutine can then calculate the Piola stress following
Eq. (10) by using the derivatives of the individual functions fy, 1, f>.

w) 1 oI, /oF
po z": 0frx 01 0fo, with 9f _ wy exp(w; (0)) af) _ 2(0)! afo _ oL, )oF s

&2 50) a(e) oF a0) | wi/A-w () o) | 3P o) | oL/oF

In implicit finite element codes that rely on a global Newton Raphson iteration, the material subroutine also calculates the second
derivative for the tangent moduli.

dp Zn: H‘)zfz,k [afl,j]2+ 9f2k azfl,]] 0fo; _ Ofo; Ofax 0f1; 9 fo,
2.k

dF ~ &~ 3o lae)| Taerater| oF ©® oF T 3(e) (o) aF @oF
0 0 01, /0F? (14)
f, _ w%exp(wl(o)) 0 f, 2 0% fy 0’1, /0F?

with W— w%/(l—wl(o))z 6(0)2= 6 (o) a(o)2= 0*1;/0F?

Fig. 2 illustrates the free energy and stress contributions of our universal material subroutine for isotropic, perfectly incompress-
ible, hyperelastic materials. Its free energy function y is made up of twelve terms, based on the two invariants, [/, —3] and [/, — 3],
taken to the first and second powers, (o)! and (o), and embedded in the identity (o), the exponential function, (exp(c) — 1), and
the natural logarithm, (—In(1 — (0))). The odd rows illustrate these twelve terms, y(I;) and y(I,), for the special case of tension
and compression with 0.5 < 1 < 2.0, top four rows, and shear with —2.0 < y < +2.0, bottom four rows. The even rows underneath
each free energy term illustrate the corresponding Piola stress, P = dy /0F, as the derivative of the free energy with respect to the
deformation gradient, for the special case of tension and compression P,;, top, and shear, P,,, bottom.

Our discovered model translates seamlessly into a modular universal material subroutine within any finite element environment.
Here we illustrate this translation by means of the Abaqus finite element analysis software suite [21]. We leverage the UANISO-
HYPER_INV user subroutine to introduce our discovered hyperelastic material strain energy function (9) or (12) in terms of the
discovered pairs of network weights and activation functions. Specifically, our user subroutine defines the strain energy density,
UA(1) = y, and the arrays of its first derivatives, ULI1(NINV) = dy/dI,, and second derivatives, UI2(NINV*(NINV + 1)/2) =
0y /oI,01 ;» with respect to the invariants. With a view towards a potential generalization to anisotropic materials, we introduce an
array of generalized invariants, aInv(NINV) = [ #; with i = 1,...,NINV, where NINV is the total number of isotropic and anisotropic
invariants, and adopt the UANISOHYPER_INV invariant numbering,

I, - Isx;i=1 Liwpy — Ix3i=4+42(-D+FF-1)
I, - Ix;i=2 Isppy — I*x3i=5+2(a-D+pF-1)
J - I#;i=3.

i

Here, Iy, =N, (F'-F)-ngp and I = ng, - (F'- F)?-n, are anisotropic invariants in terms of the unit vectors n, and n, that
represent the directions of anisotropy in the reference configuration. For example, a transversely isotropic behavior with a single
direction of anisotropy, @ = f = 1, introduces two additional invariants, I, = I, and Is = I5qy [44].

5
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Fig. 2. Universal material subroutine. Free energy and stress contributions. The free energy function y of our isotropic, perfectly incompressible, hyperelastic
material is made up of powers (o)! and (0)> of the two invariants [I; — 3] and [, — 3], embedded in the identity (o), the exponential function, (exp(o) — 1), and
the natural logarithm, (—In(l — (0))), odd rows. The stress P = dy /dF is the derivative of the free energy with respect to the deformation gradient, even rows.
The twelve terms represent the twelve nodes of the constitutive neural network in Fig. 1 for tension and compression with 0.5 < 4 < 2.0, top four rows, and
shear with —2.0 <y < +2.0, bottom four rows.

Algorithm 1: Pseudocode for universal material subroutine UANISOHYPER_INV
subroutine UANISOHYPER_INV(alInv,UA,UI1,UI2)

// initialize energy, its derivatives, reference configuration, and model parameters
set initial array values for UA, UI1, UI2;

set reference configuration array UANISOHYPER_INV;

retrieve discovered parameter table UNIVERSAL_TAB;

// evaluate all n nodes, i.e., all rows in parameter table
for k 2n n do

// extract invariant, activation functions, and weights
extract invariant kf0(k) ;

extract activation functions kf1(k) and kf2(k) ;

extract weights wil(k) and w2 (k) ;

// compute invariant relative to reference configuration
xInv = alnv(kf0(k))-3;

// update energy and its derivatives UA, UI1, UI2
call uCANN(zInv, kf1(k),kf2(k),wl(k),w2(k),UA,UI1,UI2;)

// return updated arrays
| return UA, UI1, UI2

Algorithm 1 presents the UANISOHYPER_INV pseudocode that describes how we compute the UA(1), UI1(NINV), and
UI2(NINV*(NINV + 1)/2) arrays at the integration point level during a finite element analysis. In short, we begin by initializing all
relevant arrays and read the activation functions kf,, and kf,, and weights w,, and w,, of the n color-coded nodes of our
constitutive neural network in Fig. 1 from our user-defined parameter table UNIVERSAL _TAB. Next, for each node, we evaluate
its row in the parameter table UNIVERSAL_TAB and additively update the strain energy density function UA, its first derivative
UI1, and its second derivative UI2 using the invariants xInv relative to the reference configuration.
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Algorithm 2: Pseudocode to update energy and its derivatives of UANISOHYPER_INV
subroutine uCANN (zInv, kf1,kf2,wl,w2,UA,UI1,UI2)

// process first network layer - determine f1,df1,ddf1
wO0=1;
call uCANN_h1 (zInv,w0,kf1, f1,df1,ddf1);

// process second network layer - determine £2,df2,ddf2
call uCANN_h2(f1,wl,kf2, f2,df2,ddf2);

// update energy UA and its derivatives UI1,UI2
UA =UA +w2x*f2;

UI1l =UI1+ w2 * df2*xdf1;

UI2 =UI2 + w2 *(ddf2*df1*dfl + df2*ddf1);
return UA, UI1, UI2

Algorithm 2 details the additive update of the free energy UA and its first and second derivatives UI1 and UI2 within the user
material subroutine uCANN.

Algorithm 3: Pseudocode to evaluate first network layer of UANISOHYPER_INV

subroutine uCANN_h1 (z,w, kf, f, df, ddf)
// calculate first layer output f,df,ddf for activation function kf

if kf =1 then
f=wx*x;
df =w*1;
ddf =w * 0;

[¢)

Ise if kf = 2 then
f = wx*2 * x*%x2;
df = wk*2 x 2%x;
ddf = wk*x2 x 2;

| return f,df,ddf

Algorithm 4: Pseudocode to evaluate second network layer of UANISOHYPER_INV

subroutine uCANN_h2 (z, kf, w, f, df, ddf)
// calculate second layer output f,df,ddf for activation function kf

if kf =1 then
f=wx*xx;
df =wx1;
ddf =w * 0;

[«

Ise if kf =2 then

f = exp(w*xx)-1;

df = w * exp (w*x) ;

ddf = wx*2 * exp (wxx) ;
Ise if kf =3 then
f=-1n(1-w*x);

df =w / (1-w*xx);

ddf = w¥x2 / (1-w*x) **2;
| return f,df,ddf

[

Algorithms 3 and 4 provide the pseudocode for the two subroutines uCANN_h1 and uCANN_h2 that evaluate the first and second
network layers for each network node with its discovered activation functions and weights. In Abaqus FEA, we define our model
parameters in a parameter table. Each row of this parameter table represents one of the color-coded nodes in Fig. 1 and consists of
five terms: an integer kfO that defines the index of the pseudo-invariant xInv, two integers kf1 and kf2 that define the indices
of the first- and second-layer activation functions, and two float values w1l and w2 that define the weights of the first and second

7
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layers. We declare this input format using the following parameter table type definition in the UNIVERSA_PARAM_TYPES. INC
file.

*PARAMETER TABLE TYPE, name="UNIVERSAL_TAB", parameters=>5
INTEGER, ,"Index of Pseudo-Invariant, kfO,o"

INTEGER, ,'Index of first hidden layer activation function, kfl,0"
INTEGER, ,'Index of second hidden layer activation function, kf2,0"
FLOAT , ,'Weight of first hidden layer, wl,o0"

FLOAT , ,'Weight of second hidden layer, w2,0"

Within Abaqus FEA, we include the parameter table type definition using
*INCLUDE, INPUT=UNIVERSAL_PARAM_TYPES.INC

at the beginning of the input file. We activate our user-defined material model through the command
*ANISOTROPIC HYPERELASTIC, USER, FORMULATION=INVARIANT

followed by the discovered parameter table entries. For a fully activated constitutive neural network without any zero weights, the
header and the twelve rows of this table reads as follows, where terms with zero weight can simply be excluded from the list.

*PARAMETER TABLE, TYPE='"UNIVERSAL_TAB"

1,1,1,wy,Wy, 1,1,2,w5,Wy, 1,1,3,W;3,Ws3 1,2,1,w 4,y
1,2,2,w1Y5,w2’5 1,2,3,W16,Wag 2,1,1,w1,7,w2,7 2,1,2,w,5,Wpg
2,1,3,W9,Wog 2,2,1,wW;40,Wy10 2,2,2,w41,Wy 14 2,2,3,Wy15,Wa1p

The first index of each row selects between the first and second invariants, I, or I,, the second index raises them to linear or
quadratic powers, (o)! or (o), and the third index selects between the identity, exponential, or logarithmic function, (o), (exp(c)— 1),
or (—In(1 — (0))). Importantly, our user-defined material subroutine is universal by design. Combinations of the 2 x 12 weights
naturally introduce popular and widely used material models as special cases. Here, for illustrative purposes, we only highlight
examples in terms of the first and second invariants 7/, and I,. However, we can easily expand our user-defined material subroutine
to include the third invariant I3 or any combination of the I,,; and s, invariants according to the invariant numbering scheme
NINV. Moreover, the modular structure of our material subroutine facilitates a straightforward addition of additional first- and
second-layer activation functions kf1 and k /2 within the uCANN_h1 and uCANN_h2 subroutines, or even completely novel layers
with additional activation functions UCANN_h* within the hierarchical uCANN subroutine in Algorithm 2.

5. Results

We illustrate the features of our new user material subroutine in terms of three types of examples: First, we benchmark it with
four popular constitutive models, demonstrate how to create the parameter tables for these models, and compare the simulations
against the experimental data for gray matter tissue. Second, we benchmark it with two newly discovered models, create their
parameter tables, and compare the simulations against both gray and white matter experiments. Finally, we demonstrate how it
generalizes to realistic finite element simulations in terms of six different head impact simulations.

5.1. Benchmarking with popular constitutive models.

To demonstrate that our universal material subroutine includes popular constitutive models as special cases, we benchmark our
subroutine with four widely used models, translate their network weights w; , and w,, of the first and second layers into their model
parameters, provide the material table for the input file to our material subroutine, and compare each simulation to experimental
data [47]. Table 1 summarizes our discovered non-zero gray matter weights w,, and w,, and model parameters u, yy, u,, a, b, a,
p when training our network with combined tension, compression, and shear data [43] from human gray matter experiments [47].

Neo Hooke model. The neo Hooke model [11] is the simplest of all models. It has a free energy function that is constant in the
first invariant, [ I, — 3], scaled by the shear modulus . We recover it as a special case from our network free energy (9) as

w=1ull;-3] where p=2w w,,. (15)
The neo Hooke model translates into the following material table for our universal material subroutine,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1, 1 > 1 ’wl,l :w2,1

and activates the first term of our model.

Blatz Ko model. The Blatz Ko model [12] has a free energy function that depends on the second and third invariants, [ 1, —3] and
[I3 — 1], scaled by the shear modulus y as y = % ull/I;+2 \/1_3 —51. For perfectly incompressible materials, I; = 1, we recover it
as a special case of the network free energy (9) as

y/:%y[[z—3] where  p=2ww,;. (16)
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Table 1

Neo Hooke, Blatz Ko, Mooney Rivlin, Demiray, Gent, and Holzapfel models and parameters. Discovered non-zero gray matter weights w, ,

and w,, and model parameters u, py, iy, a, b, a, p for training with combined tension, compression, and shear data [43] from human gray
matter experiments [47].

neo Hooke Blatz Ko Mooney Rivlin Demiray Gent Holzapfel
ten+com+shr ten+com+shr ten+com+shr ten+com+shr ten+com+shr ten+com+shr
gray matter gray matter gray matter gray matter gray matter gray matter
n=15,17,35 n=15,17,35 n=15,17,35 n=1517,35 n=15,17,35 n=15,17,35
w . w,. wy. ws. w. w,. w. wy. wy, wy, wy, wy,
[-1 [kPa] [-] [kpa] [-] [kPa] [-] [kPa] [-1 [kPa] [-] [kpa]
w, 0.7880 1.1522 - - 0.0026 0.4128 - - - - - -
w,, - - - - - - 1.0529 0.8760 - - - -
w, 3 - - - - - - - - 1.8399 0.4782 - -
w,s - - - - - - - - - - 4.1833 4.7548
w, 5 - - 1.4156 0.6726 2.2122 0.4253 - - - - - -
= 1.8159kPa = 1.9043kPa p; = 0.0021kPa a = 1.8447kPa a = 1.7597kPa a = 39.7815kPa
H, = 1.8817kPa b=1.0529 p =1.8399 b=4.1833

The Blatz Ko model translates into the following material table for our universal material subroutine,

*PARAMETER TABLE, TYPE='"UNIVERSAL_TAB"
2,1,1,w7,Wy7

and activates the seventh term of our model.

Mooney Rivlin model. The Mooney Rivlin model [13,14] is a combination of both free energy functions (15) and (16). It accounts
for the first and second invariants, [ I; —3] and [ I, — 3], scaled by the moduli 4, and u, that sum up to the overall shear modulus,
u = u; + u,. We recover it as a special case of the network free energy (9) as

1 1
w=su 1l =31+5mll-3] where My =2wwy; and py = 2w, 7w, 7. a7
The Mooney Rivlin model translates into the following material table for our universal material subroutine,

*PARAMETER TABLE, TYPE='"UNIVERSAL_TAB"
1,1,1,wy4,Wy; 2,1,1,w;7,Wy7

and activates the first and seventh terms of our model.

Demiray model. The Demiray model [17] uses linear exponentials of the first invariant, [1; — 3], in terms of two parameters a and
b. We recover it as a special case of the network free energy (9) as

w = % %[exp(b[[l —31)—1] where a=2w w,, and b=w,,. (18)

The Demiray model translates into the following material table for our universal material subroutine,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1,1,2,w;5,Wy,

and activates the second term of our model.

Gent model. The Gent model [16] uses linear logarithms of the first invariant, [/, — 3], in terms of two parameters « and f. We
recover it as a special case of the network free energy (9) as

y/:—%%ln(l—ﬂ[l,—B]) where  a=2w, w,5 and f=w, 5. (19)

The Gent model translates into the following material table for our universal material subroutine,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1,1,3,W53,Wa3

and activates the third term of our model.

Holzapfel model. The Holzapfel model [18] uses quadratic exponentials, typically of the fourth invariant, which we adapt here for
the first invariant, [ I; — 3], in terms of two parameters a and b. We recover it as a special case of the network free energy (9) as

v = % %[exp(b[[l -31*)-1] where a=2w sw,sandb=w,s. (20)

The Holzapfel model translates into the following material table for our universal material subroutine,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1,2,2,w5,Wy5

and activates the fifth term of our model.



M. Peirlinck et al.

gray - neo Hooke

gray - Blatz Ko

0.4 0.4
o [« %
= =
a 4
g <
3 3
0.0c 0.0
1.0 stretch [-] 11 1.0 stretch [-]
-1 4 Ll
T ] 7 7
x| ¢ x 4
3 %
0.00=0 0.0
1.0 stretch [-] 09 1.0 stretch [-]
0.5 = °0.5) =
—_— o —_—
g (J S
=, [ =3
a 4
g <
] i
0.0, 0.0

0.0 shear [] 0.2

O data m[1,-3] Mexp([l,-3])-1 M In(1-[1,-3]) M [1,-3]?

gray - neo Hooke

0.0 shear[-]

exp([1;-3]9)-1

gray - Blatz Ko

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116534

gray - Demiray

gray - Holzapfel

0.4 0.4
2 (7 :
o o
= =
w wv
& 7
0.0 0.0
11 1.0 stretch [-] 11 d
LY oLy ol
R iin g .
x ¢ x| ¢ o
a a &
% 02 % o0 0°
L00°
0.0 0.0009°
09 1.0 stretch [-] 09 1.0 stretch [-] 0.9
©0.5 = 0.5 =
° T o = ]
o % oy [¢] g -
k7 @ 5
0.0, 0.0,00°
0.2 0.0 shear [-] 0.2 0.0 shear [-] 0.2

In(1-[1,-3]12) M [1,-3] M exp([1,-3])-1 M In(1-[1,-3]) M [I,-3]2 W exp([l,-3] 2)-1 M In(1-[1,-3]2)

gray - Demiray gray - Holzapfel

0.4 0.4 04 04 f =
- - 3|7 s | 7 o
o o a o ®
= = 3 = )
) 7] 7)) wn o
8 8 8 8 002
= = 5l = | 0©
1%} %] w 12 OOO
0.0 0.0 0.0 0.0 [o°
1.1 y 1.0 stretch [-] ’ 1.0 stretch [-] 1.1
-1.1 -11] -1.1 @ ! -1.1 i ! °
w = = w o
g 2 g g | 0°°
@ # 5 | 50° H
0.0 0.0 0.0 0.0 Lao®
0.9 1.0 stretch [-] 0.9
0.5 0.5 0.5 05 o=
o
P & P g @ o
= X = 2 | £
wn w w [%2]
g g g g 097
5 5 & % | 00°°
(o]
0.0 0.0 0.0 0.0 Loo®
0.0 shear[-] 0.2 0.0 shear[-] 0.2 0.0 shear [-] 0.2 0.0 shear [-] 0.2
O datam([l,-3] Mexp([l,-3])-1 M In(1-[1,-3]) M [1,-3]2 = exp([1,-3])-1" In(1-[1,-3]%) W [1,-3] Mexp([l,-3])-1 M In(1-[1,-3]) M [I,-3]* W exp([l,-3] 2)- 1M In(1-[1,-3]?)

Fig. 3. Neo Hooke, Blatz Ko, Mooney Rivlin, Demiray, Gent, and Holzapfel models and finite element simulation. Nominal stress as a function of stretch
and shear strain for the neo Hooke model w = 1[I, —3] with 1,1,1,w;;,w,;, the Blatz Ko model y = 1u[1, - 3] with 2,1,1,w,,w,;, the Demiray model
y = % % [exp(b[I,=3]1)—1] with 1,1,2,w,,,w,,, and the Holzapfel model y = % % [exp(b[ I;—-31?)—1] with 1,2,2,w; 5, Wy 5. Dots illustrate the tension, compression,
and shear data [43] from human gray matter experiments [47]; color-coded area highlights the contribution to the stress function using the weights from Table 1;
top graphs display the discovered model and bottom graphs display the finite element simulation.

Fig. 3 compares the neo Hooke, Blatz Ko, Demiray, and Holzapfel models and the finite element simulation with our universal
material subroutine. The graphs show the nominal stress as a function of the stretch and shear strain for all four models. The dots
indicate the tension, compression, and shear data of human gray matter tissue, the color-coded areas highlights the contributions to
the stress function. The finite element simulation with our universal material subroutine in the bottom graphs agrees excellently with
the discovered models in the top graphs [43] and confirms the correct implementation of the first, seventh, second, and fifth terms
of our model. Taken together, these simple examples demonstrate that we can recover popular constitutive functions for which the
network weights gain a well-defined physical meaning and the universal material subroutine specializes to widely used constitutive

models.

5.2. Benchmarking with newly discovered models.

To illustrate how our universal material subroutine performs for newly discovered models, we benchmark our subroutine with
two recently discovered models for gray and white matter tissue [43], translate their network weights w,, and w,, of the first and
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Table 2
Newly discovered gray and white matter models and parameters. Discovered gray and white matter weights w,, and w,, for training with individual and
combined tension, compression, and shear data [43] from human gray matter experiments [47].

| I tension || compression || shear || tentcomsshr || tension || compression || shear || ten+comsshr |
gray matter gray matter gray matter gray matter white matter white matter white matter white matter
n=15 n=17 n=35 n=15,17,35 n=18 n=18 n=233 n=18,18,33
wy. Wz,- wy. wzv, wy. wy, wl,- wy, wlv_ Wy, wy ., w,, w, Wz,- wy. wzv_
[-1 [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-1 [kPa]

w,, 0.314 0.346 0.403 0.198 0.663 0.180 0.000 0.000 0.000 0.000 1.736 0.281 0.364 0.249 0.000 0.000
w,, 0.158 0.110 0.063 0.790 0.242 0.260 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.240 0.000 0.000
w, 5 0.000 0.000 0.000 0.000 0.766 0.184 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.307 0.000 0.000
W,y 1.130 0.681 2.373 1.109 1.440 1.420 0.000 0.000 0.893 0.147 1.547 1.077 1.394 0.652 0.000 0.000
w,s 1.472 1.562 1.186 2.103 1.336 1.711 0.000 0.000 0.376 0.233 1.142 1.215 1.360 1.103 0.000 0.000
w,q || 0.502 0.435 0.000 0.000 0.000 0.000 0.000 0.000 1.308 0.430 1.212 1.148 0.440 0.831 0.000 0.000
w,; 0.952 0.169 1.853 0.290 0.373 0.190 0.000 0.000 1.004 0.072 0.000 0.000 0.035 0.295 1.386 0.160
w,g 0.228 0.207 0.059 0.059 0.261 0.357 0.000 0.000 0.087 0.072 0.003 0.030 0.055 0.391 0.240 0.490
w,o || 0.682 0.173 1.947 0.114 0.000 0.000 0.988 0.634 0.840 0.207 0.000 0.000 0.768 0.118 0.000 0.000
w. || 2.264 0.848 2.274 1.130 0.880 1.987 2.774 1.370 0.000 0.000 1.008 1.413 1.055 0.855 0.000 0.000
w,,|| 0.038 0.357 1.223 2.067 1.735 1.551 1.650 1.888 0.000 0.000 1.219 1.133 0.999 1.074 1.889 1.686
w, || 0.933 0.473 0.000 0.000 0.882 1.425 1.403 1.666 1.105 0.003 2.648 0.823 0.000 0.000 1.179 1.911

second layers into their model parameters, provide the material table for the input file to our material subroutine, and compare
each simulation to experimental data [47]. Table 2 summarizes our discovered weights w,, and w,, when training our network
with individual and combined tension, compression, and shear data [43] from human gray and white matter experiments [47].

Gray matter model. The left columns of Table 2 provide four different models for gray matter tissue, three for training with the
individual tension, compression, and shear data, and one for training with all three data sets combined. When trained with the
individual data sets for tension, compression, and shear, the neural network in Fig. 1 discovers the majority of terms of the free
energy function (9), eleven, nine, and ten terms, while only one, three, and two terms train to zero. When trained with all three
data sets combined, our network uniquely discovers a four-term model, while the weights of the other eight terms train to zero,

1 1a 1a ] «
w:§u2[12—3]2+5b—i[exp(bz[lz—ﬂz)—l]—iﬂ—:ln(l—ﬂlm—ﬂ)—zﬂ—jln(l—ﬂz[lz—z»lz). (21)

The non-zero weights translate into physically meaningful gray matter parameters with well-defined physical units, the four stiffness-
like parameters, p, = 2w 1o W, 19 = 7.60 kPa, ay = 2w, 1; wy 1 = 6.23 kPa, @) = 2w, g w,9 = 1.25 kPa, @y = 2w, 1, wy 1, = 4.67 kPa,
and the three nonlinearity parameters, b, = w; ;; = 1.65, f; = w; o = 0.99, f, = w; |, = 1.40. The newly discovered gray matter
model translates into the following material table for our universal material subroutine.

*PARAMETER TABLE, TYPE='"UNIVERSAL_TAB"
2,1,3,W9,Wyg

2,2,1,W49,Wy 10

2,2,2,W;41,Wo 1

2,2,3,Wy19,Wa 10

Fig. 4 compares the gray matter model and the finite element simulation with our universal material subroutine. The graphs show the
nominal stress as a function of the stretch and shear strain for the gray matter model. The dots indicate the tension, compression, and
shear data of human gray matter tissue, the color-coded areas highlight the contributions to the stress function. The finite element
simulation with our universal material subroutine in the bottom graphs agrees excellently with the discovered gray matter model
in the top graphs [43] and confirms the correct implementation of all twelve terms of our model.

White matter model. The right columns of Table 2 provide four different models for white matter tissue, three for training with
the individual tension, compression, and shear data, and one for training with all three data sets combined. When trained with the
individual data sets for tension, compression, and shear, the neural network in Fig. 1 discovers the majority of terms of the free
energy function (9), seven, eight, and eleven terms, while only five, four, and one terms train to zero. When trained with all three
data sets combined, our network uniquely discovers a four-term model, while the weights of the other eight terms train to zero,

=1 _ la _37y— 1o Ay - L2 3P
v = mlh =31+ 33Hexp(hlh = 3D = 11+ 2 3 exp(byl 1o = 3F) = 1] = 3 22 Inl = ol 1 = 3P (22)

The non-zero weights translate into physically meaningful parameters with well-defined physical units, the four stiffness-like
parameters, y; = 2w,;w,7 = 044 kPa, a; = 2w, gw,g = 0.24 kPa, ay = 2w,y w,;, = 637 kPa, @y = 2w, jp w, 5 = 4.51 kPa,
and the three nonlinearity parameters, b; = w;g = 0.24, b, = w; |, = 1.89, f, = w; |, = 1.18. The newly discovered white matter
model translates into the following material table for our universal material subroutine.

*PARAMETER TABLE, TYPE='"UNIVERSAL_TAB"
2,1,1 sWi7,Woz

2,1,2,W;5,Wyg

2,2,2,Wy41,Wy 44

2,2,3,Wy19,Wa 10

11
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Fig. 4. Gray matter discovered model and finite element simulation. Nominal stress as a function of stretch and shear strain for the isotropic, perfectly
incompressible constitutive neural network with two hidden layers, and twelve nodes in Fig. 1. Dots illustrate the tension, compression, and shear data [43]
from human gray matter experiments [47]; color-coded areas highlight the twelve contributions to the discovered stress function using the weights from Table 2;
top graphs display the discovered model and bottom graphs display the finite element simulation.

Fig. 5 compares the white matter model and the finite element simulation with our universal material subroutine. The graphs show
the nominal stress as a function of the stretch and shear strain for the white matter model. The dots indicate the tension, compression,
and shear data of human white matter tissue, the color-coded areas highlight the contributions to the stress function. The finite
element simulation with our universal material subroutine in the bottom graphs agrees excellently with the discovered white matter
model in the top graphs [43] and confirms the correct implementation of the twelve terms of our model. Taken together, these eight
examples demonstrate that our proposed method generalizes well to previously undiscovered constitutive functions, which translate
smoothly into a universal material subroutine that agrees well with the experimental data and previous simulations.

5.3. Realistic finite element simulations.

To illustrate the performance of our universal material subroutine for our discovered gray and white matter models from Egs. (21)
and (22) within a realistic finite element simulation, we study six different head impact scenarios. Fig. 6 shows our sagittal model
that consists of 6182 gray and 5701 white matter linear triangular elements, 6441 nodes, and 12,882 degrees of freedom. Fig. 7

shows coronal model that consists of 7106 gray and 14196 white matter linear triangular elements, 11 808 nodes, and 23616
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Fig. 5. White matter discovered model and finite element simulation. Nominal stress as a function of stretch and shear strain for the isotropic, perfectly
incompressible constitutive neural network with two hidden layers, and twelve nodes in Fig. 1. Dots illustrate the tension, compression, and shear data [43] from
human white matter experiments [47]; color-coded areas highlight the twelve contributions to the discovered stress function using the weights from Table 2;
top graphs display the discovered model and bottom graphs display the finite element simulation.

degrees of freedom. We embed both models into the skull using spring support at the free boundaries and apply top-of-the-head,
diagonal, and frontal impacts to the sagittal model and top-of-the-head, diagonal, and lateral impacts to the coronal model. Figs. 6
and 7 summarize the stress profiles for the six different impact simulations. Clearly, we observe stress concentrations at the gray
and white matter interface, between the cortex and the corona radiata. These stress concentrations are common after a hit to the
head, and are a result of the structural and mechanical differences between different tissue types: Gray matter consists primarily of
neuronal cell bodies and is rather dense, while white matter consists primarily of myelinated axons. Upon an impact to the head,
forces are transmitted differently through these tissue types. From Figs. 4 and 5, we conclude that gray matter is almost twice as
stiff as white matter, with maximum tensile stresses of 0.4 kPa versus 0.2 kPa for stretches of 1.1, maximum compressive stresses
of —1.1 kPa versus —0.8 kPa for stretches of 0.9, and maximum shear stresses of 0.5 kPa versus 0.5 kPa for shear of 0.2. This
disparity in mechanical stiffnesses leads to localized stress concentrations at the gray and white matter interface, which can disrupt
the structural integrity of the tissue and trigger diffuse axonal injuries. The simulations predict that these stress concentrations occur
primarily in the frontal and occipital lobes for top-of-the-head impacts, in the deep white matter tracts for diagonal impacts, in the
frontal and parietal lobes for frontal impacts, and in the gray and white matter interface for lateral impacts. Taken together, these
six examples demonstrate that our discovered gray and white matter models translate smoothly into a universal material subroutine
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top-of-the-head ||| impact diagonal \ impact frontal = impact

Fig. 6. Stress profiles for top-of-the-head, diagonal, and frontal impact to the human brain. The finite element simulations use our universal material
subroutine with the discovered models from Table 2 for gray matter from Eq. (21) with the four stiffness-like parameters y = 7.60 kPa, a, = 6.23 kPa, a; = 1.25 kPa,
@, = 4.67 kPa, and the three nonlinearity parameters, b, = 1.65, g, = 0.99, g, = 1.40, and for white matter from Eq. (22) with the three stiffness-like parameters
=044 kPa, a; =0.24 kPa, a, = 6.37 kPa, a, =4.51 kPa, and the three nonlinearity parameters, b, = 0.24, b, = 1.89, g, = 1.18.

top-of-the-head ||| impact diagonal \3x impact lateral = impact
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Fig. 7. Stress profiles for to top-of-the-head, diagonal, and lateral impact to the human brain. The finite element simulations use our universal material
subroutine with the discovered models from Table 2 for gray matter from equation (21) with the four stiffness-like parameters u = 7.60 kPa, a, = 6.23 kPa,
a; = 1.25 kPa, a, = 4.67 kPa, and the three nonlinearity parameters, b, = 1.65, ; = 0.99, f, = 1.40, and for white matter from equation (22) with the three
stiffness-like parameters y = 0.44 kPa, a; = 0.24 kPa, a, = 6.37 kPa, a, = 4.51 kPa, and the three nonlinearity parameters, b, = 0.24, b, = 1.89, , = 1.18.

that generalizes from the homogeneous simulations in Figs. 3 through 5 to realistic finite element simulations in Figs. 6 and 7,
where it robustly predicts heterogeneous stress profiles across complex structures.

6. Discussion

Our universal material subroutine specializes well to popular constitutive models. To demonstrate that our material subroutine
includes popular constitutive models as special cases, we benchmarked it with four widely used models. Fig. 3 compares the neo
Hooke [11], Blatz Ko [12], Demiray [17], and Holzapfel [18] models in the top row to finite element simulations with our universal
material subroutine in the bottom row. All four models only activate a single term of the subroutine, which translates into a single-
row material table, and a single-color stress plot. For all four models, the finite element simulations with our new material subroutine
in the bottom twelve graphs of Fig. 3 agree identically with the initial model in the top twelve graphs [43]. These simple benchmark
examples demonstrate that we can recover popular constitutive models for which the weights of our constitutive neural network in
Fig. 1 gain a well-defined physical meaning and the universal material subroutine takes the functional form of one of the twelve
activation functions in Fig. 2 [42]. Importantly, to perform a finite element analysis, we no longer need to select a specific material
model; instead, we can simply use our universal material subroutine and selectively activate its relevant terms through the non-zero
entries in the material table.

Our universal material subroutine expands naturally to compressible and anisotropic materials. For illustrative purposes, we
have only demonstrated the versatility of our material subroutine for incompressible and isotropic hyperelastic materials [42]. For
these, the first index of our parameter table selects between the first and second invariants, the second index raises them to linear or
quadratic powers, and the third index selects between the identity, exponential, and logarithmic functions. This setting seamlessly
generalizes to compressible and anisotropic materials by selecting a first index of three, four, five, ..., NINV to include terms in the
third, fourth, or fifth invariants. For example, the subroutine UANISOHYPER _INV supports up to three fiber directions resulting in a
total of 15 invariants. It also naturally allows for higher order powers by selecting a second index larger than two and facilitates the
integration of additional functional forms through a third index larger than three. In the present study, we have illustrated how to
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translate the output of our automated model discovery into the input of our universal material subroutine within Abaqus [21] using
the software’s invariant-based user material subroutine UANISOHYPER_INV. However, the inherent modularity of our approach
ensures that this translation will generalize naturally to arbitrary implicit or explicit nonlinear finite element packages, which is
part of our current follow up research.

Our proposed method generalizes well to previously undiscovered constitutive functions. Automated model discovery allows
us to discover the best possible model, in our case out of 212 = 4096 possible combinations of terms [43]. Traditionally, model
developers have rationalized constitutive models from the shape of experimental curves and then fit their parameters to data.
Throughout the past decades, this has generated dozens of models with one [11,12,16,17], two [13,14,18], three [15] or more
terms, almost always in terms of the first invariant. Recent developments in deep learning now allow us to rapidly screen thousands of
possible combinations of terms and discover the best possible fit. However, when only trained with individual tension, compression,
or shear data, the network tends to overfit the data and discovers a wide variety of terms [42,48]. Yet, when trained with all three
data sets combined, the network robustly and repeatedly discovers a small subset of terms in the second invariant for both gray and
white matter [43]. Strikingly, these terms have been overlooked by traditional manual model development. In retrospect, it seems
obvious that the second invariant is well suited to characterize human brain tissue : While the first invariant, I, = /1% + /1% + /1%, is
quadratic in terms of the stretches 4, the second invariant, I, = /1%)% + )%}% + A%/Lg, is quartic and seems better suited to represent
nonlinearities [49]. This is particularly relevant in the small stretch regime of 0.9 < 4 < 1.1 that we study here, where the stretches are
small and their nonlinear effects remain minor [47]. For rubber-like materials, where the stretches in uniaxial tension, equibiaxial
tension, and pure shear can easily reach values of 1.0 < 1 < 8.0, the second invariant explodes and seems less well-suited to
characterize the stretch-stress response [50]. The excellent agreement of the finite element simulations with our universal material
subroutine in the bottom twelve graphs of Figs. 4 and 5 with the experimental data [47] and the discovered models [43] in the top
twelve graphs confirms the correct implementation of our discovered gray and white matter models.

Our universal material subroutine uses interpretable material parameters. A characteristic feature of our proposed modeling
strategy is that it features different activation functions, linear and quadratic, (o)! and (0)?, embedded in the identity, exponential,
and logarithmic functions, (o), (exp(e)— 1), and (—In(1 —(0))) [42]. This is in stark contrast to previous approaches that have used one
and the same activation function across all network nodes, for example of hyperbolic tangent [31,36], exponential linear unit [51],
or softplus squared [52] type. While it is theoretically possible to manually embed these models into a finite element workflow, their
weights translate into material parameters that have no clear physical interpretation [53]. In contrast, our non-zero weights translate
into physically meaningful parameters with well-defined physical units: the stress-like parameters, w; ,w,,, with the unit kilopascal,
and the dimensionless parameters, w; ., that govern the exponential [17] and logarithmic [16] nonlinearities. We conclude that our
proposed approach generalizes well to previously undiscovered constitutive functions, which translate naturally into a universal
material subroutine that agrees well with the experimental data [47] and with previous simulations [42]. Importantly, rather than
having to implement a new material subroutine for each newly discovered model, we use a single universal material subroutine
that inherently incorporates all 212 = 4096 possible combinations of terms and activates the relevant model merely by means of
the twelve rows of its parameter table.

Our universal material subroutine generalizes well to realistic simulations. When embedded into a finite element simulation,
our material subroutine translates the local deformation gradient into stresses and stress derivatives that enter the global force
vector and stiffness matrix of the local Newton iteration to solve the balance of motion. To illustrate that our new subroutine not
only performs well for the homogeneous examples in Figs. 3 to 5, but also for realistic finite element simulations, we simulate
the regional stress distributions across the human brain for six different head impact scenarios [54]. Figs. 6 and 7 emphasize
the sensitivity of the stress profiles with respect to the location and direction of the impact. Depending on impact location and
severity, individuals may experience a broad spectrum of symptoms ranging from headaches, dizziness, nausea, and vision problems
to difficulties with concentration and attention [55]. Top-of-the-head impacts in Figs. 6 and 7, left, affect regions of the skull that
are usually very thin and vulnerable to skull fractures, brain contusions, and significant brain damage [56]. In agreement with our
simulated stress profiles, these impacts primarily affect the frontal region of the brain that plays a crucial role in higher cognitive
functions, personality, emotional regulation, and decision-making. Their symptoms may range from cognitive impairment, memory
loss, and motor function deficit to long-term consequences such as permanent disability or death. Diagonal impacts as in Figs. 6 and
7, middle, can cause rotational forces that many result in diffuse axonal injuries. These injuries occur when brain structures tear in
response to elevated shear stresses [57]. Diffuse axonal injuries often involve deep white matter tracts and can affect multiple lobes
of the brain, including the frontal, temporal, and parietal lobes, for which our simulation predicts elevated stress levels. These can
have profound effects on brain function and lead to cognitive, behavioral, and motor impairments associated with difficulties of
attention, memory, problem-solving, and emotional regulation. Frontal impacts as in Figs. 6, right, directly affect the frontal region
of the brain, the side of impact, through coup injury. Importantly, they can also have severe secondary effects on brain regions
opposite to the impact, through countercoup injury, as we conclude from our simulated stress profiles. Frontal impacts commonly
results in mild or severe concussions [55] or traumatic brain injuries associated with a wide range of symptoms such as headaches,
dizziness, confusion, and memory issues. These can impair higher cognitive functions, personality, and emotional regulation and
lead to changes in behavior, mood, and decision-making. Lateral impacts as in Figs. 7, right, cause the brain to rotate, which can
induce diffuse axonal injuries similar to diagonal impacts [58]. As we conclude from our simulated stress profiles, lateral impacts
affect mainly the gray and white matter interface, which experiences much higher stresses than, for example, under top-of-the-
head impacts of the same magnitude. Diffuse axonal injuries can result in cognitive, behavioral, and motor impairments, and affect
various aspects of daily life. Lateral impacts may also lead to contusions, which can compromise brain function and potentially cause
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long-term memory loss, personality changes, and emotional instability. Knowing the precise location and direction of a head impact
is critical because impacts to different brain regions can result in varying types and severity of injuries [59]. Understanding the
stress profiles in response to different types of impact can help assess the extent of an injury, determine the appropriate treatment,
and develop strategies to prevent further head trauma [60].

Limitations. Our results suggest that we can seamlessly integrate automated model discovery into a finite element workflow
through a new universal material subroutine. Nonetheless, our study has several limitations that point towards possible future
extensions. First, while our current model is incompressible and isotropic, we can easily expand it to include compressibility [61]
and anisotropy [62] by adding the third, fourth, fifth, and higher order invariants, that we can simply embed via the first index in our
parameter table. Second, we can expand our model and include higher order powers [15], cubic or quartic, via the second index in
our parameter table. Third, we could generalize our current network architecture from an additive coupling of the invariants towards
a multiplicative coupling [63], which would translate into additional cross-coupling terms in the tangents of our user material
subroutine. Fourth, instead of using a purely invariant-based formulation, we could also include principal-stretch-based terms [48]
that mimic an Ogden [19] or Valanis-Landel [20] type behavior. Fifth, in addition to the elastic potential that characterizes the
hyperelastic behavior, we could also include one or more inelastic potentials that characterize viscosity, plasticity, damage, or
growth [64].

7. Conclusion

Constitutive modeling is critical to a successful analysis of materials and structures. However, the scientific criteria for selecting
the appropriate model remain insufficiently understood. This work seeks to address the question whether and how we can
automate constitutive modeling within a finite element analysis. Our work is made possible by a recent trend in physics-based
artificial intelligence, automated model discovery, a new technology that allows us to autonomously discover the best model to
explain experimental data. Automated model discovery comes in various flavors and uses sparse regression, symbolic regression,
or constitutive neural networks with the common goal to discover constitutive models from thousands of combinations of a few
functional building blocks. Here our objective was to integrate automated model discovery into the finite element workflow by
creating a single unified user material subroutine that contains 2'2 = 4096 constitutive models made up of 12 individual terms. For
illustrative purposes, we prototyped this strategy within the UANISOHYPER _INV environment of the general-purpose finite element
software Abaqus and share our new universal material subroutine publicly on GitHub. For three examples, we demonstrated that our
universal material subroutine specializes well to traditional constitutive models, generalizes well to newly discovered models, and
performs well within realistic finite element simulations. While we have only prototyped our approach for a specific hyperelastic
material model, for a specific type of automated model discovery, and for a specific finite element platform, we are confident that
our strategy will generalize naturally to more complex anisotropic, compressible, and inelastic materials, to other types of model
discovery, and to other nonlinear finite element analysis platforms. Replacing dozens of individual material subroutines by a single
universal material subroutine — populated directly via automated model discovery — makes finite element analyses more accessible,
more robust, and less vulnerable to human error. This could induce a paradigm shift in constitutive modeling and forever change
how we simulate materials and structures.
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