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A B S T R A C T

In contemporary elasticity theory, the strain–energy function predominantly relies on the first
invariant 𝐼1 of the deformation tensor; a practice that has been influenced by models derived
from rubber elasticity. However, this approach may not fully capture the complexities of
materials exhibiting pronounced shear deformations, such as very soft biological tissues. Here,
we explore the implications and potential benefits of constitutive models where the strain–
energy function is exclusively a function of the second invariant, 𝐼2. By shifting the focus
towards 𝐼2, we aim to address the limitations of current models in accurately describing shear-
dominated behaviors and to provide a more comprehensive understanding of material responses,
particularly for materials that do not conform to the assumptions underlying 𝐼1-centric theories.
Through theoretical musings, data analysis, and automated model discovery, we investigate
the feasibility of this approach and its consequences for predicting material behavior under
various loading conditions. We show that the so-called ‘‘second-invariant materials’’ conforming
to 𝐼2-only have interesting properties that are found in biological tissues and are fundamentally
different from the traditional ‘‘first-invariant materials’’.

1. Introduction

In the field of elasticity, constitutive modeling plays a pivotal role in our ability to predict material response under various
oads. The core of such modeling lies in the formulation of strain–energy functions, which are scalar fields representing the stored
nergy per unit volume in a material. To accurately describe the mechanical behavior of such hyperelastic materials, these functions
have traditionally been constructed from the invariants of the deformation tensor. These invariants are unique scalar quantities that
remain unchanged under any coordinate transformation, thus providing an objective measure of deformation. The primary invariants
typically employed for isotropic materials are the first, second, and third invariants of the left Cauchy–Green deformation tensor.
By leveraging these invariants, constitutive models can encapsulate the material’s response to external forces or deformations and
ensure that the stress–strain relationships are framed in an invariant manner, satisfying both material objectivity and the laws of
thermodynamics (Ogden, 1984; Fu and Ogden, 2001). This invariant-based approach forms the foundation of hyperelastic material
modeling, offering a rigorous and robust framework for simulating the complex behavior of materials under mechanical loads.

In this context, it is well appreciated that the second invariant of the strain tensor, 𝐼2, represents an underutilized yet
significant component in the theoretical framework of elasticity (Horgan and Smayda, 2012; Anssari-Benam et al., 2021). Despite
ts fundamental role in characterizing the deformation state of a material, particularly in describing the shape changes that are
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independent of volume change, 𝐼2 has not been sufficiently integrated into elasticity theory and its applications (Alibakhshi et al.,
2021). This oversight may stem from the historical focus on simpler deformation models or analytical challenges in incorporating
𝐼2 into existing frameworks. However, the inclusion of 𝐼2 is crucial for a more comprehensive understanding of material behavior,
especially in describing the properties of biological soft tissues under complex loading scenarios where deformations cannot be
accurately described by the first invariant 𝐼1 alone.

Exploring a theory of elasticity primarily focused on the second invariant presents a compelling new research direction,
particularly for addressing the mechanical behavior of very soft biological materials, for example from the brain or arteries. These
materials exhibit complex mechanical properties that traditional elasticity theories, which predominantly concentrate on the first
invariant may not adequately capture. For instance, many such materials exhibit the reverse Poynting effect (Mihai and Goriely,
2011, 2012). Therefore, the distinctive deformation characteristics of soft biological tissues, marked by pronounced shape changes
with minimal volume change, highlight the relevance of 𝐼2 in accurately describing their mechanical responses, especially under
shear (Destrade et al., 2012).

While many authors have emphasized the need to include the second invariant to obtain a better characterization of a material,
here we go one step further and consider the consequences of a theory based solely on the second invariant. The reason for this
choice is twofold. First, the systematic system identification of data sets for a variety of samples leads to the puzzling finding, against
all common practice, that some materials are better represented by a strain–energy functions that only depend on 𝐼2. Second, by
taking the limit to 𝐼2-only materials theoretically, we can gain a better understanding of the effect of the second invariant on the
properties of tissues and improve our understanding of isotropic incompressible hyperelastic materials.

2. Background and definitions

We consider a solid subject to a deformation 𝐱 = 𝝌(𝐗), which maps material points 𝐗 in the reference configuration to points 𝐱
in the current configuration (see Ogden (1984), Goriely (2017) for reference and notation). Then the deformation gradient tensor,
that measures changes between the two configurations is

𝐅 = Grad(𝝌), (1)

where Grad() is the gradient with respect to the reference coordinates. The left Cauchy–Green deformation tensor 𝐁 is related to
the deformation gradient tensor by 𝐁 = 𝐅𝐅𝖳, where 𝐅𝖳 is the transpose of 𝐅. This tensor characterizes the local deformation of the
material and is used to define the invariants of deformation, which are scalar quantities invariant under coordinate transformations.
The principal invariants of 𝐁 are:

𝐼1 = tr(𝐁), (2)

𝐼2 =
1
2
[

(tr(𝐁))2 − tr(𝐁2)
]

, (3)

𝐼3 = det(𝐁), (4)

where tr(𝐁) is the trace of 𝐁, and det(𝐁) is the determinant of 𝐁.
These invariants can also be expressed in terms of the principal stretches {𝜆1, 𝜆2, 𝜆3} which are the square roots of the eigenvalues

of 𝐁:

𝐼1 = 𝜆21 + 𝜆22 + 𝜆23, (5)

𝐼2 = 𝜆21𝜆
2
2 + 𝜆22𝜆

2
3 + 𝜆21𝜆

2
3, (6)

𝐼3 = 𝜆21𝜆
2
2𝜆

2
3. (7)

In the particular case when the motion is isochoric, 𝐼3 = 1, and the second invariant can also be written as 𝐼2 = 𝜆−21 + 𝜆−22 + 𝜆−23 .

2.1. Geometric interpretation of the three invariants

The invariants are not only algebraic objects that emerge from the analysis of the strain tensors, they also have a natural geometric
interpretation (Aydogdu et al., 2021; Kearsley, 1989; Miehe et al., 2004).

We start with the easy one, the third invariant of the deformation tensor, 𝐼3, which measures the relative volume change of a
material element during deformation. If 𝐼3 is greater than 1, the material element has expanded, and if 𝐼3 is less than 1, it has contracted.
Hence, 𝐼3 provides a scalar measure of the volumetric dilation or compression of a material element due to deformation.

It is also relatively easy to interpret the first invariant of the deformation tensor, 𝐼1. Geometrically, 𝐼1 represents the sum of the
squared stretches of an infinitesimal line element averaged over all possible orientations within the material. In the classical theory of rubber
elasticity, this mechanism to store energy is particularly relevant as it simplifies the complex molecular chain network of rubber
into a single scalar quantity that represents the average stretch between crosslinks in the network. The averaging process inherent
to 𝐼1 allows for the consideration of stretches in all directions, providing a scalar measure of deformation that is a fundamental
building block for all constitutive models of isotropic hyperelastic materials that are based on the elongation of molecular chains.

The second invariant, 𝐼2, is harder to interpret. Nevertheless, it can be shown that it gives three times the square of the stretch
2

ratio of an infinitesimal area element averaged over all possible orientations (Kearsley, 1989). Therefore, this invariant takes into account
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changes in shape that an area element undergoes during deformation. To compute 𝐼2, one can consider an infinitesimal area oriented
in a Cartesian coordinate system that undergoes deformation. 𝐼2 captures the average of the product of any two distinct stretches in
hat plane across all orientations. Therefore, this averaging process considers the area element’s orientations in the deformed state
nd quantifies the extent of shear deformation which makes 𝐼2 particularly relevant in the analysis of materials that undergo large
hear deformations.

.2. Constitutive models

The strain–energy function 𝑊 is a scalar function that quantifies the elastic energy stored in a material due to deformation. For
sotropic hyperelastic materials, 𝑊 is solely a function of the three strain invariants 𝑊 = 𝑊 (𝐼1, 𝐼2, 𝐼3). In the case of incompressible
aterials, such as rubber, the volume is conserved during deformation, implying 𝐼3 = 1. For such materials, the strain–energy
unction can be simplified to depend only on 𝐼1 and 𝐼2, as 𝑊 = 𝑊 (𝐼1, 𝐼2).
The Cauchy stress tensor 𝐓 can be derived from the strain–energy function for an isotropic incompressible hyperelastic material

sing the well-known representation formula:

𝐓 = −𝑝𝟏 + 2𝑊1𝐁 − 2𝑊2𝐁−1, (8)

where 𝑝 is the Lagrange multiplier enforcing the incompressibility constraint, det(𝐅) = 1, and 𝟏 the identity tensor. We have also
ntroduced the notation

𝑊1 =
𝜕𝑊
𝜕𝐼1

, 𝑊2 =
𝜕𝑊
𝜕𝐼2

. (9)

In the absence of body forces, the equilibrium of the material is described by

div𝐓 = 𝟎, (10)

where div() is the divergence operator with respect to 𝐱, ensuring that the net force on any part of the material vanishes. The
determination of the appropriate form of 𝑊 is a central problem in the theory of elasticity since there is no general theory that
provides its functional form based on first principles. Different choices for 𝑊 lead to quantitative and qualitative differences in the
material response.

The starting point of most studies is the neo-Hookean model. It offers a simple yet powerful description of the elastic behavior of
elastomeric materials at finite deformation. It is simply given by

𝑊 = 𝐶1[𝐼1 − 3], (11)

where 𝐶1 = 𝐸∕6 is related to the small-strain Young’s modulus 𝐸. This modulus can be connected to molecular-level phenomena,
thus allowing the macroscopic mechanical properties to be related to the microstructure of the material (Beatty, 2003).

The first-invariant model (FIM) (also known as the generalized neo-Hookean model) extends this concept by imposing that 𝑊
epends only on the first invariant 𝐼1 which simplifies both the choice of possible functional forms and hence model fitting, as well
s the mathematical treatment of these materials. However, this choice also implies a focus on the compressive and tensile material
ehaviors and assumes a microscopic model based on affine deformations. It implies that energy is stored only in chain extension
nd compression (Ehret and Stracuzzi, 2022).
In contrast, the Mooney–Rivlin model (Mooney, 1940; Rivlin, 1948), was one of the first to incorporate 𝐼2-dependent terms, which

ignificantly improved the agreement between theory and experiments. It is given by a linear combination of the first and second
nvariants,

𝑊 = 𝐶1[𝐼1 − 3] + 𝐶2[𝐼2 − 3], (12)

nd allows for a more accurate characterization of shear deformations, which are particularly important in incompressible
oft materials. The constants 𝐶1 and 𝐶2 are material constants determined empirically to fit the experimental data. From a
icrostructural point of view, the introduction of 𝐼2 reflects contributions of chain interactions when they are constrained within a
ube-like region around the molecular chains (Fried, 2002). Indeed it was shown that micromechanical models that include an area
tretch induced by tube-like domains lead to macroscale continuum models with strong 𝐼2 dependence (Kumar and Brassart, 2023)
nd, similarly, that the addition of an energy penalty term for changes in tube area is best fitted, at the macroscopic level, by an
xtra dependence in 𝐼2 (Puglisi and Saccomandi, 2016).

. Theoretical considerations

.1. The second-invariant model

Here, in contrast to the classical approach of introducing the second invariant, 𝐼2, as a means to improve the data fit of a
irst-invariant model, we consider the extreme case of materials that only depend on 𝐼2, that we refer to, for lack of a better name,
s the second-invariant model (SIM):

𝑊 = 𝑤(𝐼 ), (13)
3

2
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Fig. 1. Uniaxial tension and asymmetry between compression and tension. Left: Tension versus stretch for the linear FIM (red) and linear SIM (blue),
howing that for the same Young’s modulus, the linear SIM model is softer in extension and stiffer in compression than the corresponding FIM. Right: The
symmetry coefficient as a function of the strain shows a much larger asymmetry for the linear SIM.

he simplest one of which is the linear SIM,𝑊 = 𝐶2[𝐼2−3], which was first introduced by Hill in 1973 under the name extreme-Mooney
material. For these materials, Hill showed that there are new exact solutions that can be expressed in terms of Bessel functions (Hill,
1973). The only other isotropic material that does not include 𝐼1 is the Blatz-Ko model originally introduced to describe elastomeric
foams (Blatz and Ko, 1962).

.2. Homogeneous deformations

.2.1. Uniaxial tension and compression
Simple extension refers to a deformation applied to a material, where a uniaxial load is exerted along one principal axis,

ypically elongating the material in that direction while contracting it in the perpendicular directions due to the Poisson effect. This
eformation is characterized by a stretch ratio, 𝜆, where 𝜆 > 1 denotes uniaxial tension and 𝜆 < 1 denotes uniaxial compression. In
he context of a rectangular block, this deformation can be described by

𝑥1 = 𝜆𝑋1, 𝑥2 = 𝜆−1∕2𝑋2, 𝑥3 = 𝜆−1∕2𝑋3, (14)

here, as before, 𝑥𝑖 and 𝑋𝑖 represent the coordinates in the deformed and reference configurations. For this mode of deformation,
e have

𝐼1 = 𝜆2 + 2
𝜆
, 𝐼2 =

1
𝜆2

+ 2𝜆, (15)

nd the axial stress is

𝑇11 = 2
(

𝜆2 − 1
𝜆

)

(

𝑊1 +
𝑊2
𝜆

)

. (16)

Therefore, for SIMs we have

𝑇11 = 2𝑤′(𝐼2)(𝜆 − 1
𝜆2

). (17)

Close to the undeformed reference state, 𝜆 = 1, we recover a Hookean behavior by linearizing this law with a Young’s modulus
given by

𝐸 =
𝜕𝑇11
𝜕𝜆

|

|

|

|𝜆=1
= 6𝑤′(3). (18)

Interestingly, for the linear law, we obtain the simple relationship 𝐸 = 6𝐶2, and conclude that we can describe a Hookean behavior
without any dependence on the first invariant 𝐼1.

It is of interest to compare the asymmetric behavior in tension and compression between FIMs and SIMs. Starting with the linear
case, we compare the two models by imposing that they have the same linear behavior close to the undeformed state, 𝜆 = 1 in
Fig. 1. To illustrate the asymmetry between tension and compression, we also display the asymmetry coefficient

𝑎(𝜖) = −𝑇11(1 + 𝜖) − 𝑇11(1 − 𝜖), (19)

and conclude that the linear SIM displays a much stronger asymmetry than the neo-Hookean model. This asymmetry between tension
and compression is also present in the general models. Indeed, a series expansion around 𝜆 = 1 reveals the following behavior for
any FIM and SIM:

𝑇 FIM11 = −𝐸(𝜆 − 1) + ((𝜆 − 1)3), 𝑎FIM = 0 + (𝜖3), (20)
SIM 2 3 SIM 2 3
4

𝑇11 = −𝐸(𝜆 − 1) − 𝐸(𝜆 − 1) + ((𝜆 − 1) ), 𝑎 = 2𝐸𝜖 + (𝜖 ), (21)
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Fig. 2. Invariants as functions of stretch. First invariant 𝐼1, top row, and second invariant 𝐼2, bottom row, as functions of the stretch 𝜆 for the homogeneous
deformations of uniaxial tension, equibiaxial tension, and pure shear. Both invariants display tension/compression asymmetry. For the special case of pure shear,
both invariants are identical.

from which we conclude that SIMs are better suited to describe materials with a strong asymmetry between tension and compression
as found in soft tissues, see Section 4.

.2.2. Triaxial deformations
Triaxial homogeneous deformations are characterized by an independent and uniform stretch along three mutually perpendicular

xes, usually corresponding to the principal material directions. Explicitly, these deformations are described by the stretches 𝜆1, 𝜆2, 𝜆3
long the 𝑋1, 𝑋2, and 𝑋3 axes, respectively:

𝑥1 = 𝜆1𝑋1, 𝑥2 = 𝜆2𝑋2, 𝑥3 = 𝜆3𝑋3. (22)

or such deformations, the invariants are:

𝐼1 = 𝜆21 + 𝜆22 + 𝜆23, 𝐼2 = 𝜆−21 + 𝜆−22 + 𝜆−23 . (23)

he Cauchy stress tensor is then diagonal with components:

𝑇11 = 2(𝜆21 − 𝜆23)(𝑊1 + 𝜆21𝑊2), 𝑇22 = 2(𝜆22 − 𝜆23)(𝑊1 + 𝜆22𝑊2). (24)

or SIMs, the ratio of these two stresses provides a new universal relation (Beatty, 1987; Pucci and Saccomandi, 1997; Saccomandi,
001):

𝑇11
𝑇22

=
𝜆22

(

𝜆21 − 𝜆23
)

𝜆21
(

𝜆22 − 𝜆23
) . (25)

Since this relation does not explicitly depend on the choice of 𝑤 = 𝑤(𝐼2), it can be used to test if the material is indeed modeled by
a SIM, independently of the functional form of 𝑤.

Apart from uniaxial extension, there are two more interesting special cases of triaxial deformations. First, biaxial extension is
obtained by taking 𝜆1 = 𝜆2 = 𝜆. Second, the case where 𝜆1 = 1, 𝜆2 = 𝜆 > 1 and 𝜆3 = 1∕𝜆 is sometimes called pure shear (Treloar,
1944) as an applied traction in the vertical direction must be compensated by a stress in the horizontal direction.

We can summarize the behavior of FIMs and SIMs for triaxial deformations by comparing the profile of the invariants and
stretches as a function of a single parameter in these three typical cases, as shown in Figs. 2 and 3.

From Fig. 2 we see that both invariants display tension compression asymmetry. Interestingly, for the special case of incompress-
bility with 𝐼1 = 𝜆21 + 𝜆22 + 𝜆22 and 𝐼2 = 𝜆−21 + 𝜆−22 + 𝜆−22 , in the range 1∕2 ≤ 𝜆 ≤ 2, the minima and maxima of the first and second
nvariants are identical, but for the special cases of uniaxial and equibiaxial tension, they occur under tension versus compression.
or the special case of pure shear, both invariants are identical.
Fig. 3 illustrates the stress as a function of the stretch for different choices of strain–energy functions. The first and second rows

isplay the stresses for FIMs and SIMs for the examples of a linear, 𝑊 = [𝐼1,2−3], exponential linear,𝑊 = exp([𝐼1,2−3])−1, quadratic,
= [𝐼1,2 − 3]2, and exponential quadratic, 𝑊 = exp([𝐼1,2 − 3]2) − 1, strain–energy function. While the four functions are identical

or both invariants for the special case of pure shear, they clearly differ under uniaxial and equibiaxial tension. This suggests that
aterials that display strong first-invariant characteristics cannot be modeled accurately with second invariant models, and vice
ersa. While the linear and quadratic terms, 𝑊 = [𝐼1,2 − 3] and 𝑊 = [𝐼1,2 − 3]2, generally capture a smooth increase of the stress
ith increasing stretch, the exponential linear and exponential quadratic terms, 𝑊 = exp([𝐼 − 3]) − 1 and 𝑊 = exp([𝐼 − 3]2) − 1,
5
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Fig. 3. Stresses as functions of stretch. Stress components related to the first invariant 𝐼1, top row, and second invariant 𝐼2, bottom row, as functions of the
stretch 𝜆 for the homogeneous deformations of uniaxial tension, equibiaxial tension, and pure shear. All stresses display tension compression asymmetry. For the
special case of pure shear, the stress components are identical.

display a steep increase and are good candidate terms to characterize strain hardening that arises from limited microstructural chain
extensibility. Notably, the quadratic functions, 𝑊 = [𝐼1,2 − 3]2 and 𝑊 = exp([𝐼1,2 − 3[2) − 1, have horizontal tangents at the origin
leading to zero Young’s modulus and, when used alone without any additional terms, may result in complications, for example, in
finite element analyses. We also note that both FIMs and SIMs can exhibit strain-hardening. Using a Gent-like energy function with
a vertical asymptote for a SIM is also possible but a careful justification about the implication of a limiting value of 𝐼2 in terms of
micromechanical model would be needed.

3.2.3. Simple shear
Simple shear is an isochoric (i.e. volume-preserving) deformation, commonly used in the experimental characterization and

theoretical study of material behavior. It is given by the deformation

𝑥1 = 𝑋1 + 𝑘𝑋2, 𝑥2 = 𝑋2, 𝑥3 = 𝑋3, (26)

where 𝑘 represents the shear magnitude in the 𝑋1 − 𝑋2 plane, with the shear angle given by arctan(𝑘). This deformation does not
change the volume because it involves a sliding motion of material planes over one another without altering the distance between
these planes along the 𝑋3 axis. The deformation gradient is:

𝐅 =
⎡

⎢

⎢

⎣

1 𝑘 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, (27)

and is such that 𝐼1 and 𝐼2 are identical, 𝐼1 = 𝐼2 = 3 + 𝑘2. The Cauchy stress tensor for simple shear is given by

𝐓 =
⎡

⎢

⎢

⎣

2𝑘2𝑊1 2𝑘(𝑊1 +𝑊2) 0
2𝑘(𝑊1 +𝑊2) −2𝑘2𝑊2 0

0 0 0

⎤

⎥

⎥

⎦

. (28)

We note that, since the two invariants are equal, a data set purely generated from simple shear testing (and hence providing only
𝑇12) can be fitted equally by a FIM or a SIM. Without additional data on the loadings or different loading modes that exhibit a
difference between the two invariants, there is no possibility of distinguishing the two models. For SIMs, the stress simplifies to

𝐓 =
⎡

⎢

⎢

⎣

0 2𝑘𝑊2 0
2𝑘𝑊2 −2𝑘2𝑊2 0
0 0 0

⎤

⎥

⎥

⎦

, (29)

the implication of which will become clear shortly. We note that one can choose 𝑊2 to obtain shear softening. For instance, we
can start with a FIM which is either a sum or arbitrary powers of 𝐼1 as proposed in Lopez-Pamies (2010) or the logarithmic form
roposed in Anssari-Benam and Horgan (2021, 2022) and replace 𝐼1 by 𝐼2 to fit the shear data (albeit, it will not match the same
6

ension data since 𝐼1 ≠ 𝐼2 in tension).
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3.2.4. Ideal shear
Confusingly, pure shear has two different definitions. Hence, to avoid confusion, we discuss here a deformation that we refer to

s ideal shear with the unavoidable caveat that some authors describe it as pure shear (Moon and Truesdell, 1974). It is defined by
Cauchy stress tensor 𝐓, in Cartesian coordinates, of the form:

[𝐓] =
⎡

⎢

⎢

⎣

0 𝑇 0
𝑇 0 0
0 0 0

⎤

⎥

⎥

⎦

, (30)

here 𝑇 is the magnitude of the shear stress acting in the 𝑥1 − 𝑥2 plane. It corresponds to the deformation

𝑥1 = 𝑎𝑋1 +
√

𝑏2 − 𝑎2𝑋2, 𝑥2 = 𝑏𝑋2, 𝑥3 = 𝑐𝑋3, (31)

where 𝑎, 𝑏, and 𝑐 depend on the material model and are chosen such that 𝑎𝑏𝑐 = 1 for incompressibility. The shear stress is related
to the deformation through:

𝑇 = 2𝑏
√

𝑏2 − 𝑎2
(

𝑊1 +𝑊2
1

𝑎2𝑏2

)

. (32)

3.3. Inhomogeneous deformations

Finally, it is instructive to see how materials described by SIMs respond for non-homogeneous deformations. Here we consider
the example of the classical torsion problem (Goriely, 2017, p. 333) where a long solid circular cylinder of radius 𝐴 is subjected to a
torsional deformation. Using cylindrical coordinates, where (𝑅,𝛩,𝑍) represents the position of a material point in the undeformed
configuration and (𝑟, 𝜃, 𝑧) represents the same point in deformed configuration, the deformation is given by

𝑟 = 𝑅, 𝜃 = 𝛩 + 𝜏𝑍, 𝑧 = 𝑍, (33)

where 𝜏 is the twist per unit length. The Cauchy stress resulting from this torsional deformation is

𝐓 = 𝑇𝑟𝑟𝐞𝑟 ⊗ 𝐞𝑟 + 𝑇𝜃𝜃𝐞𝜃 ⊗ 𝐞𝜃 + 𝑇𝑧𝑧𝐞𝑧 ⊗ 𝐞𝑧 + 𝑇𝑧𝜃𝐞𝑧 ⊗ 𝐞𝜃 , (34)

where

𝑇𝑟𝑟 = −𝜏2 ∫

𝐴

𝑅
𝑟𝑊1(𝑟)d𝑟, (35)

𝑇𝜃𝜃 = −2𝜏2 ∫

𝐴

𝑅
𝑟𝑊1(𝑟)d𝑟 + 2𝜏2𝑅2𝑊1, (36)

𝑇𝑧𝑧 = −𝜏2 ∫

𝐴

𝑅
𝑟𝑊1(𝑠)d𝑟 − 2𝜏2𝑅2𝑊2, (37)

𝑇𝑧𝜃 = 2𝜏𝑅(𝑊1 +𝑊2), (38)

where 𝑊1 and 𝑊2 are evaluated for the torsion problem at 𝐼1 = 𝐼2 = 3 + 𝜏2𝑅2.
The resultant moment 𝑀 and axial force 𝑁 required to maintain the deformation are determined by integrating the shear stress

𝑇𝑧𝜃 and axial stress 𝑇𝑧𝑧 over the cross-sectional area of the cylinder, yielding:

𝑀 = ∫

2𝜋

0 ∫

𝐴

0
𝑇𝑧𝜃𝑅

2 d𝑅d𝛩 = 4𝜋𝜏 ∫

𝐴

0
𝑅3(𝑊1 +𝑊2)d𝑅, (39)

𝑁 = ∫

2𝜋

0 ∫

𝐴

0
𝑇𝑧𝑧𝑅d𝑅d𝛩 = −2𝜋𝜏2 ∫

𝐴

0
𝑅3(𝑊1 + 2𝑊2)d𝑅. (40)

For SIMs, it follows that 𝑁 = −𝜏𝑀 . We also note the particularly simple form of the stress

𝑇𝑟𝑟 = 𝑇𝜃𝜃 = 0, 𝑇𝑧𝑧 = −2𝜏2𝑅2𝑊2, 𝑇𝑧𝜃 = 2𝜏𝑅𝑊2, (41)

which leads to another universal relation

𝑇𝑧𝜃 = −𝜏𝑅𝑇𝑧𝑧. (42)

We also conclude from (41) that no pressure develops on the side of the cylinder as it is twisted (which corresponds to the absence
of lateral traction 𝑇11 during simple shear).

3.4. Adscititious inequalities

In the absence of a systematic way to obtain strain–energy functions from first principles, we are restricted to general principles
that must be guaranteed to satisfy plausible behaviors (Truesdell and Noll, 2004). For instance, we recall that a fundamental set of
such inequalities are the Baker-Ericksen inequalities:

𝜆 ≠ 𝜆 ⇒ (𝑡 − 𝑡 )(𝜆 − 𝜆 ) > 0, for 𝑖, 𝑗 = 1, 2, 3, (43)
7

𝑖 𝑗 𝑖 𝑗 𝑖 𝑗



Journal of the Mechanics and Physics of Solids 188 (2024) 105670E. Kuhl and A. Goriely

T
r

s

1

𝑇
s
G
‘

s

p
s

4

o
i
a
m
f
t
T
p
m
e
i

where {𝑡1, 𝑡2, 𝑡3} represent the principal stresses, the eigenvalues of 𝐓, and, as before, {𝜆1, 𝜆2, 𝜆3} denote the principal stretches.
hese inequalities ensure that the direction of greater stretch corresponds to the direction of greater stress. The inequalities lead to
estrictions on the choice of the model, traditionally written as (Truesdell and Noll, 2004, p. 171):

𝜆2𝑖 𝜆
2
𝑗𝛽1 > 𝛽−1, if 𝜆𝑖 ≠ 𝜆𝑗 , (44)

𝜆4𝑖 𝛽1 ≥ 𝛽−1, if 𝜆𝑖 = 𝜆𝑗 , (45)

where the response functions for incompressible materials are given by

𝛽1 = 2𝑊1, 𝛽−1 = −2𝑊2. (46)

These conditions, derived from the original inequalities, are crucial for ensuring the non-negativity of the work done by stresses
during deformation. In the context of ideal shear, these inequalities ensure the expected behavior that the shear strains remain in
the same direction as the applied shear force.

For SIMs, we have 𝛽1 = 0, and we see that both inequalities (44)–(45) imply

𝛽−1 < 0, ⇒
𝜕𝑊
𝜕𝐼2

> 0, (47)

which implies, from (18) that the Young modulus is also positive, as expected. These are the same conditions for the existence of a
train for a given stress (Nordenholz and O’Reilly, 1998).
Finally, we also comment on the so-called empirical inequalities (Truesdell and Noll, 2004, p. 171) given by

𝛽1 > 0, 𝛽−1 ≤ 0. (48)

As the name suggests, these inequalities are not based on first principles and are inspired by observations of rubber-like materials.
They are used to ensure that the constitutive model predicts realistic responses under various loading conditions. In particular, they
are sufficient to ensure that a tensile load leads to an extension, as expected (Batra, 1976). However, the empirical conditions are
not necessary for this particular behavior as shown in Section 3.2.1. Further, it has also been established that these inequalities are
not suitable for soft tissues (Mihai and Goriely, 2011). Hence it is no surprise that for SIMs the first inequality is not satisfied.

3.5. The Poynting effect

The Poynting effect in the context of simple shear deformations is defined as the occurrence of normal stresses in the direction
perpendicular to the shear plane. When a material undergoes a simple shear deformation given by (26), the Cauchy stress tensor
𝐓 may exhibit non-zero off-diagonal shear stress components and diagonal normal stress components (Billington, 1986; Poynting,
909).
The Poynting effect refers to a situation where the normal stress components 𝑇11 ≠ 𝑇22. A positive Poynting effect is observed if

22 < 0, implying that the material experiences a compressive normal stress in the 𝑥2 direction due to the shearing action, and the
heared faces of the material tend to ’spread apart’. Conversely, a negative Poynting effect (Horgan and Murphy, 2017; Mihai and
oriely, 2011) is characterized by 𝑇22 > 0, where a tensile normal stress develops in the 𝑥2 direction, causing the sheared faces to
draw together’.
The implication of the Poynting effect extends to the expected behavior under ideal shear stress, where the difference in shear

tress 𝑇 = (𝛽1 − 𝛽−1)𝑘 is linked to either positive or negative Poynting effects.
For SIMs, we have from (47) that 𝑇22 < 0 in simple shear. Hence we conclude that all second-invariant materials exhibit the

ositive Poynting effect, which is not always observed for soft tissues (Destrade et al., 2015; Mihai et al., 2015) and suggests that
uch models may not be universally suitable for all such tissues.

. Data analysis

The burgeoning field of automated model discovery presents a transformative approach to constitutive modeling, using the power
f neural networks to decipher complex material behaviors from expansive datasets. Neural networks, in particular, have been
dentified as a robust tool for constitutive model discovery, capable of sifting through vast data troves to unearth models without
priori physical knowledge. Despite their prowess in data fitting, classical neural networks ignore the rich legacy of constitutive
odeling (Holzapfel, 2001), at times disregarding thermodynamic principles and established physical laws. As a result, they often
ail to extrapolate beyond their training regime. They excel at numerical fitting yet fall short in providing interpretative insights into
he physics they model. Here we will use model discovery inspired by constitutive artificial neural networks (Linka et al., 2021a,b).
hese networks embed physics directly into the network architecture and discover models that are not only data-compliant but also
hysically grounded, especially when they are reverse-engineered from classical constitutive elements, trained on a diverse array of
echanical tests, and validated against the mechanical properties of soft tissues (Linka and Kuhl, 2023; Linka et al., 2023a,b; Pierre
t al., 2023). As such, they offer an intuitive understanding and a clear physical interpretation of their parameters and provide an
mportant step towards a truly autonomous discovery of physically motivated models (Taç et al., 2024; Peirlinck et al., 2024).
8
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Fig. 4. Discovered best-in-class one- and two-term models for human brain. Discovered one-term models, on the diagonal, and two-term models, off-diagonal,
or model discovery with eight terms. Models are made up of eight functional building blocks: linear, exponential linear, quadratic, and exponential quadratic
erms of the first invariant, rows and columns one through four, and of the second invariant, rows and columns five through eight. The color code indicates the
uality of fit to human brain data, ranging from dark blue, best fit, to dark red, worst fit.

Specifically, in pursuit of constitutive models that conform to the foundational principles of material behavior, we use a
amily models that inherently satisfy thermodynamic consistency, material objectivity (Truesdell and Noll, 2004), symmetry,
ncompressibility, constitutive restrictions, and polyconvexity (Antman, 2005),

𝑊 (𝐼1, 𝐼2) = 𝑤1 [ 𝐼1 − 3 ] + 𝑤2,2 [ exp (𝑤1,2 [ 𝐼1 − 3 ] ) − 1 ]
+ 𝑤3 [ 𝐼1 − 3 ]2 + 𝑤2,4 [ exp (𝑤1,4 [ 𝐼1 − 3 ]2 ) − 1 ]
+ 𝑤5 [ 𝐼2 − 3 ] + 𝑤2,6 [ exp (𝑤1,6 [ 𝐼2 − 3 ] ) − 1 ]
+ 𝑤7 [ 𝐼2 − 3 ]2 + 𝑤2,8 [ exp (𝑤1,8 [ 𝐼2 − 3 ]2 ) − 1 ] .

(49)

This family of models consists of eight terms and represents a total of 28 = 256 different models with the twelve constant model
parameters 𝑤𝑖 and 𝑤𝑖,𝑗 . In particular, it includes the linear FIM (the classical neo-Hookean) and the Mooney–Rivlin models and many
other popular existing models as special cases. We use uniaxial tension, uniaxial compression, and simple shear tests from human
brain tissue of the gray matter cortex (Budday et al., 2017) to discover the model and parameters that best explain the experimental
data (Linka et al., 2023a). This allows us to directly compare the performance of first- and second-invariant models (McCulloch
et al., 2024).

Fig. 4 summarizes the discovered best-in-class one- and two-term models from all possible models in Eq. (49). Squares on the
iagonal represent the eight one-term models: the linear, [𝐼1,2 − 3], exponential linear, exp([𝐼1,2 − 3]) − 1, quadratic, [𝐼1,2 − 3]2, and
xponential quadratic, exp([𝐼1,2 − 3]2) − 1, models in terms of the first and second invariants, 𝐼1 and 𝐼2, in rows and columns one
hrough four and five through eight. Squares outside the diagonal represent the 28 two-term models with all possible combinations
f any two of these eight terms. The color code indicates the quality of fit, ranging from dark blue for the best fit to dark red for
he worst fit. We define the quality of fit as the remaining error after fitting the model to the data by minimizing the loss function
hat consists of the root mean squared error, the 𝐿2 norm of the error between the model stresses and the experimentally measured
tresses. Specifically, we consider 𝑛 = 17 stretch-stress data points in tension, compression, and shear, as indicated in Figs. 5 to 7
nd scale each testing mode by the maximum stretch to weigh all three modes equally (Destrade et al., 2017).
Strikingly, for the best-in-class one-term models, all four second-invariant models outperform the four first-invariant models as

e conclude from the blue-to-orange colors for the fifth to eights squares on the diagonal compared to the dark red colors for the
irst to fourth squares. Notably, the widely used neo-Hookean model, 𝑊 = 𝑤1 [𝐼1 − 3], has the worst fit of all one-term models,
ollowed by the popular Demiray model, 𝑊 = 𝑤2,2 [ exp(𝑤1,2[ 𝐼1 − 3 ]) − 1 ].
Figs. 5 and 6 illustrate the eight one-term FIMs and SIMs associated with the diagonal terms in Fig. 4 in terms of the nominal stress

s a function of stretch or shear strain. All eight one-term models struggle to fit all three experiments simultaneously and overestimate
he tensile stresses, while underestimating the compression and shear stresses. In agreement with Fig. 4, the second-invariant models
n Fig. 6 provide a better fit to the data than the first-invariant models in Fig. 5.
Fig. 7 illustrates the discovered best-in-class two-term models associated with the dark blue of best-fit off-diagonal terms in

ig. 4 in terms of the nominal stress as a function of stretch or shear strain. We note a significantly improved fit compared to the
ne-term models in Figs. 5 and 6. The four best-in-class two-term models all combine the linear or exponential linear term [𝐼2 − 3]
r exp([𝐼2−3])−1, with the quadratic or exponential quadratic term [𝐼2−3]2 or exp([𝐼2−3]2)−1, strikingly, all in terms of the second
nvariant. Notably, the widely-used Mooney–Rivlin model with linear terms in both invariants, 𝑊 = 𝑤1 [𝐼1 − 3] +𝑤5 [𝐼2 − 3], is the
hird worst of all 28 two-term models. Taken together, the best-in-class two-term models in Fig. 7 confirm the trend of the one-term
odels in Figs. 5 and 6: For human brain tissue in tension, compression, and shear, second-invariant models perform significantly better
han first-invariant models.
9
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Fig. 5. Discovered one-term first-invariant models. Nominal stress as a function of stretch or shear strain for human gray matter tension, compression,
and shear data. Circles represent the experimental data; color-coded regions represent the discovered terms for the linear, 𝑊 = [𝐼1 − 3], exponential linear,
𝑊 = exp([𝐼1 − 3]) − 1, quadratic, 𝑊 = [𝐼1 − 3]2, and exponential quadratic, 𝑊 = exp([𝐼1 − 3]2) − 1, models; error value indicates the quality of fit, measured in the
𝐿2 norm.

Fig. 6. Discovered one-term second-invariant models. Nominal stress as a function of stretch or shear strain for human gray matter tension, compression,
and shear data. Circles represent the experimental data; color-coded regions represent the discovered terms for the linear, 𝑊 = [𝐼2 − 3], exponential linear,
𝑊 = exp([𝐼2 − 3]) − 1, quadratic, 𝑊 = [𝐼2 − 3]2, and exponential quadratic, 𝑊 = exp([𝐼2 − 3]2) − 1, models; error value indicates the quality of fit.

Lastly, Fig. 8 illustrates the Poynting effect of the discovered best-in-class models for human brain. The top row highlights the
best-in-class one-term models and the bottom row highlights the best-in-class two-term models. For all eight models, the load case
of simple shear induces compressive stresses normal to the direction of shear. For models with linear terms, the Poynting effect is
already visible at the zero-shear limit. For models with only quadratic terms, the Poynting has a horizontal tangent at the origin and
only becomes visible for shear stresses on the order of 0.05. Importantly, none of the first-invariant models can capture the Poynting
effect–only models that include the second invariant can display this characteristic behavior of lateral tension or compression when
10
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Fig. 7. Discovered best-in-class two-term models. Nominal stress as a function of stretch or shear strain for human gray matter tension, compression, and
shear data. Circles represent the experimental data; color-coded regions represent the discovered model terms; error value indicates the quality of fit.

Fig. 8. Poynting effect for discovered best-in-class models. Normal stress as a function of shear strain for the best-in-class one-term models, top row, and
best-in-class two-term models, bottom row, for human gray matter shear data. Color-coded regions represent the discovered model terms.

subjected to shear. Our algorithm automatically discovers second-invariant models for gray matter tissue, suggesting that this is a
relevant feature of the human brain.

5. Conclusion

In the development of constitutive models for hyperelastic materials, the dependence on the first and second invariants 𝐼1 and
𝐼2 has been inspired by the statistical mechanics of long-chain molecules. Early neo-Hookean models, derived from the assumption
of Gaussian statistics of chain configurations, were limited to terms dependent only on the first invariant 𝐼1. However, we now
increasingly recognize that this term alone cannot adequately describe the experimentally observed material behavior, especially
under finite deformations.

The introduction of 𝐼2-dependent terms was motivated by the need to account for non-affine deformations of the molecular
chains, which the classical Gaussian models could not capture. Microscopically, in non-affine deformations, chains do not deform
uniformly with the macroscopic strain, a situation commonly encountered in polymeric networks. Inclusion of the second invariant
allows for the modeling of constraints imposed by neighboring chains and the resultant restriction on the non-affine deformation
of the chains, a concept supported by the tube model of polymer dynamics. Hence, in addition to variations in chain length, these
11

models also include variations of cross-sectional chain area. Macroscopically, the second invariant proves necessary to capture the
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well-known Poynting effect. From a theoretical point of view, second-invariant models also offer the possibility of new semi-inverse
solutions, an avenue of research that is completely open (Goodbrake et al., 2020).

Clearly, second-invariant models suffer from the same limitations as first-invariant models. Both naturally give rise to universal
relations that are unlikely to be met exactly by real-life materials. This is not necessarily a fundamental problem and these universal
relations can be used as a different way to measure goodness of fit for either types of model. Second, restricting to a single invariant
also implies that some qualitative phenomena cannot be properly taken into account. For instance, first-invariant models do not
exhibit the Poynting effect while second-invariant always exhibit a positive effect, neither of which may be reflected on the behavior
of particular materials.

Nevertheless, our study shows that, for human brain tissue, second-invariant models consistently outperform first-invariant
models, both for best-in-class one-term and two-term models. This suggests that the second invariant plays a much more significant
role than previously assumed. This observation is not limited to brain data. A recent model-discovery study on human cardiac
tissue using similar methods shows that the isotropic part of the strain–energy function is also best described by second-invariant
models (Martonova et al., 2024). Therefore, including the second invariant generates a much richer base of potential candidate
terms for constitutive models. This provides compelling new models, either as combined first- and second-invariant models in the
spirit of Mooney and Rivlin or as entirely stand alone second-invariant models.
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