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Keywords: In contemporary elasticity theory, the strain-energy function predominantly relies on the first
Elasticity invariant I, of the deformation tensor; a practice that has been influenced by models derived
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from rubber elasticity. However, this approach may not fully capture the complexities of
materials exhibiting pronounced shear deformations, such as very soft biological tissues. Here,
we explore the implications and potential benefits of constitutive models where the strain—
energy function is exclusively a function of the second invariant, 7,. By shifting the focus
towards I,, we aim to address the limitations of current models in accurately describing shear-
dominated behaviors and to provide a more comprehensive understanding of material responses,
particularly for materials that do not conform to the assumptions underlying I,-centric theories.
Through theoretical musings, data analysis, and automated model discovery, we investigate
the feasibility of this approach and its consequences for predicting material behavior under
various loading conditions. We show that the so-called “second-invariant materials” conforming
to I,-only have interesting properties that are found in biological tissues and are fundamentally
different from the traditional “first-invariant materials”.

1. Introduction

In the field of elasticity, constitutive modeling plays a pivotal role in our ability to predict material response under various
loads. The core of such modeling lies in the formulation of strain-energy functions, which are scalar fields representing the stored
energy per unit volume in a material. To accurately describe the mechanical behavior of such hyperelastic materials, these functions
have traditionally been constructed from the invariants of the deformation tensor. These invariants are unique scalar quantities that
remain unchanged under any coordinate transformation, thus providing an objective measure of deformation. The primary invariants
typically employed for isotropic materials are the first, second, and third invariants of the left Cauchy—Green deformation tensor.
By leveraging these invariants, constitutive models can encapsulate the material’s response to external forces or deformations and
ensure that the stress-strain relationships are framed in an invariant manner, satisfying both material objectivity and the laws of
thermodynamics (Ogden, 1984; Fu and Ogden, 2001). This invariant-based approach forms the foundation of hyperelastic material
modeling, offering a rigorous and robust framework for simulating the complex behavior of materials under mechanical loads.

In this context, it is well appreciated that the second invariant of the strain tensor, I,, represents an underutilized yet
significant component in the theoretical framework of elasticity (Horgan and Smayda, 2012; Anssari-Benam et al., 2021). Despite
its fundamental role in characterizing the deformation state of a material, particularly in describing the shape changes that are
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independent of volume change, I, has not been sufficiently integrated into elasticity theory and its applications (Alibakhshi et al.,
2021). This oversight may stem from the historical focus on simpler deformation models or analytical challenges in incorporating
I, into existing frameworks. However, the inclusion of I, is crucial for a more comprehensive understanding of material behavior,
especially in describing the properties of biological soft tissues under complex loading scenarios where deformations cannot be
accurately described by the first invariant 7, alone.

Exploring a theory of elasticity primarily focused on the second invariant presents a compelling new research direction,
particularly for addressing the mechanical behavior of very soft biological materials, for example from the brain or arteries. These
materials exhibit complex mechanical properties that traditional elasticity theories, which predominantly concentrate on the first
invariant may not adequately capture. For instance, many such materials exhibit the reverse Poynting effect (Mihai and Goriely,
2011, 2012). Therefore, the distinctive deformation characteristics of soft biological tissues, marked by pronounced shape changes
with minimal volume change, highlight the relevance of I, in accurately describing their mechanical responses, especially under
shear (Destrade et al., 2012).

While many authors have emphasized the need to include the second invariant to obtain a better characterization of a material,
here we go one step further and consider the consequences of a theory based solely on the second invariant. The reason for this
choice is twofold. First, the systematic system identification of data sets for a variety of samples leads to the puzzling finding, against
all common practice, that some materials are better represented by a strain-energy functions that only depend on I,. Second, by
taking the limit to I,-only materials theoretically, we can gain a better understanding of the effect of the second invariant on the
properties of tissues and improve our understanding of isotropic incompressible hyperelastic materials.

2. Background and definitions

We consider a solid subject to a deformation x = y(X), which maps material points X in the reference configuration to points x
in the current configuration (see Ogden (1984), Goriely (2017) for reference and notation). Then the deformation gradient tensor,
that measures changes between the two configurations is

F = Grad(y), @™

where Grad() is the gradient with respect to the reference coordinates. The left Cauchy—-Green deformation tensor B is related to
the deformation gradient tensor by B = FF', where F' is the transpose of F. This tensor characterizes the local deformation of the
material and is used to define the invariants of deformation, which are scalar quantities invariant under coordinate transformations.
The principal invariants of B are:

I, = tr(B), 2)
1= 1 [®)? - @) @)
I; = det(B), (€))

where tr(B) is the trace of B, and det(B) is the determinant of B.
These invariants can also be expressed in terms of the principal stretches { A, 4,, A3} which are the square roots of the eigenvalues
of B:

— 32 2 2
I =2+ 4+ 43, (5)
2492 292 2492
I = 2125 + A543 + A1 A3, 6)
Iy = B0 @

In the particular case when the motion is isochoric, I3 = 1, and the second invariant can also be written as I, = /11‘2 + 4 24+ /1;2.
2.1. Geometric interpretation of the three invariants

The invariants are not only algebraic objects that emerge from the analysis of the strain tensors, they also have a natural geometric
interpretation (Aydogdu et al., 2021; Kearsley, 1989; Miehe et al., 2004).

We start with the easy one, the third invariant of the deformation tensor, I3, which measures the relative volume change of a
material element during deformation. If I is greater than 1, the material element has expanded, and if I; is less than 1, it has contracted.
Hence, I5 provides a scalar measure of the volumetric dilation or compression of a material element due to deformation.

It is also relatively easy to interpret the first invariant of the deformation tensor, I,. Geometrically, I, represents the sum of the
squared stretches of an infinitesimal line element averaged over all possible orientations within the material. In the classical theory of rubber
elasticity, this mechanism to store energy is particularly relevant as it simplifies the complex molecular chain network of rubber
into a single scalar quantity that represents the average stretch between crosslinks in the network. The averaging process inherent
to I, allows for the consideration of stretches in all directions, providing a scalar measure of deformation that is a fundamental
building block for all constitutive models of isotropic hyperelastic materials that are based on the elongation of molecular chains.

The second invariant, I,, is harder to interpret. Nevertheless, it can be shown that it gives three times the square of the stretch
ratio of an infinitesimal area element averaged over all possible orientations (Kearsley, 1989). Therefore, this invariant takes into account
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changes in shape that an area element undergoes during deformation. To compute I,, one can consider an infinitesimal area oriented
in a Cartesian coordinate system that undergoes deformation. I, captures the average of the product of any two distinct stretches in
that plane across all orientations. Therefore, this averaging process considers the area element’s orientations in the deformed state
and quantifies the extent of shear deformation which makes I, particularly relevant in the analysis of materials that undergo large
shear deformations.

2.2. Constitutive models

The strain—energy function W is a scalar function that quantifies the elastic energy stored in a material due to deformation. For
isotropic hyperelastic materials, W is solely a function of the three strain invariants W = W (I,, I,, I5). In the case of incompressible
materials, such as rubber, the volume is conserved during deformation, implying I; = 1. For such materials, the strain—energy
function can be simplified to depend only on I, and I,, as W = W1, I,).

The Cauchy stress tensor T can be derived from the strain-energy function for an isotropic incompressible hyperelastic material
using the well-known representation formula:

T = —pl +2W,B - 2W,B!, ®

where p is the Lagrange multiplier enforcing the incompressibility constraint, det(F) = 1, and 1 the identity tensor. We have also
introduced the notation

ow ow
W, = — = —. 9
VA S TA ©
In the absence of body forces, the equilibrium of the material is described by
divT =0, (10)

where div() is the divergence operator with respect to x, ensuring that the net force on any part of the material vanishes. The
determination of the appropriate form of W is a central problem in the theory of elasticity since there is no general theory that
provides its functional form based on first principles. Different choices for W lead to quantitative and qualitative differences in the
material response.

The starting point of most studies is the neo-Hookean model. It offers a simple yet powerful description of the elastic behavior of
elastomeric materials at finite deformation. It is simply given by

W =\l -3, an

where C; = E/6 is related to the small-strain Young’s modulus E. This modulus can be connected to molecular-level phenomena,
thus allowing the macroscopic mechanical properties to be related to the microstructure of the material (Beatty, 2003).

The first-invariant model (FIM) (also known as the generalized neo-Hookean model) extends this concept by imposing that W
depends only on the first invariant I, which simplifies both the choice of possible functional forms and hence model fitting, as well
as the mathematical treatment of these materials. However, this choice also implies a focus on the compressive and tensile material
behaviors and assumes a microscopic model based on affine deformations. It implies that energy is stored only in chain extension
and compression (Ehret and Stracuzzi, 2022).

In contrast, the Mooney—Rivlin model (Mooney, 1940; Rivlin, 1948), was one of the first to incorporate I,-dependent terms, which
significantly improved the agreement between theory and experiments. It is given by a linear combination of the first and second
invariants,

W = C[I, - 3]+ Gy[I, - 3], (12)

and allows for a more accurate characterization of shear deformations, which are particularly important in incompressible
soft materials. The constants C; and C, are material constants determined empirically to fit the experimental data. From a
microstructural point of view, the introduction of I, reflects contributions of chain interactions when they are constrained within a
tube-like region around the molecular chains (Fried, 2002). Indeed it was shown that micromechanical models that include an area
stretch induced by tube-like domains lead to macroscale continuum models with strong I, dependence (Kumar and Brassart, 2023)
and, similarly, that the addition of an energy penalty term for changes in tube area is best fitted, at the macroscopic level, by an
extra dependence in I, (Puglisi and Saccomandi, 2016).

3. Theoretical considerations
3.1. The second-invariant model
Here, in contrast to the classical approach of introducing the second invariant, I,, as a means to improve the data fit of a

first-invariant model, we consider the extreme case of materials that only depend on I,, that we refer to, for lack of a better name,
as the second-invariant model (SIM):

W = w(l,), (13)
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Fig. 1. Uniaxial tension and asymmetry between compression and tension. Left: Tension versus stretch for the linear FIM (red) and linear SIM (blue),
showing that for the same Young’s modulus, the linear SIM model is softer in extension and stiffer in compression than the corresponding FIM. Right: The
asymmetry coefficient as a function of the strain shows a much larger asymmetry for the linear SIM.

the simplest one of which is the linear SIM, W = C,[I,-3], which was first introduced by Hill in 1973 under the name extreme-Mooney
material. For these materials, Hill showed that there are new exact solutions that can be expressed in terms of Bessel functions (Hill,
1973). The only other isotropic material that does not include I, is the Blatz-Ko model originally introduced to describe elastomeric
foams (Blatz and Ko, 1962).

3.2. Homogeneous deformations

3.2.1. Uniaxial tension and compression

Simple extension refers to a deformation applied to a material, where a uniaxial load is exerted along one principal axis,
typically elongating the material in that direction while contracting it in the perpendicular directions due to the Poisson effect. This
deformation is characterized by a stretch ratio, 4, where 1 > 1 denotes uniaxial tension and 4 < 1 denotes uniaxial compression. In
the context of a rectangular block, this deformation can be described by

X1 =AX|, x=A12X,, xy=2712X,, 14

where, as before, x; and X; represent the coordinates in the deformed and reference configurations. For this mode of deformation,
we have

2 1

— 324 = - —
L=2+2 12_/12+2,1, (15)
and the axial stress is
o2 1 W,
7, =2(a A)<w1+ /1>' (16)

Therefore, for SIMs we have
1
Ty, = 2w (I)(A - ﬁ)' a7

Close to the undeformed reference state, 1 = 1, we recover a Hookean behavior by linearizing this law with a Young’s modulus
given by
JaTy,

04 |=1
Interestingly, for the linear law, we obtain the simple relationship E = 6C,, and conclude that we can describe a Hookean behavior
without any dependence on the first invariant I,.

It is of interest to compare the asymmetric behavior in tension and compression between FIMs and SIMs. Starting with the linear
case, we compare the two models by imposing that they have the same linear behavior close to the undeformed state, 4 = 1 in
Fig. 1. To illustrate the asymmetry between tension and compression, we also display the asymmetry coefficient

E= = 61/ (3). 18)

a(e) = -T (1 +¢)—T);(1 —e), (19)

and conclude that the linear SIM displays a much stronger asymmetry than the neo-Hookean model. This asymmetry between tension
and compression is also present in the general models. Indeed, a series expansion around A = 1 reveals the following behavior for
any FIM and SIM:

TiM = —E(A = 1)+ 04— 1)), @™ =0+ 0, (20)
TSM = —E(A-1) = EG -1+ 04— 1)), ™ =2Ee? + O(e*), @D
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Fig. 2. Invariants as functions of stretch. First invariant I,, top row, and second invariant I,, bottom row, as functions of the stretch 4 for the homogeneous

deformations of uniaxial tension, equibiaxial tension, and pure shear. Both invariants display tension/compression asymmetry. For the special case of pure shear,
both invariants are identical.

from which we conclude that SIMs are better suited to describe materials with a strong asymmetry between tension and compression
as found in soft tissues, see Section 4.

3.2.2. Triaxial deformations

Triaxial homogeneous deformations are characterized by an independent and uniform stretch along three mutually perpendicular

axes, usually corresponding to the principal material directions. Explicitly, these deformations are described by the stretches 4, 4,, 45
along the X, X,, and X5 axes, respectively:

xp =4 X1, xp=hXy, x3= A X5. (22)
For such deformations, the invariants are:

L=i+45+4, L=+ +i;% (23)
The Cauchy stress tensor is then diagonal with components:

Ty = 2047 = (W, + AT Wy). Ty = 2023 = YW, + 5Wy). (24)

For SIMs, the ratio of these two stresses provides a new universal relation (Beatty, 1987; Pucci and Saccomandi, 1997; Saccomandi,
2001):

Ty _A#-2) s
T R

Since this relation does not explicitly depend on the choice of w = w(l,), it can be used to test if the material is indeed modeled by
a SIM, independently of the functional form of w.

Apart from uniaxial extension, there are two more interesting special cases of triaxial deformations. First, biaxial extension is
obtained by taking A, = A, = A. Second, the case where 4, =1, 4, = 1> 1 and A; = 1/4 is sometimes called pure shear (Treloar,
1944) as an applied traction in the vertical direction must be compensated by a stress in the horizontal direction.

We can summarize the behavior of FIMs and SIMs for triaxial deformations by comparing the profile of the invariants and
stretches as a function of a single parameter in these three typical cases, as shown in Figs. 2 and 3.

From Fig. 2 we see that both invariants display tension compression asymmetry. Interestingly, for the special case of incompress-
ibility with I, = /1% + A% + }% and I, = /11‘2 + /1;2 + A;z, in the range 1/2 < 4 < 2, the minima and maxima of the first and second
invariants are identical, but for the special cases of uniaxial and equibiaxial tension, they occur under tension versus compression.
For the special case of pure shear, both invariants are identical.

Fig. 3 illustrates the stress as a function of the stretch for different choices of strain-energy functions. The first and second rows
display the stresses for FIMs and SIMs for the examples of a linear, W = [I, , 3], exponential linear, W = exp([1; , —3])—1, quadratic,
W =1[I,- 3], and exponential quadratic, W = exp([I 12— 31%) — 1, strain-energy function. While the four functions are identical
for both invariants for the special case of pure shear, they clearly differ under uniaxial and equibiaxial tension. This suggests that
materials that display strong first-invariant characteristics cannot be modeled accurately with second invariant models, and vice
versa. While the linear and quadratic terms, W = [I,, —3] and W = [I,, — 312, generally capture a smooth increase of the stress
with increasing stretch, the exponential linear and exponential quadratic terms, W = exp([1;, —3]) - 1 and W =exp([I; , — 315 -1,
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Fig. 3. Stresses as functions of stretch. Stress components related to the first invariant 7,, top row, and second invariant I,, bottom row, as functions of the
stretch A for the homogeneous deformations of uniaxial tension, equibiaxial tension, and pure shear. All stresses display tension compression asymmetry. For the
special case of pure shear, the stress components are identical.

display a steep increase and are good candidate terms to characterize strain hardening that arises from limited microstructural chain
extensibility. Notably, the quadratic functions, W = [I;, — 3] and W =exp([,, — 3[%) — 1, have horizontal tangents at the origin
leading to zero Young’s modulus and, when used alone without any additional terms, may result in complications, for example, in
finite element analyses. We also note that both FIMs and SIMs can exhibit strain-hardening. Using a Gent-like energy function with
a vertical asymptote for a SIM is also possible but a careful justification about the implication of a limiting value of I, in terms of
micromechanical model would be needed.

3.2.3. Simple shear

Simple shear is an isochoric (i.e. volume-preserving) deformation, commonly used in the experimental characterization and
theoretical study of material behavior. It is given by the deformation

x; =X +kXy, x5 =X, x3=Xj, (26)

where k represents the shear magnitude in the X, — X, plane, with the shear angle given by arctan(k). This deformation does not
change the volume because it involves a sliding motion of material planes over one another without altering the distance between
these planes along the X; axis. The deformation gradient is:

1 k£ O
F=|0 1 Of, 27)
0 0 1
and is such that I; and I, are identical, I, = I, = 3 + k>. The Cauchy stress tensor for simple shear is given by
2P W, 2k(Wy+W,) 0
T = | 2k(W; + W) -2k W, of. (28)
[0 0 0

We note that, since the two invariants are equal, a data set purely generated from simple shear testing (and hence providing only
T},) can be fitted equally by a FIM or a SIM. Without additional data on the loadings or different loading modes that exhibit a
difference between the two invariants, there is no possibility of distinguishing the two models. For SIMs, the stress simplifies to

0 2kW, 0
T=|2kW, =2kW, 0], (29)
0 0 0

the implication of which will become clear shortly. We note that one can choose W, to obtain shear softening. For instance, we
can start with a FIM which is either a sum or arbitrary powers of I, as proposed in Lopez-Pamies (2010) or the logarithmic form
proposed in Anssari-Benam and Horgan (2021, 2022) and replace I, by I, to fit the shear data (albeit, it will not match the same
tension data since I, # I, in tension).
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3.2.4. Ideal shear

Confusingly, pure shear has two different definitions. Hence, to avoid confusion, we discuss here a deformation that we refer to
as ideal shear with the unavoidable caveat that some authors describe it as pure shear (Moon and Truesdell, 1974). It is defined by
a Cauchy stress tensor T, in Cartesian coordinates, of the form:

0 T 0
[TI=|T 0 0}, (30)
0o 0 O

where T is the magnitude of the shear stress acting in the x, — x, plane. It corresponds to the deformation
x| =aX| + Vb2 —a?X,, x, =bX,, x3=cXs, 3D

where a, b, and ¢ depend on the material model and are chosen such that abc = 1 for incompressibility. The shear stress is related
to the deformation through:

1
- 2 _ 2 _
T=2bVh? —a (Wl +W2a2b2>' (32)
3.3. Inhomogeneous deformations

Finally, it is instructive to see how materials described by SIMs respond for non-homogeneous deformations. Here we consider
the example of the classical torsion problem (Goriely, 2017, p. 333) where a long solid circular cylinder of radius A is subjected to a
torsional deformation. Using cylindrical coordinates, where (R, ©, Z) represents the position of a material point in the undeformed
configuration and (r, 6, z) represents the same point in deformed configuration, the deformation is given by

r=R, 0=0+1Z, z=27, (33)

where 7 is the twist per unit length. The Cauchy stress resulting from this torsional deformation is

T=T,e Qe +Tye,Qey+T,.e,Qe, +T,e, ey, 34
where
A
T, =1 / W, (rdr, (35)
R
A
Tpp = =277 / W, (Hdr + 222 R*w, (36)
R
A
T,, =72 / rWi(s)dr — 222 R W, (37)
R
T,p =2tR(W| + W>), (38)

where W, and W, are evaluated for the torsion problem at I} = I, = 3 + r>R2.
The resultant moment M and axial force N required to maintain the deformation are determined by integrating the shear stress
T, and axial stress T, over the cross-sectional area of the cylinder, yielding:

2r A A
M =/ / T,,R> dRdO =471'r/ R3(W; + W,)dR, (39)
o Jo 0
2r A A
N = / / T,,RARAO = 277> / R3 (W, +2W,)dR. (40)
o Jo 0
For SIMs, it follows that N = —z M. We also note the particularly simple form of the stress
T,, =Ty =0, T,, = =20 R*W,, T,y = 2t RW,, (41)

which leads to another universal relation
T,y =-tRT,.. (42)

We also conclude from (41) that no pressure develops on the side of the cylinder as it is twisted (which corresponds to the absence
of lateral traction T}, during simple shear).

3.4. Adscititious inequalities

In the absence of a systematic way to obtain strain-energy functions from first principles, we are restricted to general principles
that must be guaranteed to satisfy plausible behaviors (Truesdell and Noll, 2004). For instance, we recall that a fundamental set of
such inequalities are the Baker-Ericksen inequalities:

A # A=t~ 1)k = 4) >0, for ij=123, (43)



E. Kuhl and A. Goriely Journal of the Mechanics and Physics of Solids 188 (2024) 105670

where {1,,1,,1;} represent the principal stresses, the eigenvalues of T, and, as before, {4, 4,, 4;} denote the principal stretches.
These inequalities ensure that the direction of greater stretch corresponds to the direction of greater stress. The inequalities lead to
restrictions on the choice of the model, traditionally written as (Truesdell and Noll, 2004, p. 171):

/13/13/31 >p, if A #4, (44)

Bz p, i A=A (45)
where the response functions for incompressible materials are given by

by =2W,, p_=-2W,. (46)

These conditions, derived from the original inequalities, are crucial for ensuring the non-negativity of the work done by stresses
during deformation. In the context of ideal shear, these inequalities ensure the expected behavior that the shear strains remain in
the same direction as the applied shear force.

For SIMs, we have #, = 0, and we see that both inequalities (44)-(45) imply

oW
<0, > —>0, 47
A oL 47)
which implies, from (18) that the Young modulus is also positive, as expected. These are the same conditions for the existence of a
strain for a given stress (Nordenholz and O’Reilly, 1998).

Finally, we also comment on the so-called empirical inequalities (Truesdell and Noll, 2004, p. 171) given by
p1>0, p_; <0. (48)

As the name suggests, these inequalities are not based on first principles and are inspired by observations of rubber-like materials.
They are used to ensure that the constitutive model predicts realistic responses under various loading conditions. In particular, they
are sufficient to ensure that a tensile load leads to an extension, as expected (Batra, 1976). However, the empirical conditions are
not necessary for this particular behavior as shown in Section 3.2.1. Further, it has also been established that these inequalities are
not suitable for soft tissues (Mihai and Goriely, 2011). Hence it is no surprise that for SIMs the first inequality is not satisfied.

3.5. The Poynting effect

The Poynting effect in the context of simple shear deformations is defined as the occurrence of normal stresses in the direction
perpendicular to the shear plane. When a material undergoes a simple shear deformation given by (26), the Cauchy stress tensor
T may exhibit non-zero off-diagonal shear stress components and diagonal normal stress components (Billington, 1986; Poynting,
1909).

The Poynting effect refers to a situation where the normal stress components T, # T,,. A positive Poynting effect is observed if
T,, < 0, implying that the material experiences a compressive normal stress in the x, direction due to the shearing action, and the
sheared faces of the material tend to ’spread apart’. Conversely, a negative Poynting effect (Horgan and Murphy, 2017; Mihai and
Goriely, 2011) is characterized by T,, > 0, where a tensile normal stress develops in the x, direction, causing the sheared faces to
‘draw together’.

The implication of the Poynting effect extends to the expected behavior under ideal shear stress, where the difference in shear
stress T = (f; — p_,)k is linked to either positive or negative Poynting effects.

For SIMs, we have from (47) that 75, < 0 in simple shear. Hence we conclude that all second-invariant materials exhibit the
positive Poynting effect, which is not always observed for soft tissues (Destrade et al., 2015; Mihai et al., 2015) and suggests that
such models may not be universally suitable for all such tissues.

4. Data analysis

The burgeoning field of automated model discovery presents a transformative approach to constitutive modeling, using the power
of neural networks to decipher complex material behaviors from expansive datasets. Neural networks, in particular, have been
identified as a robust tool for constitutive model discovery, capable of sifting through vast data troves to unearth models without
a priori physical knowledge. Despite their prowess in data fitting, classical neural networks ignore the rich legacy of constitutive
modeling (Holzapfel, 2001), at times disregarding thermodynamic principles and established physical laws. As a result, they often
fail to extrapolate beyond their training regime. They excel at numerical fitting yet fall short in providing interpretative insights into
the physics they model. Here we will use model discovery inspired by constitutive artificial neural networks (Linka et al., 2021a,b).
These networks embed physics directly into the network architecture and discover models that are not only data-compliant but also
physically grounded, especially when they are reverse-engineered from classical constitutive elements, trained on a diverse array of
mechanical tests, and validated against the mechanical properties of soft tissues (Linka and Kuhl, 2023; Linka et al., 2023a,b; Pierre
et al., 2023). As such, they offer an intuitive understanding and a clear physical interpretation of their parameters and provide an
important step towards a truly autonomous discovery of physically motivated models (Tac et al., 2024; Peirlinck et al., 2024).
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Fig. 4. Discovered best-in-class one- and two-term models for human brain. Discovered one-term models, on the diagonal, and two-term models, off-diagonal,
for model discovery with eight terms. Models are made up of eight functional building blocks: linear, exponential linear, quadratic, and exponential quadratic
terms of the first invariant, rows and columns one through four, and of the second invariant, rows and columns five through eight. The color code indicates the
quality of fit to human brain data, ranging from dark blue, best fit, to dark red, worst fit.

Specifically, in pursuit of constitutive models that conform to the foundational principles of material behavior, we use a
family models that inherently satisfy thermodynamic consistency, material objectivity (Truesdell and Noll, 2004), symmetry,
incompressibility, constitutive restrictions, and polyconvexity (Antman, 2005),

W, L) =w, [I; =3] +wy, [exp(w, [I;-3] )-11]
+wy [ =31 + wyy [exp(uwy [ -317)-11
+ws [I,=3] +wye [exp(wyg[I,-3])-11]
+wy [ =31 + wyg [exp(w g [, -317)—1].

(49)

This family of models consists of eight terms and represents a total of 28 = 256 different models with the twelve constant model
parameters w; and w; ;. In particular, it includes the linear FIM (the classical neo-Hookean) and the Mooney-Rivlin models and many
other popular eXlstlng models as special cases. We use uniaxial tension, uniaxial compression, and simple shear tests from human
brain tissue of the gray matter cortex (Budday et al., 2017) to discover the model and parameters that best explain the experimental
data (Linka et al., 2023a). This allows us to directly compare the performance of first- and second-invariant models (McCulloch
et al., 2024).

Fig. 4 summarizes the discovered best-in-class one- and two-term models from all possible models in Eq. (49). Squares on the
diagonal represent the eight one-term models: the linear, [, , — 3], exponential linear, exp([I; , — 3]) — 1, quadratic, [I,, — 312, and
exponential quadratic, exp([1;, — 31%) — 1, models in terms of the first and second invariants, I, and I,, in rows and columns one
through four and five through eight. Squares outside the diagonal represent the 28 two-term models with all possible combinations
of any two of these eight terms. The color code indicates the quality of fit, ranging from dark blue for the best fit to dark red for
the worst fit. We define the quality of fit as the remaining error after fitting the model to the data by minimizing the loss function
that consists of the root mean squared error, the L, norm of the error between the model stresses and the experimentally measured
stresses. Specifically, we consider n = 17 stretch-stress data points in tension, compression, and shear, as indicated in Figs. 5 to 7
and scale each testing mode by the maximum stretch to weigh all three modes equally (Destrade et al., 2017).

Strikingly, for the best-in-class one-term models, all four second-invariant models outperform the four first-invariant models as
we conclude from the blue-to-orange colors for the fifth to eights squares on the diagonal compared to the dark red colors for the
first to fourth squares. Notably, the widely used neo-Hookean model, W = w, [I; — 3], has the worst fit of all one-term models,
followed by the popular Demiray model, W = w,, [exp(w;,[I; =3 - 1].

Figs. 5 and 6 illustrate the eight one-term FIMs and SIMs associated with the diagonal terms in Fig. 4 in terms of the nominal stress
as a function of stretch or shear strain. All eight one-term models struggle to fit all three experiments simultaneously and overestimate
the tensile stresses, while underestimating the compression and shear stresses. In agreement with Fig. 4, the second-invariant models
in Fig. 6 provide a better fit to the data than the first-invariant models in Fig. 5.

Fig. 7 illustrates the discovered best-in-class two-term models associated with the dark blue of best-fit off-diagonal terms in
Fig. 4 in terms of the nominal stress as a function of stretch or shear strain. We note a significantly improved fit compared to the
one-term models in Figs. 5 and 6. The four best-in-class two-term models all combine the linear or exponential linear term [I, — 3]
or exp([I, —3])— 1, with the quadratic or exponential quadratic term [I, —3]? or exp([I, —3]%)— 1, strikingly, all in terms of the second
invariant. Notably, the widely-used Mooney-Rivlin model with linear terms in both invariants, W = w, [I| — 3]+ w5 [I, — 3], is the
third worst of all 28 two-term models. Taken together, the best-in-class two-term models in Fig. 7 confirm the trend of the one-term
models in Figs. 5 and 6: For human brain tissue in tension, compression, and shear, second-invariant models perform significantly better
than first-invariant models.
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Lastly, Fig. 8 illustrates the Poynting effect of the discovered best-in-class models for human brain. The top row highlights the
best-in-class one-term models and the bottom row highlights the best-in-class two-term models. For all eight models, the load case
of simple shear induces compressive stresses normal to the direction of shear. For models with linear terms, the Poynting effect is
already visible at the zero-shear limit. For models with only quadratic terms, the Poynting has a horizontal tangent at the origin and
only becomes visible for shear stresses on the order of 0.05. Importantly, none of the first-invariant models can capture the Poynting
effect-only models that include the second invariant can display this characteristic behavior of lateral tension or compression when
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subjected to shear. Our algorithm automatically discovers second-invariant models for gray matter tissue, suggesting that this is a
relevant feature of the human brain.

5. Conclusion

In the development of constitutive models for hyperelastic materials, the dependence on the first and second invariants I; and
I, has been inspired by the statistical mechanics of long-chain molecules. Early neo-Hookean models, derived from the assumption
of Gaussian statistics of chain configurations, were limited to terms dependent only on the first invariant I,. However, we now
increasingly recognize that this term alone cannot adequately describe the experimentally observed material behavior, especially
under finite deformations.

The introduction of I,-dependent terms was motivated by the need to account for non-affine deformations of the molecular
chains, which the classical Gaussian models could not capture. Microscopically, in non-affine deformations, chains do not deform
uniformly with the macroscopic strain, a situation commonly encountered in polymeric networks. Inclusion of the second invariant
allows for the modeling of constraints imposed by neighboring chains and the resultant restriction on the non-affine deformation
of the chains, a concept supported by the tube model of polymer dynamics. Hence, in addition to variations in chain length, these
models also include variations of cross-sectional chain area. Macroscopically, the second invariant proves necessary to capture the
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well-known Poynting effect. From a theoretical point of view, second-invariant models also offer the possibility of new semi-inverse
solutions, an avenue of research that is completely open (Goodbrake et al., 2020).

Clearly, second-invariant models suffer from the same limitations as first-invariant models. Both naturally give rise to universal
relations that are unlikely to be met exactly by real-life materials. This is not necessarily a fundamental problem and these universal
relations can be used as a different way to measure goodness of fit for either types of model. Second, restricting to a single invariant
also implies that some qualitative phenomena cannot be properly taken into account. For instance, first-invariant models do not
exhibit the Poynting effect while second-invariant always exhibit a positive effect, neither of which may be reflected on the behavior
of particular materials.

Nevertheless, our study shows that, for human brain tissue, second-invariant models consistently outperform first-invariant
models, both for best-in-class one-term and two-term models. This suggests that the second invariant plays a much more significant
role than previously assumed. This observation is not limited to brain data. A recent model-discovery study on human cardiac
tissue using similar methods shows that the isotropic part of the strain—energy function is also best described by second-invariant
models (Martonova et al., 2024). Therefore, including the second invariant generates a much richer base of potential candidate
terms for constitutive models. This provides compelling new models, either as combined first- and second-invariant models in the
spirit of Mooney and Rivlin or as entirely stand alone second-invariant models.
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