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Abstract

The use of museum specimens for research in microbial evolutionary ecology remains an
under-utilized investigative dimension with important potential. Despite this potential, there
remain barriers in methodology and analysis to the wide-spread adoption of museum speci-
mens for such studies. Here, we hypothesized that there would be significant differences in
taxonomic prediction and related diversity among sample type (museum or fresh) and
sequencing strategy (medium-depth shotgun metagenomic or 16S rRNA gene). We found
dramatically higher predicted diversity from shotgun metagenomics when compared to 16S
rRNA gene sequencing in museum and fresh samples, with this differential being larger in
museum specimens. Broadly confirming these hypotheses, the highest diversity found in
fresh samples was with shotgun sequencing using the Rep200 reference inclusive of
viruses and microeukaryotes, followed by the WoL reference database. In museum-speci-
mens, community diversity metrics also differed significantly between sequencing strate-
gies, with the alpha-diversity ACE differential being significantly greater than the same
comparisons made for fresh specimens. Beta diversity results were more variable, with sig-
nificance dependent on reference databases used. Taken together, these findings demon-
strate important differences in diversity results and prompt important considerations for
future experiments and downstream analyses aiming to incorporate microbiome datasets
from museum specimens.

Introduction

The use of nucleic acid sequencing for analyzing museum specimens has great potential given
the emergence of high-throughput molecular technologies [1]. These technologies applied to

museum specimens can be used to ask questions of temporal relevance to ecology and evolu-

tion not otherwise accessible to experimental inquiry. Unfortunately, the conditions of speci-

men preservation techniques such as formalin fixation and storage in alcohol fluids (e.g.
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ethanol, isopropanol) have been a major hindrance to the use and full exploitation of these
molecular technologies. This has resulted in a concerted effort to improve both wet-lab and
downstream analytical methods for overcoming these challenges such that molecular technol-
ogies might be better used in conjunction with the vast catalogs of biological collections repre-
sented in museum repositories [2-4].

One area of recent methodological focus for molecular analysis of preserved specimens is
the specimen-associated microbial community or microbiome. Characterizing the micro-
biome of fluid-preserved museum specimens is a rapidly increasing area of focus due to its rel-
evance in biology broadly, but especially in the disciplines of ecology and evolution [5,6]. The
most common way to characterize host-associated microbiomes is through nucleic acid isola-
tion followed by 16S rRNA gene sequencing. However, there are limitations to 16S rRNA gene
sequencing including irrelevance to host-associated taxonomic groups with differing marker
genes (e.g. ITS in fungi) [7], groups with no universal marker genes (e.g. viruses) [8] and bias
in 16S rRNA gene copy number among different bacteria that is not easily corrected [9]. Alter-
natively, the use of shotgun metagenomic sequencing and associated analytical tools that gen-
erate large numbers of sequence reads might allow higher resolution analysis. Where long-
read sequencing might otherwise be used, high-throughput short-read shotgun metagenomics
is useful in dealing with the highly degraded (i.e. short reads) and low-input characteristics of
nucleic acids associated with museum specimens. Here, we compare both 16S rRNA gene
sequencing and short-read shotgun metagenomics methods for examining museum speci-
men-associated gut microbiomes.

While there has been previous work demonstrating the generally higher resolution of shot-
gun sequencing among these two sequencing technologies for microbial applications in fresh
specimens [10-13], there has been no previous work that we are aware of examining taxo-
nomic and diversity representation of these two sequencing methods for museum specimen-
derived microbiota. In this study, we therefore hypothesized that previous results from fresh
specimens would extend to museum specimens, with differences in taxonomic predictions
between sequencing technologies and related diversity analysis of gut-isolated microbial
nucleic acids of fluid-preserved specimens of Northern leopard frogs, Rana pipiens. Addition-
ally, we hypothesized that the differences in museum specimen-derived results would diverge
from the differences observed in freshly sampled specimens. Generally confirming these
hypotheses, our corresponding results indicate differences in the sequencing approaches (16S
rRNA gene vs shotgun metagenomics) and specimen types (museum vs. fresh) that should be
considered in future study design and experimental contexts.

Materials and methods
Specimen origin and storage

All museum specimens used in this study (n = 13) were originally sourced from various locales
in the Midwestern States of Wisconsin and Illinois, and obtained from the Milwaukee Public
Museum or the Illinois Natural History Survey/University of Illinois Natural History Museum.
The specimens used were originally field collected over a 120 year period with approximately
one specimen per decade (1892-2012; see supplemental specimen metadata) to capture tem-
poral degradation effects and likely differing storage conditions common among many older
museum specimens with uncertain storage histories. The fresh specimens (n = 5) were from R.
pipiens collected in eastern South Dakota, an area that encompasses the historic midwestern
Tallgrass Prairie—a biome that extends through the aforementioned Wisconsin and Illinois
regions [14] and has historically similar soil microbial communities [15]. Fresh specimens
were euthanized via topical application of 20% benzocaine. Specimens were collected under a
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South Dakota Game, Fish and Parks Scientific Collector’s Permit (#2020-2) and IACUC pro-
tocol (AUP 18-28 issued to collaborator Drew R. Davis at The University of Texas Rio Grande
Valley, who did the collecting).

All collection locales over both current and historical time periods captured in this study
exhibit or have exhibited similar climatic patterns and land-use dominated by mono-crop agri-
cultural operations. All museum specimens were received in ethanol and were stored on site at
the University of Massachusetts Boston in the same ethanol concentrations as received, within
individual sterilized mason jars (Ball). Jar size used was variable and dependent on specimen
size. After initial receipt, specimens were kept in their respective jars until dissection.

Specimen dissections and swabbing

All dissections and swabbing were completed under aseptic conditions to include PPE and
sterile equipment, where applicable. For the dissections, museum specimens were placed on
20.3 cm x 25.4 cm ABD sterile pads (McKesson Medical-Surgical Inc., Richmond, VA) within
an aseptic Class II Type A2 Biological Safety Cabinet (Labgard ES, Energy Saver, Nuaire, Plym-
outh, MN). A 2 cm incision was then made in the ventral abdomen to expose the intestines
(disposable gamma irradiated No. 12 scalpels; Swann-Morton, Sheffield, England, UK). After
pinning open the body cavity, a 1 cm longitudinal incision was made along the mid-intestine.
The inside of the intestine was then swabbed (Rayon bud; Medical Wire Equipment, MW113,
Corsham, Wiltshire, England, UK) by twisting the swab three times (1080 degrees). Specimens
from fresh caught frogs were also obtained following the protocol above using aseptic tech-
nique, with the exception that dissections were carried out in the field immediately following
euthanasia, as opposed to dissection in a biosafety cabinet. The swab was next immediately
placed in a micro-centrifuge tube for downstream processing (modified from Hykin [16]) to
include DNA extraction and sequencing.

Phenol-chloroform DNA extractions

Nucleic acid extractions were completed using a modified phenol-chloroform extraction for
museum samples as per Campos & Gilbert [17]. Briefly, swabs were incubated in 500 pL of
alkaline digestion buffer for 40 min at 100°C on a heating block (Drybath Standard 2-block,
Thermo Scientific). The alkaline buffer was composed of Sodium dodecyl sulfate

(BioXtra > 99.0%, Sigma-Aldrich, St. Louis, MO) and Sodiumhydroxide solution from a 10 M
stock aq. (BioUltra, Sigma-Aldrich). After cooling to room-temperature, 500 uL of phenol-
chloroform-isoamyl alcohol mixture solution was added (25:24:1; BioUltra, Sigma-Aldrich).
The solution was then agitated on a shaker table (Lab-line Maxirotator, Lab-Line Instruments
Incorporated, Melrose Park, IL) for 5 min on the high setting. The solution was then centri-
fuged for 5 min at 12,000 x g (~rcf) (Centrifuge 5425, Eppendorf, Hamburg, Germany). After
centrifugation, the top aqueous layer was added to 500 pL of chloroform (> 99.5% containing
100-200 ppm amylenes as stabilizer; Sigma-Aldrich) in a new 1.5 mL microcentrifuge tube.
This was followed by another round of centrifugation for 5 min at 12,000 x g (~rcf). The top
layer was then added to a new 1.5 mL centrifuge tube, followed by addition of 300 uL (0.7 vol-
ume) 2-propanol (BioReagent for molecular biology >99.5%, Sigma-Aldrich) and 50 pL (~0.1
volume) of molecular biology grade 3 M sodium acetate at pH 5.2 (EMD Millipore Corp., Bil-
lerica, MA). This mixture was then centrifuged for 30 min at 12,000 x g (~rcf). Following the
30 min centrifugation, the liquid was decanted and disposed. The pellet was then washed by
adding 500 pL of ethanol (85% aq.; 200 proof molecular biology grade ethyl alcohol, Sigma-
Aldrich, diluted with UltraPure distilled water, (Invitrogen, Grand Island, NY), inverting
once, and centrifugation for 5 min at 12,000 x g (rcf). After this centrifugation, the ethanol
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solution was decanted and disposed, with any remaining solution removed with a small diame-
ter pipette. The tubes were then briefly incubated at 70°C to remove any residual ethanol.
Lastly, the pellet was re-suspended by adding 50 pL of 1X Tris-EDTA buffer solution at pH 8.0
(BioUltra, Sigma-Aldrich) and mixing with a pipette. The suspended nucleic acids were then
stored in a 4°C refrigerator or -80°C freezer depending on the immediacy of downstream
applications.

Shotgun metagenomics sequencing and analysis

Library preparation for sequencing reactions was carried out using an NEB workflow for the
NEBNext Ultra IT DNA library prep kit for Illumina (New England Biolabs, Ipswich, MA).
Paired-end 151 bp sequencing was carried out by the University of Minnesota Genomics Core
on an Illumina NovaSeq 6000 using an S4 flowcell, with an average read depth of 23,844,087
reads/sample (range: 9,108,413-54,875,278/sample; see S1 Table).

For analysis, raw Illumina output was first sorted by index-linked sample ID. Sorted reads
were then quality inspected with FastQC followed by host and background nucleic acid removal.
This was completed by construction of custom host databases of R. temporaria and B. Bufo with
Kraken2 [18]. Non-matching reads to the host database meeting the 0.5 confidence threshold
were then sorted into a separate file for downstream analysis. The R. temporaria genome was used
as a completed whole-genome reference is not available for R. pipiens (the host from which swabs
were derived). The R. temporaria genome has high homology to R. pipiens, and the same karyo-
type [19], making it an acceptable reference for this filtering step. Likewise, sequences with 0.5
confidence homology to Bufo bufo were matched and removed as separate Anaxyrus americanus
museum specimens were present and processed in the laboratory space used.

Background swabs processed in parallel but without specimen swabbing were also used as
controls for background contamination removal. Following the same procedure as the host
removal, a database was constructed of the control swabs in Kraken2 and matches were
removed. A more conservative confidence threshold of 0.8 was used so as to ameliorate con-
cerns of erroneous removal of close matches between bacteria in the sample and background
(S1 Fig). Exact matches resulting in sample removal were unlikely based on differential degra-
dation patterns in the specimen and also visual inspection of sequence taxonomy tables. After
quality inspection, host removal, and background removal, the output was analyzed in the
Qiita metagenomic analysis pipeline [20] and is available in the Data Accessibility and Benefit-
Sharing section below.

Qiita analysis followed the recommended shotgun metagenomics pipeline. This workflow
includes an initial sample adapter removal step with fastp [21], human host filtering with mini-
map2 (to account for sample contamination during handling [22], and taxonomic profiling
via bowtie2 [23] with either the WoL reference database [24] (representing Bacteria and
Archaea) or the Rep 200 database which is composed of RefSeq assemblies [25] (representing
Archaea, Bacteria, Fungi, Protozoa, and Viruses), and species-level feature-table files in.qza
format generated with Woltka [26]. These feature tables were then analyzed with QIIME2
[27]. Shotgun metagenomic data was not subject to rarefaction prior to downstream diversity
analyses due to qualitatively increasing alpha diversity with increasing sequence depth (no pla-
teau), and also greater uncertainty as to the effects of rarefaction on analysis of shotgun meta-
genomic sequencing data (as opposed to 16S rRNA gene sequencing).

16S rRNA gene sequencing and analysis

A subset of the same extracted samples used in shotgun metagenomic sequencing was also
used for 16S rRNA gene sequencing. PCR was conducted in duplicate to amplify the V4 region
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of the 16S rRNA bacterial gene (515F and 806R primers) following the Earth Microbiome pro-
tocol [28]. Following PCR, sample amplicons were pooled and then purified and normalized
using a Mag-Bind EquiPure Library Normalization Kit (Omega Bio-tek, Inc., Norcross, GA,
USA). The library consisted of 10 pL of each normalized sample pooled together, which was
then sequenced on an Illumina MiSeq v2 300 cycles cartridge for single-read sequencing (300
bp/read).

The raw Illumina 16S rRNA amplicon data averaging 21,535 reads/sample (range: 8,263
33,259; see S2 Table) was processed and quality filtered using QIIME 2 v2020.2 [27] and classi-
fied into amplicon sequence variants (ASVs) using the DADA2 workflow [29]. Within
DADA?2, reads were trimmed to 150 bp based on quality score checks for all samples (S2 Fig),
and bacterial taxonomy was assigned using 16S Greengenes 13_8 99% OTUs [30] reference
classifier (Bacteria and Archaea). ASV reads found in extraction and PCR negative controls
with more than 20 reads were deemed as contaminants and filtered out of all samples. We also
filtered out reads assigned as “mitochondria” and “chloroplast”. Next the dataset was rarefied
at 3000 to normalize read counts across samples (3000 is based on a Qiita-derived alpha diver-
sity rarefaction plot; S3 Fig). We subsequently generated several metrics on the dataset to ana-
lyze differences in alpha (ACE and Shannon’s) and beta (Jaccard) diversity. These microbiome
diversity metrics and related taxonomic summaries were determined using QIIME2 for down-
stream statistical analyses. For visualization, we used both the EMPeror visualization tool and
innate R plotting for illustrating trends, and to describe statistical differences among methods
as given below.

Statistical analyses

All statistical analyses to include alpha and beta diversity comparisons were performed either
within Qiita/QIIME2 or in R [31]. Alpha diversity was examined between shotgun metage-
nomic and targeted 16S rRNA gene sequencing methods, and between museum-preserved and
fresh samples. Two alpha diversity indices were used in these comparisons: Shannon’s diversity
index [32] and the abundance-based coverage estimator (ACE) metric. Shannon diversity was
used as it is a commonly used diversity metric and thus broadly interpretable. ACE was devel-
oped as an improvement on the Chaol index [33] and is used due to its ability to correct for low
represented community members and thus underrepresented abundances; a phenomena we
expected from using degraded nucleic acids from preserved museum specimens.

Beta diversity and related matrix comparisons were also performed between both sequence
methods (shotgun metagenomic or 16S rRNA gene) and sampling methods (museum or fresh
collected). Full mantel tests and procrustes analysis on the derived Jaccard distance matrices
and related principal coordinate analyses (PCOA) were used to test for matrix distance simi-
larity and microbial community structure, respectively. Mantel tests were performed to test
the null hypothesis that there is a lack of relationship between values in pairwise dissimilarity
matrix comparisons. This technical question arises from the methodological use of distance
matrices and their derivation method (in this case sequencing strategies), which is different
from the rationale criticized by Legendre et al. [34] in landscape ecology studies.

We also qualitatively examined taxonomic differences between sequencing methods and
sample types (museum or fresh). Taxonomy plots of fresh and specimen derived samples were
made for 16S rRNA gene sequencing derived ASVs and of shotgun metagenomic sequencing
derived species-level taxa generated from alignment-based matching with Rep 200 or WoL.
Heatmaps were also made of the top-ten most represented phyla and genera among the three
sequencing comparisons made (with fresh and museum combined, grouped by either phyla or
genera as seen in the corresponding figures).
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Table 1. A-B. ACE comparisons between the six reference processing types using Kruskal-Wallis rank sum test followed by Dunn’s post-hoc pairwise testing (Ben-

jamini-Hochberg corrected).

A. Kruskal-Wallis Rank Sum Test
Comparison
Museum specimens
Fresh specimens
B. Dunn’s Post-hoc Pairwise Test
Comparison
Rep200-Greengenes (Fresh Specimens)
WoL-Greengenes (Fresh Specimens)
Rep200 -WoL (Fresh Specimens)
Rep200-Greengenes (Museum Specimens)
WoL-Greengenes (Museum Specimens)

Rep200 -~-WoL (Museum Specimens)
https://doi.org/10.1371/journal.pone.0291540.t001

Kruskal-Wallis chi-squared df P-value
30.917 2 1.93e-07
11.324 2 0.00348

Z P-unadjusted P-adjusted (BH)

-3.307 0.000943 0.00283
-2.058 0.0396 0.0594
1.196 0.232 0.232
-5.559 2.709e-08 8.126e-08
-2.983 2.856e-03 4.284e-03
2.630 8.549¢-03 8.549¢-03

Ethics statement

Fresh swabs used in this study were taken from voucher museum specimens collected by DRD
under a South Dakota Game, Fish and Parks Scientific Collector’s Permit (#2020-2). Vouchering
was completed using standard best practices under an approved IACUC protocol (AUP 18-28 issued
to collaborator Drew R. Davis at The University of Texas Rio Grande Valley, who did the collecting).

Results

Community alpha and beta diversity metrics were examined for comparing shotgun metage-
nomic (WoL and Rep200 reference databases) and 16S rRNA gene sequencing methods
(Greengenes). These metrics indicated significant differences in the predictions of shotgun
metagenomic and 16S rRNA gene sequencing methods, with more limited differences
observed between the different shotgun metagenomic sequencing reference databases used.

Alpha diversity analysis

The omnibus Kruskal-Wallis tests for both alpha diversity metrics (Shannon’s diversity index
and ACE) indicated significant differences among shotgun metagenomic sequencing data clas-
sified with WoL, shotgun metagenomic sequencing classified with rep200, and 16S rRNA gene
sequencing data classified with Greengenes (p<0.05; o = 0.05; Tables 1A and 2A). Posthoc

Table 2. A-B. Shannon’s diversity index comparisons between the six reference processing types using Kruskal-Wallis rank sum test followed by Dunn’s post-hoc
pairwise testing (Benjamini-Hochberg corrected).

A. Kruskal-Wallis Rank Sum Test
Comparison
Museum Specimens
Fresh Specimens
B. Dunns Post-hoc Pairwise Test
Comparison
Rep200 —-Greengenes (Fresh Specimens)
WoL-Greengenes (Fresh Specimens)
Rep200 ~-WoL (Fresh Specimens)
Rep200-Greengenes (Museum Specimens)
WoL-Greengenes (Museum Specimens)

Rep200 ~-WoL (Museum Specimens)
https://doi.org/10.1371/journal.pone.0291540.t002

Kruskal-Wallis chi-squared df P-value
27.185 2 1.25e-06
9.38 2 0.00919
Z P-unadjusted P-adjusted (BH)
-2.616 0.00889 0.0133
0.0707 0.944 0.944
2.687 0.00721 0.0216
-5.2118 1.871e-07 5.612e-07
-2.735 6.240e-03 9.360e-03
2.477 1.325e-02 1.325e-02
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Dunn’s (nonparametric) tests for both diversity metrics (Shannon’s diversity index and ACE)
indicated varied results depending on the reference database used (Tables 1B and 2B). Of note,
the museum specimens were significantly different among all pairwise comparisons examined for
both Shannon’s diversity index and ACE (Benjamini-Hochberg-adjusted p<0.05; o, = 0.05). Pair-
wise comparisons between fresh specimen methods varied. The shotgun metagenomic (Rep200)-
16S rRNA gene (fresh) comparison was significantly different for both diversity metrics whereas
the shotgun metagenomic (WoL)-16S rRNA gene (fresh) comparison was not significantly differ-
ent (p>0.05; o = 0.05) for both diversity metrics. The between shotgun metagenomic compari-
sons of WoL and Rep200 (fresh) were not significantly different for ACE (p = 0.232, o = 0.05), but
were significantly different for Shannon’s diversity (p = 0.0216, o. = 0.05). The respective alpha
diversity boxplots qualitatively compare the shotgun metagenomic sequencing data classified with
the Rep200 database, shotgun metagenomic sequencing data classified with the WoL database,
and 16S rRNA gene sequencing results classified with Greengenes (Fig 1A-1D).

Mantel tests and procrustes analysis

Mantel tests and Procrustes analysis of fresh and museum-preserved specimens indicated no
statistically significant correlations (i.e. there are differences between methods) between 16S
rRNA gene (Greengenes) and shotgun metagenomic sequencing (both Rep200 and WolL)
methods. Specifically, Mantel test Spearman’s correlations (p) ranged from 0.139-0.358 (per-
mutations = 999 for all comparisons) and associated p-values for all comparisons ranged from
0.158-0.711 (16S-Shotgun (WoL) comparison in Fig 2A and 2B; 16S-Shotgun (Rep200) com-
parison in S4A and S4B Fig). These results indicated no significant differences in Jaccard
matrix distance correlations between 16S rRNA gene and shotgun metagenomic sequencing
among the tested pairwise comparisons.

Additionally, Procrustes analysis (16S-Shotgun (WoL) comparison in Fig 3A and 3B;
16S-Shotgun (Rep200) comparison in S5A and S5B Fig) indicated significant differences
between 16S and shotgun metagenomic results for museum but not fresh specimens. For fresh
specimens both the 16S rRNA gene-WoL and 16S rRNA gene-Rep200 comparisons were not
significant (p>0.05; o. = 0.05). For museum specimens both the 165 rRNA gene-WoL and 16S
rRNA gene-Rep200 comparisons were significantly different (p = 0.019 (of true M?), p = 0.007
(of true M?), respectively; o. = 0.05). However, the 165 rRNA gene-WoL and 16S rRNA gene-
Rep200 comparisons also had high M? values that could be interpreted as diminishing the sig-
nificance of these results (True M* = 0.520, True M? = 0.481, respectively), as low M? values
are generally needed to corroborate significant p-values. For the purposes of this study, they
are interpreted as significant in the context of other statistical results presented.

Taxonomic profiling

Taxa abundance bar plots indicated qualitative differences in taxa prediction between sequenc-
ing method (16S/Greengenes, shotgun/WoL, and shotgun/rep200) and specimen type
(museum and fresh specimens of R. pipiens). These qualitative differences indicated a general
trend towards predictive divergence with increasing taxonomic resolution.

When examining Phyla-level resolution, all sequencing methods (16S/Greengenes, shot-
gun/WoL, and shotgun/rep200) had substantial overlap in their taxonomic predictions, with
the Phyla Proteobacteria (Pseudomonodata), Actinobacteria, and Firmicutes being overrepre-
sented as compared to other Phyla (S6 Fig). This trend was generally exhibited for both fresh
specimens and museum specimens.

Changing the taxonomic classification to Genus-level resolution indicated wider discrepan-
cies between sequencing methods and the fresh versus museum specimen comparison, broadly
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Fig 1. Boxplots of samples (n = 18) of the Shannon entropies for the different reference procedures from (A) museum specimens (n = 13) and (B) fresh
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is the default setting, calculated as min(max(x), Q_3 + 1.5 * IQR) and the bounds of the lower whisker is max(min(x), Q_1-1.5 * IQR).

https://doi.org/10.1371/journal.pone.0291540.9001

visualized in the method-specific heatmaps (Figs 4 and S7). More specifically, 16S rRNA gene
sequencing showed three Genera dominating the total community abundance in the museum
specimens, whereas fresh specimens had more unique moderately represented Genera (16S
and Shotgun (WoL) given in Fig 5A and 5B). This trend also held with shotgun metagenomic
sequencing when comparing museum and fresh specimens with the Rep200 database (S6 Fig).
The WoL database also showed few dominating Genera for both the fresh and museum speci-
mens (Fig 5B), although these were classified differently, with Acinetobacter highly represented
among the fresh specimens and Pseudomonas and Enterobacter highly represented among the
museum specimen communities. Pseudomonas, Enterobacter, Acinetobacter, and Pantoea
were however predicted as top ten Genera among all of the sequencing/analysis methods (Figs
4,5, 56 and S7). Additionally, both shotgun metagenomic (WoL) and 16S rRNA gene sequenc-
ing methods exhibited concurrent sensitivity to a high prevalence of Rickettsiella in specimen
22967, which is an outlier from the other museum specimens.
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Fig 2. Mantel tests of Jaccard distance matrices from shotgun metagenomic sequencing data (WoL databases) and 16S rRNA gene sequencing data
(Greengenes database). Fresh specimens are compared in Panel A and museum specimens are compared in panel B. (A) Spearman’s rho = 0.139, p-
value = 0.711. (B) Spearman’s rho = 0.274, p-value = 0.243.

https://doi.org/10.1371/journal.pone.0291540.9002

In addition to bacterial predictions, all databases used had Archaea present which was well
represented among samples examined by both 16S rRNA gene and shotgun metagenomic
sequencing, and also among both fresh and museum specimens. The presence of Euryarch-
aeota was confirmed from both the WoL and rep200 comparisons of the shotgun metage-
nomic sequencing data, which is in agreement with previously described amphibian samples
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Fig 3. Procrustes analysis with Jaccard distance-matrix derived principal coordinates. The comparisons given are between: (A) Fresh specimen shotgun
metagenomic sequencing (WoL database) and 16S rRNA gene sequencing (Greengenes database) with a true M? = 0.0498; p-value (of true M?) = 0.475. (B)
Museum-derived specimen shotgun metagenomic sequencing (WoL database) and 16S rRNA gene sequencing (Greengenes database). True M* = 0.520; p-
value (of true M?) = 0.019. A total of n = 999 Monte Carlo simulations was used for all comparisons.

https://doi.org/10.1371/journal.pone.0291540.9003
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Fig 4. Heatmap of the ten (n = 10) most highly represented Genera (of combined fresh and museum specimens)
using (A) 16S rRNA gene and (B) Shotgun metagenomic (WoL). Each row totals 100% (row normalized) with dark
red approaching 100% and light yellow approaching 0%. For squares with <0.25%, 0 is assumed for purposes of
visualization and normalization. For Genus-level groupings not having a single known ID, the next highest known
taxonomic level is given. Specimen ID is given for each column in addition to specimen type: F (fresh) or M
(museum).

https://doi.org/10.1371/journal.pone.0291540.9004
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https://doi.org/10.1371/journal.pone.0291540.9005

[35] and possibly ubiquitous among amphibians. Other Phylum-level Archaeal identification
included Crenarchaeota, of which there was agreement on presence in the top ten most abun-
dant Phyla between 16S rRNA gene (Greengenes) and shotgun metagenomic (WoL), with
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presence also confirmed in one sample by shotgun sequencing with Rep200 (although not in
the top ten most represented). Genus-level taxonomic identification varied more considerably
among sequencing methods and databases. Results other than Bacteria and Archaea were also
produced by the shotgun metagenomics data categorized with Rep200 database. These results
included limited classification of viruses, Protists, and Fungi (see Data Accessibility).

Discussion

In this study, we examined differences in 16S rRNA gene and shotgun metagenomic sequenc-
ing derived nucleic acid datasets from freshly sampled and preserved museum specimens,
hypothesizing that there would be differences between sequencing methods and between spec-
imen type (museum or fresh). We confirmed our hypotheses by finding differences in diversity
metrics and taxonomic predictions between 165 rRNA gene and shotgun metagenomic
sequencing methods in both fresh and museum specimens, but with more pronounced differ-
ences in museum specimens. Alpha and beta diversity metric predictions and related statistical
tests also exhibited some overlap between 16S rRNA gene and shotgun metagenomic sequenc-
ing methods in museum and fresh specimens among highly represented taxa.

Alpha diversity metrics differed significantly depending on the reference methods used,
with museum specimens exhibiting significant differences between 16S rRNA gene and shot-
gun metagenomic sequencing (WoL and Rep200) for both diversity metrics (Shannon and
ACE). Significant differences among fresh specimens were neither uniform nor as pronounced
as museum specimens, and depended on the comparison being made and diversity metric
chosen. The lack of significant alpha diversity differences seen in the shotgun metagenomic
(WoL)-16S rRNA gene (fresh) comparison indicate that comparisons of gut microbiome data-
sets using differing sequencing methods are at times appropriate. This was corroborated in the
case where specimen 22967 was flagged for high Rickettsial abundance, which may indicate a
high infection rate at capture. However this was not seen for the Rep200 database indicating
possible database-dependent sensitivity. Generally, this finding does not hold for the museum-
derived microbiome samples. Mantel tests and Procrustes analysis of Jaccard distance matrices
and derived PCoA results also indicate technical significance in the data generated by the com-
pared methods. Specifically, Mantel tests showed no significant correlations among compared
distances matrices, indicating differences between 16S rRNA gene and shotgun metagenomic
methods for both fresh and museum-derived samples. Procrustes analysis also indicates signif-
icant differences among method for the museum specimens, but not for the fresh specimens.

In this study, the comparison of 16S rRNA gene and shotgun metagenomic derived data
presented challenges for equitable comparison. A major consideration was in deciding which
diversity metrics and reference databases to use for taxonomic comparison of the different
datasets, specifically in referenced sequence abundance. To account for differences in abun-
dance calculations of shotgun metagenomic and 16S rRNA gene sequencing, the Jaccard index
of dissimilarity was used for efficacy of comparisons between sequencing strategies. This
allowed taxonomic presence/absence determination between both strategies, as compared to
abundance-linked diversity determinations (e.g. evenness in Shannon index). Abundance
based diversity comparisons require correction or normalization procedures that are highly
non-trivial when sourcing data or reference standards, and were outside of the scope of this
study yet of interest for future work. The difficulty for correction or normalization arises due
to copy numbers of sequences from 16S V4 sequences and those of taxonomically linked geno-
mic regions represented in shotgun metagenomic sequencing data having uncorrelated or sto-
chastic relationships. Where these abundance differences occur (and thus downstream

«

diversity predictions), both methods would still be represented as either “present” or “absent”
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for the referenced taxa using the Jaccard index of dissimilarity, regardless of abundance. The
one caveat to this are those taxa that are only present in one method and not the other, which
represents a quantifiable difference in the scheme utilized and presented in this study as
results. For the purposes of this study, we therefore constrained our beta diversity comparisons
to the Jaccard’s index of dissimilarity as a diversity measure.

Similar considerations for taxa under-representation due to the degraded nature of
museum-sourced nucleic acid datasets were made for the chosen alpha diversity metrics. Spe-
cifically, the ACE index was used which is designed to account for low abundance or under-
representation applications. This was in addition to the commonly used Shannon’s diversity
index, which showed differences from ACE in a subset of comparisons and was thus indicative
of the importance of alpha diversity metric choice when using degraded nucleic acids (such as
those from fluid-preserved museum specimens).

The results of this study represent the first comparison of museum-derived microbiome
data with two commonly used sequencing strategies for such analysis: targeted 16S rRNA gene
sequencing and medium-depth shotgun metagenomic sequencing. Multiple reference data-
base and analysis procedures were also compared and represent those commonly used in
microbiome studies. As this was only a preliminary analysis of differences between sequencing
types in museum specimen microbiomes, future work should aim to include samples from dif-
ferent Chordate groups (e.g. fish) which may vary in their preservation methods and subse-
quently have different results than those for amphibians. Future studies should also aim to
understand degradation effects on different parts of the genome. Areas targeted by 16S rRNA
gene sequencing may be more or less susceptible to formalin fixation or alcohol shearing as
compared to shotgun sequencing. If such an effect were found and quantified, it may vary by
species, but nonetheless be susceptible to corrective procedures in quality control and process-
ing for improved comparisons between sequencing strategies. As sequencing technologies
change and allow greater depth and lower costs, comparisons such as this should continue to
ensure inter-method comparisons are justified and that the best methods are used. For those
research questions that are focused on microbial community ecology and evolution spanning
host-associated microorganisms outside of Bacteria and Archaea (i.e. 16S), shotgun metage-
nomic sequencing might be the preferred method due to the broad nucleic acid capture, and
recognition of taxa other than Bacteria and Archaea (as seen with the Rep200 database used in
this study generating limited results for viruses, fungi, and protozoa). Differences will also be
dependent on the database used for taxonomic reconstruction or any downstream functional
inference, such as the difference in represented taxa in the Rep200 (Archaea, Bacteria, Fungi,
Protozoa, and viruses), WoL (Bacteria and Archaea), and Greengenes (Bacteria and Archaea)
databases compared in this study. However, it is also important to make clear that the different
Domains of taxa represented does not necessarily mean significant differences in downstream
diversity comparisons, as was the case for the Rep200 ~-WoL fresh specimen comparison for
ACE diversity.

Taken together, these results indicate that sequencing method choice is an important con-
sideration when examining museum specimens—even more so than fresh specimens. These
differences are in general agreement with previous work examining 16S rRNA gene and shot-
gun metagenomic sequencing methods showing differences between these methods and the
commonly used downstream analysis pipelines [11,13,36]. The work presented here is there-
fore important in including museum specimens as a sample type that follows this broader
trend.

Differences in results between these two sequencing methods will also be important in
future efforts to systematically integrate molecular datasets with associated specimens in
museum repositories [37]. How interpretation of any such integration will occur should be
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thought about carefully due to implications including policy determination [38] and the trajec-
tory of future studies that will build upon results of initial museum-associated microbiome
studies.

Supporting information

S1 Fig. Examination of Kraken2 confidence threshold on reads classified for a subset of
samples. These data indicate a qualitative leveling-off at 0.8, which was subsequently used as a
conservative confidence threshold (high confidence) so as to avoid incorrect classification of
real microbial sequences as background data.

(TTF)

S2 Fig. Panels show the quality profile of reads corresponding to each sample analyzed
from 16S rRNA gene sequencing. Quality score is given on the Y-axis and cycle number cor-
responding to read length is given on the X-axis. Reads were trimmed to 100bp based on these
profiles, due to the quality decline for >100bp.

(TIF)

S3 Fig. Rarefaction curve (generated in Qiita) with box plots representing the distribution
of the Shannon alpha diversity metric for all samples combined (n = 18) at each even sam-
pling depth. The lower and upper whiskers of the box plot are the 9th and 91st percentiles of
the distribution (respectively), while the lower and upper extents of the box are the 25th and
75th percentiles of the distribution (respectively). The horizontal bar through the middle of
the box is the median of the distribution (i.e., the 50th percentile). Outlier points of these dis-
tributions are not shown. The line chart connects the median Shannon diversity value distri-
bution across the sampling depths. If a sampling depth is higher than the number of sequences
in a sample, that sample is not included in the rarefaction plot at that sampling depth.

(TIF)

S4 Fig. A-B. Mantel tests of Jaccard distance matrices from shotgun metagenomic sequencing
data (Rep200 databases) and 16S rRNA gene sequencing data (Greengenes database). Fresh
specimens are compared in Panel A and museum specimens are compared in panel B. (A)
Spearman’s rho = 0.358, p-value = 0.451. (B) Spearman’s rho = 0.314, P-value = 0.158.

(TIF)

S5 Fig. A-B. Procrustes analysis with Jaccard distance-matrix derived principal coordinates.
The comparisons given are between: (A) Fresh specimen shotgun metagenomic sequencing
(Rep200 database) and 16S rRNA gene sequencing (Greengenes database) with a true M* =
0.0482; p-value (of true M?) = 0.219. (B) Museum-derived shotgun metagenomic sequencing
(Rep200 database) and 16S rRNA gene sequencing (Greengenes database) with a true M* =
0.481; p-value (of true M?3) = 0.007.

(TIF)

S6 Fig. A-D. Abundance barplots. The top ten most commonly represented Phyla or Genera
given in the legend. For taxa-level groupings not having a single known ID, the next highest
known taxonomic level is given. Specimen ID is given for each column in addition to speci-
men type: F (fresh) or M (museum). (A) Abundance barplot of all specimen (n = 18) shotgun
metagenomic sequencing derived taxonomies based on the Rep200 database. The top ten most
commonly represented Genera are given in the legend. (B) Abundance barplot of all specimen
(n = 18) shotgun metagenomic sequencing derived taxonomies based on the WoL database.
The top ten most commonly represented Phyla are given in the legend. (C) Abundance barplot
of all specimen (n = 18) shotgun metagenomic sequencing derived taxonomies based on the
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Rep200 database. The top ten most commonly represented Phyla are given in the legend. (D)
Abundance barplot of all specimen (n = 18) 16S rRNA gene sequencing derived taxonomies
based on the Greengenes database. The top ten most commonly represented Phyla are given in
the legend.

(TIF)

S7 Fig. A-D. Heatmap of the ten (n = 10) most highly represented. (A) Phlya (of combined
fresh and museum specimens) using 16S rRNA gene (Greengenes) sequencing (B) Phlya (of
combined fresh and museum specimens) using Shotgun metagenomic (Rep200) sequencing
(C) Phlya (of combined fresh and museum specimens) using Shotgun metagenomic (WoL
sequencing (D) Genera (of combined fresh and museum specimens) using Shotgun metage-
nomic (Rep200) sequencing. Each row totals 100% (row normalized) with dark red approach-
ing 100% and light yellow approaching 0%. For squares with <0.25%, 0 is assumed for
purposes of visualization and normalization. For Phyla or Genus-level groupings not having a
single known ID, the next highest known taxonomic level is given. Specimen ID is given for
each column in addition to specimen type: F (fresh) or M (museum).

(TIF)

S1 Table. Shotgun metagenomic sequencing raw read (forward and reversed separated)
counts and stats generated from ‘seqfu count’.
(CSV)

$2 Table. Per sample read counts of the 16S rRNA gene sequencing data. Both raw counts
and DADA? filtered counts are given.
(CSV)

S1 File.
(CSV)
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