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Abstract

Sparse regression and feature extraction are the cornerstones of knowledge dis-
covery from massive data. Their goal is to discover interpretable and predictive
models that provide simple relationships among scientific variables. While the
statistical tools for model discovery are well established in the context of lin-
ear regression, their generalization to nonlinear regression in material modeling
is highly problem-specific and insufficiently understood. Here we explore the
potential of neural networks for automatic model discovery and induce sparsity
by a hybrid approach that combines two strategies: regularization and physical
constraints. We integrate the concept of L, regularization for subset selection
with constitutive neural networks that leverage our domain knowledge in kine-
matics and thermodynamics. We train our networks with both, synthetic and
real data, and perform several thousand discovery runs to infer common guide-
lines and trends: L, regularization or ridge regression is unsuitable for model
discovery; L, regularization or lasso promotes sparsity, but induces strong bias
that may aggressively change the results; only L, regularization allows us to
transparently fine-tune the trade-off between interpretability and predictability,
simplicity and accuracy, and bias and variance. With these insights, we demon-
strate that L, regularized constitutive neural networks can simultaneously dis-
cover both, interpretable models and physically meaningful parameters. We
anticipate that our findings will generalize to alternative discovery techniques
such as sparse and symbolic regression, and to other domains such as biology,
chemistry, or medicine. Our ability to automatically discover material models
from data could have tremendous applications in generative material design
and open new opportunities to manipulate matter, alter properties of existing

materials, and discover new materials with user-defined properties.
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1 | MOTIVATION

The ability to discover meaningful constitutive models from data would forever change how we understand, model,
and design new materials and structures. Massive advancements in data science are now bringing us closer than ever
towards this goal."> Throughout the past three years, numerous research groups have begun to harness the potential of
neural networks and fit constitutive models to experimental data,>'# an approach that is now widely known as consti-
tutive neural networks.'> While initial studies have used neural networks exclusively as black box regression operators,'®
recent approaches are increasingly recognizing their potential to discover not only the model parameters, but also the
model itself.!” The paradigm of automated model discovery was first formalized in the context of nonlinear dynami-
cal systems more than a decade ago to discover Lagrangians and Hamiltonians for oscillators,'® pendula, biological
processes,'® or turbulent fluid flows.?’ It is now rapidly gaining popularity in the context of constitutive modeling,!
and several promising techniques have emerged to decipher constitutive relations between stresses and strains,!! and
even integrate them automatically into a finite element analysis.?>"** These not only include constitutive neural net-
works,!> but also sparse regression,? genetic programming in the form of symbolic regression,?® and variational system
identification.?’

The holy grail in automated model discovery is to identify generalizable and truly interpretable models with physically
meaningful parameters.>?%?° Ideally, we want to discover a concise, yet simple and interpretable model with only a few
relevant terms that best explains experimental data, while remaining robust to outliers and noise. In terms of statistical
learning, this translates model discovery into a subset selection or feature extraction task. Subset selection and shrinkage
methods are by no means new; in fact, they have been extensively studied for many decades.3%-33 In the context of linear
regression, these methods have become standard textbook knowledge.3* In the context of nonlinear regression, when
analytical solutions are rare, subset selection is much more nuanced, general recommendations are difficult, and feature
extraction becomes highly problem-specific.>® To be clear, this limitation is not exclusively inherent to automated model
discovery with constitutive neural networks—it applies to distilling scientific knowledge from data in general.'® This
includes alternative model discovery approaches like sparse regression,?%2> or symbolic regression.!%2%36 The key question
to the success of discovering new knowledge from data is: how do we robustly discover the best interpretable model
with a small subset of relevant terms? And, probably equally importantly: What is the trade-off between interpretability
and prediction accuracy? To frame these questions more broadly, let us first revisit the notions of regression and neural
networks in the context of constitutive modeling:

Regression. Regression is a statistical method to examine the relationship between a dependent variable, in constitu-
tive modeling in solid mechanics the stress o, and one or more independent variables, in this case the strain g, using a
model that depends on a set of model parameters 6. Here regression has two main objectives: characterizing the form
and strength of the relationship between stress and strain to enable predictions, and providing insights into how stress
and strain are correlated.3* Popular types of regression are logistic regression, assuming for example a binary relationship;
linear regression,’” assuming a relationship that is linear in the model parameters 0, or nonlinear regression, assuming a
relationship that is nonlinear in the model parameters 6, as we do throughout this manuscript. Regression is the corner-
stone of statistical learning.> It provides tools to decipher relationships within data, but its application to constitutive
modeling requires attention to physical constraints including objectivity, symmetry, incompressibility, polyconvexity, or
thermodynamic consistency.3®** As a natural consequence, we cannot just use any set of functions to build our consti-
tutive model: while polynomial functions between stresses and strains associated with a linear regression would be ideal
from an optimization point of view, these models may violate thermodynamic constraints, which favor exponential or
power functions associated with a nonlinear regression.

Linear regression. Linear regression®’ seeks to model the relationship between a dependent variable, in our case the
stress o, and a set of one or more independent variables, in our case the set of strains ¢; at different load levels i, using a
function that depends linearly on the model parameter 6 = { E }, in this case the elastic modulus or Young’s modulus. The
regression estimates this parameter by minimizing the difference between the predicted stress, o; = E ¢;, for given strains
g; and stiffness E, and the experimentally measured stresses 6;, divided by the number of data points nga. A common
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measure for this difference is the mean squared error based on the L,-norm,** || (o) || = || (o) ||z = | (o)?|'/?, for which

the minimization problem becomes

ndala
1 n . .
L(E;e) = o E |Ee—6;i > = min ... estimate model parameter E. €Y
ata j—

When phrased as least square’s problems, provided linear regression problems have a convex objective function with
a unique global minimum. For our example (1), we can find it by evaluating the vanishing derivative, dL/0E =
Z:‘;’Taz.ei(Eei — 6;) = 0. Here, the minimization problem is not only linear in the model parameter E, but also in the
dependent variable £, and we obtain an explicit solution for the elastic modulus, E = Z?"“"“ei 6i/ Z?da““ei ;. For linear
regression with multiple model parameters 0, for which the minimization problem is a linear function in the dependent
variables &, we obtain a coupled system of equations, 0L/d0 = 0, with an explicit solution for the parameter vector 6. For
linear regression with one or multiple model parameters 6, for which the minimization problem is a nonlinear function
in the dependent variables £, we obtain a similar set of one or more equations dL/d@ = 0, which may require an iterative
solution for the parameter vector 0. Importantly, any regression that is linear in the model parameters 6—independent of
whether it is linear, polynomial, or generally nonlinear in the independent variables £;—is considered a linear regression
problem that, when phrased as a least square’s problem with appropriate data, results in a convex quadratic function in
the model parameters 6 with a unique global minimum.

Nonlinear regression. Nonlinear regression* seeks to model the relationship between a dependent variable, in our
case the Piola stress P, and a set of one or more independent variables, in our case the set of deformation gradients F;
at different load levels i, using a function that depends nonlinearly on a set of model parameters 0.*> The regression
estimates these parameters by minimizing the difference between the predicted stress, P(F;, 8), for given deformation
gradients F; and model parameters 6, and the experimentally measured stresses P;, divided by the number of data points
Mgata- Similar to linear regression, we can measure for this difference as the mean squared error based on the L,-norm,*

[[(o) || =1l(o) ]2 =(0)?|'?, for which the minimization problem becomes
1 Ngata
L(O;F) = ZH P(F,0)-P; ||> > mein ... estimate model parameters 6. 2)
data 3=

In general, nonlinear regression problems have a non-convex objective function with multiple local minima. Solving
non-convex optimization problems requires iterative algorithms that are at risk of converging to a local minimum instead
of the global minimum, and their solution is often highly sensitive to the initial conditions that we select for the parameter
vector. Depending on the nature of the problem, the solution we find may involve a large and dense parameter vector 0,
and overfitting may occur when the number of parameters is larger than the number of data points, fipara > Hdata. Notably,
even for many data points, we may face overfitting when the data are noisy or not rich enough to sufficiently activate all
the parameters. For example, with tension and compression tests alone, we cannot estimate model parameters for shear.

Sparse regression. Sparse regression is a special type of regression that seeks to prevent overfitting by inducing spar-
sity in the parameter vector @ by setting a large number of parameters to zero.3? Sparse regression is particularly useful
in high-dimensional settings, since it generates models with a small subset of non-zero parameters,* which tends to
make the model more interpretable.?® Historically, the need for sparse regression emerged prominently with the advent
of high-dimensional datasets for which the number of parameters can easily exceed the number of independent obser-
vations.*® A prominent example is SINDy, an algorithm for sparse identification in nonlinear dynamics that promotes
sparsity through sequential thresholded least-squares by iterating between a partial least-squares fit and a thresholding
step to sequentially drop the least relevant terms of a model.?’ Importantly, while these sparsification algorithms converge
well in linear regression associated with convex objective functions,*” their convergence is no longer guaranteed in non-
linear regression with non-convex objective functions. The advantages of sparse regression are improved interpretability
by reducing the parameter set to only a few non-zero terms; feature selection by identifying the most relevant terms; and
reduced risk of overfitting by promoting simpler models. These advantages come at a price: the disadvantages of sparse
regression are selection bias by enforcing sparsity of the parameter estimates; additional hyperparameters that need to be
tuned and require additional attention; and risk of misspecification by excluding relevant parameters if sparsity is enforced
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too aggressively. In conclusion, sparse regression offers a powerful toolset for high-dimensional modeling, but introduces
a trade-off between interpretability and prediction accuracy.

Neural networks. Neural networks are a class of models and algorithms that can approximate a wide range of func-
tions.* Their versatility not only makes them a powerful tool for classification, reinforcement learning, and generative
tasks, but also for regression problems,*® in our context, for regression in constitutive modeling.'® Neural networks consist
of input, hidden, and output layers with several nodes in each layer. Their parameters are the network weights 6 = {w;;},
where i =1, ... , niy is the number of hidden layers and j =1, ... , nyeq is the number of nodes per layer. During train-
ing, neural networks effectively perform a regression as they learn their parameters by minimizing a loss function L that
penalizes the error between model and data. Similar to the classical nonlinear regression in Equation (2), we can charac-
terize this error as the mean squared error, the L,-norm of the difference between the stress predicted by the model P(F;)
and the experimentally measured stress P;, divided by the number of data points nga, to train the model,

Ngata

ZH P(F;,0) — P; ||> > min ... learn network weights 6 = {w;;}. 3)
data =7

LO:F) = —

However, in contrast to traditional regression tools that have a fixed functional form, neural networks can easily adapt
their shape which allows them to model complex functions,’ either linear™ or nonlinear? in the model parameters 0. The
advantages of neural networks are their universal approximation that allows them to approximate any continuous func-
tion for a sufficiently large number of weights,*® and their inherent flexibility that allows them to model high-dimensional
nonlinear relationships like the constitutive behavior we seek to model here. Their disadvantages are their computa-
tional complexity, especially for densely connected architectures with multiple hidden layers; risk of overfitting sparse or
noisy data; and lack of interpretability that generally worsens with the number of layers and makes plain neural networks
unsuitable for model discovery tasks.

Sparse neural networks. Sparse neural networks use a special type of network architecture for which a large num-
ber of weights are zero. This reduces the number of active connections between the nodes of consecutive layers. Sparsity
can be induced during training by using special algorithms, or after training by pruning.>! The concepts of sparse neural
networks and weight or node pruning—inspired by brain development and synaptic pruning—have gained increas-
ing attention with the rise of deep learning and the need for computational efficiency.>® The advantages of sparse
neural networks are their computational efficiency and faster inference times; reduced risk of overfitting by promoting
smaller model sizes; and their potential for regularization and improved generalization. The disadvantages are increased
training complexity to induce sparsity; and risk of decreased performance through overly aggressive sparsification or
pruning.

The objective of this review is to explore neural networks for which sparsity is induced by a hybrid approach of two com-
bined strategies: regularization and physical constraints. Towards this goal, first, we review popular subset selection and
shrinkage methods to induce sparsity within the general framework of L, regularization in Section 2. Then, we discuss
how to leverage physical constraints to induce sparsity within the framework of constitutive neural networks in Section 3.
Finally, we propose a hybrid approach of L, regularized constitutive neural networks for automated model discovery and
discuss the interpretability and prediction accuracy of their discovered models by means of a library of illustrative exam-
ples in Section 4. We conclude by comparing the different approaches and providing guidelines and recommendations in
Section 5.

2 | L, REGULARIZATION

The concept of L, regularization or bridge regression was first introduced three decades ago in the context of chemomet-
rics with the goal to shrink the parameter space in chemical data analysis.>® The method has re-gained attention as a
powerful tool to promote sparsity in system identification,?® and, most recently, in discovering constitutive models from
data.?® L, regularization is a generalized regularization technique that uses the L, norm of the parameter vector 6, the sum
of the pth power of the norm of its i = 1, ... , npara coefficients w;, raised to the inverse power, || 0 ||, = [Z?z"f“l w; [P VP,
Bridge regression constrains the regression (2) by constraining this L, norm to be smaller than a non-negative
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constante > 0,
Ngata npara
L(6;F) = Z” P(F,0)-P; || > min  subjectto  [|O]fh= D |w [P <e. (4)
atai 1 i

It proves convenient to reformulate this constrained regression problem as a penalized regression problem, by penalizing
the regression (2) with a penalty term that consists of the L, norm || € ||, multiplied by a non-negative penalty parameter
a>0,

Ngata npara
LO:F) = LN I PFE.6)-P [P+al| 01~ min  with  [[0]5= |w . (5)
ata =7 i=1

The constrained and penalized regression problems (4) and (5) are equivalent, which implies that for a given ¢ > 0, there
exists an @ > 0 such that the two problems share the same solution 8.>3 The flexible power p not only allows us to recover
classical regularization techniques like L, or L; regularization as special cases, but also to interpolate smoothly between
these different methods.*® The advantages of L, regularization are its inherent flexibility by allowing for a continuum of
popular regularization techniques for varying powers p; and its potential to effectively promote sparsity. Its disadvantages
are the added complexity associated with the selection of hyperparameters, specifically the penalty parameter « and the
power p; and the potential computational challenges associated with specific choices for p. Figure 1 illustrates the contours
of the regularization term, for varying powers p as p = [0.25,0.5,0.75,1, 1.5, 2, 4, 8], evaluated for two parameters, w; and
w,. The top row illustrates the effect of powers smaller than or equal to one, p < 1; the bottom row illustrates the effect
powers larger than one, p > 1. In the following, we highlight the most popular special cases of L, regularization, their
history, and their advantages and disadvantages.

L, regularization or ridge regression. L, regularization, commonly known to as ridge regression, was introduced more
than half a century ago to address multicollinearity in regression analysis,>! and has gained attention for its ability to
stabilize parameter estimates, especially when the parameters are closely correlated.>* It uses the L, norm of a vector,
the Euclidian norm, the sum of the vector components squared, || 0 ||, = [ Z | w; | ]'/2. Notably, the L, norm does not
weigh all entries of the vector equally. Instead, it squares the vector entries Wthh makes it highly sensitive to outliers as
it penalizes the squared magnitude of the individual parameters w;. Ridge regression supplements the regression (2) with
a penalty term that consists of the L, norm multiplied by a penalty parameter «a,

Ndata npam
1 ] .
LO:F) = - DI PE.O - P[P +all 015 >min  with  |1015= 3w [ (6)
atai 1 ;.
Lp regularization
L025 I'075

OOCO

L1.5 L, A 4 LV La

FIGURE 1 L, regularization. Contours of regularization term, L, = « Z " 0 ||P with || @ | |p = | w; |P, for varying powers,

p =1[0.25,0.5,0.75,1,1.5, 2, 4, 8], evaluated for two parameters, w; and w,. For p < 1 top row, with the special case of L; regularization or
lasso represented through the pyramid, L, regularization promotes sparsity by setting some weights exactly to zero, but is no longer strictly
convex and can have multiple local minima. For p > 1, bottom row, with the special case of L, regularization or ridge regression represented
through the ellipsoid, L, regularization promotes stability by reducing outliers, while the regularization term remains convex.
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Its advantages are stability in multicollinearity by offering stable parameter estimates even in the presence of highly
correlated predictors; managing outliers and preventing overfitting by quadratically penalizing extreme coefficients; and
computational efficiency even for large datasets. Its disadvantages are introducing bias, which may result in underestimat-
ing certain coefficients and effects; and its inability to induce sparsity, which makes it unsuitable for our current focus of
subset selection. Figure 1 shows that, for the special case of L, regularization, the regularization term adopts a convex
ellipsoidal shape that promotes stability by reducing outliers.

L, regularization or lasso. L; regularization was initially introduced as a method to analyze seismograms in geophysics
almost four decades ago,?? and has become widely known under the name of lasso, short for least absolute shrinkage and
selection operator.®* Lasso has become popular for producing interpretable models,* while exhibiting the same stability
properties as ridge regression. It uses the L; norm of a vector, the sum of the absolute values of its components, || 0 ||; =
Z ™| w; |. Because of its similarities with a distance between city blocks, the L; norm is often referred to as the Manhattan
dlstance or taxicab norm. Notably, the L; norm weighs all entries of the vector equally and is therefore less sensitive to
outliers than the L, norm. Lasso supplements the regression (2) with a penalty term that consists of the L; norm multiplied
by a penalty parameter a,

Ngata pdrd
1 .
L(6; F) = || P(F.0)—P; |+ || 0|; >min  with [ 0] = Z | w |. (7
ndaai 1

Its advantages are enabling feature selection and inducing sparsity by reducing some weights exactly to zero which effec-
tively reduces model complexity and improves interpretability; mitigating overfitting by constraining the magnitude of
the weights, which is especially important when data are limited or high-dimensional; and providing predictive insights
by identifying the most relevant weights.3* Its disadvantages are introducing bias, which may result in underestimating
certain coefficients and effects; and focusing on selective effects while discarding others, especially in nuanced multi-effect
situations when the weights are closely correlated. Figure 1 shows that, for the special case of L, regularization, the reg-
ularization term adopts a non-strictly-convex pyramid shape that promotes sparsity by reducing some weights exactly to
Zero.

Ly, regularization or elastic net. L,/, regularization, also known as elastic net, is a hybrid approach that seeks to
combine the benefits of both L; and L, regularization.>* The elastic net supplements the regression (2) with two penalty
terms in terms of the L, and L; norms multiplied by two independent penalty parameters a, and a3,

Nyata npara npam
LO:F) = - N | PFE.6) - P [P +a || 0|2 +a || 0]l » min with [[0]2=Y [w | and [0l = Y [w].
ata j—p i=1 i=1

(®)
For a; = 0 and a; = 0, it recovers the classical ridge regression and lasso as special cases. For a; > 0 and a; > 0, Ly,
regularization shares many features with L, regularization with 1 < p < 2 and generates contours similar, but not identical
to Figure 1, bottom left. However, in contrast to L, regularization with 1 < p < 2301, /2 regularization not only promotes
stability, but also induces sparsity while remaining convex.>* Its disadvantage is its added computational complexity. Since
L1/, regularization is not a special case of the L, regularization family, we will not consider it further throughout this study.

Ly s regularization. L, regularization with powers 0 < p < 1 has become a popular tool in subset selection since it pro-
motes sparsity more aggressively than simple L, regularization. While L, norms are traditionally defined for powers larger
than one, p > 1, the concept of applying powers smaller than one, 0 < p < 1, was introduced more than three decades
ago in sparse regression of large systems.3’ Notably, for powers smaller than one, the penalty term becomes non-convex
and is no longer a norm in the classical sense. For the special case of p = 0.5, the penalty term uses the sum of the square
roots of the vector components, || 0 ||os = [ "‘"“\/W | 12, and we can easily see that this construct no longer satisfies
the triangle inequality. Ly 5 regularization supplements the regression (2) with a penalty term that consists of this term,
multiplied by a penalty parameter «,

Ngata para

ZHP(Fl,e) Pi|P+all 0]} >min  with |6 ]]¢3 wal ©)

data j

L(6;F) =
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The advantages of L s regularization, or more generally of L, regularization with powers smaller than one, are enhanced
sparsity potentially leading to more parsimonious models; and subset selection especially in high-dimensional datasets.>
Its disadvantages are its computational complexity induced by its non-convex nature; and its multiple local minima making
subset selection complex and non-unique. Figure 1 shows that, for the special cases of L 75, Lo 5, and L »5 regularization,
the regularization term adopts an increasingly non-convex shape and promotes sparsity by more aggressively setting
weights equal to zero.

L, regularization or subset selection. L, regularization, is a form of subset selection that imposes a penalty on the
number of non-zero parameters in a regression model. The origins of selecting a subset of relevant parameters date back
to early efforts in regression modeling with the objective to discover parsimonious models with enhanced interpretation
and prediction. However, formalizing this idea as an L, penalty method and connecting it rigorously to regularization
has emerged more prominently with the advent of high-dimensional datasets.3® The Ly norm is commonly referred to
as sparse norm and is not a norm in a strict mathematical sense. It refers to the pseudo-norm, || €|, = Z:lzplI (w; # 0),
where I(o) is the indicator function that is one if the condition inside the parenthesis is true and zero otherwise. As such,
the Ly norm counts the number of non-zero entries in a vector, which implies that this approach directly penalizes model
complexity in terms of predictor inclusion. Notably, the Ly norm is an explicit, discrete measure of sparsity. It is robust to
outliers since it only counts the number of non-zero elements in the parameter vector and does not express preference
for smaller or larger entries. Ly regularization supplements the regression (2) with a penalty term that consists of the Lo

norm, multiplied by a penalty parameter «,

Ngata npam
1 A . .
LO:P =Y I PE,0) =PI +all 0~ min  with 10 ll= 3w #0). (10)
ata j_p i=1

Its advantages are its conceptual simplicity by providing a direct mechanism for subset selection that directly penalizes
non-zero parameters; reduced overfitting by promoting fewer non-zero parameters, in particular when data are lim-
ited; and enhanced model interpretability by focusing only on the relevant terms. Its disadvantages are its computational
complexity that results from turning continuous model selection into an NP hard discrete combinatorial problem with
2" possible parameter combinations, making it computationally intractable for problems with large parameter sets; its
non-convexity induced by the L, penalty term that leads to optimization challenges related to several local minima; and
increased instability by discovering models for which slight changes in the data can result in an entirely different parame-
ter set. In the contour plot of Figure 1, L, regularization would correspond to two discrete planes along the two parameter
axes.

Predictability and interpretability. L, regularization is an intricate balance between predictability and interpretability:
For powers larger than one, p > 1, L, regularization can improve predictability, increase robustness, prevent overfitting,
and enhance generalization to new data by penalizing outliers and reducing extreme coefficients. For powers equal to
or smaller than one, p <1, L, regularization, can improve interpretability, promote simpler models, and identify the
most influential predictors by encouraging sparsity and forcing some coefficients exactly to zero. Taken together, L, reg-
ularization is a trade-off between interpretability and predictability, between simplicity and accuracy, and between bias
and variance. Two hyperparameters, the power p and the regularization strength a, allow us to fine-tuning of this bal-
ance. Throughout this manuscript, we will provide a library of systematic examples that illustrate the sensitivity of L,
regularization with respect to these two hyperparameters.

3 | NEURAL NETWORKS

In this study, we adopt the concept of neural networks to perform regression in constitutive modeling with the objective
to improve both predictability and interpretability. To demonstrate that our strategy generalizes to different types of neural
networks, we compare two constitutive neural networks that have recently become popular in the context of automated
model discovery.?>>° Both networks are sparse neural networks by design, where sparsity is inspired by the underlying
physics of hyperelasticity. In their input layer, they use characteristic features of the deformation gradient F to a priori
satisfy the kinematic constraint of material objectivity, and acknowledge a characteristic isotropic and incompressible
material behavior by satisfying the constraints of material symmetry and incompressibility.'> In their output layer, they
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learn a free energy function y from which they derive the nominal stress P to a priori satisfy the dissipation inequality and,
with it, thermodynamic consistency.'° In their hidden layers, both networks use a special set of custom-designed activation
functions to a priori satisfy physical constraints® and a particular network architecture to satisfy polyconvexity.>2

Invariant based and principal stretch based neural networks. We explore two types of neural networks that use
different types of activation functions to represent two different classes of constitutive models: invariant and principal
stretch based.>®>” Both networks are generalizations of popular constitutive models that include widely used hyperelas-
tic models as special cases.*®-%! They are interpretable by design and their weights translate into physically meaningful
parameters with physical units and a physical interpretation.!” Yet, there is a major difference between both models: the
invariant model uses different functional forms for each activation function and results in a nonlinear regression problem,
whereas the principal stretch model uses the same functional form with different but fixed exponents and results in a linear
regression problem. This has critical implications on the convexity of the objective function, and with it, on the nature of
the solution.

Data. We train our networks on both synthetic and real data from tension, compression, and shear tests. For the synthetic
data, we generate stretch stress pairs for fixed parameters through forward simulation. Specifically, we calculate stresses
over a wide range of tensile stretches, compressive stretches, and shear strains in ten equidistant increments, resulting in
three data sets with eleven stretch-stress pairs each. For the real data, we extract stretch stress pairs from our previously
published human brain experiments on 5 mm gray matter tissue cubes.®>* Specifically, we use the reported stresses aver-
aged over n = 15 tensile, n = 17 compressive, and n = 35 shear experiments, in sixteen equidistant increments, resulting
in three data sets with seventeen stretch-stress pairs each.?’ All data are available on our GitHub repository, https://github
.com/LivingMatterLab/CANN.

3.1 | Invariant based neural network

Invariant based constitutive neural networks take the deformation gradient F as input and predict the free energy function
y as output from which we calculate the stress P = oy /dF. From the deformation gradient, they extract a set of invariants,
in our example I and I, and feed them into its two hidden layers.?%%* The first layer generates the powers of the invariants,
in our example the first and second (o) and (0)?, and the second layer subjects these powers to specific functions, in our
example to the identity and exponential (o) and exp(o). The free energy function y is a sum of the resulting eight terms.
Figure 2 illustrates the invariant based constitutive neural network with the eight functional building blocks highlighted
in color, where the hot red colors relate to the first invariant and the cold blue colors to the second. During training,
the network autonomously discovers the best model, out of 28 =256 possible combinations of terms, and simultaneously
learns its model parameters @ = { w;; }. It minimizes the loss function (3), the difference between the stress predicted by

FIGURE 2 Invariant based neural network for automated model discovery. The network takes the deformation gradient F as
input and outputs the free energy function y from which we calculate the stress P = dy /JF. The network is invariant based, it first calculates
the invariants I; and I, and feeds them into its two hidden layers. The first layer generates the first and second powers (o) and (o)? of the
invariants and the second layer applies the identity and exponential function (o) and exp(o) to these powers. The free energy function y is a
function of the eight color-coded terms. During training, the network discovers the best model, of 28 = 256 possible combinations of terms, to
explain the experimental data P.
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the model P(F;, ) and the experimentally measured stress P, divided by the number of data points used for training n4ata,

Ngata
1 . .
L(6;F) = Z || P(F;,0) —P; ||> - min. (11)
Rdata {2

To ensure thermodynamic consistency, the network does not learn the stress directly,'® but rather derives it from the free
energy function.!® For our example in Figure 2, free energy function takes the following explicit representation,

w(h, L) =wyiwiy [I — 3] +wop[exp(wip[ —3] ) —1]
+ wyswi s [I; — 312 + wya[exp(wia[; —31%) — 1]

(12)
+ wyswys [I — 3] +wyg[exp(wig[lz —3] ) —1]
+ wyswi 7 [ — 312 + wyg[exp(wig[ L — 31%) — 1],
with the following derivatives with respect to the invariants I; and I,
d
aTw =W 1W11 + Wa Wiz exp( Wil — 3]) + 2 [I1 — 3][wa 3w 3 + Waawi 4 exp( W4l — 31%)]
1
(13)
0
% = Wy sWy 5 + WaeWy 6 €Xp( Wi g[lo — 3]) + 2 [ — 3][wy 7wy 7 + wygwi g exp( wyg[l — 313)].
2

Using the second law of thermodynamics, we can derive the Piola stress, P = dy /JF, as thermodynamically conjugate to
the deformation gradient F,>

0 0
P=_‘I/'%+_U/'%_ F, (14)
ol oF 0I, OF

where the term p F~* ensures perfect incompressibility in terms of the pressure p that we determine from the boundary
conditions. For the network free energy (12), the Piola stress is

P =] Wy 1Wi1 +Waowiy exp(wiy [I —3])

+ 2[ L =3 ][wyswis +waawia exp(wis [I; — 3]%)] 0L /0F (15)

+ [ WosWis +WoeWie exp(wie [I2 —3])
+ 2[ L =3 1[wyywi; +wyswig exp(wig [I —3]%)]0L/0F —p F".

Notably, the Piola stress of the invariant based network (15) is a nonlinear function in the network weights w;;, which
translates the loss function (11) into a nonlinear regression problem, with possibly multiple local minima. For this particu-
lar format, one of the first two weights of each row becomes redundant, and we can reduce the set of network parameters
to twelve, @ = [ (W1.1W21), W12, Wy 2, (W1 3W23), W1 4, W 4 (W1 5W) 5), W1 6, Wa 6, (W1 7W27), W1 g, Wo g ]. We train our invariant
based network with tension, compression, and shear data and rewrite the loss function (11) in terms of two contributions
that minimize the error between the normal and shear stresses predicted by the model, P1;(4;) and P1,(y;), and the data,
Pu,i and Pm, where n;; and ni, denote the different stretch and shear levels A and y,

ny Ny

1 A 1 A .
L(O: A.y) = — Y Il PuCh) = Prog P+ — 311 Pra(r) = Pray || — min. (16)
=] 1251

To explore the effect of scaling of the three individual stress terms, alternatively, we weigh all three experiments equally,
and also train the network by minimizing the error between the normalized tensile, compressive, and shear stresses
predicted by the model Py (4;), Peom(4i), and Py, (v;), and the data Pie i, Peom., and Pgpp;, normalized by the maximum

. . Amax amin amax .
recorded tensile, compressive, and shear stresses, Pie, , Peom, and Pgyy , Where Ren, Reom, and ngy, denote the different
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stretch and shear levels 4 and y,

Mien 2 n Aghr >

A N 2
1 Pien(Ai) — Pien,i 1 ~|| Peom(4i) — Peom,i 1 Psne (i) — P, .
L®: A.y) = S " —in — || T g || ~min. (A7)
ten j—) Pien com j_1 Peom shr 527 Pgnr

Below, we briefly derive the explicit analytical expressions for the Piola stresses P11 (4) in uniaxial tension and compression
and P, (y) in simple shear, such that the tensile stress is Py, = P13 for A > 1, the compressive stress is Poo, = P1; for 4 < 1,
and the shear stress is Ps,, = Py, for all y.

Uniaxial tension and compression. For the special case of uniaxial tension and compression in terms of the stretch 4,
with A; = 2and A, = A~%/? and A3 = 17'/2, the invariants take the following form,

11=/12+% and 12=2/1+% and ;=1. (18)

Using Equation (14) and the zero normal stress condition, P,, = P33 = 0, we obtain the following expression for the
uniaxial stress stretch relation,

dy 10y 1
pum2 |2 12¢] 1 1) 19
. [011 /1012] 2 (19)

which translates into the following explicit expression between our network stress P;; and the uniaxial stretch 4,

Pyy = 2[[wy 1wy 1 + waowp exp(wio[I — 3]) + 2 [I; — 3][wy 3wy 3 + Wy 4wy 4 exp(wiall; — 317)]

1 1 (20)
+ > [Wa,sw1 5 + Wagwy 6 €Xp(Wy6[1r — 3]) + 2 [I, — 3][wa 7wy 7 + wagwi g exp(ws s[1r — 3]%)]] [l - ﬁ] .

Simple shear. For the special case of simple shear, in terms of the shear y, with 4; = % [+y++vV 4+y?]and 4, =
% [ -y + 4/ 4+y?1and A; = 1, the invariants take the following form,

L=3+y? and L=3+y> and L =1. (21)

Using Equation (14), we obtain the following shear stress stretch relation,

Jdy Oy
Pp=2|—=+—|y, 22
12 [ oL, o Iz] 14 (22)
which translates into the following explicit expression between our network shear stress P;, and the shear strain y,
P1y =2 [waawi1 + waowyz exp( Wil — 3]) + 2 [I — 3][wa3wi 3 + Waawi 4 exp( w4l — 3]%) 23)

+ Wy sy 5 + Wy eWi 6 €Xp( W[l — 31) + 2 [Ir — 31[wa 7wy 7 + wagwy g exp( wyg[lr — 31%)] v .

Figure 3 illustrates the contours of the loss function L(6; 4, y) for all possible two-term models of the invariant based
network in Figure 2. By combining any two terms of the model and setting all other weights equal to zero, we can generate
28 possible models. For these 28 combinations of two terms, we evaluate two versions of the loss function, non-normalized
from Equation (16) and normalized from Equation (17), using the invariant based definitions of the normal stress (20) and
shear stress (23). First, we generate synthetic data, 1311,1- and 1312,1-, for tensile stretches of A = [1.0, ... ,2.0], compressive
stretches of A = [1.0, ... ,0.5], and shear strains of y = [0.0, ... ,0.5], in ten equidistant increments each, assuming an
exact solution with fixed weights of the first layer, w1 ; = w13 =wi s = w7 = 1.0and wy, = w14 = Wy 6 = Wy g = 0.25,and
a pair of non-zero weights of the second layer, w,; = 1 and w,; = 1, while fixing the remaining six weights of the second
layer equal to zero. This results in 28 training data sets of eleven stretch-stress pairs each, for tension, compression, and
shear. Second, we vary the two non-zero network weights in the ranges w; = [0, ... ,2] and w; = [0, ... ,2]. For each
pair of weights, we evaluate the normal and shear stresses P11(4;) and Py,(y;) using Equations (20) and (23), and extract
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FIGURE 3 Loss functions of invariant based neural network. Contours of the loss function L(0; 4, y) for all 28 possible two-term

models of the invariant based constitutive neural network in Figure 2. The loss function is evaluated across tensile stretches 4 = [1.0, ... ,2.0],
compressive stretches 4 = [1.0, ... ,0.5], and shear strains y = [0.0, ... ,0.5], with network weights in the ranges w; = [0, ... ,2] and
w; = [0, ... ,2]. The minimum of the loss function indicates the exact solution w; = 1 and w; = 1, represented through the white circle. The

lower triangle illustrates the non-normalized loss function (16), the upper triangle illustrates the normalized loss function (17). All loss
functions are convex, with contours varying from ellipsoids to valleys with long ridges, highlighting the collinearity of some w; and wj pairs.

the tensile, compressive, and shear stresses, Pien,(4), Peom,(4), and Py, (y). Third, we evaluate the non-normalized loss
function (16) as the mean squared error between the model stresses P1;(4;) and P;,(y;) and the synthetically generated
data stresses 131171- and 1512,1-, and plot its contours for each pair of weights w; and w; in the lower triangle. Next, we evaluate
the normalized loss function (17) as the normalized mean squared error between the model stresses Pien(4;), Peom(4:), and
Pane(7i), and the synthetically generated data stresses Pten,i, Pcom,i, and ?Shm-, and plot its contours for each pair of weights
w; and w; in the upper triangle.

Each loss function takes a minimum of L(6; 4, y) = 0 for the exact solution, w; = 1 and w; = 1, indicated through the white
circles. From this minimum, both versions of the loss function, non-normalized and normalized, increase with both,
decreasing and increasing weights w; and wj, and remain convex within the entire domain, for all 28 two-term models.
Yet, the contours of the loss function vary significantly for different pairs of weights w; and wj, indicating its sensitivity
with respect to the individual terms: some pairs of weights generate loss functions of ellipsoidal shape, for example, the
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{wa,ws }, {wy,wy }, { ws, we }, { we, w7 } pairs in the normalized upper triangle, suggesting that in the studied stretch and
shear range, these terms are non-collinear, and would represent a rich base for a potential constitutive model. Other pairs
of weights generate loss functions with long ridges parallel to the parameter axes, for example, the { w,, w7 }, { w,, ws },
{ we, w7 }, { we, wg } pairs in the non-normalized lower triangle, suggesting that these terms are almost collinear and not
well suited as an independent base for a constitutive model. On average, the normalized pairs in the upper triangle seem
to generate more convex loss functions than the non-normalized pairs in the lower triangle, suggesting that normalization
helps to generate more convex loss functions, a richer functional base, and a more robust solution overall. Notably, the
{ w1, ws } model in the first row and fifth column and the { ws, w; } model in the fifth row and first column combine the
linear terms in the first and second invariants, [I; — 3] and [ I, — 3], and represent the popular Mooney Rivlin model for
rubber-like materials.>®% Overall, this simple example only illustrates the 28 two-term models out of a total set of all 256
possible models, only considers a limited stretch and shear range 4 and y, and only screens a narrow window of parameter
ranges w;. Even within these limitations, the contours of loss functions are rather difficult to interpret, making it difficult
to comprehend the full potential of the entire network, even though it only consists of eight distinct terms.

3.2 | Principal stretch based neural network

Principal stretch based constitutive neural networks take the deformation gradient F as input and predict the free energy
function y as output from which we calculate the stress P = dy /dF. From the deformation gradient, they extract the
principal stretches, A1, A, and A3, and feed them into the hidden layer.>% The hidden layer applies eight different expo-
nents (A + 4] + 4] — 3) to these stretches. The free energy function y is a sum of the resulting eight terms. Figure 4
illustrates the principal stretch based constitutive neural network with the eight functional building blocks highlighted
in color, where the dark red and green terms are identical to the dark red and green terms of the invariant based network
in Figure 2, while the other six terms are different. During training, the network autonomously discovers the best model,
out of 28 = 256 possible combinations of terms, and simultaneously learns its model parameters @ = { w; }. It minimizes
the loss function (3), the difference between the stress predicted by the model P(F;, 6) and the experimentally measured
stress P;, divided by the number of data points used for training ngata,

Ngata

1 A .
2 || P(F..6) = Py ||* — min. (24)
i=1

data =

L(6;F) =

The free energy of the principal stretch based model takes the following explicit representation,’”%% y (A, A2, 43) =
Cemys [ A+ A+ AL — 3], where the individual weights w; = u;/a; correspond to the shear moduli y; divide e
1":91"“ [ 4] /1; A‘; 3], where the individual weight pond to the sh duli y; divided by th

exponents a;. For the eight-term model in Figure 4, we fix these exponents to « = [+2, +4, +6,+8,—-2,—4,—6 — 8 ], such

that the free energy becomes a sum of the following n, = 8 terms,

3
w(A1, A2, A3) = Zwl U;rz -1]1+w, [/1?4 —1]+w; [ﬂi+6 —1]+w, [/1:8 -1]

i=1 (25)
+ws[A72 =114+ we [A7* =11+ wy [47° =11 +wg [47° —1].
and its derivatives with respect to the principal stretches 4; takes the following form,
0
S = 2w 4w a6 wadt 4 8w =2 wsA — A wed = 6w — 8 wed”. (26)
i

Using the second law of thermodynamics, we can derive the Piola stress, P = oy /0F, as thermodynamically conjugate to
the deformation gradient F,>’

3
oy
P= Z}Tni ®N;,-pF, 27)
i=

i
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FIGURE 4 Principal stretch based neural network for automated model discovery. The network takes the deformation
gradient F as input and outputs the free energy function y from which we calculate the stress P = dy /dF. The network is principal stretch
based, it first calculates the principal stretches 4; and 4, and 43, and feeds them into its hidden layer. The hidden layer applies eight different
exponents (4] + 4; + 47 — 3) to these principal stretches. The free energy function v is a function of the eight color-coded terms. During
training, the network discovers the best model, of 2 = 256 possible combinations of terms, to explain the experimental data P.

where N; and n; = F - N; are the eigenvectors in the undeformed and deformed configurations, and the term p F~* ensures
perfect incompressibilty in terms of the pressure p that we determine from the boundary conditions. For the network free
energy (25), the Piola stress is

3
P= Z[zw1 (AT =11+ 4w, [A7° =11+ 6ws [A7° — 1]+ 8w, [477 — 1] 28)
i=1

—2ws[A47° =1]—4we [A7° —1]—6w;[477 —=1]—8ws [47° —1]]1m; @ N; — pF ",
parameterized in terms of eight network weights, 0 = [ wy, w,, w3, Wy, ws, g, w7, wg ]. Notably, the Piola stress of the prin-
cipal stretch based network (28) with fixed exponents is a linear function in the network weights w;, which translates the
loss function (24) into a linear regression problem, with a single unique global minimum.%” We train our principal stretch
based network with tension, compression, and shear data and rewrite the loss function (24) in terms of two contributions
that minimize the error between the tensile and compressive stresses predicted by the model P;;(4;) and the data Pu,,-,
and between the shear stresses predicted by the model P;,(y;) and the data 151231-, where we include data from n;; different
stretch levels A and ny, different shear levels y,

ny ny

1 A 1 A .
L(©: A.y) = — Y Il PuCh) = Prog P+ — 311 Pra(r) = Pray || — min. (29)
=1 12 4=1

For comparison, similar to the invariant based network in the Section 3.1, we also train the network by minimizing
the error between the normalized tensile, compressive, and shear stresses predicted by the model P, (4;), Peom(4i), and
Pg:(7:), and the data Pten,i, Pcom,i, and Pshr,i, normalized by the maximum recorded tensile, compressive, and shear stresses,

amax amin A max .
Pien , Peom, and Py , Where nyen, Neom, and ngy denote the different stretch and shear levels 4 and y,

Nien " 2 Neom 1 2 Ny " 2
Peen(A) — Pren, Peom(4) — Peom Pane (7)) — Pape
L(G; ﬂ,, 7/) _ 1 ten( Alr)nax ten,i 1 com( Azr)nin com,i 1 shr(VAlznaX shr,i in. (30)
Men 57 Pren Neom = Peom Mshr 137 Py

Below, we briefly derive the explicit analytical expressions for the Piola stresses P;11(4) in uniaxial tension and compression
and Pi,(y) in simple shear, such that the tensile stress is Pty = P17 for A > 1, the compressive stress is Poom = P13 for 4 < 1,
and the shear stress is Py, = Py, for all y.

Uniaxial tension and compression. For the special case of uniaxial tension and compression in terms of the stretch 4,
the principal stretches are

A=A and Ay = A71/2 and Ay = 1712, (31)
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Using Equation (27) and the zero normal stress condition, P,, = P33 = 0, we obtain the following expression for the
uniaxial stress stretch relation,

Mierm

1 _
Pi= - D wi [ A% = A7/, (32)
i=1

which translates into the following explicit expression between our network stress P;; and the uniaxial stretch A,

P, = %[m1 (A2 = 2 4w, [A* = 2721+ 6w [AT0 — A3+ 8w, [AT8 — 474

(33)
—2ws [A72 = AT = 4w [AH = AP ] — 6w, [A70 = AP = 8w [47% — AT]].
Simple shear. For the special case of simple shear, in terms of the shear y, we obtain the principal stretches,
+ /4 +y2 -y + V4 +y?
M= Y —y and A, = —7 r = i and A3 =1. (34)
2 2 M
Using Equation (27), we obtain the following expression for the shear stress stretch relation,
1 Rierm 1 1
Po=— Naw [ 4% — 7% ] with /1=—[ +\/4+2]=,1=—, 35
12 1+ 22 ;al i [ ] 5 14 Y 1 T (35)

which translates into the following explicit expression between our network shear stress Py, and shear strain y,

—— 2w (AP = A+ 4wy (AP = 2731+ 6ws [ATT =271+ 8w [470 — 477
1+ 4 (36)

—2Ws AT = AP 4w [A3 = AP —6w, [A2 = AT =8wg [477 = AP°]].

Py, =

Figure 5 illustrates the contours of the loss function L(6; 4, y) for all possible two-term models of the principal stretch
based network in Figure 4. By combining any two terms of the model and setting all other second-layer weights equal to
zero, we can generate 28 possible models. For these 28 combinations of two terms, we evaluate two versions of the loss
function, non-normalized from Equation (29) and normalized from Equation (30), following the method described in
Section 3.1, but now using the principal stretch based definitions of the normal stress (33) and shear stress (36). Similar
to Section 3.1, we plot the non-normalized loss function in the lower triangle and the normalized loss function in the
upper triangle. Again, by design, all loss functions take a minimum of L(6; 4, y) = 0 for the exact solution, w; = 1 and
w; = 1, indicated through the white circles. From this minimum, both versions of the loss function, non-normalized and
normalized, increase with both decreasing and increasing weights w; and w;, and remain convex within the entire domain,
for all 28 two-term models. Notably, in contrast to the loss function contours of the invariant based model in Figure 3, the
contours of the principal stretch based model in Figure 5 display less variation for different pairs of weights w; and wj:
Only a few pairs of weights generate loss functions of ellipsoidal shape, for example, the { ws, wg }, { ws, w; } pairs in the
non-normalized lower triangle, or the { w,, wg }, { w3, w7 }, { ws, wg } pairs in the normalized upper and non-normalized
lower triangles, suggesting that, in the studied stretch and shear range, only a few pairs of terms are non-collinear and
would represent a solid base for a potential constitutive model. Most pairs of weights generate loss functions with long
ridges parallel to the parameter axes, suggesting that many terms are almost collinear and not well suited as a functional
base for a constitutive model. In contrast to the invariant based network, normalization does not seem to fix this issue,
both the upper and lower triangle display this collinearity. Notably, the { w;, ws } model in the first row and fifth column
and the { ws, w; } model in the fifth row and first column combine the positive and negative second powers of the principal
stretches, [ 472 + 42?2 + 472 — 3 Jand [ 4% + 4;% + 45 — 3 ], and represent the popular Mooney Rivlin model,**“" which
is identical to the { w;, ws } and { ws, w; } models of the invariant based model in Figure 3. Overall, while these contours
are difficult to interpret, we can compare them directly to Figure 3 and realize that, within the studied stretch and shear
range A and y, and parameter window wj, the invariant based network seems to represent a much broader spectrum of
functions than the principal stretch based network for which the functional base seems to be generally more narrow and
almost collinear. We also note that the loss function is highly sensitive to normalization: For both networks, the normalized
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FIGURE 5 Loss functions of principal stretch based neural network. Contours of the loss function L(0; 4, y) for all 28 possible
two-term models of the principal stretch based constitutive neural network in Figure 4. The loss function is evaluated across tensile stretches
A=1[1.0, ... ,2.0], compressive stretches A = [1.0, ... ,0.5], and shear strains y = [0.0, ... , 0.5], with network weights in the ranges

w; = [0, ... ,2]and w; = [0, ... ,2]. The minimum of the loss function indicates the exact solution w; = 1 and w; = 1, represented through the
white circle. The lower triangle illustrates the non-normalized loss function (29), the upper triangle illustrates the normalized loss function
(30). All loss functions are convex, with contours varying from a few ellipsoids to many valleys with long ridges, highlighting the collinearity
of many w; and wj pairs.

loss functions (17) and (30) tend to generate more convex shapes than the non-normalized loss functions (16) and (29),
which is why we will focus on the maximum-stress normalized loss functions (17) and (30) in all following examples.

4 | L, REGULARIZED NEURAL NETWORKS

We now integrate the concepts of L, regularization from Section 2 and constitutive neural network modeling from
Section 3 and explore the resulting regression in view of predictability and interpretability. Specifically, we supplement
the loss function of the constitutive neural network with a penalty term of L, type,

Ndata npﬂm

DI PEF,0)-Pi|>+a || 65> min with |[6[}= ) |w " (37)
i=1

data ;= i=1

1

L(6; F) = "
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The loss function minimizes the error between the model stress that we derive from the free energy of the neural network,
P(F;;0) = oy /0F, and the experimentally measured stress Pi divided by the number of data points ng,,, penalized by
the L, norm, || 0 ||§ = Zln:pl‘ | w; |P, of the parameter vector @ = { w; } made up of the network weights w;, multiplied by
the penalty parameter a > 0. Specifically, we use tension, compression, and shear data and specify the stress error as
the normalized difference between the tensile, compressive, and shear stresses predicted by the neural network, P, (4;),

Peom(4i), and Pg,.(y;), and the data, Pten,i, Pcom,i, and Pshr,i, at Nien, Neom, and ngy, stretch and shear levels 4 and ¢,

n o 2 n a 2 n A 2
. 1 S Pten(/li) - Pten,i 1 ~ Pcom(/li) - Pcom,i 1 2 Pshr(yi) - Pshr,i p .
L(@,/l,)/)z—z ~mnax —in — — || T [ 9||p—>m1n.
Mten 137 Pten Mcom 337 Peom shr 137 Py

(38)
In the following, we systematically explore the sensitivity of the loss function (38) with respect to the two hyperparameters
of the L, regularization, the power p and the penalty parameter a. For illustrative purposes, we first focus on a simpli-
fied two-term model, the Mooney Rivlin model that is shared between both neural networks, before we explore both L,
regularized complete eight-term networks.

L, regularized Mooney Rivlin model. The Mooney Rivlin model*>* is a two-term constitutive model that is located
right at the intersection of the invariant based neural network in Figure 2 and the principal stretch based network in
Figure 4. Notably, it is the only model, for which both networks coincide. It uses the dark red term, [[; -3 ] =[ Afz +
A2+ 27? — 3], and the green term, [ ; — 2 ] = [ 4,2 + 4;% + 4;% — 3 ], of both neural networks, and weighs them by the
network weights, wy ; w,; = wy and wy s w, 5 = ws, while all other network weights are identical to zero,

w(li, L) =wiy way [ = 3] +wiswas [ — 3] and w(Ay, A2, A3) = wy [A7% + 4272 + 472 = 3]+ ws [A77 + 4,72 + 457 = 3],
(39)
This implies that the activation of any other weight will make the invariant and principal stretch based networks drift
away from one another. The Mooney Rivlin model in Equation (39) includes the one-term dark red Neo Hooke model®!
with [ I; =3 1 =[ A7* + A7* + A7? — 3 ] and the one-term green Blatz Ko model® with [ I; =2 ] = [ ;2 + 4,2 + A} — 3 ]
as special cases. For the Mooney Rivlin model, the L, regularized loss function from Equation (38) specifies to

Rien » 2 Reom > 2 Aghr > 2
1 Pren(Ai) — Pen;i 1 Peom(Ai) = Peom,i 1 Psne (i) — Psr,i .
L(W1,W5,ﬂ,)/)=n ~max n ~Amin Ngh 2 ~max +(Xp[1/l)llj+wls)]—>m1n,
ten j—1 ten cont j— com SAr j—1 shr
(40)

with the Mooney Rivlin stresses in tension, Py, = P;; for 4> 1, and compression, P.,, = P;; for 4 <1, from
Equations (20) and (33), and in shear, Pg,, = P;, for all y. from Equations (23) and (36),

P =2[A—=1/2*][w; +ws/A] and P =2y [wy +ws]. (41)

Notably, the uniaxial stress P;; and shear stress P;, of the Mooney Rivlin model (41) are linear functions in the network
weights w; and ws, which translates the neural network loss, >, ||[Pien(4:) = Pienil/PR| 1 /Aien + 25" | [[Peom(4i) —
Pcom,i] /PR 12 /pcom + Zl";“l‘ || [Pshr(A;) — Pshr,i] /P;‘}‘EXI |2/ nshr, of the loss function (40) into a linear regression problem, with
a single unique global minimum.

Figure 6 illustrates the contours of the L, regularized loss function L(w;, ws; 4,y) for the two-term Mooney Rivlin
model, with varying powers, p = [0.25,0.5,0.75,1, 1.5, 2, 4, 8], evaluated for the two parameters w; and ws, using synthetic
data from tension, compression, and shear tests. The loss function consists of the neural network loss, Zi":f ||[Pten(A;) —
Pten,i]/Pgsxl |2/nten + Z:I:Im | I[Pcom(ii) - Pcom,i]/Pg(l)ixrrlll |2/ncom + Z:/l:shlrl I[Pshr(/li) - Pshr,i]/P;l;liXI |2/nshry illustrated in the first
row and fifth column of Figures 3 and 5; supplemented by the L, regularization, a, [ | wy |P 4+ | ws |P ], illustrated in
Figure 1. For all eight graphs in Figure 6, we evaluate the loss function (40) using the Mooney Rivlin stresses (41).
First, we generate synthetic data, Pren, Poom, Psnr for tensile stretches of 4 =[1.0, ... ,2.0], compressive stretches of
A=1[1.0, ... ,0.5], and shear strains of y = [0.0, ... ,0.5], in ten equidistant increments each, assuming an exact solu-
tion with wy ; wo; = w; =1 and wy 5w, 5 = ws = 1, while fixing the remaining weights equal to zero. This results in the
training data sets of eleven stretch-stress pairs for tension, compression, and shear. Second, we vary the two Mooney
Rivlin network weights in the ranges w; = [0, ... ,2] and ws = [0, ... ,2], and evaluate the tensile, compressive, and

shear model stresses, Pien(4i); Peom(4i), Pshr(yi) using Equation (41). Third, we evaluate the loss function (40) as the
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Lp regularization - synthetic data

FIGURE 6 Loss functions of L, regularized Mooney Rivlin model for synthetic data. Contours of the L, regularized loss
function, L(wy, ws; 4, y), for the two-term Mooney Rivlin model with varying powers, p = [0.25,0.5,0.75,1, 1.5, 2,4, 8], evaluated for the two
parameters, w;, and ws, for synthetic data from tension, compression, and shear tests. For p < 1, top row, with the special case of L,
regularization or lasso in the fourth column, L, regularization promotes sparsity by training w; = 0 exactly to zero, but the loss function is no
longer strictly convex and has multiple local minima. For p > 1, bottom row, with the special case of L, regularization or ridge regression in
the second column, L, regularization promotes stability, retains both non-weights, w; > 0 and ws > 0, and maintains a convex loss function
with a single global minimum.

normalized mean squared error between the model stresses Pien(4i), Peom(4i), Pshr(y:) and the synthetically generated
data stresses Pien, Peom, Pshrs supplemented by the L, regularization a,, [ | wy |P + | ws |P ] for the eight different powers,
p =1[0.25,0.5,0.75,1,1.5,2,4, 8]. As these powers p increase by two orders of magnitude, fixing the second hyperpa-
rameter « to one and the same value for all eight examples would increasingly emphasize the L, regularization over
minimizing the actual network loss, and generate increasingly biased results. Instead, for each power p, we select the
penalty parameter « such that the maximum value of the loss function within the screened parameter window, in the
dark red upper right corner, at w; = 2 and ws = 2, consists of equal contributions by the network term and the regu-
larization term. This results in eight different penalty parameters, a = [ 4.69, 3.94,3.31,2,79,1.97,1, 39, 0.35,0.02 ]. For
each set of hyperparameters {p, a}, we increase the penalty parameter in four increments, indicated through the four
hyperplanes in each graph. Similar to the non-regularized loss functions of the invariant and principal stretch based
networks in Figures 3 and 5, we highlight the minimum of the last of these four loss functions L(w;, w;; 4,y) through
a white sphere. Importantly, in contrast to the non-regularized loss functions in Figures 3 and 5, the regularized loss
function in Figure 6 no longer has a minimum of L(0; 4,y) = 0 at w; = 1 and ws = 1. Instead, the minimum of the loss
function and its location in the {w;,ws}-space are now functions for the two hyperparameters p and a. For the eight
powers and penalty parameters we used in this example, the minima of the loss function at the location of the white
sphere become min(L) = [ 5.83, 5.56, 5.24,4.82, 3.25,2.22,0.57,0.04 ], and their varying locations in the {w;, ws }-space are
indicated through the white spheres in Figure 6.

Figure 6 reveals several interesting features of the L, regularized Mooney Rivlin model: most notably, the regularized
loss function is highly sensitive to the power p and varies significantly for p below and above one, as we conclude from
the different shapes in the first and second rows. For p <1, in the top row, with the special case of L, regularization
or lasso in the fourth column, L, regularization promotes sparsity by training one of the weights exactly to zero, in this
case ws = 0, while the other weight remains positive, w; > 0. Importantly, for p < 1, the loss function is no longer convex
and has two local minima, one at w; = 0 and one at ws = 0. Notably, for a too small power, for example, for p < 0.25,
we observe a drastic regularization with sharp-contoured gradients towards the parameter planes, and the model loses
robustness. For p > 1, in the bottom row, with the special case of L, regularization or ridge regression in the second
column, L, regularization promotes stability and retains both non-zero weights, w; > 0 and ws > 0. The loss function
remains convex with a single global minimum. Increasing the penalty parameter « amplifies these effects and moves the
regularized minimum further away from the non-regularized minimum. Taken together, while a regularization across a
continuous spectrum of powers p provides a lot of flexibility, the discovered weights w; and ws are highly sensitive to the
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selection of the two hyperparameters p and «: while the power p acts as a switch between sparsity and robustness, the
penalty parameter « induces a trade-off between regularization and bias.

Figure 7 illustrates the contours of the L, regularized loss function L(w;, ws; 4, ) for the two-term Mooney Rivlin
model, with varying powers, p = [0.25,0.5,0.75,1, 1.5, 2,4, 8], and penalty parameters, a = [0, 0.25,0.50,0.75,1, 2, 4, oo],
evaluated for the two parameters, w; and ws, using synthetic data from tension, compression, and shear tests. For all 64
contour plots, we evaluate the normalized loss function (40) following the method of Figure 6, but now by varying both
hyperparameters, p and a. Without regularization, left column, with « = 0, all eight contour plots are identical to the
non-regularized Mooney Rivlin loss function in the first row and fifth column of Figures 3 and 5. Its minimum is identical
to the exact solution, w; = 1 and ws = 1, represented through the white circles. With infinite regularization, right column,
with a = oo, all eight contour plots are a two-dimensional projection of the L, regularization contours in Figure 1. For
p <1, in the four top rows, with increasing a, from left to right, the loss function gradually loses strict convexity, the
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FIGURE 7 Loss functions of L, regularized Mooney Rivlin model for synthetic data. Contours of the L, regularized loss
function, L(wy, ws; 4, y), for the two-term Mooney Rivlin model with varying powers, p = [0.25,0.5,0.75,1,1.5, 2,4, 8], and penalty
parameters a = [0, 0.25,0.50,0.75,1, 2,4, 0], evaluated for the two parameters, w; and ws, for synthetic data from tension, compression, and
shear tests. Without regularization, left column, with « = 0, the minimum of the loss function is identical to the exact solution w; = 1 and
ws = 1, represented through the white circle. With infinite regularization, right column, with @ = co, the loss function is identical to the L,
regularization term and the contours are identical to Figure 1. For p < 1, with increasing «, the loss function gradually loses convexity, the
minimum first moves towards w; > 1 and ws = 0, and then towards w; — 0 and ws = 0. For p > 1, with increasing «, the loss function always
remains convex, both weights always remain active, w; > 0 and ws > 0, as the minimum moves gradually towards w; — 0 and ws — 0.
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minimum first moves towards w; > 1 and ws = 0, and then towards w; — 0 and ws = 0. For p > 1, in the four bottom
rows, with increasing a, from left to right, the loss function always remains convex, both weights always remain active,
w; > 0 and ws > 0, and move closer together as the minimum gradually moves towards zero, w; — 0 and ws — 0.

Figure 7 confirms our observations from Figure 6 and provides additional insights into the L, regularized Mooney
Rivlin model: the regularized loss function is highly sensitive to both hyperparameters, p and a. Decreasing the power to
or below one, p < 1, increases interpretability by promoting sparsity as a subset of weights become exactly zero; smaller
powers p and larger penalty parameters a promote sparsity more drastically and generate increasingly less convex loss
functions. Increasing the power above one, p > 1, increases predictability by promoting robustness as the loss function
becomes increasingly convex; larger powers p and larger penalty parameters @ promote robustness more drastically and
generate increasingly more convex loss functions. These observations confirm the general notion that L, regularization
is an intricate balance between predictability and interpretability and between regularization and bias that requires a
careful selection of the appropriate values for the hyperparameters p and a.

Figure 8 illustrates the contours of the L, regularized loss function L(w;, ws; 4,y) for the two-term Mooney Rivlin
model, with varying powers p, evaluated for the two parameters w; and ws, but now using real data from tension, com-
pression, and shear tests of human brain.®? For all eight graphs, we evaluate the loss function (40) as the normalized
mean squared error between the model Pien(4;), Peom(4i), Psnr(7:i), and the data Pren, Peom, Penr, for tensile stretches of
A=11.0, ... ,1.1], compressive stretches of A = [0.9, ... ,1.0], and shear strains of y = [0.0, ... ,0.2], in 16 equidistant
increments each,? for varying Mooney Rivlin network weights in the ranges w; = [0, ... ,1] and ws = [0, ... ,1], and
apply L, regularization, a,, [ | w; [P + | ws |P ], for eight different powers, p = [0.25,0.5,0.75,1,1.5,2,4, 8]. We select a
penalty parameter a™* = 0.6585, such that the maximum value of the loss function within the screened parameter win-
dow, in the dark red upper right corner, at w; =1 and ws = 1, consists of equal contributions by the network term
and the regularization term. For each set of hyperparameters {p, a}, we increase the penalty parameter in four incre-
ments, « = [0.00,0.25,0.50, 1.00]a™®*, indicated through the four hyperplanes in each graph, and highlight the minimum
of the last of these four loss functions L(w;, wj; 4, y) through a white sphere. Similar to Figure 6 based on synthetic
data, the minimum of the loss function and its location in the {w;, ws}-space are functions for the two hyperparame-
ters p and a. For the plain non-regularized loss function, the minimum of the loss function is 0.0713 and its weights
are w; = 0.00 and ws = 0.84. For the eight powers, the minima of the loss function at the location of the white sphere
are min(L) = [0.67,0.63,0.56,0.50,0.34,0.24,0.11,0.08 ], and their varying locations in the {wy, ws}-space are indicated
through the white spheres in Figure 8.

Lp regularization - real data

FIGURE 8 Loss functions of L, regularized Mooney Rivlin model for real data. Contours of the L, regularized loss function,
L(wy, ws; 4, y), for the two-term Mooney Rivlin model with varying powers, p = [0.25,0.5,0.75,1, 1.5, 2, 4, 8], evaluated for the two
parameters, w; and ws, for real data from tension, compression, and shear tests of human brain. For p < 1, top row, with the special case of L;
regularization or lasso in the fourth column, L, regularization promotes sparsity by training w; = 0 exactly to zero, but the loss function is no
longer strictly convex and has multiple local minima. For p > 1, bottom row, with the special case of L, regularization or ridge regression in
the second column, L, regularization promotes stability, retains both non-weights, w; > 0 and ws > 0, and maintains a convex loss function
with a single global minimum.
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Figure 8 reveals several interesting differences between the loss function for synthetic data in Figure 6 and for real
data, in this case from human brain experiments, in Figure 8. Most importantly, for the synthetic data, we assumed an
exact minimum at w; = 1 and ws = 1, where the loss function is exactly zero for the non-L,-regularized model, and takes
the value of the regularization term « || 6 ||§ otherwise. For the real data, we no longer know a priori where the exact
minimum is and it is no longer exactly zero, since the Mooney Rivlin model is not exact for the real data. From screening
the parameter plane, find the minimum loss at w; = 0.00 and ws = 0.84. Strikingly, this suggests that the one-parameter
Blatz Ko model®® with w = ws [ I, — 3 ]and P = ws I, /0P — p P~ is better suited to describe the experimental data than
the two-parameter Mooney Rivlin®>®® model. However, we can clearly see the negative effect of over-regularization with
too large penalty parameters a: for p < 1, in the top row, the minimum of the loss function remains on the w; = 0.00 axis,
but the Blatz Ko parameter is drastically reduced from its non-regularized value of ws = 0.84 to ws = 0.59, ws = 0.49, and
even ws = 0. For p > 1, in the bottom row, the minimum of the loss function even moves away from the w; = 0.00 axis,
and both parameters become activated at a similar magnitude between w; = [0.26, ... ,0.36] and ws = [0.27, ... ,0.47].
Taken together, the discovered weights w; and ws are highly sensitive to over-regularization for extreme ranges of the
hyperparameters p and a: extreme penalty parameters induce increased bias as the loss function increasingly focuses on
minimizing the penalty term rather than the regularization problem itself.

41 | Lpregularized invariant based neural network

Similar to the previous example, we explore the effects of L, regularization with respect to the two hyperparameters p
and a, but now for the full eight-term invariant based network,?’ instead of the two-term Mooney Rivlin model,>** and
for training on real instead of synthetic data. We use tension, compression, and shear data from human brain tests,®
over a tensile range of A = [1.0, ... ,1.1], a compressive range of A = [0.9, ... ,1.0], and a shear range of y = [0.0, ... ,0.2],
sampled in 16 equidistant increments each, averaged over anywhere between n = 15 and n = 35 specimen.? We train
the invariant based neural network from Figure 2 in Section 3.1 and minimize the loss function from Equation (38) with
the stress definitions (20) and (23) with three different powers, p = [0.5, 1.0, 2.0], and four different penalty parameters,
a = [0.000, 0.001, 0.010,0.100]. We use the Adam optimizer, a robust adaptive algorithm for stochastic gradient-based
first-order optimization.®®

Figure 9 summarizes our four discovered models in terms of the nominal stress as a function of stretch or shear strain,
with the penalty parameter a increasing from left to right. The circles represent the experimental data.®? The color-coded
regions represent the stress contributions of the eight model terms according to Figure 2. The coefficients of determination
R? quantify the goodness of fit. Overall, the L, regularized invariant based network trains solidly and provides a good
fit of the data. Without regularization, in the left column, the network discovers four non-zero terms, all in terms of the
second invariant, [ I, — 3], indicated through cold green-to-blue colors,

w=ws[L-31+wys[exp(wis[L=3D—-11+w;[L-31P+wyg[exp(wig[L-31)-1],

with stiffness-like parameters ws = 0.129 kPa, w, ¢ = 0.358 kPa, w; = 3.840kPa, and w, 3 = 1.406 kPa and exponential
weights, w16 = 1.152 and w; g = 2.891, and its stress takes the following form, P = [ws + wyew; 6 exp(wi6[ L — 3 1) +
2[ 1, — 3][w7 + wagw; g exp(wig[ I — 31%)]10L,/0F — pF'. As the penalty parameter increases, from left to right, the
number of non-zero terms decreases. With a penalty parameter a = 0.010, in the third column, the network discov-
ers three non-zero terms, all in terms of the second invariant, [I, — 3], indicated through cold green-to-light-blue
colors,

w=ws [L-3]+wy[exp(wis[L-3D-11+w;,[L-31
with stiffness-like parameters ws = 0.231 kPa, w, ¢ = 1.443kPa, and w; = 7.364 kPa, and the exponential weight, w; ¢ =
5.102, and its stress takes the following form, P = [ws + wagw; ¢ exp(wi6[ I, — 31) + 2[ I — 3 w7101, /0F — p F~*. For the

largest penalty parameter, in the right column, the network discovers a single non-zero term, the turquoise linear
exponential term of the second invariant,

v =wy[exp(wis[L—-3])—-1],
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FIGURE 9 Discovered models of L; regularized invariant based network. Nominal stress as a function of stretch or shear strain
for the invariant based neural network with L, regularization for varying penalty parameters a = [ 0.000,0.001, 0.010, 0.100 ], trained with
human gray matter tension, compression, and shear data. Circles represent the experimental data. Color-coded regions represent the
discovered model terms. Coefficients of determination R? indicate the goodness of fit.

with the stiffness-like parameter w,s = 0.2462kPa and the exponential weight w;c = 2.9937, and its stress takes
the following form, P = ws wy¢ exp( wig [ I, —3 1) 0I,/0F — p F'. While Figure 9 provides great visual insights
into the performance of L, regularization with varying penalty parameters, it only represents a snapshot of model discov-
ery in the eight-dimensional parameter space of the network. Subset selection and model discovery are not only sensitive
to the initialization of the parameter vector @ = { w; }, but also to the stochastic nature of the Adam optimizer. This
implies that different runs may produce different results. This raises the question how reproducible and robust the results
in Figure 9 are for varying initial conditions and training runs.

Figure 10 summarizes the discovered weights for the invariant based network with L, regularization for varying
powers p = [0.5,1.0,2.0] and penalty parameters a = [ 0.000, 0.001, 0.010, 0.100 ]. For all twelve combinations of the two
hyperparameters, we perform a total of n = 100 training runs each, with varying initial conditions for the network weights
w; = { wy, ... ,wg }, such that each of the four models in Figure 9 is the result of one of the L, regularized training runs
in the middle row. The colored boxes in Figure 10 indicate the relevance of the eight model terms, with their means
and standard deviations. Interestingly, the Ly s and Lo ; regularizations in the first and second rows perform qualitatively
similarly: they both start with four dominant terms, all in terms of the second invariant. Except for a small number of
outliers, they both converge to two dominant one-term models, the green [ I, — 3 ] and the turquoise exp([ I — 3 ]) mod-
els, while all other weights train to zero. The fact that both networks alternate between these two terms is a result of the
non-convex nature of the underlying nonlinear regression problem associated with the invariant based network and indi-
cates the existence of multiple local minima. Instead, the L, regularization in the bottom row converges to a model that
consistently trains the dark red [ I; — 3] and red exp([ I; — 3 ]) terms to zero, and maintains six non-zero terms, of which
the yellow exp([ I; — 3 ]?), turquoise exp([ I, — 3 1), and dark blue exp([ I, — 3 ]?) terms are dominant.

Figure 11 summarizes the convergence of the L, regularized invariant based network in terms of the
goodness of fit and number of terms, for varying powers p =[0.5,1.0,2.0] and penalty parameters a =
[ 0.000,0.001, 0.005,0.010, 0.015, 0.020, 0.040, 0.060, 0.080, 0.100 ]. Red dots indicate the coefficient of determination R?,
blue dots indicate the number of terms, with means and standard deviations from n = 10 realizations. A known short-
coming of the L, regularization is that it introduces bias and moves the solution away from the minimum of the network
loss towards the minimum of the regularization loss. This is particularly critical for our network in which all weights
have a different meaning and potentially also a different magnitude. To quantify the effects of this potential limitation,

Figure 11 compares the non-normalized regularization, || 0 | |§ = zlnj‘f" | w; |P, in terms of the weights w; that we have used
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FIGURE 10 Discovered models of L, regularized invariant based network. Distribution of discovered weights for the invariant
based neural network with L, regularization for varying powers p = [ 0.5, 1.0, 2.0] and penalty parameters « = [ 0.000, 0.001, 0.010, 0.100 ].
Colored boxes indicate the relevance of the eight model terms, with means and standard deviations from n = 100 realizations with varying
initializations of the network weights.

L1 - non-normalized L2 - non-normalized

LO.5 - non-normalized

8
“1\—‘—+—. . . _
v > o> A
90 ajuisly
0
LO.5 - normalized L1 - normalized L2 - normalized
8
\\»f.—.‘—.“,__—. k)w%:i:ﬁ:ﬁ -
v o> S
90 0§
0

0.0 penalty a [-]

FIGURE 11

0.1 0.0

penalty a [-] 0.1

0.0 penalty a [-] 0.1

based neural network with L, regularization for varying powers p = [0.5,1.0,2.0] and penalty parameters

a = [ 0.000,0.001, 0.005, 0.010,0.015, 0.020, 0.040, 0.060, 0.080, 0.100 ]. Top row uses a non-normalized regularization in terms of the weights
w;, bottom row uses a normalized regularization in terms of the L,-normalized weights w; / w;, . Red dots indicate the coefficient of

determination R?, blue dots indicate the number of terms, with means and standard deviations from n = 10 realizations.

Convergence of L, regularized invariant based network. Goodness of fit and number of terms for the invariant
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throughout this study against a normalized regularization, || 6 ||§ = Z:’:Tﬂwi /wir, |P, in terms of the Ly-normalized

weights w; / w;r . Here, w;; are the weights of the one-term models from the diagonal in Table 1.

Figure 11 confirms that regularization is a trade-off between error and complexity, or similarly, between the good-
ness of fit and the number of terms. While the Lys and L; regularizations behave qualitatively similarly and promote
sparsity by reducing the number of non-zero terms to one, the L, promotes robustness by maintaining a large subset
of six non-zero terms. The L; regularization is less aggressive than the L, s regularization and requires larger penalty
parameters « to achieve a similar sparseness, which could induce a larger bias, away from minimum of the network loss
towards the minimum of the regularization loss. Normalizing the L, penalty term by using the Ly-normalized weights
w; / wiy, instead of the non-normalized weights w; accelerates the positive effects of regularization, especially in the
small-penalty-parameter regime, and could provide a viable solution to reduce regularization-induced bias. Ultimately,
in the large-penalty-parameter regime, the non-normalized and normalized regularizations converge towards a similar
goodness of fit and number of terms.

Taken together, our results confirm the general notion that L, regularization increases interpretability for powers equal
to or below one, p < 1, by promoting sparsity as a subset of weights train exactly to zero; and increases predictability for
powers larger than one, p > 1, by promoting robustness as a unique subset of weights emerges as dominant. Larger penalty
parameters @ amplify these trends at the price of an increased bias, which we can reduce, at least in part, by normalizing
the network weights in the the penalty term.

L, regularized invariant based neural network. For comparison, we explore the effects of L, regularization using the
same tension, compression, and shear data from human brain tests as in the previous example.®> We train the invariant
based neural network from Figure 2 in Section 3.1 and minimize the loss function from Equation (38) with the stress
definitions (20) and (23), but now use a penalty term, « || 6 ||y, with the Ly norm || 0 ||, = Z:;"‘fal (w; # 0), to penalize
the total number of non-zero terms in the model. In essence, Ly regularization turns network training into a discrete
combinatorial problem with 28 —1=255 possible models, 8 with a single term, 28 with two, 56 with three, 70 with four,
56 with five, 28 with six, 8 with seven, and 1 with all eight terms. For illustrative purposes, we focus on the eight one-term
and 28 two-term models that follow by explicitly setting the other seven and six terms of the network to zero.

Table 1 summarizes the weights and remaining losses of the one- and two-term models of the L, regularized invariant
based neural network. The diagonal summarizes the discovered one-term models, the off-diagonal the two-term models.
The L, regularization penalizes the one-term models by @ and the two-term models by 2a. The boldface cells highlight the
four best-in-class models of each category. Figures 12 and 13 illustrate the stress-stretch and stress-shear plots of these four
one- and two-term models. Interestingly, all best-in-class models are models in terms of the second invariant I; indicated
through the cold green-to-blue colors. None of the eight best models includes the first invariant I; indicated through
the warm red-to-yellow colors. This finding contradicts the common practice of using primarily the first invariant, for
example, in popular and widely used neo Hooke model. Strikingly, the classical Hooke model®! represented through
the dark red term in both networks with w = w; [ I; — 3 ], a stiffness-like parameter w; = 0.7964 kPa, a shear modulus
# =2 w; =1.5928kPa, and a remaining loss of 0.0918 + « has the largest remaining loss and performs the worst of all
one-term models. Similarly, the Demiray model®® represented through the red term withy = w,, [ exp(wi, [ —3]) —
1], a stiffness-like parameter w,, = 0.7265kPa, an exponent w; ; = 1.0763, and a remaining loss of 0.0894 + «, and the
Holzapfel type model” represented through the yellow term with yw = wy4 [ exp(wy4 [ 1 —3 12 ) — 1 ], a stiffness-like
parameter w, 4 = 4.2436 kPa, an exponent w; 4 = 4.3048, and a remaining loss of 0.0863 + «, also perform worse than all
one-term second-invariant models. Yet, these results agree well with our previous observations that the second invariant
is better suited to represent the behavior of brain tissue than the first invariant.?® The best-in-class one-term model with
the lowest remaining loss is the model with the light blue quadratic term of the second invariant,

w=w[L-37,
with the stiffness-like parameter w; = 19.5994kPa for which the stress takes the following form, P=2[1, -
3 ] wy 0I,/0F — p F'. The best-in-class two-term model is the model with the turquoise linear exponential and the dark

blue quadratic exponential terms of the second invariant,

w=wye[exp(wig[L—-3D)—1]+wys[exp(wis[L-3])>-1],
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FIGURE 12

Discovered best-in-class one-term models of L, regularized invariant based network. Nominal stress as a

function of stretch or shear strain for the invariant based constitutive neural network with L, regularization, trained with human gray matter
tension, compression, and shear data. Circles represent the experimental data. Color-coded regions represent the discovered model terms.
Coefficients of determination R? indicate the goodness of fit for each individual test; remaining loss L indicates the quality of the overall fit.
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FIGURE 13
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Discovered best-in-class two-term models of L, regularized invariant based network. Nominal stress as a

function of stretch or shear strain for the invariant based constitutive neural network with L, regularization, trained with human gray matter

tension, compression, and shear data. Circles represent the experimental data. Color-coded regions represent the discovered model terms.

Coefficients of determination R? indicate the goodness of fit for each individual test; remaining loss L indicates the quality of the overall fit.
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with the stiffness-like parameters w, = 0.4835kPa and w,g = 3.2080kPa, and the exponential weights w;c =
0.8393 and w, g = 3.4273, for which the stress takes the following form, P=[ wps Wy exp(Wi [ L =31 +2[ L —
3] wyg wag exp(wig [ I, — 3 1)?] 0I,/0F — p F~'. For this simple example, the remaining loss of the best one-term model
is 0.0594 + o and the remaining loss of the best two-term model is 0.0328 + 2a. This implies that, for penalty parame-
ters a < 0.0266, the L, regularization would favor the two-term model, while for penalty parameters a > 0.0266, the Lo
regularization would favor the one-term model. These simple considerations highlight the importance of the penalty
parameter a, which explicitly acts as a discrete switch between the number of terms we want to include in our model.

Taken together, this example illustrates the discrete nature of the L, regularization as a discrete combinatorial problem
that becomes increasingly expensive as the number of model terms increases. Our results emphasize the sensitivity of the
L, regularization with respect to the penalty parameter « and highlight the trade-off between bias and variance: increasing
the penalty parameter increases bias, reduces variance, and decreases model complexity as the total number of non-zero
terms decreases towards one.

4.2 | Lpregularized principal stretch based neural network

Similar to the previous example, we explore the effects of L, regularization with respect to the two hyperparameters p
and a, but now for the full principal stretch based network with all eight terms,* for training on tension, compression,
and shear data from human brain tests.®? We train the principal based neural network from Figure 4 in Section 3.2 and
minimize the loss function from Equation (38) with the stress definitions (33) and (36) with three different powers, p =
[0.5,1.0,2.0], and four different penalty parameters, a = [0.000,0.001,0.010, 0.100] using the Adam optimizer.5

Figure 14 summarizes our four discovered models in terms of the nominal stress as a function of stretch or shear strain,
with the penalty parameter « increasing from left to right. The circles represent the experimental data.%? The color-coded
regions represent the stress contributions of the eight model terms according to Figure 4. The coefficients of determination
R? quantify the goodness of fit. Similar to the invariant based network in Section 4.1, the L, regularized principal stretch
based network trains solidly and provides a good fit of the data. Without regularization, in the left column, the network
discovers all eight non-zero terms. As the penalty parameter increases, from left to right, the number of non-zero terms
decreases. For the largest penalty parameter, in the right column, the network discovers a single dominant term, the dark
blue [ 47® -3 ] term,

with a stiffness-like parameter wg = 0.0534 kPa and a stress P = —8 wyg 2;3 [ /1;9 -1]nm;®N;—pF".

Figure 15 summarizes the discovered weights for the principal stretch based network with L, regularization for vary-
ing powers p = [0.5,1.0, 2.0] and penalty parameters a = [ 0.000,0.001, 0.010, 0.100 ]. For all twelve combinations of the
two hyperparameters, we perform a total of n = 100 training runs each, with varying initial conditions for the network
weightsw; = { wy, ... ,wsg },such that each of the four models in Figure 14 is the result of one of the L, regularized training
runs in the middle row. The colored boxes in Figure 15 indicate the relevance of the eight model terms, with their means
and standard deviations. In contrast to the invariant based network in Section 4.1, the principal stretch based network
consistently discovers similar terms across all three regularizations, with a clear preference for the dark blue [/11.‘8 —3]
term. The fact that all networks robustly discover similar terms is a result of the convex nature of the underlying linear
regression problem associated with the principal stretch based network and indicates the existence of a single unique
global minimum. However, the Ly 5 and L; regularized networks gradually drop more non-zero terms as the penalty param-
eter increases, while the L, regularized network maintains all eight terms. As we had already anticipated from comparing
Figures 3 and 5, the functional base of the principal stretch based network is more collinear than the base of the invariant
based network, which result in a more gradual shift of the active weights, from w; towards wg, as the penalty parameter
increases. The fact that all three regularizations converge to the boundary of our domain, the dark blue [ 1;8 —3]term
with the minimum exponent of minus eight, suggests that the true best fit might lay outside the current parameter range,
with even smaller exponents. This agrees well with previous studies®*%* that have discovered one-term Ogden models
with exponents of [A;'® — 3] and [4;" — 3].
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FIGURE 14 Discovered models of L, regularized principal stretch based network. Nominal stress as a function of stretch or
shear strain for the principal stretch based neural network with L, regularization for varying penalty parameters a« = [ 0,0.1,0.001, 0.0001 ],
trained with human gray matter tension, compression, and shear data. Circles represent the experimental data. Color-coded regions
represent the stress contributions of the eight model terms. Coefficients of determination R? indicate the goodness of fit.
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FIGURE 15 Discovered models of L, regularized principal stretch based network. Distribution of discovered weights for the
principal stretch based neural network with L, regularization for varying powers p = [0.5,1.0,2.0] and penalty parameters

a =[0.000,0.001, 0.010,0.100 ]. Colored boxes indicate the relevance of the eight model terms, with means and standard deviations from
n = 100 realizations with varying initializations of the network weights.
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Taken together, this example illustrates that model discovery with L, regularization generalizes well to different net-
work types, irrespective of whether the terms are invariant or principal stretch based. Comparing both network types
reveals that the method is sensitive to the nonlinear versus linear nature of the underlying regression problem: the non-
linear invariant based network alternates between different dominant terms associated with multiple local minima, while
the linear principal stretch based network consistently discovers similar terms associated with a single unique global
minimum.

5 | CONCLUSION AND RECOMMENDATIONS

L, regularization is a powerful technology to finetune the training process of a neural network. In automated model dis-
covery, it provides the critical missing piece of the puzzle that enables a controlled down-selection of the discovered terms
and focus on the most important features of the model while putting less emphasis on minor effects. By promoting spar-
sity of the parameter vector, L, regularization inherently improves interpretability and provides valuable insights into
the underlying nature of the data. Importantly, L, regularization introduces two hyperparameters: the power p by which
it penalizes the individual model parameters, and the penalty parameter « by which it scales the relative importance of
the regularization loss in comparison to the neural network loss. Both parameters enable a precise control of model dis-
covery from data and it is crucial to understand their mathematical subtleties, computational implications, and physical
effects. Here we reviewed the mathematics and computation of the most common representatives of the L, family, and
demonstrated their features in terms of two classes of constitutive neural networks, invariant and principal stretch based,
trained with both, synthetic and real data. Training with synthetic data proved to be robust and stable, and generally pro-
vides excellent metrics for quality control since we know the exact solution. However, it remains a toy problem that fails
to reveal the true usefulness in practical real-world applications. Training with real data was algorithmically robust, but
challenging, since we know nothing about the exact solution. Our study uses neural networks as a tool for linear and
nonlinear regression. We acknowledge that our results can be interpreted and well understood without resorting neural
networks and generalize naturally to other regression techniques including symbolic regression, genetic programming,
or system identification.

For conciseness, we have limited the scope of the present review: first, we only considered small networks with no more
than eight terms, but point out that the automated model discovery generalizes well to isotropic networks with 12 terms,?
transversely isotropic networks with 16 terms,* two-fiber family networks with 16 terms,'! and orthotropic networks with
32 terms. Second, we trained on all available data and did not investigate splitting the data into train and test sets, which
we have done in our previous work.?>>° Third, we did not explicitly study the effects of controlled noise, but point out that
Figures 8-15 are all based on real experimental data with real natural noise. Fourth, we did not further explore hybrid top
down approaches like SINDy,?° since the nonlinear nature of our optimization problem does not guarantee that we easily
find the global minimum,*’ from which we could initiate a sequential thresholded least squares down-selection; finally,
we have not yet investigated the effects of L, regularization on uncertainty quantification, something we are currently
exploring in a separate Bayesian approach.

We would like to share the most important lessons we have learnt throughout this study:

Normalize first! We cannot overstate the importance of normalizing. Clearly, while normalizing is less of an issue in lin-
ear regression, it is critical in nonlinear regression. This holds for both the training data, illustrated in Figures 3 and 5, and
the weights, illustrated in Figure 11. The loss function typically contains several terms of different magnitude that com-
pete during minimization. It proves important to normalize by the number of data sets in each category, the magnitude
of the tensile, compressive, and shear stresses, and the magnitude of the weights to balance the impact of the individual
contributions.

L, regularization is the most honest member of the L, family: L, regularization or subset selection is honest,
transparent, and unbiased. Its penalty parameter a acts as a direct switch to select the desired number of terms. It is the
only member of the L, family that explicitly controls the balance between the number of terms and the goodness of fit,
illustrated in Figure 11. While L, regularization across the entire network translates into an expensive NP hard discrete
combinatorial problem of the order of 2", we recommend to begin any discovery by running an L, regularization for all
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possible one- and two-term models to determine the best-in-class models of each category and identify the dominant
terms, similar to Figures 12 and 13 and Table 1. Importantly, in nonlinear regression, the best-in-class n-term model may
actually not be a subset of the best-in-class (n + 1)-term model, and successively removing terms like in iterative pruning>!
or sequential thresholding least squares?® might not be a viable solution. Instead, running L, regularization for all pos-
sible one- and two-term models provides a quick first insight into the nature and hierarchy of the best-in-class models.??
From this initial first glimpse, we can proceed by successively adding terms. In addition, from the best-in-class one-term

models, we can use the discovered weights w;r, to initialize the weights for higher order runs and to normalize the weights
in the regularization term, a || 0 ||§ = Zln" | wi/wir, |P.

L, regularization is powerful for subset selection, but needs large penalty parameters to be effective: L, regu-
larization or lasso promotes sparsity by reducing a large subset of parameters exactly to zero. Notably, for all the examples
in our study, this down-selection required quite large penalty parameters a—often on the order of one-to work effectively.
This not only affects the magnitude of the discovered parameters, but often also the discovered model itself. For example,
for @ = 0.1, the n = 100 independent realizations of the L; regularization in Figure 10 alternate between the green and
turquoise one-term models, while the unbiased plain L, regularization in Figure 12 and Table 1 ranks these two mod-
els clearly behind the blue and dark blue one-term models. To identify regularization-induced bias, we recommend to
always compare the results of the L, regularization against the best-in-class low-term models of the L, regularization.
This comparison is simple and inexpensive, and provides valuable insights into the magnitude of selection bias and the

aggressiveness of the L, regularization.

Ly s regularization promotes sparsity for small penalty parameters, but suffers from multiple local minima:
Ly s regularization addresses the shortcomings of the classical L; regularization by down-selecting more aggressively,
requiring smaller penalty parameters, and introducing less bias. While L, s regularization works well in practice, it is
computationally challenging. Its non-convexity introduces multiple local minima, indicated through the first rows in
Figures 6-8, and through the green and turquoise one-term models in Figure 10, and the blue and dark blue one-term
models in Figure 15. To avoid getting stuck in a local minimum, we highly recommend exploring different initialization
strategies for the network weights. Specifically, we were able to robustly identify multiple local minima by initializing
the weights with the L, regularized weights w;; . Alternatively, we could gradually ramp up the effect of regularization
by starting with a penalty parameter « = 0 and smoothly increase it to a desired strength, essentially by moving from left
to right in Figure 7. For quality control, we recommend comparing the remaining loss of each converged run against the
remaining L, regularized baseline loss as reported in Table 1.

L, regularization promotes stability, but is not suited for subset selection: L, regularization, L by design, is not
suited to reduce a subset of terms exactly to zero. Instead, it maintains all terms as indicated in the bottom rows of
Figures 10 and 15, each for n = 100 runs. From Figures 6-8 we conclude that, for increasing penalty parameters a, L,
regularization reduces outliers by first bringing the weights closer together and then collectively reducing them toward
zero. Clearly, L, regularization improves convexity, which makes model discovery more robust and more stable. How-
ever, it not only fails to down-select the number of terms, but also strongly biases the solution away from the minimum
of the pure network loss towards the minimum of the regularization loss. We do not recommend using L, regularization,
or any other member of the L, regularization family with powers larger than one, p > 1, to increase sparsity and improve
interpretability in model discovery. Table 2 provides a side-by-side comparison of the L, regularizations we explored
throughout this study along with their advantages, disadvantages, and references.

Densifying instead of sparsifying: The closure problem is a common challenge in both fluid and solid mechanics.
It refers to the difficulty of fully specifying the constitutive equations that relate stresses and strains and character-
ize the material behavior. In fluid mechanics, the closure problem is closely related to turbulence modeling, where it
approximates intricate interactions between different scales, and can be well represented through polynomials.?° In solid
mechanics, the closure problem characterizes complex material behaviors at the microscopic scale, and is traditionally
often represented through a combination of polynomials,® exponentials,’>7° logarithms,”* and powers.>”% In the con-
text of model discovery, assuming perfect data, polynomial models translate into a convex linear optimization problem
with a single unique global minimum, while exponential, logarithmic, or power models translate into a non-convex
nonlinear optimization problem with possibly multiple local minima. For convex discovery problems with a unique global
minimum, inducing sparsity has been well established through a top down approach in which we first calculate a dense
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TABLE 2 L, regularization.
Algorithm Regularization Advantages Disadvantages
L, Subset a ||6]]o e Penalizes number of non-zero terms e Solves  discrete  combinatorial
selection [16 [lo = X, I(w; # 0) e Term count is inherently unbiased problem
e Conceptually simple and honest e Results in NP hard problem
e Promotes sparsity e Computationally expensive, O(2")
e Improves interpretability e But manageable for one term, O(n)
e Valuable insight for one or two e And manageable for two terms,
terms On?)

Lys Compromise a ||6] 3:2 o Improved efficiency compared to L, e Non-convex, multiple local minima
between L, e o=y, \/m e Improved sparsity compared to L, e Increased computational complex-
and L, e Reduces some parameters exactly to ity

Zero
e Works even for smaller a« and less
bias

L, Lasso least a |0||; e Weighs all components equally e Not strictly convex, local minima
absolute 116 111 =X, 1w e Less sensitive to outliers than L, e Emphasizes selective effects
shrinkage and e Reduces some parameters exactlyto e Introduces bias, inaccurate for large
selection Zero a
operator e Promotes sparsity

e Improves interpretability

L,, Elasticnet a1 110111 +a [16]13 o Improved stability compared to L; e Increased computational complex-
compromise 16 |11 = X Il e Improved sparsity compared to L, ity
between L; 16115 = X lw; |?
and L,

L, Ridge o 110112 o Uses components squared o Introduces bias
regression 10113 =X, Iw; |2 e Reduces outliers, improves e Moves parameters towards each

predictability other
e Increases robustness e Reduces but maintains all parame-
e Promotes stability ters

e Does not promote sparsity

Note: Comparison of special cases, advantages, disadvantages, and references.

parameter vector at the global minimum, and then sparsify the parameter vector by sequentially thresholding and remov-
ing the least relevant terms.?*2%2747 For non-convex discovery problems with multiple local minima, this approach is
infeasible since different initial conditions may result in different solutions with non-unique parameter vectors.%” Instead
of trying to sparsify a dense parameter vector, we recommend to gradually densify the parameter vector from scratch.
This bottom up approach iteratively solves the discrete combinatorial problem and densifies the parameter vector by
sequentially adding the most relevant terms.”? Importantly, instead of solving the NP hard discrete combinatorial problem
associated with a complete L, regularization that screens all possible combinations of terms at @(2"), we recommend to
gradually add terms, starting with the best-in-class one-term model at O(n), adding a second term at ©@(n), and repeating
addition until the incremental improvement of the overall loss function meets a user-defined convergence criterion. At
most, this algorithm involves O(n?) evaluations of the loss function to land on a fully populated dense parameter vector.
Importantly, for non-convex model discovery problems, this algorithm—while cost effective and well-rationalized—is
not guaranteed to converge to the global minimum. Instead of successively adding up to n terms, for practical purposes,
it is often sufficient to limit the number of desirable terms to one, two, three or four, and identify the best-in-class model
of each class, which requires a discrete comparison of (8!/(n!(8 — n)!)) discrete models, in our case 8, 28, 56, or 70.2? Out
of all possible discovery algorithms, this is the most honest, unbiased, and transparent approach.

Taken together, our study suggests that L, regularized constitutive neural networks are a powerful technology for
automated model discovery that allows us to identify interpretable constitutive models from data. We anticipate that our
results generalize to L, regularization for model discovery with other techniques such as symbolic regression or system
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identification, and, more broadly, to model discovery in other fields such as biology, chemistry, or medicine. The ability
to discover new knowledge from data could have tremendous applications in generative material design where it could
shape the path to manipulate matter, alter properties of existing materials, and discover new materials with targeted
properties.
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