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ABSTRACT: Autonomous sensors provide opportunities to observe
organisms across spatial and temporal scales that humans cannot
directly observe. By processing large data streams from autono-
mous sensors with deep learning methods, researchers can make
novel and important natural history discoveries. In this study, we
combine automated acoustic monitoring with deep learning models
to observe breeding-associated activity in the endangered Sierra
Nevada yellow-legged frog (Rana sierrae), a behavior that current sur-
veys do not measure. By deploying inexpensive hydrophones and
developing a deep learning model to recognize breeding-associated
vocalizations, we discover three undocumented R. sierrae vocaliza-
tion types and find an unexpected temporal pattern of nocturnal
breeding-associated vocal activity. This study exemplifies how the
combination of autonomous sensor data and deep learning can
shed new light on species’ natural history, especially during times
or in locations where human observation is limited or impossible.

Keywords: acoustic monitoring, Rana sierrae, anuran, vocalization,
machine learning, automated detection, Sierra Nevada Aquatic Re-
search Lab.

Introduction

Our understanding of a species’ natural history is inher-
ently based only on the information that is available to
us as human observers. For many species, obtaining new
insights into natural history will require that researchers
find new methods of observing previously hidden aspects
of the species’ biology and ecology. In recent years, auton-
omous sensor technologies such as satellite imagery, au-
tonomous cameras, and autonomous acoustic recorders
have demonstrated the potential to measure phenomena
that cannot be directly observed by humans. For example,
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global-scale satellite imagery, decadal-scale climate data,
and hyperspectral imaging can sample processes that are
difficult or impossible to observe directly. Terrestrial au-
tonomous sensors, including automated camera traps and
acoustic recorders, produce data analogous to visual or au-
ral human observation methods with orders-of-magnitude
increases in temporal coverage. In augmenting traditional
direct human observations, autonomous sensors hold the
potential to shed light onto aspects of species” natural histo-
ries that would otherwise remain hidden.

However, the value of autonomous sensors is critically
limited by our ability to extract useful insights from the
raw data that they produce. Compared with the types of
data collected through traditional survey methods (e.g.,
biometric measurements, species checklists, counts of in-
dividuals), the unstructured digital data captured by au-
tonomous sensors are generally not directly interpretable
as biological information. Given that the scale of autono-
mous sensor data is often too large for humans to process
through manual inspection, automated data processing
techniques are essential for capitalizing on the full poten-
tial of autonomous sensor data.

Recently developed machine learning techniques can
extract biologically meaningful information from auton-
omous sensor data, providing a promising avenue to ad-
dress this bottleneck (Weinstein 2018). Deep learning
algorithms such as convolutional neural networks (CNNs)
are a subset of machine learning algorithms that are par-
ticularly well suited to processing autonomous sensor
data. These algorithms learn to recognize patterns and fea-
tures in unstructured data by iteratively optimizing their
performance on annotated training data. Deep learning
algorithms have been successfully applied in ecology to
detect wildlife in camera trap images (Vélez et al. 2023), to
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map habitat types from satellite imagery (Talukdar et al.
2020), and to recognize species-specific vocalizations of
birds, frogs, and bats in audio recordings (Stowell 2022).

In this study, we combine autonomous acoustic sensing
and deep learning to gain new insights into the natural his-
tory of an endangered amphibian, the Sierra Nevada yellow-
legged frog (Rana sierrae). Threats from introduced fishes
and the lethal amphibian chytrid fungus Batrachochytrium
dendrobatidis have extirpated this species from more than
90% of its historical habitats in California’s Sierra Nevada
mountains (Vredenburg et al. 2007). Extensive visual surveys
(Bradford 1989, p. 19; Bradford et al. 1994; Drost and Fellers
1996; Knapp and Matthews 2000; Knapp 2005; Knapp et al.
2007, 2011, 2016; Vredenburg et al. 2010) and capture-
recapture surveys (Joseph and Knapp 2018) have docu-
mented R. sierrae population declines and recoveries over
four decades and informed conservation efforts.

Understanding of this species’ biology and population
dynamics could be enhanced by quantifying breeding ac-
tivity, which provides insights into processes that drive
populations to grow or decline (Cruickshank et al. 2021).
For example, populations with little to no breeding activity
are likely to have lower persistence probabilities than pop-
ulations with more breeding activity (Cruickshank et al.
2021). However, quantifying R. sierrae breeding activity
is difficult for at least two reasons. First, R. sierrae call
and breed underwater while lakes are still partially covered
in thick winter ice. Second, although counts of egg masses
provide a direct measure of breeding activity, female R.
sierrae often deposit egg masses in inaccessible habitats,
such as under overhanging banks and in rock crevices.
These conditions make egg masses virtually undetectable
during visual surveys. As a result, current survey methods
do not generally quantify breeding activity, leaving an im-
portant gap not just in our current knowledge of this spe-
cies’ natural history but in our ability to rapidly assess or
predict population trends.

Acoustic surveys of breeding-associated vocalizations
provide an indirect measurement of breeding activity for
many anuran species. In most anurans, males produce ad-
vertisement calls to convey their species, sex, reproductive
state, and position to conspecific females during breeding
activity (Wilczynski and Chu 2001; Wells and Schwartz
2006). In natural environments, these acoustic signals
are often easier to detect than the organisms themselves.
Although such signals can often be detected by traditional
human surveys, automated acoustic monitors can allow
for the observation of sound-producing organisms across
large temporal scales: a single deployment of acoustic re-
cording units can capture audio recordings across weeks
or months. Furthermore, because automated recording units
can survey terrestrial and aquatic soundscapes across any
hour of the day for weeks at a time, acoustic sensors can
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record amphibian vocal activity even when an environment
is inaccessible to humans. These advantages are particu-
larly important in the case of R. sierrae, which vocalizes
while underwater in high mountain lakes (Ziesmer 1997)
and, as a result, is rarely detected acoustically by human
observers.

In this study, we conducted surveys of breeding-related
behaviors of R. sierrae by recording vocal activity through
anovel combination of two emergent techniques for eco-
logical monitoring: low-cost autonomous hydrophones
and deep learning classification models. By developing
and applying a deep learning method to detect specific
breeding-associated R. sierrae vocalizations in hydro-
phone recordings spanning an entire breeding season,
we characterize the vocal activity of a wild R. sierrae pop-
ulation across daily and seasonal timescales. This combi-
nation of autonomous sensing and deep learning enables
us to discover previously unknown R. sierrae life history
traits that may help to inform conservation planning
and further research. We see this study as an illustrative
example of an emerging pattern in which combinations
of autonomous sensing and deep learning will open new
windows of observation into the natural world.

Methods
Study Site

We collected acoustic data for this study at an alpine lake
in Yosemite National Park (site ID: 70550; Knapp et al.
2020) in the Sierra Nevada of California. Acoustic data
collection at this site was conducted under a research per-
mit issued by Yosemite National Park (permit YOSE-
2022-SCI-0075). Because of the sensitive nature of this
federally protected species’ conservation, we are unable
to publish the name and coordinates of the lake. Lake
70550 is a typical Sierran alpine lake: elevation of 3,200 m,
maximum depth of 11 m, and surface area of 4.7 ha. The
lake generally remains ice-covered from November to June.
Lake 70550 contains a population of Rana sierrae that
occupies the site year-round and does not contain intro-
duced fish. Although R. sierrae was absent from the lake
in 2001 (R. Knapp, unpublished data), it was successfully
reintroduced in 2006. In 2017 the population was estimated
to include approximately 400 adults (Joseph and Knapp
2018) and thousands of tadpoles and subadult frogs (R.
Knapp and T. C. Smith, unpublished data).

Acoustic Monitoring

We used five AudioMoth acoustic recorders (Hill et al.
2019; ver. 1.2.0 with firmware ver. 1.5.0) in waterproof cases
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(Lamont et al. 2022) to record underwater soundscapes at
lake 70550. The number of devices was constrained by
hardware availability, as the availability of the waterproof
case was limited at the time of this study. We programmed
the devices to record for 1 min starting every 15 min for
24 h per day. We used a 32-kHz sampling rate and medium
gain with 16-bit sample depth. We deployed devices un-
derwater by attaching the devices to rocks with cable ties
and placing them on the bottom of the lake (fig. 1) within
2 m of the shoreline and at depths of less than 1 m (device
locations in table S1, available online). The minimum spac-
ing between any two devices was 110 m. We deployed the
devices on June 2, 2022, when most of the lake was cov-
ered in ice, and recovered the devices on July 22, 2022.

Investigating the Diversity of R. sierrae Vocalizations

Aquatic soundscapes typically contain biotic sounds from
amphibians, invertebrates, and fish (Desjonqueres et al.
2020). Besides R. sierrae, lake 70550’s amphibian commu-

nity includes only Anaxyrus canorus (Yosemite toads),
which generally call in or near snowmelt pools adjacent
to the lake but are rarely found within the lake. Because
the vocalizations of A. canorus are audible in air, their
vocalizations are known and well documented (California
Herps 2023a). The lake does not contain fish. The only
other taxa in the lake known to produce acoustic signals
are members of the family Corixidae, which stridulate
underwater. Corixid stridulations are pulsed, wideband
sounds typically occupying frequencies from 2 to 12 kHz
(Theiss and Prager 1984), making them qualitatively dis-
tinct from vocalizations of frogs in the genus Rana.

To investigate the diversity of R. sierrae vocalizations
recorded in our dataset, we reviewed a random subset
of the audio and sorted call types into distinctive groups.
We first randomly selected 500 recordings from the com-
plete set of 23,931 60-s recordings generated by the audio
recorders, then randomly selected 10 s from each 60-s
recording. We listened to and viewed a spectrogram of
each clip and took descriptive notes on all sounds that

Figure 1: AudioMoth acoustic recorder deployed underwater at the study site.



we suspected were biotic. We then grouped R. sierrae
vocalizations into qualitatively similar categories and named
each category as a call type (A-E; see “Results”).

Developing and Applying an Automated Recognizer

Because autonomous sensors often generate datasets too
large to process through direct inspection, automated data
processing approaches are critical to relieving the bottle-
neck between raw autonomous sensor data and biological
inference (Stowell 2022). In bioacoustics, the rising popu-
larity of acoustic monitoring (made possible by affordable
sensors) has been accompanied by the development of au-
tomated algorithms to detect sounds of interest in acoustic
data (Knight et al. 2017; Gibb et al. 2019). In particular,
deep supervised learning algorithms such as CNNs have
been applied with great success to bioacoustic recognition
tasks, especially for birds (Kahl et al. 2017; Kahl 2019). Su-
pervised deep learning approaches, including CNNs, are
well suited to recognition problems where the target
sound is highly variable, provided that hundreds of labeled
samples can be obtained. By automating the detection of
R. sierrae vocalizations in soundscape recordings with a
CNN, we were able to measure temporal patterns of vocal
activity across soundscape recordings from an entire sea-
son of R. sierrae breeding activity.

To automate the detection of R. sierrae vocalizations in
the soundscape recordings, we created an annotated set of
audio clips and then trained a CNN (for detailed method-
ology, see the supplemental PDF). We first annotated a
subset of the field data from one recording device during
one week of the deployment. Using Raven Pro software (Bio-
acoustics Research Program 2019), we placed a frequency-
time box around each R. sierrae vocalization. We randomly
split the 672 10-s annotated clips produced by this effort
into a training set (90%) and a validation set (10%). Next,
we trained a CNN to recognize two R. sierrae call types, A
and E (for call type descriptions, see “Results”). Call type B
was excluded because it was rare in the annotated data, while
call types C and D were excluded because they did not
closely resemble vocalizations described as advertisement
calls (Vredenburg et al. 2007). We used the open-source
Python package OpenSoundscape (ver. 0.7.1; Lapp et al.
2023) to train a CNN with a ResNet18 architecture on spec-
trograms of 2-s audio samples. We used standard aug-
mentation routines for audio preprocessing and standard
CNN training hyperparameters (details in the supplemen-
tal PDF). For each input sample representing 2 s of audio,
the CNN generates a score between 0 and 1 representing
the algorithm’s confidence that R. sierrae vocalizations
(types A and E only) are present in the sample.

We evaluated the performance of the CNN on the val-
idation set following the recommendations of Knight
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et al. (2017). We calculated the area under the precision-
recall curve (average precision score) and receiver operat-
ing characteristic (ROC) curves at the 2-s sample level. We
selected a threshold score by choosing the lowest score
that achieved a precision exceeding 99% on the validation
set, such that 99% of all audio clips scoring above this
threshold contained the species of interest while 1%
represented false positives. We used this threshold to eval-
uate precision, recall, and F1 score on 2-s samples. For the
remainder of the analyses, 2-s audio samples are considered
detections if the CNN scored them above the threshold
score. To test the generalizability of the CNN’s precision
from the validation set to the entire dataset, we manually
reviewed a random subset of 100 detections (or all de-
tections if there were fewer than 100) from each device.
We measured temporal patterns of R. sierrae vocal activ-
ity in the aquatic soundscape by calculating the detected
vocal activity rate (Pérez-Granados and Traba 2021), the
proportion of samples over a time interval in which the
CNN detected R. sierrae vocalizations. To describe daily
patterns, we calculated the detected vocal activity rate per
1-min time period and plotted the activity averaged across
all days of recording. To describe seasonal patterns, we cal-
culated the detected vocal activity rate per 24-h time period.

Results
Diversity of Call Types

By annotating a randomly selected set of 500 10-s audio
clips, we found five distinct Rana sierrae vocalization
types (fig. 2A-2E; for descriptions of each call type, see
the supplemental PDF; audio examples are available as
supplemental material online). We refer to the five call
types here as A through E, corresponding to their labels
in figure 2. Call types A and B likely correspond to the
unpulsed and pulsed calls, respectively, from Vredenburg
et al. (2007) and Ziesmer (1997). To our knowledge, call
types C, D, and E have not been previously documented
in R. sierrae (but may have analogs in Rana boylii; see
“Discussion”). Intergrading between the previously ob-
served call types (A and B) and the newly discovered call
types (C, D, and E) provides evidence that these call types
are produced by R. sierrae. The type A vocalization is pitched
and extremely plastic in its pitch motion, which can be up-
ward, downward, overslurred, or take more complex trajec-
tories. The type B vocalization is unpitched and has rapid
amplitude modulation (pulsing). The type C vocalization
is a short, unpitched note that is sometimes doubled or tri-
pled (see further examples in the supplemental PDF). The
type D vocalization is a short, downward semipitched note
that sometimes grades into the A type. The type E vocal-
ization is a pitched and frequency-modulated call. The
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Figure 2: Spectrograms illustrating five distinct vocalization types of Rana sierrae (A-E; calls named respectively) and an intermediate call
blending the type A and type E calls (F). The convolutional neural network was trained to detect type A and type E calls only. Log
spectrograms were generated from 2-s 32-kHz audio files using a window size of 1,024 samples (except B; 512 samples to show temporal
detail) and 75% window overlap and were vertically cropped to 0-2 kHz.

type E call can grade into the type A call, as shown in fig-
ure 2F. Ziesmer (1997) additionally described a “semi-
pulsed” call type of R. sierrae that may correspond to the
type E vocalization, but we do not have recordings or spec-
trograms to compare Ziesmer’s semipulsed call type to the
vocalizations in our data. Overall, considering that most
amphibians produce stereotyped calls (Gerhardt and Bee
2006), the R. sierrae call repertoire we documented through
autonomous acoustic recorders exhibits a remarkable de-
gree of plasticity.

We did not detect vocalizations of the other amphibian
in the community, Anaxyrus canorus, in any of the aquatic
soundscape recordings. However, the recorders captured
high-frequency, wideband amplitude-modulated sounds
(fig. S1; figs. S1-S4 are available online), which we suspect
are stridulations produced by the aquatic insect family
Corixidae (Theiss and Prager 1984).

CNN Performance on the Validation Set

The CNN recognizer effectively and accurately detected R.
sierrae vocalizations in the validation set. The area under
the precision-recall curve (average precision score) on the
validation set was 0.92, while the area under the ROC curve
was 0.95. The minimum score threshold that achieved 99%
precision was 0.99934; at this threshold, precision was 99%
and recall was 30% (precision-recall curve in fig. S2), indi-
cating that only 1% of the audio clips above this threshold
were false positives and that 30% of all files containing the

target vocalizations were above the threshold. This thresh-
old was used for the analyses of seasonal (fig. 3) and diel
(fig. 4) activity patterns. Our model’s high precision gen-
eralized across the entire dataset. A review of 100 randomly
selected detections from each device (or all detections if
fewer than 100) resulted in zero false-positive detections
at four out of five devices (devices 1-3: 100 detections each;
device 4: 38 detections). Device 5 generated just two de-
tections from the entire season, and these were false posi-
tives containing muffled human voices.

The observed seasonal and daily patterns were robust
across a range of threshold scores (figs. S3, $4), indicating
that a different threshold choice would not have affected
the observed patterns in vocal activity. For instance, a low
threshold with a precision of 88% and recall of 78% on
the validation set produced temporal patterns equivalent
to a high threshold with a precision of 100% and recall of
14%. The robustness of temporal patterns to threshold
score demonstrates that false positives at lower thresholds
(or false negatives at higher thresholds) did not bias the
measurement of temporal patterns.

Seasonal and Diel Patterns of Vocal Activity

Seasonal patterns of vocal activity were constrained to
3 weeks of June and differed by recorder (fig. 3). Device 1
showed a short period of intermediate activity levels in
the second week of June. Devices 2 and 3 showed high
activity levels in the third and fourth weeks of June.
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Figure 3: The seasonal pattern of Rana sierrae vocal activity varied across the recording devices. Detected vocal activity rate was measured
as the proportion of detections from all samples during a 24-h period. Vocalizations were detected by the automated recognizer using a

threshold score that obtained 99% precision on a validation set.

Devices 4 and 5 showed little to no vocal activity across
the season. Across all recorders, vocal activity was min-
imal before June 5 and after June 30. Contrary to the
existing literature and current understanding of R.
sierrae biology, the diel vocal activity pattern showed in-
creased vocal activity at night and relatively low levels of
vocal activity during the day (fig. 4).

Discussion

By combining automated acoustic recording of aquatic
soundscapes with deep learning, we provided the first
broad temporal-scale monitoring of Rana sierrae vocal

activity. Rana sierrae has been intensively studied for two
decades, primarily using visual encounter and capture-
mark-recapture surveys to measure abundance, survival,
and recruitment. These survey techniques are critical
for monitoring populations and informing species recov-
ery actions. However, these survey methods do not typi-
cally quantify R. sierrae breeding activity, data that could
provide valuable insights into species’ biology and mech-
anisms of population change.

Contrary to current understanding, we found the
breeding-associated vocal activity of R. sierrae to be pri-
marily nocturnal rather than diurnal. This pattern of noc-
turnal male advertisement underscores the difficulty of
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Figure 4: Daily pattern of Rana sierrae vocal activity. Rana sierrae were most vocally active at night, with an approximately three times
higher detected vocal activity rate (the fraction of detections per 1-min time period) than during daylight hours. Vocalizations were detected
by the automated recognizer using a threshold score that obtained 99% precision on a validation set. The blue line represents the average
activity across all recording dates. The shaded yellow region denotes the approximate daylight hours at the study site.
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directly observing breeding activity in this species and
suggests that human observation of breeding activity
might require nocturnal surveys, which are currently
not included in survey protocols. Because our study was
limited to one breeding population, further investigation
is needed to determine whether each pattern we observed
is generalizable across populations. Nonetheless, the re-
sults of this study suggest that expanded acoustic moni-
toring efforts could provide valuable insights into the under-
standing and management of R. sierrae.

Our results demonstrate that aquatic monitoring with
AudioMoth recorders and deep learning captured R. sierrae
vocalizations and provided an effective method of remotely
monitoring early-season underwater R. sierrae activity that
is typically not observed. We found that R. sierrae vocal ac-
tivity is primarily an early-summer phenomenon, which
concurs with the predominant view that the species breeds
around the time of lake ice-off. Two out of five devices con-
tained no vocal activity, even though visual encounter sur-
veys regularly observe frogs at all five sampling locations
used in this study. This unexpected spatial heterogeneity
in vocal activity could point to habitat preferences specific
to breeding activity, a hypothesis that could be investigated
in future work.

Amphibian vocalizations are widely used as a proxy for
breeding activity, but this association relies on links between
specific vocalization types and biological functions. Thus,
understanding the biological functions of R. sierrae call
types is an important next step toward expanding the use
of acoustic recorders to monitor breeding activity. Because
our study did not provide a means of observing behaviors
associated with vocalizations, our categorization of call types
reflects only a qualitative interpretation of the call diversity
we observed. Based on direct observations of vocal activity,
Ziesmer (1997) posited that the unpulsed (A type) R. sierrae
call is used for advertisement. Additionally, for each novel R.
sierrae call type we found (C, D, and E), a similar call has
been described for Rana boylii (MacTague and Northen
1993; Silver 2017), a closely related species that hybridizes
with R. sierrae in some regions (Peek et al. 2019). Specifi-
cally, the type C call resembles the R. boylii “chuckle” (Silver
2017), the type D call resembles the R. boylii “unpulsed call”
(MacTague and Northen 1993), and the type E call resem-
bles the R. boylii “warble” (Silver 2017). These analogous call
types may provide clues to the functions of R. sierrae call
types. For instance, Silver (2017) reported that the warble
call type of R. boylii was produced only when male frogs
were in amplexus with females. Therefore, the similar-
sounding call type E of R. sierrae represents a promising
starting point for uncovering behavioral connections be-
tween R. sierrae reproduction and their vocalizations.

Estimating the abundance or density of individual organ-
isms remains a largely unsolved challenge in bioacoustic

monitoring (Pérez-Granados and Traba 2021) and is an
active area of research (Yip et al. 2017, 2020; Strebel et al.
2021). In this study, estimating the abundance or density
of individual frogs vocalizing in a surveyed habitat would
require additional knowledge, such as the vocalization rate
of individual frogs, the propagation distance of the vocal-
izations in the aquatic environment, or the ability to iden-
tify individuals by the unique characteristics of their vocal-
izations. Furthermore, knowledge of the calls’ propagation
distance would be necessary to rule out the possibility
that the same individual’s calls were recorded on multiple
devices in our study. Although DeGregorio et al. (2021)
tested the detection distance of underwater playbacks of
two frog species’ vocalizations from an underwater speaker
and detected the calls on hydrophones up to 65 m away,
this detection distance is dependent on the playback vol-
ume and may not reflect realistic detection distances of
vocalizations produced by the organisms themselves. To
our knowledge, there is no further literature measuring
the maximum detection distance of underwater amphibian
vocalizations. In the absence of information about the max-
imum detection distance for R. sierrae vocalizations in our
system, we interpret the detected vocal activity rate as an in-
dicator only of overall activity at the lake rather than a mea-
surement of abundance or a count of individuals. The abil-
ity of bioacoustic data to provide quantitative population
abundance estimates represents a fruitful area for future re-
search, as accurate abundance measurements could facili-
tate remotely surveying populations with decreased human
effort, detecting population decline or growth, and evaluat-
ing the need for or success of recovery actions.

We publicly share the results of this project to facilitate
further study of R. sierrae vocalizations and other aspects
of aquatic soundscapes. A public repository of 672 anno-
tated soundscape recordings containing 1,284 annotations
of R. sierrae vocalizations (Lapp and Kitzes 2023) dramat-
ically expands on the nine previously available online
recordings (California Herps 2023b) and provides exten-
sive examples of all call types, vocalization plasticity, and
gradation between call types. A GitHub repository (Lapp
2023) provides Python scripts for all steps of model devel-
opment and analysis. The trained deep learning classifier is
also publicly available in the GitHub repository. Through
these resources, other scientists may reuse or adapt these
data, deep learning models, and bioacoustics methods in
applications to the study of R. sierrae and to new systems.

Deep learning methods are powerful tools for extract-
ing biological information from autonomous sensor data,
but they also carry unique challenges. First, deep learning
methods are data hungry in that their accuracy is highest
when they are trained with large quantities of annotated
data, and models often perform poorly when little train-
ing data are available. In our study, generating hundreds



of annotated samples of R. sierrae vocalizations was tractable
because we focused annotation efforts on a location and time
period with high vocal activity. Second, the generalizability
or transferability of deep learning models across study sys-
tems or domains can be a significant challenge, and these
techniques perform best when the data they are trained
with closely matches their real-world application (Schnei-
der et al. 2020; Stowell 2022). In this work, our model did
not need to generalize to a new domain because our train-
ing data was a subset of our field data. Third, no deep learn-
ing models applied to wildlife vocalizations to date can per-
fectly separate sounds of interest from other sounds. In this
study, because our classifier had high precision and we did
not require high recall, minimal human review was re-
quired. In other applications, expert review is often neces-
sary to verify deep learning model outputs.

In summary, remote sensing tools like acoustic record-
ers offer a cost-effective complement to visual-based sur-
vey methods for biological observation, but extracting use-
ful information from vast quantities of remote sensor data
remains an outstanding challenge. Fortunately, the qualities
of remote sensor data are well suited for emerging deep
learning techniques, which have been specifically designed
to analyze large, complex, and unstructured data. In this
study, we demonstrated that combining acoustic monitor-
ing with deep learning enabled the observation of R. sierrae
breeding-associated vocal activity. Looking forward, we be-
lieve that further intersections of autonomous sensors and
deep learning techniques will continue to provide novel
insights into the natural world.
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Lapp and Kitzes 2023). The full dataset of acoustic re-
cordings collected during this study is available from
the corresponding author on reasonable request. Python
notebooks with code to reproduce the training of the au-
tomated detector, evaluation of model performance, anal-
ysis of field data with the automated detector, and explo-
ration of results are available in a public online GitHub
repository (https://github.com/kitzeslab/rana-sierrae-cnn;
Lapp 2023) as well as on Zenodo (https://doi.org/10.5281
/zenodo.10150106).
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