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Abstract

This work focuses on the optimal control design for suppressing the singularity for-
mation in chemotaxis governed by the parabolic-elliptic Patlak—Keller—Segel (PKS)
system via flow advection. The main idea of this work lies in utilizing flow advec-
tion for enhancing diffusion as to control the nonlinear behavior of the system. The
objective is to determine an optimal strategy for adjusting flow strength so that the
possible finite time blow-up of the solution can be suppressed. Rigorous proof of the
existence of an optimal solution and derivation of first-order optimality conditions for
solving such a solution are presented. Spline collocation methods are employed for
solving the optimality conditions. Numerical experiments based on 2D cellular flows
in a rectangular domain are conducted to demonstrate our ideas and designs.

Keywords Optimal control - Flow advection - Chemotaxis - Patlak—Keller—Segel
system - Suppression of singularity - Cellular flows - Spline collocation methods

1 Introduction

This work discusses the problem of optimal control design for suppression of singular-
ity formation in chemotaxis via flow advection. Chemotaxis is the movement of cells
in response to a chemical stimulus. A coupled parabolic system was first employed to
model this process by Patlak [33], Keller and Segel in [21, 22], which describes the
evolving densities of one or more chemotactic population and its attractants/repellents.
Other related study and reviews can be found in (e.g.[15, 16, 34, 39, 40]). The current
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work focuses on a simplified parabolic-elliptic Patlak—Keller—Segel (PKS) equations
introduced by Nagai in [32] (also see [19]) with flow advection or a drift, induced
by the movement of the ambient fluid, in an open bounded and connected domain
QC Rd, d = 2, 3, with a smooth boundary I'" (corners may be allowed).

Let® > 0be the density of the cells and ¢ > 0 be the concentration of a chemoattrac-
tant produced by the cells. Further, let v = v(x) be a predetermined time-independent
incompressible flow and # = u(t) be a time-dependent control input regulating the
strength of the flow. The system with controlled flow advection is governed by

30
5y =06 —uyv V6 -V (@xVe) in Q. (1.1)
—Ac+c=0 in Q, (1.2)
V.v=0 in Q, (1.3)

with Neumann boundary conditions for both & > 0 and ¢ > 0, no-penetration condi-
tion for v

a0 ac
— =—=0 and v-n=0 on T, (1.4)
on on

and the initial condition
6(x,0) =0y(x) in £, (1.5)

where x > 0 is a sensitivity parameter of the cells to the chemo-attractant ¢ and
n is the outward unit normal vector to the domain boundary I". The objective is to
seek for an optimal regulating function u(¢) for the ambient fluid as to suppress the
possible finite time blow-up. It is well-studied that in the absence of flow advection or
the drift, if the initial condition is above certain critical threshold, the solution of the
PKS equations may blow up in finite time by concentrating positive mass at a single
point (e.g.[11-14, 19]). With flow advection, however, for any initial distribution
there exists an ambient velocity field v, either time-independent or dependent, such
that the solution to (1.1)—(1.5) is globally regular for all positive time [23]. Singularity
formation can be prevented via flow advection by mixing the cell in the direction that
mitigates concentration.

When u(t) = A > 0 is a constant, Iyer, Xu and Zlatos in [18] showed that if the
flow has small dissipation times [18, Definition 1.1], then the global well-posedness
result can be obtained in torus T¢, d = 2, 3. The case with A < 0 can be treated
similarly by letting v be —v. In fact, the small dissipation times can be achieved by
increasing A, if

the operator v - V has no eigenfunctions in H 1(©) other than the constant function.
(1.6)
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This condition was established in [4] to characterize what flows enhance diffusion.
The incompressible flow v satisfying (1.6) is so-called relaxation enhancing [4, Def-
inition 1.1]. However, it is rather complex to construct such flows and many flows in
real-world applications do not necessarily possess this property. The authors in [18]
further showed that the flows with arbitrarily small dissipation times can be constructed
by rescaling a general class of smooth (time-independent) cellular flows, which does
not necessarily satisfy (1.6). The proof is based on the probabilistic method. Simi-
lar results were obtained by using a semigroup approach by Hu in [17] for the PKS
system in a general bounded domain. The detailed discussion is presented in Sect. 2.
Other related work on suppression of singularity by shear flows can be also found in
(e.g.[2]).

In the rest of our discussion, we set x = 1. If @ is the solution to the PKS system
(1.1)—(1.5), with boundary conditions in (1.4) it is easy to verify that the spatial average

_ 1 1 -
0(t)=—/9dx=—/90dx=90, vt > 0. (1.7)
2l Jo 2l Jo

In fact, by Stokes formula we have

3. 0d
M:/ Aedx—u/v.vedx—[ V. (0 Vo)) dx
ot Q Q Q

a0
=/—dx—u(/v-n9dx—/ V-V@dx)—/(@ch)-ndxzo,
r on r Q r

thus (1.7) follows. It is shown in [17, Theorem 2.2] that for 6y € LZ(Q) if (1.6) holds,
then there exists a constant u(t) = A = A(6p) > 0 depending on 6y, such that the
solution to (1.1)—(1.5) is globally regular for all # > 0 and @ converges to its spatial
average 0 exponentially. These results lay a theoretical foundation for our optimal
control design for suppression of singularity formation.

1.1 Control Design via Flow Advection

Although there is rich literature on optimal control for chemotaxis, it predominantly
focuses on the linear distributed control of the chemoattractant (e.g. [35-37]) or bilin-
ear control of the cells or chemoattractant of the form u6 or uc (e.g.[6, 8, 9]), where
u = u(x, t) is the control input. This is the first work, to our best knowledge, to con-
trol the PKS system via active control of the flow advection. We aim at designing an
optimal input u(¢) for regulating the flow so that the possible blow-up in solution can
be suppressed and the solution is as close as possible to its its spatial average. In this
work, we assume that u (¢) has both upper and lower bounds. Let the set of admissible
control be

u =< uj,

Uad = {u € L*(0,1): u

where u < 0 < u and u is allowed to depend on the initial datum 6y. We seek u € U,q
that minimizes the following cost functional
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_« B 2
J(u) —§||9(tf) 9||Lz + ||9(f) —9|| dt + |M| dt, (1.8)

for a given final time 7y > 0, subject to (1.1)-(1.5), where &, 8 > 0 and y > 0 are
the state and control weight parameters, respectively. The parameters « and 8 do not
vanish simultaneously. We first show that the optimal problem (1.8) is well-posed,
that is, for any given initial datum 6y € L%(Q), there exits a control u € U,y such
that J (1) < oo. To this end, it is critical to understand the well-posedness of the PKS
system in the presence of flow advection in bounded domains and choose appropriate
bounds for u(¢) so that U, is non-empty. Then we proceed to prove the existence of
an optimal solution to problem (P). Since we have a nonlinear system associated with
a nonlinear control input, problem (P) is no longer convex. As a result, the optimal
solution may not be unique.
To start with, we let @ = 6 — 0, then 15(t) =0 fort > 0, and ¢ satisfies

v _

E =AY —u(t)v-V9 —V- (9 +6)Vc) in Q, (1.9)
—Ac+c=09+0 in R, (1.10)
V-v=0 in Q, (1.11)
20 d

—=—C=0 and v.-n=0 on T, (1.12)
on on

9 (x,0) =0p(x) —0 in . (1.13)

The cost functional in (1.8) can be rewritten as

o 2 B [ 2 Y [ n
J(M)=5||l‘/‘(tf)||Lz+§/0 llﬁ(t)lledt+E A |u|~dt, (P)

subject to the translated system (1.9)—(1.13).

The rest of this work is organized as follows. In Sect. 2, we first present the global
well-posedness and regularity properties of the PKS system in a bounded domain,
which pave a way for establishing the well-posedess of the optimal control problem (P)
and the existence of an optimal solution. In Sect. 3, we derive the first-order optimality
conditions for solving the optimal solution using the variational inequality (e.g.[31]).
Finally, in Sect. 4 we use the spline collocation method for implementing the optimality
system (e.g.[1, 10, 24, 25]). Numerical experiments based on 2D cellular flows for
suppression of singularity in rectangle domains will be presented to demonstrate the
effectiveness of our control design.

2 Well-Posedness of the PKS System and Existence of an Optimal
Control

We first consider u () = A being a parameter which regulates the strength of the flow.
The flow velocity v is always assumed to be time-independent and divergence free
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with v-n|r = 0. It is proven in [17] that the global well-posedness of the PKS system
can be obtained in an appropriate Hilbert space H if the analytic semigroup generated
by the advection—diffusion operator A — Av -V, denoted by S4(¢), ¢t > 0, has a rapid
decay property on H. That is, there exist My < 1 and w4 > 0 such that

ISal 2y < Moe™ @Y, >0, 2.1

where w4 can be made arbitrarily large by adjusting A and M) is independent of w4.
Here . (H) stands for the set of bounded linear operators on H and || - || &) stands
for the operator norm.
Let H = L%(Q) ={y € L*(Q): fQ ¥ dx = 0} be the subspace of mean zero
functions. Define
Lai=A—Av-V

with D(L4) = {¢p € HX(Q) N H: %h = 0}. Then —L4 is m-accretive (e.g.[20,
p-279]). A closed operator —L 4 in a Hilbert space H is called m-accretive if the left
open half-plane is contained in its resolvent set o(—L4) with
(=La+1"V e LH), [(=La+171 <R for M > 0.
Define
W(Ly) = inf{[|[(La+iM)@ll 2: ¢ € D(La). X €R, [@]l2 =1} (2.2

as in [41]. The following Gearhart-Priiss type theorem is proven in [41, Theorem 1.3]
for an m-accretive operator, that is,

le“ | g2y < Moe™ ¥ EN 1 >0, 23)
where My = ¢"/2. Furthermore,
W(Ly) - 400, as A — 400, 2.4)
if and only if
v - V has no eigenfunctions in H! (Q2)NH. 2.5)

The relations (2.3)—(2.5) indicate that the rapid decay property (2.1) holds if (2.5)
is satisfied. Further define the nonlinear operator A" : H'(Q) — H by

N9 ==V - (¥ +0)Vo), (2.6)
where ¢ can be replaced in terms of ¢. Define the operator

A=—-A+1 2.7)
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with domain D(A) = {¢ € H*(Q): g—ﬁh“ = 0}. Then A is strictly positive and
self-adjoint. According to (1.10) and (1.12), we have

c=A'w+0)=A"9 +0.

Replacing u(z) by A, we can rewrite the PKS system (1.9)—(1.13) as an abstract
Cauchy problem in the state space H

B = L0 + NV, (2.8)
9(0) = 9 € H, (2.9)

where the system operator £4 generates an analytic semigroup, denoted by efat 1 >
0, on H and the nonlinearity of operator N can be characterized by the following
results [17, Lemma 2.4].

Lemma 2.1 For ¢ € HY(Q), then there is a constant C; > 0 such that

IN® 2 < CL(I9113, + 10119 112). (2.10)
Moreover, for v € LZ(Q), there is a constant Cy > 0 such that
_3 2 —

(L) TN 2 < C2(I19 1172 + 10110l 2)- (2.11)
The estimate (2.10) has been established in the proof of [18, Lemma 3.1] on
T¢, d = 2, 3. The following theorem on the global well-posedness and stability of the
nonlinear system (2.8)—(2.9) is established in [17, Theorem 2.2], utilizing the classic

tools of analytic semigroup theory for semilinear equations together with a fixed-point
theorem. For simplicity, we denote W (L) by W4.

Theorem 2.2 Let Vg € H and v € L®(Q2). If V4 = Wy (D, 0) > 0is sufficiently
large, then there exists a unique mild (weak) solution ¥ to (2.8)—(2.9) satisfying

9 € C([0, 00); H) N L},.(0, 00; H' () (2.12)
and

sup [#l.2 < 2(1Poll 2 + 1. (2.13)
t>0

Moreover, there exist constants M, > 1 and wy > 0 such that
912 < Mye™ |9l 2. (2.14)

Using the variation of parameters formula we can express the mild solution to
(2.8)-(2.9) as

t
B (t) = LAty +/ LA N (1) d. (2.15)
0
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Furthermore, by (2.10)~(2.13) we have A0 e L2(0,ts; (HY(Q))), v - V¥ €
L2(0,t7; L*(2)), and

N© e LY, tp; L*(2)) N L*(0, 175 (D(—L4)**)),

for any 0 < ty < oo. Therefore, we can derive that

% € L*(0, 175 (D(—L4)*"*). (2.16)

2.1 Existence of an Optimal Control

With Theorem 2.2 at our disposal, we are in a position to show the existence of an
optimal control to problem (P) subject to (1.9)—(1.13). Note that it is key to choose
an appropriate # > 0 such that U, is non-empty. In light of Theorem 2.2, if velocity
field v satisfies (2.5), then we can always make W, = W, (99, 0) > O sufficiently
large by increasing A. In this case, we can simply choose # > A and u(¢) = u, then the
cost functional J(u) < oo due to (2.12). In other words, U,4 is non-empty. However,
if the velocity field is generated by cellular flows, (2.5) may not hold. Then we can
set v4 = Av(Ax) and adjust A to rescale both the cell size and the flow amplitude to
make W4 arbitrarily large (see Sect.3.1).

To proceed with the existence of an optimal control, we first introduce an alternative
definition of a weak solution to (2.8)—(2.9) as follows.

Definition 2.3 Let ¥ € L®°(RQ), u € Uyy, and v € L°(2). ¥ is said to be a weak
solution of system (1.9)—(1.13), if 6 satisfies

2.17)

in the distribution sense on (0, 7).

Theorem 2.4 Let ¥g € H. Assume that v € L°°(Q) is chosen such that V4 =
Vs (99, 0) > 0 can be made sufficiently large via adjusting A. If the upper bound
u of the control input satisfies u > A, then there exists an optimal solution u(t) € Ugyq
to problem (P).

Proof We start with an a priori estimate for choosing u. First set u(t) = A > 0.
According to Theorem 2.2, for ¥g € L*°(RQ), if v € L°°(R2) is chosen such that
W, = Wyu(,0) > 0 can be made sufficiently large via adjusting A, then there
exists a unique weak solution satisfying (2.17). Next we let u > A and employ the
direct method to show the existence of an optimal control in U,4. Here we simply set
u=-—u.

Since J > 0 is bounded from below, we may choose a minimizing sequence
{um} C Uyq such that

lim J(u,)= inf J(u) < oo.
m— 00 uelUyq
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By the definition of J, the sequence {u,,} is uniformly bounded in U,4, and hence
there exists a weakly convergent subsequence, still denoted by {u,,}, such that

um — u* weakly in L?(0, 1r).

In the worst case scenario, u,, = u* = u. Correspondingly, based on Theorem 2.2,
for 99 € L°°(R) there exists a sequence of solutions {¥,,} satisfying (2.17) and
O € C([0, 171, L2(R)) N L2(0, t7; H'()). Together with (2.16) we may extract a
subsequence, still denoted by {6,,}, such that

U — ©F weakly in L2(0, tf; HI(Q)) (2.18)
39, d*
a—t’” - = weakly in  L*(0, t7; (D(—L4)¥*)). (2.19)

By Aubin-Lions lemma, (2.18)—(2.19) indicate that
O — 0* strongly in L2 (0, 1y L2(Q)). (2.20)

It remains to show that 9 * is the solution corresponding to #* based on Definition 2.3.
Note that u,, and 9, satisfy

v,
(a—tm, $) + (V. V$) — tty(Pm. V) — (Om + P Vem, Vo) =0, V¢ € H(Q).
(2.21)
Let v be a continuously differentiable function on [0, ] with ¥ (¢f) = 0. For each

¢ € H'(Q), we multiply (2.21) by ¥ and integrate by parts. After integrating the first
term by parts, we get

ty . Ly ty
—/ <z9,n,¢w>dr+f <Vﬁm,V¢>wdt—/ i (VO VO dit
0 0 0
t t
- / O Vem, Vo) di - / " @Vew, VoW di = (90, $¥(0).  (222)
0 0

Since ¢ € L2(0, T; L*()) and V¢ € L3(R), it is straightforward to pass to the
limit in the first two terms and the last term of the left hand side of (2.22) with the help
of (2.18). To estimate the second term, using the convergence results (2.18)—(2.20)
we have

T T
/ (/ umﬁm~V¢dxdt—/ /u*ﬁ*~V¢dx)1/f(t)dt‘
0 Q 0 Q

T
f (/ U Om - Vo — umd™ - Vo dx)x/f(t)dt‘
0 Q

=

T
+/ (/ umﬁ*~V¢—u*ﬁ*~V¢dx)1//(t)dt‘
0 Q
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T T
/ U </ (ﬂm—z?)~V¢dx> g[f(t)dt—i—‘f (U = ) (/ vﬂ*-qu)dx) () dt
0 Q 0 Q

< llum ||L°Q(0,t‘/)||||L°o 1Pm — 19*||L2(0,tf;L2(Q))||V¢||L2 ||'//||L2(0,tf)

T
+|/ U* — tm) (/ vz?*-V¢dx> W) dt| — 0,
0 Q

where the last term converges to zero is because

=

sup /Vﬂ*'WdXS sup [Vl 9N 21Vl 2 < IV 19 Lo 0.0 220y 1 VR 22
tel0,t7] JQ tel0,t7]

thus [, V¥ - Vg dx € L0, ty) and (o vO* - Vo dx)yr(t) € L*(0,ty). Due to the
weak convergence of u,, in L%(0, ¢t ), the last terms converges to zero. Moreover,

t
/ O Vem, Vo) — 9Ve, Vo)l (1) di
0

Iy
f (f O (Vewm — Vo) - Vodx + / (O — ®)Ve - Vo dx )y (1) dt
0 Q Q
= ||17m||L2(o,p_/;Hl(Q))||VCm - VC||L2(o,;_,;Hl(§z))||V¢||L2||¢||L°°(0,tf)
ty
/ (/ (O — )Ve - Vo dx)y(t)dt
0 Q

N =0, (2.23)

where for the last term we have Vc - Vo () € L%(0, tr; (H'(2))'). In fact, for any
g€ L20, 15 HY(Q)),

1
V[/ Ve - Vo (t)g dx dt
0 Q

1y
S/O IVelgtIVoll 2 liglg 1 @) de
= “VC”LZ(O,tf:Hl(Q)) Vol 2 ||g|\L2(o,zf;H1(Q))||¢||L°°(0,t/),
which follows
||VC . V¢¢||L2(0,zf;(H1(S2))’) = ”VCHLZ(()’[f;H'(Q)) ”V¢”L2”1//”L°°(0,tf)
= C||19||L2(o,tf;L2(sz))||V¢||L2||W||L°°(0,tf)-

By (2.18), the last term of (2.23) converges to zero. In addition, we have

(®0, pY (0)) = (9, p¥(0)), Vo € H' (),

which indicates 95 = 1. Therefore, #* is the solution corresponding to u*.
Finally, using the weakly lower semicontinuity property of norms in J yields

JW < lim J(up) = inf J ),
ueUy

m—> 00

which indicates that u* is an optimal solution to problem (P). O
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3 First-Order Optimality Conditions

Since (P) is non-convex, we will deal with local solutions. We now derive the first-
order necessary optimality conditions for problem (P) by using a variational inequality
(e.g. [31]), that is, if J is Gateaux differentiable with respect to # and u is an optimal
solution of problem (P), then

J'w)-(h—u)>0, helUyy. 3.

To justify that J is indeed Gateaux differentiable with respect to u, it suffices to show
that ¥ is Gateaux differentiable with respect to u.

Lemma3.1 Letz = &/ (u) - h for h € U,g be the Géteaux derivative of © with respect
to u in the direction of h. Then 7 satisfies fQ zdx = 0and

9 i
a—f —AZ—uv-Vi—hv-VO —V.-(@Ve)—V- (9 +HVA~2), (32
9z

L — 3.3
on T (3.3)

with initial condition
z(x,0) = 0. 3.4)
Moreover, there exists a unique solution to (3.2)—(3.4) and for any 0 < ty < oo,
7€ C([0,t7]; H) N L0, tp; H' (). (3.5)

Proof Applying an L>-estimate together with Holder’s inequality and Ladyzhen-
skaya’s inequality that || f[l,+ < ClIFI, " IV A9, d = 2.3 (e.g. [7. p.55]), and

the boundary conditions in (1.12) and (3.3) yields

1dlzll3
2 dt

1
+||Vz||i2 =—fu/ V~Vz2dx—/ hv-Vz?zdx—/ch-nzdx
2 Ja Q r

+f zVe - Vzdx

Q

—/((19 +é)v,4*1z)-nzdx+/(ﬂ+é)VA*1z-dex
r Q

=h/ ﬁv~Vzdx—|—/ ch~Vzdx+v/(z9—|—9_)VA71z~Vzdx
Q Q Q

<Ihl 9112 IVl o V2l 2 4zl 2 1 Vell L4 V2l 2
+ 10 + 014 IVA 2 4 V2l 2

1-d/4
L2

d/4

1 _
<Clhl 9172 IV 7 + 2IV2IZ2 + Cllzll 2P IV2IL VAT 2 V2] 2

(3.6)
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_ 1
+CI + 013 IVA 2|12, +6||Vz||§2. (3.7
For the third term in (3.6) we use Young and Poincaré’s inequalities and obtain

S
1—-d/4 d/4 — — —
lzll 5 IVl S IV AT 9 1Vl 2 < Cllzli2 VAT 91T + cIvallz:

&
< Cllzl 015" + IVl (38)
Combining (3.6)—(3.7) with (3.8) follows

d)zll3,
dt

_8 _
+IVzl72 <ClalL 19172117 + Cllzl72 191 57 + CAP I3 + 101121172,
(3.9)

and hence by Gronwall’s inequality and (2.12) we obtain
2 2 [T 2 CI'f(|m||z‘§_"+||ﬂn2 +61%) dt
sup |lzll2 SCIIVIILoo/ Rl P2 dt - e ° L2 H! <0
1€[0,t/] 0

(3.10)

Moreover, from (3.9)—(3.10) it follows

ty »
/0 1Vzl12, < o (3.11)

Finally, with the help of a priori estimates (3.10)—(3.11) and the Galerkin approxima-
tion, one can show that there exists a unique solution to (3.2)—(3.4). In other words, z
is well-defined and this completes the proof. O

Lemma 3.1 indicates that ¢ is Gateaux differentiable with respect to u € U,q4, so
is J. A direct calculation follows that

t t
J'(u) - h :a(z?(tf),z(tf))—i—ﬁ/if(z?, z)dt—}—y/f uhdt, Yh € Uzy. (3.12)
0 0

Theorem 3.2 Assume that ¥y € L*°(Q2) andv € L*°(Q). Ifu(t) is an optimal solution
to problem (P) and v is the corresponding solution to the state equations. Then there
exists an adjoint state p such that the optimal triplet (u, ¥, p) satisfies

W =AY —uv-VO = V- ((9 +9)Vo),
—Ac+c=0+86,

State Equations gl el (3.13)
n|p~ on|p
6(0) = 6o,
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% = Ap+uv-Vo+Ve-Vp—A~N (V- (9Vp)) + B,

Adjoint Equations g—fl’ =0,
r

plip) = ad(tp),
(3.14)

1
Optimality condition: u°'(t) = Py, 7 (—— / (WVp) - de) , (3.15)
- Y Ja

where for real numbers ¢ < d, P 4] denotes the projection of R onto [c, d], that is,

Ple.q1(f) := min{d, max{c, f}}.
Proof To define the adjoint state, we take the inner product of (3.2) with p
I 3z iy t Iy
/ (—,p)dt:/ (Az,p)dt—/ u(v-Vz,p)dt—/ (hv - V0, p)dt
0 ot 0 0 0

t t
a / f(V -(zVe), p)dt — / f(v (O +0)VA ), p)dt,
0 0
(3.16)

which follows
tf 8,0
(p(tf),Z(tf))—(p(O),Z(O))+f0 (_E’Z)dt
tf tf tf
:/ (Ap,z)dt+/ u(v~Vp,z)dt+/ OVp,v)hdr
0 0 0

i iy _
+/ (zVe, Vp)dt —/ @ ATV (@ +0)Vp))) dt.
0 0

3.17)
Let p satisty
—Z—’t’ =Ap+V-Vp+Ve-Vp— ANV (9 +0)Vp)) + B0, (3.18)
z_ﬁ I =0. (3.19)
with final time condition
p(ty) = av(ty). (3.20)
Then combining (3.17) with (3.18)—(3.20) follows
” ”
(@ (ty), z(ty)) = /0 OVp,v)hdt — /0 (B, z) dt. (3.21)

@ Springer



Applied Mathematics & Optimization (2024) 89:57 Page130f28 57

As aresult, if u is an optimal solution, then by (3.12)

f Iy
J'(w) h= / (6Vp,v)hdt + y/ uhdt > 0, (3.22)
0 0
for any h € U,4, which establishes (3.15). O

3.1 Control of Cellular Flows in Rectangle-Like Domains

Inreal life applications, however, many flows are not necessarily relaxation-enhancing,
i.e., (2.5) may not be satisfied. The semigroup generated by the advection—diffusion
operator can still have the rapid decay property. As shown in (e.g.[17, 18]), for the
velocity field generated by cellular flows in rectangle-like domains (rectangles (d = 2)
and parallelepipeds (d = 3)), rescaling both the cell size and the flow amplitude is
able to establish the rapid decay property of the semigroup generated by the associated
advection—diffusion operator. It is important to point out that in rectangle-like domains
our main theorems in this work still hold.

To demonstrate the idea, we consider the following prototypical example of a 2D
cellular flow for our numerical tests

(3.23)

v(x, y) = V*sin@rx) sin@ry) = 27 [—C lerz(zznnxz;)sclss(séiag)}

in a two-dimensional domain = (0, 1)2. For d = 3, one can utilize the cubic cells
given by (e.g. [3, 18, 38]). Since the cellular flows and the basis functions are periodic,
they can be naturally extended to N2 = (0, N ) for N € N*.

LetL; = A —v(x)-V,where x = (x|,...,xg) and v = (vf,...,vg),d =2,3,
with D(L1) = {¥ € H¥(Q)NH: %h = 0}. Let v, (x) = v;(Nx) forx € Q, N €
N*t, and vy = (Viy, -5 Vay),d = 2,3. According to (3.23), the rescaled cellular
flow velocity vy is still sufficiently smooth and periodic, yet with higher frequency
compared to v. Now define

Ly=A—-Nvykx)-V
with D(Ly) = D(L1). One can show that
Wy = N2, (3.24)

where Wy = W(Ly) is defined as in (2.2) for N € NT. The detailed proof is given
by [17, Proposition 3.1]. Therefore,

L ./ —N2w
€™ | 2y < Moe™ N = Moe >0,

which indicates that the decay rate of the semigroup ¢£N can be made arbitrarily fast
if N is sufficiently large. According to Theorem 2.2, for a given initial condition 9, as
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long as the amplitude and the ordinary frequency N = N (8%, 6) of the cellular flows
are large enough, the system is well-posed and exponentially stable.

For a fixed flow frequency, the objective of the optimal control design using cellular
flows is to determine an optimal time-dependent flow amplitude u(¢) to regulate the
strength of the flow. The existence of such a solution follows from Theorem 2.4. It is
clear that it suffices to choose the upper bound of u(¢) satisfying @ > N (9, #). Again
we can simply set # = —u. Numerical experiments based on cellular flows will be
presented in the next section to demonstrate our control design.

4 Numerical Implementation

In this section, we present our numerical experiments for the suppression of singularity
of the PKS system in rectangle domains by utilizing the 2D cellular flows introduced in
Sect. 3.1. We use the spline collocation method to solve the optimality system (3.13)—
(3.15) along with the Euler forward method in time. The bivariate spline functions are
employed to approximate the system based on the weak formulation for parabolic-
elliptic PDEs. For the convenience of the reader, we provide a brief explanation in
Appendix 1. One can refer to [1, 10, 25-27] for a detailed study.

To validate the accuracy of our algorithms for solving the PKS system without flow
advection, we present numerical tests in Appendix A.l. In particular, we verify the
validity of the algorithm for conservation of mass and non-negativity of the solutions 6
and c. Following the main results in Theorem 3.2, we implement the optimality system
(3.13)—(3.15) using Algorithm 4.1 presented below. For computational convenience,
we replace ¥ by 6 — 6.

Algorithm 4.1: Adjoint Method for Optimal Control Problems
Given a final time 7 > .O, a tolerance € > 0, and constants «, B, Yy > 0, for
j=1,2,..., we compute u’/ using the following iterations with known u/~!:

e Step 1: First, we use the initial function u/~!(r) and the given v(x, y). Let
0(0,x) =6p(x) > 0and co(x) = c(0, x). Solve

9
—Aco(x) + co(x) =6y and 2| =o.
on |p

Let up = uj_l(tk). Solve 6y = O(tx,x) and ¢y = c(t, x) at each time step

th,k=1,2,--- ,n,wheren = [%],from the following equations
Or — O 00k
————— =k AO 1 —uxv-VOr_1 — V- (6r—1Vck-1), — . =0,
s K AOk—1 — ug k-1 (Ok—1Vek—1) on I
and
ock

—Ack(x) + cx(x) = 6 and =0.

on \F

Stop if |0]cc > 5,000 and set 1y = t,,.
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e Step 2 : Compute p, = a(6, — 6,) using tr =ty and w, = ANV -6,V 0)),
that is, we solve

(—-A+DHw, =V -(6,Vp, and =0.

ow

on |F

e Step 3 : Setty = 1,. Use py, 6, and ¢, to solve p,_; backward in time from the
adjoint equations

- % =KkApy +uyv-Vp, +Veu, - Vo, —w, + B0, — 9_}1)7
a:On—l
=0.
on Ir

e Step 4 : For given p,,_ and 6,,_, compute w,_; from
A+ Dwy—1 =V (911—1VPn—1)~
e Step 5 : Find p,—; that satisfies

Pn—2 = Pn—1 + Atk App—1 + up—1V- Vo1 +Veu—1 - Vop—1 — wp—1
+ ﬂ(enfl - 9_,1,1)),

apn—2| _
on T

Repeat Steps 4-5 to solve p,_3, -, po.
e Step 6 : Compute

1
uj(ty) = P (—; /Q(@kv,ok)) . de) , k=0,1,...,n.

where P, 7 denotes the projection of R onto [u,u], that is, Pp, z(f)
:= minf{u, max{u, f}}.

Jwh — Jwi—!
« Stop. it 0 =@ D)
Jwi—h

We begin with demonstrating the development of singularity in the solution to the
PKS system in finite time when there is no flow advection and the initial condition is
above a certain threshold. We then present our optimal control design for suppressing
such singularity formation. Nagai in [32] considered the system (1.1)—(1.5) without
advection in a 2D disk and showed that under the condition 6y > 87, the radial
solution blows up in finite time if fQ 0o|x|%>dx is sufficiently small. However, under
the condition 6y < 87, the radial solution exists globally in time. In our numerical
simulations, we first consider different Gaussian functions as the initial data as in [5]
to demonstrate the density evolution, in response to the influence of a chemoattractant
governed by the PKS system (1.1)—(1.5) without flow advection.
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08

06
0.4

02
[}

(a) Density 6 at t =1 for Ny = 7w (b) Density 6 at t = 1 for Ny = 8
0 at t=0.069084 0 at t=0.016768
6000
05 0.4 0.6 %8 ! 05 0.4 06 as !
(c) Density 6 at t = 0.069084 for Ny = 97 (d) Density 6 at t = 0.016768 for Ny = 107

Fig.1 Density 6 with (xq, yg) = (0.5, 0.5) for various initial mass

Example 4.1 Let 2 = (0, 1) x (0, 1) and consider the following Gaussian function:

9 No ( (x —x0)> + (v — yo)?
0= s__Xp| —

- , NpeNT, 0,
2mp 2p ) o€ P

1
where (xg, yo) = (0.5, 0.5). It is easy to check that No(1 — e 3) < fQ Opdx <

1
No(1—e 4). Thus fQ 0o dx ~ Nyif p is small. Set p = 1072 and the final time tr =
1. We test different initial mass by letting No be 7m, 87, 9, and 107, respectively.

We set the mesh size h = % and the time step Ar = le-5. Without flow advection,
our results show that for Nyg < 8r the density distribution approaches to its spatial
average over time as shown in Figs. la—1b. However, for Ny > 87, the bump in the
density function develops rapidly during evolution as shown in Figs. Ic—1d. For the
latter, we refined the mesh near the center to get more accurate results. Figures 2a—
2d demonstrate the density 0 at various time steps for an initial mass about 97 with
(x0, ¥y0) = (0.5,0.5). We observe the rapid accumulation of mass toward the center,
which indicates a possible singularity formation in finite time.

With the same settings as in Example 4.1, we now exemplify the PKS system
with controlled flow advection and apply Algorithm 4.1 to solve the optimal system
(3.13)—(3.15) for an optimal control.
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0 att=0 0 at t=0.005

08
06

0.4
0.2

[

(a)t=0 (b) ¢ = 0.005
0 at t=0.025 0 at t=0.091

2000 25

15

o o

(c) t =0.025 (d) t = 0.091

Fig. 2 Uncontrolled evolution of density 6 with (xq, ygo) = (0.5, 0.5) and Ng = 97 at various time steps
t =0, 0.005, 0.025, 0.091

Example 4.2 Consider the same domain and initial data with No = 97 as in Example
4.1. We further consider the cellular flow given by

_ —sin(2Nmwx) cos(2Nmy) +
VN (x, y) =27 ( cos(2Nmx)sin(2Nmy), ) » NeNT, @D

as plotted in Fig.3 for N = 1, 2. When u(¢) = N is a constant, the density distribution
0 blows up for N = 1 but approaches to its spatial average for N > 2. Here we set
N=2ty=04a=p=1y=1,u= N andu = —N. The stop criterion in
Algorithm 4.1 is set to be € = 1e-08.

Figs. 4a—4d demonstrate the density evolution with optimally controlled flow advec-
tion for N = 2 att+ = 0, 0.005, 0.01, 0.4, respectively. The maximum value of 6 in
space decreases from 450 to 9 and the sharp peak is quickly suppressed by flow
advection. Moreover, 6 approaches to 97 as time evolves. The behavior of the optimal
control input u(¢) is presented in Fig. Sa, which first oscillates and switches between
positive and negative values, and then converges to zero. This suggests that adjusting
flow orientation is important in optimal control of flow advection, which may be more
effective than simply increasing the flow strength for preventing the accumulation
of mass according to our cost criteria. Figure 5b shows that the cost functional J (u)
decreases and converges. In Fig. 5c, we observe that ||0(¢)||L~ quickly reaches the
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4 Cellular Flow v for N=1 ” Cellular Flow v for N=2
2 NN P St 9 ., 7z — N N I e
e s e
7 i men et S P T L i 4 )
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dr bEda ] ok B oy | e e X
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X X
(a) Cellular flow when N =1 (b) Cellular flow when N =2
Fig.3 vy(Left) and vy (Right)
0 att=0 0 at t=0.005
500 500
400 400
300
200
100
0
1 1
0.5 0.6 28
5 3 02 04
(a)t=0 (b) t = 0.005
0 at t=0.01 fatt=04

05 os 08

(c) t = 0.01 (d)t=04

Fig.4 Controlled evolution of density 6 with (xq, yo) = (0.5,0.5), No =97, N =2, u =2andu = -2
at various time steps ¢t = 0, 0.005, 0.01, 0.4

exponential decay rate for ¢t € [0, 0.4] and converges to approximately 97, which is
close to the spatial average 6.

Next we investigate the effectiveness of flow advection with Gaussian initial data
centered at different locations. We repeat the experiments for the Gaussian initial data
with Ny = 97 and different centers (xo, yg), where xo and yg take on the values of
0.4,0.5,0.6,0.7. Initially, we set N = 2 in (4.1) and u = N, but observe that 6 blows
up in all cases except for (xg, yo) = (0.5, 0.5). To address this issue, we increase u to
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101 in time

Graph of uft) Cost functional J

—0

o
2 3 4 5 6 7 8 9 1 M 0 005 01 015 02 025 03 035 04

0 005 01 015 02 025 03 035 04
" Number of iterations time(t)

Time (s)
(a) Control input u(t) (b) Cost functional J(u) (c) 10|z for t € [0,0.4]

Fig. 5 Control input u(t), cost functional J(u;),j = 1,---,11, and [0(t)l[ o0 for (xq,yo) =
(0.5,0.5),N =2, u=2,u=—2,and ¢ € [0, 0.4]

20N and then 6 does not blow up in any of these cases. As time progresses, we observe
that the maximum value of 8 decreases and 6 approaches to its spatial average 6, which
is about 97 for different centers (xg, yo) = (0.4, 0.4), (0.4, 0.5), (0.4, 0.6), etc.

Example 4.3 We further examine the evolution of density 6 by setting different upper
bounds for the control input for a Gaussian initial datum centered at (0.7, 0.7) with
No = 9.

We take N = 2 and first conduct forward simulations by letting u(¢) = u. Fig-
ures 6a—6b present the density distributionat? = 0.0188andz = 0.5foru(t) =u =N
and u(t) = u = 20N, respectively. Figure 6a shows that the singularity formation
occurs at the domain boundary for u(¢) = u = 2 when ¢t = 0.0188. In contrast, as
shown in Fig. 6b, increasing the upper bound u to 40 results in a significantly faster
decrease in the maximum value of # and leads to convergence to its spatial average.

Now we set # = 40 and ¥ = —40 and apply Algorithm 4.1 for solving the
optimal control. The optimal evolution of density is demonstrated in Figs.7a—7d at
t = 0,0.003, 0.01, 0.4. The maximum value of 6 decreases and 6 approaches to its
spatial average, which is about 9. The behavior of the optimal control input u () is
depicted in Fig. 8a. Similar to Example 4.2, it first oscillates and alternates between pos-
itive and negative values, and then converges to zero. Figure 8b illustrates the decrease
and convergence of the cost functional J («). Figure 8c shows that [|6(¢)]| Lo quickly
reaches the exponential decay rate for # € [0, 0.4] and converges to approximately
97 . It is clear that both the flow magnitude and orientation affect the effectiveness of
flow advection.

5 Conclusion

The idea of suppressing singularity formation via optimal control of flow advection
is employed in this work for chemotaxis modeled by the PKS system, which leads
to a nonlinear control and non-convex optimization problem. We established a rigor-
ous proof of the existence of an optimal control and derived the first-order optimality
conditions for solving such a control. Moreover, using spline collocation methods we
conducted numerical experiments based on 2D cellular flows to validate the effec-
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0 at t=0.0188 6(u=20N) at t=0.5

(a) Density 6 at ¢t = 0.0188 when w = N (b) Density 6 at t = 0.5 when @ = 20N

Fig.6 Density 6 with (xg, yg) = (0.7, 0.7) and different  at t = 0.0188 and ¢t = 0.5

fatt=0 f at t=0.003

02 02 %*
0 o " o o h

(a) t=0 (b) t =0.003

0 att=0.01 fatt=0.4

o o

(c) t =0.01 | (d)t=04

Fig.7 Controlled evolution of density 6 with (xg, yo) = (0.7,0.7), No =97, N =2,u =40andu = —40
at various time steps: t = 0, 0.003, 0.01, 0.4

tiveness of our control design. For the Gaussian type of initial data, we observed that
treating different centers of the data may require different strength of the cellular flows
in order to effectively suppress the singularity formation. On the other hand, varying
the centers of cellular flows may help improve the efficiency for advection. This nat-
urally gives rise to the question of what are the optimal locations for the cellular flow
centers with respect to different initial data. We can further consider the linear com-
binations of the flows centered at different locations and with different magnitude for
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101, in time

- Graph of u(t) 1ot Cost functional J 500

s s 00 o
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ime (5)

Number of terations time(t)

(a) Control input u(t) (b) Cost functional J(u) (c) ||0]|zee for t € [0,0.4]

Fig. 8 Control input u(z), cost functional Jwj),j = 1,---,42, and [|0(@)|l o for (xg,y9) =
(0.7,0.7), N =2,u =40,u = —40,and r € [0, 0.4]

generating the optimal velocity field. These topics will be further discussed in our
future work.
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Appendix
Bivariate Splines

Given a triangle 7, we let |T'| be the length of its longest edge, and p7 be the radius
of the the largest disk that can be inscribed in 7'. For any polygonal domain Q c R?
withd = 2, let A := {T1,---, T,} be a triangulation of €2 which is a collection of
triangles and V be the set of vertices of A. We called a triangulation as a quasi-uniform
triangulation if all triangles 7" in A have comparable sizes in the sense that

T
u <C < oo, alltrianglesT € A,
oT

where pr is the inradius of 7'. Let & be the length of the longest edge in A. For a
triangle T = (vy, vz, v3) € 2, we define the barycentric coordinates (b1, b>, b3) of
a point (x,y) € Q. These coordinates are the solution to the following system of
equations

bi+by+b3=1,
bivy x + bovo x + b3v3 = X,
bivy,y +bovay +b3v3y =y,
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where the vertices v; = (v; x, v;,y) fori = 1,2, 3 and are nonnegative if (x,y) € T.
We use the barycentric coordinates to define the Bernstein polynomials of degree D:

D!

irJpk . . _
i!j!k!blbzb ,i+j+k=D, (A.1)

B,?:j,k(x, y) =

which form a basis for the space Pp of polynomials of degree D. Therefore, we can
represent all s € Pp in B-form:

T
s|lr = Z Ci./kBijk’ VT € A,
i+j+k=D

where the B-coefficients c¢; ; x are uniquely determined by s.
Moreover, for given T = (vy, v2, v3) € A, we define the associated set of domain
points to be
ivy + juo + kvs }
D i+j+k=D

Let Dp ao = UreaDp. 1 be the domain points of triangulation A and degree D.

We use the discontinuous spline space SISI (A) :={s|r € Pp, T € A} as a base.
Then we add the smoothness conditions to define the space S, := C"(22) N S[_)l (D).
The smoothness conditions are explained in [27, Theorems 2.28 and 15.31]. Let ¢
be the coefficient vector of s € SBI (A) and H be the matrix which consists of the
smoothness conditions across each interior edge of A. It is known that He = 0 if and
only if s € C"(R2) (e.g.[27]).

Computations involving splines written in B-form can be performed easily accord-
ing to [1, 28, 29]. In fact, these spline functions have numerically stable, closed-form
formulas for differentiation, integration, and inner products. If D > 3r 4 2, spline
functions on quasi-uniform triangulations have optimal approximation power.

DD,T = { (AZ)

Lemma A.1 [27, Lai and Schumaker, 2007] Let k > 3r + 2 withr > 1. Suppose A
is a quasi-uniform triangulation of 2. Then for every u € Wé‘“(Q), there exists a
quasi-interpolatory spline s, € S; (A) such that

IDYDE (= 5) g0 < CH* P luliyy g 0.

for a positive constant C dependent on u, r, k and the smallest angle of A, and for all
0<a+pB <kwith

1

q
lultg.0 = ( > ||D§D;’u||iq(g)> :

a+b=k

In this section, we explain the spline collocation method for solving the follow-
ing PKS system in the absence of flow advection but with a nonzero force term f
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together with the Euler forward method. We shall use the bivariate spline functions to
approximate the solution of the PDE (e.g. [1, 25-27]).

a0

S =A0-V-OVe)+f in 2 (A3)
—Ac+c=0 in Q, (A4)
a6 ac

—=—=0 on I. (A.5)
on  dn

Bivariate splines have been used to solve similar PDEs in [ 10] with satisfactory numeri-
cal performance. In this literature, the computational method was based on the standard
weak formulation. In the current work, we adopt the spline collocation method devel-
oped in [25], which produces a more accurate numerical solution than the bivariate
splines based on the weak formulation for elliptic equations. Also, the spline colloca-
tion method is easy to implement without using a quadrature formula.

A.1 A Spline-Based Collocation Method for the Keller Segel Equation without Flow
Advection

Let Q C R? be a polygonal domain. Given an integer N7 and the final time 7 >0,
we let At = ;/—fT be the constant time-step and # := kAt, fork =0,--- , Nr —1. We

consider a partitioning of the time interval [0, 7 7] = U,iV:TO_ ! [*k, tx+1] and approximate
the continuous-time derivative of the density using a forward Euler method

a0 N Or — Or_1
ot At

Our computational scheme for the equations (A.3)—(A.5) is as follows:
Step 1: Using a given (0, x) = 6p(x), we get co(x) = ¢(0, x) using the following
equations

3
— Aco(x) 4 co(x) =6, co(x) >0, and %h —0. (A.6)

Step 2: Find 6; = 6(t, x) from

Or — Ok .

% =kAO—1 =V - (Ok_1Ver—1) + fi—1 in Q, (A7)
6 >0 in Q, (A8)
26

&k —oonT, (A.9)
on

where fi_1(x) = f(tx—1, x).
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Step 3: Calculate ¢y = c(#, x) such that
acy
—Acp(x) + cr(x) =6k, cr(x) >0, and E'F =0. (A.10)

Let us focus on how to solve (A.6) and (A.10). We first choose a set of domain points
{&i}i=1.....n (cf. A.2) as collocation points and then use the spline basis functions B, (cf.
A.1). Using these functions, we find the spline solution 6 = 3, cx >~ 4/=p al*B! in

spline space ST, (A), ck = ) en ZIaI:D b;’kax in the same spline space S7,(A) with
the coefficient vectors a¥ > 0, b* > 0, respectively, satisfying

dcr (&)
—Ack(E) + ) = 0(&) and —==|p =0, k=0,1,--- N,
where {§;}i=1,....n € Dp,a are the domain points of A of degree D. We can rewrite

the above equation as the matrix equation:
(—K + MV)b* = Mva* and Bb* =0,

where K = MxxV + MyyV = [BxxBé(x,-, y,-)] + [8ynyx(x,', yi)], MV =
[B.,(x;, )] and Bb* = 0 is associated with the boundary condition. Also, we add
the smoothness conditions in terms of smooth matrix equation: Hb* = 0. Hence, our
spline collocation method is to find b¥ by solving the following constrained minimiza-
tion:

: k _l _ k k2
min J (b) = ZII(=K + MV)b — MVa'| (A.11)
v
subject to Bb* = 0, Hb* = 0, b* > 0. (A.12)

It is easy to see that such a constrained minimization has a unique solution as the
feasible set is convex and the minimizing functional is convex. We shall use the iterative
method in [25] to solve the above constrained minimization problem.

Similarly, we can solve the PDE in Step 2, i.e., (A.7) by finding the spline approx-
imation 6 which satisfies the following collocation equations

Ok (&) = 1) + Atk AO1(5) =V - Or—1(EDVek—1(E)) + fi—1(tr—1, &),
00y (&)
Ir =0,
_on_
Or = 0o,

(A.13)
where {§;}i=1,... v € Dp,  are the domain points of A of degree D. That is, we can
find 6; by solving the following constrained minimization problem:

. ky _ 1 k 2
min J(a") = — || MVak — ¢, (A.14)
ak 2
subject to Bak = 0, Hak = 0, 1a* = §,, a* > 0, (A.15)
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10.!0
104 10% 102 10! 10°
time

Fig. 9 Initial condition 6 (Left), numerical solution ¢y from Step 1 (Middle), and RMSEs for (6, ¢) in
Example A.2

where I = [ fQ B.,]is arow vector, B and 0 are derived from the boundary condition,
f, is from the right side of the equation (A.13) and H is the matrix of all the smoothness
conditions across each interior edge of triangulation A. Again, the above constrained
minimization problem has a unique solution and we can use the iterative method in
[25] to solve it. Repeating this process for each k, we can find the numerical solution
to (A.3)-(A.9).

A.2 Numerical Examples for the PKS System Without Flow Advection

In this section, we present numerical experiments using the spline collocation method
for solving PKS and demonstrate the accuracy of our algorithms. More simulation
results can be found in [30].

We compute the root mean squared errors (RMSEs) of the approximate spline
solution 6, and ¢, against the exact solutions 6 and ¢ based on 201 x 201 equally-
spaced points over the bounding box of the domain 2. The errors we compute include
0 — 6, V(O —by), c — ¢y, and V(c — cy).

Example A.2 Let Q = (—m, )%. We consider the following exact solution satisfying
(A.3)-(A5)

0 =2e"(cos(x) + cos(y))
¢ = e (cos(x) + cos(y))

with an appropriate f. We choose the final time ty = 1, At = 1e-05, D = 10,7 =2,
and a mesh size of 1 = /8. Figure 9 shows the numerical solution of (6, ¢) att =0
and the RMSEs of 6 — 0, V(6 — 60y), ¢ — ¢, and V(¢ — ¢g). The numerical errors are
close to 1e-09 at the beginning and remain between 1e-05 and 1e-09.
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Fig. 10 Initial condition 6 (Left), numerical solution c¢( from Step 1 (Middle), and RMSEs for solution 6
and ¢ in Example A.3

Example A.3 Let Q = (— 37”, 37”)2. Consider the exact solution for (A.3)—(A.5) given
by

RS
Il

2e7!(2sin(x) + sin(y))
¢ =e ! (2sin(x) + sin(y))

for an appropriate f. We use the same parameter settings as in Example A.2. Figure 10
presents the numerical solution of (6, ¢) at t = 0 and the RMSEs of 6 — 6;, V(6 —
0s),c — ¢ and V(c — ¢s). Similar to the results of Example A.2, the RMSEs are
between 1e-05 and 1e-09.
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