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Abstract
This work focuses on the optimal control design for suppressing the singularity for-
mation in chemotaxis governed by the parabolic-elliptic Patlak–Keller–Segel (PKS)
system via flow advection. The main idea of this work lies in utilizing flow advec-
tion for enhancing diffusion as to control the nonlinear behavior of the system. The
objective is to determine an optimal strategy for adjusting flow strength so that the
possible finite time blow-up of the solution can be suppressed. Rigorous proof of the
existence of an optimal solution and derivation of first-order optimality conditions for
solving such a solution are presented. Spline collocation methods are employed for
solving the optimality conditions. Numerical experiments based on 2D cellular flows
in a rectangular domain are conducted to demonstrate our ideas and designs.

Keywords Optimal control · Flow advection · Chemotaxis · Patlak–Keller–Segel
system · Suppression of singularity · Cellular flows · Spline collocation methods

1 Introduction

This work discusses the problem of optimal control design for suppression of singular-
ity formation in chemotaxis via flow advection. Chemotaxis is the movement of cells
in response to a chemical stimulus. A coupled parabolic system was first employed to
model this process by Patlak [33], Keller and Segel in [21, 22], which describes the
evolving densities of one ormore chemotactic population and its attractants/repellents.
Other related study and reviews can be found in (e.g. [15, 16, 34, 39, 40]). The current
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work focuses on a simplified parabolic-elliptic Patlak–Keller–Segel (PKS) equations
introduced by Nagai in [32] (also see [19]) with flow advection or a drift, induced
by the movement of the ambient fluid, in an open bounded and connected domain
� ⊂ R

d , d = 2, 3, with a smooth boundary � (corners may be allowed).
Let θ ≥ 0 be the density of the cells and c ≥ 0 be the concentration of a chemoattrac-

tant produced by the cells. Further, let v = v(x) be a predetermined time-independent
incompressible flow and u = u(t) be a time-dependent control input regulating the
strength of the flow. The system with controlled flow advection is governed by

∂θ

∂t
= �θ − u(t)v · ∇θ − ∇ · (θχ∇c) in �, (1.1)

− �c + c = θ in �, (1.2)

∇ · v = 0 in �, (1.3)

with Neumann boundary conditions for both θ ≥ 0 and c ≥ 0, no-penetration condi-
tion for v

∂θ

∂n
= ∂c

∂n
= 0 and v · n = 0 on �, (1.4)

and the initial condition

θ(x, 0) = θ0(x) in �, (1.5)

where χ > 0 is a sensitivity parameter of the cells to the chemo-attractant c and
n is the outward unit normal vector to the domain boundary �. The objective is to
seek for an optimal regulating function u(t) for the ambient fluid as to suppress the
possible finite time blow-up. It is well-studied that in the absence of flow advection or
the drift, if the initial condition is above certain critical threshold, the solution of the
PKS equations may blow up in finite time by concentrating positive mass at a single
point (e.g. [11–14, 19]). With flow advection, however, for any initial distribution
there exists an ambient velocity field v, either time-independent or dependent, such
that the solution to (1.1)–(1.5) is globally regular for all positive time [23]. Singularity
formation can be prevented via flow advection by mixing the cell in the direction that
mitigates concentration.

When u(t) = A > 0 is a constant, Iyer, Xu and Zlatoš in [18] showed that if the
flow has small dissipation times [18, Definition1.1], then the global well-posedness
result can be obtained in torus Td , d = 2, 3. The case with A < 0 can be treated
similarly by letting v be −v. In fact, the small dissipation times can be achieved by
increasing A, if

the operator v · ∇ has no eigenfunctions in H1(�) other than the constant function.
(1.6)
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This condition was established in [4] to characterize what flows enhance diffusion.
The incompressible flow v satisfying (1.6) is so-called relaxation enhancing [4, Def-
inition1.1]. However, it is rather complex to construct such flows and many flows in
real-world applications do not necessarily possess this property. The authors in [18]
further showed that the flowswith arbitrarily small dissipation times can be constructed
by rescaling a general class of smooth (time-independent) cellular flows, which does
not necessarily satisfy (1.6). The proof is based on the probabilistic method. Simi-
lar results were obtained by using a semigroup approach by Hu in [17] for the PKS
system in a general bounded domain. The detailed discussion is presented in Sect. 2.
Other related work on suppression of singularity by shear flows can be also found in
(e.g. [2]).

In the rest of our discussion, we set χ = 1. If θ is the solution to the PKS system
(1.1)–(1.5), with boundary conditions in (1.4) it is easy to verify that the spatial average

θ̄ (t) = 1

|�|
∫

�

θ dx = 1

|�|
∫

�

θ0 dx = θ̄0, ∀t > 0. (1.7)

In fact, by Stokes formula we have

∂
∫
�

θ dx

∂t
=

∫
�

�θ dx − u
∫

�

v · ∇θ dx −
∫

�

∇ · (θχ∇c)) dx

=
∫

�

∂θ

∂n
dx − u(

∫
�

v · nθ dx −
∫

�

∇ · vθ dx) −
∫

�

(θχ∇c) · n dx = 0,

thus (1.7) follows. It is shown in [17, Theorem 2.2] that for θ0 ∈ L2(�) if (1.6) holds,
then there exists a constant u(t) = A = A(θ0) > 0 depending on θ0, such that the
solution to (1.1)–(1.5) is globally regular for all t > 0 and θ converges to its spatial
average θ̄ exponentially. These results lay a theoretical foundation for our optimal
control design for suppression of singularity formation.

1.1 Control Design via Flow Advection

Although there is rich literature on optimal control for chemotaxis, it predominantly
focuses on the linear distributed control of the chemoattractant (e.g. [35–37]) or bilin-
ear control of the cells or chemoattractant of the form uθ or uc (e.g. [6, 8, 9]), where
u = u(x, t) is the control input. This is the first work, to our best knowledge, to con-
trol the PKS system via active control of the flow advection. We aim at designing an
optimal input u(t) for regulating the flow so that the possible blow-up in solution can
be suppressed and the solution is as close as possible to its its spatial average. In this
work, we assume that u(t) has both upper and lower bounds. Let the set of admissible
control be

Uad = {u ∈ L2(0, t f ) : u ≤ u ≤ u},
where u < 0 < u and u is allowed to depend on the initial datum θ0. We seek u ∈ Uad

that minimizes the following cost functional
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J (u) =α

2
‖θ(t f ) − θ̄‖2L2 + β

2

∫ t f

0
‖θ(t) − θ̄‖2L2 dt + γ

2

∫ t f

0
|u|2 dt, (1.8)

for a given final time t f > 0, subject to (1.1)–(1.5), where α, β ≥ 0 and γ > 0 are
the state and control weight parameters, respectively. The parameters α and β do not
vanish simultaneously. We first show that the optimal problem (1.8) is well-posed,
that is, for any given initial datum θ0 ∈ L2(�), there exits a control u ∈ Uad such
that J (u) < ∞. To this end, it is critical to understand the well-posedness of the PKS
system in the presence of flow advection in bounded domains and choose appropriate
bounds for u(t) so that Uad is non-empty. Then we proceed to prove the existence of
an optimal solution to problem (P). Since we have a nonlinear system associated with
a nonlinear control input, problem (P) is no longer convex. As a result, the optimal
solution may not be unique.

To start with, we let ϑ = θ − θ̄ , then ϑ̄(t) = 0 for t ≥ 0, and ϑ satisfies

∂ϑ

∂t
= �ϑ − u(t)v · ∇ϑ − ∇ · ((ϑ + θ̄ )∇c) in �, (1.9)

− �c + c = ϑ + θ̄ in �, (1.10)

∇ · v = 0 in �, (1.11)

∂ϑ

∂n
= ∂c

∂n
= 0 and v · n = 0 on �, (1.12)

ϑ(x, 0) = θ0(x) − θ̄ in �. (1.13)

The cost functional in (1.8) can be rewritten as

J (u) =α

2
‖ϑ(t f )‖2L2 + β

2

∫ t f

0
‖ϑ(t)‖2L2 dt + γ

2

∫ t f

0
|u|2 dt, (P)

subject to the translated system (1.9)–(1.13).
The rest of this work is organized as follows. In Sect. 2, we first present the global

well-posedness and regularity properties of the PKS system in a bounded domain,
which pave away for establishing thewell-posedess of the optimal control problem (P)

and the existence of an optimal solution. In Sect. 3, we derive the first-order optimality
conditions for solving the optimal solution using the variational inequality (e.g. [31]).
Finally, in Sect. 4we use the spline collocationmethod for implementing the optimality
system (e.g. [1, 10, 24, 25]). Numerical experiments based on 2D cellular flows for
suppression of singularity in rectangle domains will be presented to demonstrate the
effectiveness of our control design.

2 Well-Posedness of the PKS System and Existence of an Optimal
Control

We first consider u(t) = A being a parameter which regulates the strength of the flow.
The flow velocity v is always assumed to be time-independent and divergence free
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with v ·n|� = 0. It is proven in [17] that the global well-posedness of the PKS system
can be obtained in an appropriate Hilbert space H if the analytic semigroup generated
by the advection–diffusion operator �− Av · ∇, denoted by SA(t), t ≥ 0, has a rapid
decay property on H . That is, there exist M0 ≤ 1 and ωA > 0 such that

‖SA(t)‖L (H) ≤ M0e
−ωAt , t ≥ 0, (2.1)

where ωA can be made arbitrarily large by adjusting A and M0 is independent of ωA.
HereL (H) stands for the set of bounded linear operators on H and ‖ · ‖L (H) stands
for the operator norm.

Let H = L2
0(�) = {ψ ∈ L2(�) : ∫

�
ψ dx = 0} be the subspace of mean zero

functions. Define
LA = � − Av · ∇

with D(LA) = {φ ∈ H2(�) ∩ H : ∂φ
∂n |� = 0}. Then −LA is m-accretive (e.g. [20,

p. 279]). A closed operator −LA in a Hilbert space H is called m-accretive if the left
open half-plane is contained in its resolvent set �(−LA) with

(−LA + λ)−1 ∈ L (H), ‖(−LA + λ)−1‖ ≤ �λ−1 for �λ > 0.

Define

�(LA) = inf{‖(LA+iλ)φ‖L2 : φ ∈ D(LA), λ ∈ R, ‖φ‖L2 = 1} (2.2)

as in [41]. The following Gearhart-Prüss type theorem is proven in [41, Theorem 1.3]
for an m-accretive operator, that is,

‖eLAt‖L (L2(�)) ≤ M0e
−�(LA)t , t ≥ 0, (2.3)

where M0 = eπ/2. Furthermore,

�(LA) → +∞, as A → +∞, (2.4)

if and only if

v · ∇ has no eigenfunctions in H1(�) ∩ H . (2.5)

The relations (2.3)–(2.5) indicate that the rapid decay property (2.1) holds if (2.5)
is satisfied. Further define the nonlinear operator N : H1(�) → H by

Nϑ = −∇ · ((ϑ + θ̄ )∇c), (2.6)

where c can be replaced in terms of ϑ . Define the operator

A = −� + I (2.7)
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with domain D(A) = {φ ∈ H2(�) : ∂φ
∂n |� = 0}. Then A is strictly positive and

self-adjoint. According to (1.10) and (1.12), we have

c = A−1(ϑ + θ̄ ) = A−1ϑ + θ̄ .

Replacing u(t) by A, we can rewrite the PKS system (1.9)–(1.13) as an abstract
Cauchy problem in the state space H

ϑ̇ = LAϑ + Nϑ, (2.8)

ϑ(0) = ϑ0 ∈ H , (2.9)

where the system operator LA generates an analytic semigroup, denoted by eLAt , t ≥
0, on H and the nonlinearity of operator N can be characterized by the following
results [17, Lemma 2.4].

Lemma 2.1 For ϑ ∈ H1(�), then there is a constant C1 > 0 such that

||Nϑ ||L2 ≤ C1(||ϑ ||2H1 + |θ̄ |‖ϑ‖L2). (2.10)

Moreover, for ϑ ∈ L2(�), there is a constant C2 > 0 such that

‖(−LA)−
3
4 (Nϑ)‖L2 ≤ C2(‖ϑ‖2L2 + |θ̄ |‖ϑ‖L2). (2.11)

The estimate (2.10) has been established in the proof of [18, Lemma 3.1] on
T
d , d = 2, 3. The following theorem on the global well-posedness and stability of the

nonlinear system (2.8)–(2.9) is established in [17, Theorem 2.2], utilizing the classic
tools of analytic semigroup theory for semilinear equations together with a fixed-point
theorem. For simplicity, we denote �(LA) by �A.

Theorem 2.2 Let ϑ0 ∈ H and v ∈ L∞(�). If �A = �A(ϑ0, θ̄ ) > 0 is sufficiently
large, then there exists a unique mild (weak) solution ϑ to (2.8)–(2.9) satisfying

ϑ ∈ C([0,∞); H) ∩ L2
loc(0,∞; H1(�)) (2.12)

and

sup
t≥0

‖ϑ‖L2 ≤ 2‖ϑ0‖L2 + 1. (2.13)

Moreover, there exist constants M∗ ≥ 1 and ω0 > 0 such that

‖ϑ‖L2 ≤ M∗e−ω0t‖ϑ0‖L2 . (2.14)

Using the variation of parameters formula we can express the mild solution to
(2.8)–(2.9) as

ϑ(t) = eLAtϑ0 +
∫ t

0
eLA(t−τ)(Nϑ)(τ) dτ. (2.15)

123



Applied Mathematics & Optimization            (2024) 89:57 Page 7 of 28    57 

Furthermore, by (2.10)–(2.13) we have �θ ∈ L2(0, t f ; (H1(�))′), v · ∇ϑ ∈
L2(0, t f ; L2(�)), and

Nϑ ∈ L1(0, t f ; L2(�)) ∩ L2(0, t f ; (D(−LA)3/4)′),

for any 0 < t f < ∞. Therefore, we can derive that

∂ϑ

∂t
∈ L2(0, t f ; (D(−LA)3/4)′). (2.16)

2.1 Existence of an Optimal Control

With Theorem 2.2 at our disposal, we are in a position to show the existence of an
optimal control to problem (P) subject to (1.9)–(1.13). Note that it is key to choose
an appropriate u > 0 such that Uad is non-empty. In light of Theorem 2.2, if velocity
field v satisfies (2.5), then we can always make �A = �A(ϑ0, θ̄ ) > 0 sufficiently
large by increasing A. In this case, we can simply choose u ≥ A and u(t) = u, then the
cost functional J (u) < ∞ due to (2.12). In other words, Uad is non-empty. However,
if the velocity field is generated by cellular flows, (2.5) may not hold. Then we can
set vA = Av(Ax) and adjust A to rescale both the cell size and the flow amplitude to
make �A arbitrarily large (see Sect. 3.1).

To proceedwith the existence of an optimal control, we first introduce an alternative
definition of a weak solution to (2.8)–(2.9) as follows.

Definition 2.3 Let ϑ0 ∈ L∞(�), u ∈ Uad , and v ∈ L∞(�). ϑ is said to be a weak
solution of system (1.9)–(1.13), if θ satisfies

(∂ϑ

∂t
, φ

)
+ (∇ϑ,∇φ) − u(ϑ,∇φ) − ((ϑ +Nθ)∇c,∇φ) = 0, ∀φ ∈ H1(�),

(2.17)

in the distribution sense on (0, t f ).

Theorem 2.4 Let ϑ0 ∈ H. Assume that v ∈ L∞(�) is chosen such that �A =
�A(ϑ0, θ̄ ) > 0 can be made sufficiently large via adjusting A. If the upper bound
u of the control input satisfies u ≥ A, then there exists an optimal solution u(t) ∈ Uad

to problem (P).

Proof We start with an a priori estimate for choosing u. First set u(t) = A > 0.
According to Theorem 2.2, for ϑ0 ∈ L∞(�), if v ∈ L∞(�) is chosen such that
�A = �A(ϑ0, θ̄ ) > 0 can be made sufficiently large via adjusting A, then there
exists a unique weak solution satisfying (2.17). Next we let u ≥ A and employ the
direct method to show the existence of an optimal control in Uad . Here we simply set
u = −u.

Since J ≥ 0 is bounded from below, we may choose a minimizing sequence
{um} ⊂ Uad such that

lim
m→∞ J (um) = inf

u∈Uad
J (u) < ∞.
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By the definition of J , the sequence {um} is uniformly bounded in Uad , and hence
there exists a weakly convergent subsequence, still denoted by {um}, such that

um → u∗ weakly in L2(0, t f ).

In the worst case scenario, um = u∗ = u. Correspondingly, based on Theorem 2.2,
for ϑ0 ∈ L∞(�) there exists a sequence of solutions {ϑm} satisfying (2.17) and
ϑm ∈ C([0, t f ]; L2(�)) ∩ L2(0, t f ; H1(�)). Together with (2.16) we may extract a
subsequence, still denoted by {θm}, such that

ϑm → ϑ∗ weakly in L2(0, t f ; H1(�)) (2.18)

∂ϑm

∂t
→ ∂ϑ∗

∂t
weakly in L2(0, t f ; (D(−LA)3/4)′). (2.19)

By Aubin–Lions lemma, (2.18)–(2.19) indicate that

ϑm → ϑ∗ strongly in L2(0, t f ; L2(�)). (2.20)

It remains to show that ϑ∗ is the solution corresponding to u∗ based on Definition 2.3.
Note that um and ϑm satisfy

(
∂ϑm

∂t
, φ) + (∇ϑm,∇φ) − um(ϑm,∇φ) − ((ϑm +Nθ)∇cm,∇φ) = 0, ∀φ ∈ H1(�).

(2.21)

Let ψ be a continuously differentiable function on [0, t f ] with ψ(t f ) = 0. For each
φ ∈ H1(�), we multiply (2.21) by ψ and integrate by parts. After integrating the first
term by parts, we get

−
∫ t f

0
(ϑm, φψ̇) dt +

∫ t f

0
(∇ϑm,∇φ)ψ dt −

∫ t f

0
um(vθm,∇φ)ψ dt

−
∫ t f

0
(ϑm∇cm,∇φ)ψ dt −

∫ t f

0
(θ̄∇cm,∇φ)ψ dt = (ϑ0, φψ(0)). (2.22)

Since φψ̇ ∈ L2(0, T ; L2(�)) and ∇φ ∈ L2(�), it is straightforward to pass to the
limit in the first two terms and the last term of the left hand side of (2.22) with the help
of (2.18). To estimate the second term, using the convergence results (2.18)–(2.20)
we have

∣∣∣∣
∫ T

0
(

∫
�

umϑm · ∇φ dxdt −
∫ T

0

∫
�

u∗ϑ∗ · ∇φ dx)ψ(t)dt

∣∣∣∣
≤

∣∣∣∣
∫ T

0
(

∫
�

umϑm · ∇φ − umϑ∗ · ∇φ dx)ψ(t)dt

∣∣∣∣
+

∣∣∣∣
∫ T

0
(

∫
�

umϑ∗ · ∇φ − u∗ϑ∗ · ∇φ dx)ψ(t)dt

∣∣∣∣
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≤
∣∣∣∣
∫ T

0
um

(∫
�

(ϑm − ϑ) · ∇φ dx
)

ψ(t)dt +
∣∣∣∣
∫ T

0
(u − um)

(∫
�

vϑ∗ · ∇φ dx

)
ψ(t) dt

∣∣∣∣
≤ ‖um‖L∞(0,t f )‖‖L∞‖ϑm − ϑ∗‖L2(0,tf ;L2(�))‖∇φ‖L2‖ψ‖L2(0,tf )

+ |
∫ T

0
(u∗ − um)

(∫
�

vϑ∗ · ∇φ dx

)
ψ(t) dt | → 0,

where the last term converges to zero is because

sup
t∈[0,t f ]

∫
�

vϑ∗ · ∇φ dx ≤ sup
t∈[0,t f ]

‖v‖L∞‖ϑ∗‖L2‖∇φ‖L2 ≤ ‖v‖L∞‖ϑ∗‖L∞(0,t f ;L2(�))‖∇φ‖L2 ,

thus
∫
�
vϑ∗ · ∇φ dx ∈ L∞(0, t f ) and (

∫
�
vϑ∗ · ∇φ dx)ψ(t) ∈ L2(0, t f ). Due to the

weak convergence of um in L2(0, t f ), the last terms converges to zero. Moreover,

∣∣∣∣
∫ t f

0
[(ϑm∇cm,∇φ) − (ϑ∇c,∇φ)]ψ(t) dt

∣∣∣∣
=

∣∣∣∣
∫ t f

0

( ∫
�

ϑm(∇cm − ∇c) · ∇φ dx +
∫

�

(ϑm − ϑ)∇c · ∇φ dx
)
ψ(t) dt

∣∣∣∣
≤ ‖ϑm‖L2(0,t f ;H1(�))‖∇cm − ∇c‖L2(0,t f ;H1(�))‖∇φ‖L2‖ψ‖L∞(0,t f )

+
∣∣∣∣
∫ t f

0
(

∫
�

(ϑm − ϑ)∇c · ∇φ dx)ψ(t) dt

∣∣∣∣ → 0, (2.23)

where for the last term we have ∇c · ∇φψ(t) ∈ L2(0, t f ; (H1(�))′). In fact, for any
g ∈ L2(0, t f ; H1(�)),

∣∣∣∣
∫ t f

0

∫
�

∇c · ∇φψ(t)g dx dt

∣∣∣∣ ≤
∫ t f

0
‖∇c‖H1‖∇φ‖L2‖g‖H1 |ψ(t)| dt

≤ ‖∇c‖L2(0,t f ;H1(�))‖∇φ‖L2‖g‖L2(0,t f ;H1(�))‖ψ‖L∞(0,t f ),

which follows

‖∇c · ∇φψ‖L2(0,t f ;(H1(�))′) ≤ ‖∇c‖L2(0,t f ;H1(�))‖∇φ‖L2‖ψ‖L∞(0,t f )

≤ C‖ϑ‖L2(0,t f ;L2(�))‖∇φ‖L2‖ψ‖L∞(0,t f ).

By (2.18), the last term of (2.23) converges to zero. In addition, we have

(ϑ0, φψ(0)) = (ϑ∗
0 , φψ(0)), ∀φ ∈ H1(�),

which indicates ϑ∗
0 = ϑ0. Therefore, ϑ∗ is the solution corresponding to u∗.

Finally, using the weakly lower semicontinuity property of norms in J yields

J (u∗) ≤ lim
m→∞

J (um) = inf
u∈Uad

J (u),

which indicates that u∗ is an optimal solution to problem (P). ��
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3 First-Order Optimality Conditions

Since (P) is non-convex, we will deal with local solutions. We now derive the first-
order necessary optimality conditions for problem (P) by using a variational inequality
(e.g. [31]), that is, if J is Gâteaux differentiable with respect to u and u is an optimal
solution of problem (P), then

J ′(u) · (h − u) ≥ 0, h ∈ Uad . (3.1)

To justify that J is indeed Gâteaux differentiable with respect to u, it suffices to show
that ϑ is Gâteaux differentiable with respect to u.

Lemma 3.1 Let z = ϑ ′(u) · h for h ∈ Uad be the Gâteaux derivative of ϑ with respect
to u in the direction of h. Then z satisfies

∫
�
z dx = 0 and

∂z

∂t
= �z − uv · ∇z − hv · ∇ϑ − ∇ · (z∇c) − ∇ · ((ϑ + θ̄ )∇A−1z), (3.2)

∂z

∂n

∣∣
�

= 0, (3.3)

with initial condition

z(x, 0) = 0. (3.4)

Moreover, there exists a unique solution to (3.2)–(3.4) and for any 0 < t f < ∞,

z ∈ C([0, t f ]; H) ∩ L2(0, t f ; H1(�)). (3.5)

Proof Applying an L2-estimate together with Hölder’s inequality and Ladyzhen-
skaya’s inequality that ‖ f ‖L4 ≤ C‖ f ‖1−d/4

L2 ‖∇ f ‖d/4
L2 , d = 2, 3 (e.g. [7, p.55]), and

the boundary conditions in (1.12) and (3.3) yields

1

2

d‖z‖2
L2

dt
+ ‖∇z‖2L2 = −1

2
u

∫
�

v · ∇z2 dx −
∫

�

hv · ∇ϑz dx −
∫

�

z∇c · nz dx

+
∫

�

z∇c · ∇z dx

−
∫

�

((ϑ + θ̄ )∇A−1z) · nz dx +
∫

�

(ϑ + θ̄ )∇A−1z · ∇z dx

=h
∫

�

ϑv · ∇z dx +
∫

�

z∇c · ∇z dx +
∫

�

(ϑ + θ̄ )∇A−1z · ∇z dx

≤|h|L∞‖ϑ‖L2‖v‖L∞‖∇z‖L2 + ‖z‖L4‖∇c‖L4‖∇z‖L2

+ ‖ϑ + θ̄‖L4‖∇A−1z‖L4‖∇z‖L2

≤C |h|2L∞‖ϑ‖2L2‖v‖2L∞ + 1

6
‖∇z‖2L2 + C‖z‖1−d/4

L2 ‖∇z‖d/4
L2 ‖∇A−1ϑ‖H1‖∇z‖L2

(3.6)
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+ C‖ϑ + θ̄‖2H1‖∇A−1z‖2H1 + 1

6
‖∇z‖2L2 . (3.7)

For the third term in (3.6) we use Young and Poincaré’s inequalities and obtain

‖z‖1−d/4
L2 ‖∇z‖d/4

L2 ‖∇A−1ϑ‖H1‖∇z‖L2 ≤ C‖z‖2L2‖∇A−1ϑ‖
8

4−d

H1 + 1

6
‖∇z‖2L2

≤ C‖z‖2L2‖ϑ‖
8

4−d

L2 + 1

6
‖∇z‖2L2 . (3.8)

Combining (3.6)–(3.7) with (3.8) follows

d‖z‖2
L2

dt
+ ‖∇z‖2L2 ≤C |h|2L∞‖ϑ‖2L2‖v‖2L∞ + C‖z‖2L2‖ϑ‖

8
4−d

L2 + C(‖ϑ‖2H1 + |θ̄ |2)‖z‖2L2 ,

(3.9)

and hence by Grönwall’s inequality and (2.12) we obtain

sup
t∈[0,t f ]

‖z‖2L2 ≤C‖v‖2L∞

∫ t f

0
|h|2L∞‖ϑ‖2L2 dt · eC

∫ t f
0 (‖ϑ‖

8
4−d
L2

+‖ϑ‖2
H1+|θ̄ |2) dt

< ∞.

(3.10)

Moreover, from (3.9)–(3.10) it follows

∫ t f

0
‖∇z‖2L2 < ∞. (3.11)

Finally, with the help of a priori estimates (3.10)–(3.11) and the Galerkin approxima-
tion, one can show that there exists a unique solution to (3.2)–(3.4). In other words, z
is well-defined and this completes the proof. ��

Lemma 3.1 indicates that ϑ is Gâteaux differentiable with respect to u ∈ Uad , so
is J . A direct calculation follows that

J ′(u) · h =α(ϑ(t f ), z(t f )) + β

∫ t f

0
(ϑ, z) dt + γ

∫ t f

0
uh dt, ∀h ∈ Uad . (3.12)

Theorem 3.2 Assume that ϑ0 ∈ L∞(�) and v ∈ L∞(�). If u(t) is an optimal solution
to problem (P) and ϑ is the corresponding solution to the state equations. Then there
exists an adjoint state ρ such that the optimal triplet (u, ϑ, ρ) satisfies

State Equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ϑ
∂t = �ϑ − uv · ∇ϑ − ∇ · ((ϑ + ϑ̄)∇c),
−�c + c = ϑ + θ̄ ,
∂θ
∂n

∣∣∣
�

= ∂c
∂n

∣∣∣
�

= 0,

θ(0) = θ0,

(3.13)
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Adjoint Equations

⎧⎪⎨
⎪⎩

− ∂ρ
∂t = �ρ + uv · ∇ρ + ∇c · ∇ρ−A−1(∇ · (ϑ∇ρ)) + βϑ,

∂ρ
∂n

∣∣∣
�

= 0,

ρ(t f ) = αϑ(t f ),
(3.14)

Optimality condition: uopt (t) = P[u,u]
(

− 1

γ

∫
�

(ϑ∇ρ) · v dx
)

, (3.15)

where for real numbers c ≤ d, P[c,d] denotes the projection of R onto [c, d], that is,
P[c,d]( f ) := min{d,max{c, f }}.
Proof To define the adjoint state, we take the inner product of (3.2) with ρ

∫ t f

0
(
∂z

∂t
, ρ) dt =

∫ t f

0
(�z, ρ) dt −

∫ t f

0
u(v · ∇z, ρ) dt −

∫ t f

0
(hv · ∇θ, ρ) dt

−
∫ t f

0
(∇ · (z∇c), ρ) dt −

∫ t f

0
(∇ · ((ϑ + θ̄ )∇A−1z), ρ) dt,

(3.16)

which follows

(ρ(t f ), z(t f ))−(ρ(0), z(0)) +
∫ t f

0
(−∂ρ

∂t
, z) dt

=
∫ t f

0
(�ρ, z) dt +

∫ t f

0
u(v · ∇ρ, z) dt +

∫ t f

0
(θ∇ρ, v)h dt

+
∫ t f

0
(z∇c,∇ρ) dt −

∫ t f

0
(z,A−1(∇ · ((ϑ + θ̄ )∇ρ))) dt .

(3.17)

Let ρ satisfy

−∂ρ

∂t
=�ρ + v · ∇ρ + ∇c · ∇ρ − A−1(∇ · ((ϑ + θ̄ )∇ρ)) + βϑ, (3.18)

∂ρ

∂n
|� =0, (3.19)

with final time condition

ρ(t f ) = αϑ(t f ). (3.20)

Then combining (3.17) with (3.18)–(3.20) follows

(αϑ(t f ), z(t f )) =
∫ t f

0
(θ∇ρ, v)h dt −

∫ t f

0
(βϑ, z) dt . (3.21)
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As a result, if u is an optimal solution, then by (3.12)

J ′(u) · h =
∫ t f

0
( θ∇ρ, v)h dt + γ

∫ t f

0
uh dt ≥ 0, (3.22)

for any h ∈ Uad , which establishes (3.15). ��

3.1 Control of Cellular Flows in Rectangle-Like Domains

In real life applications, however,manyflows are not necessarily relaxation-enhancing,
i.e., (2.5) may not be satisfied. The semigroup generated by the advection–diffusion
operator can still have the rapid decay property. As shown in (e.g. [17, 18]), for the
velocity field generated by cellular flows in rectangle-like domains (rectangles (d = 2)
and parallelepipeds (d = 3)), rescaling both the cell size and the flow amplitude is
able to establish the rapid decay property of the semigroup generated by the associated
advection–diffusion operator. It is important to point out that in rectangle-like domains
our main theorems in this work still hold.

To demonstrate the idea, we consider the following prototypical example of a 2D
cellular flow for our numerical tests

v(x, y) = ∇⊥ sin(2πx) sin(2π y) = 2π

[− sin(2πx) cos(2π y)
cos(2πx) sin(2π y)

]
(3.23)

in a two-dimensional domain � = (0, 1)2. For d = 3, one can utilize the cubic cells
given by (e.g. [3, 18, 38]). Since the cellular flows and the basis functions are periodic,
they can be naturally extended to N� = (0, N )d for N ∈ N

+.
Let L1 = � − v(x) · ∇, where x = (x1, . . . , xd) and v = (v1, . . . , vd), d = 2, 3,

with D(L1) = {ψ ∈ H2(�) ∩ H : ∂ψ
∂n |� = 0}. Let viN (x) = vi (Nx) for x ∈ �, N ∈

N
+, and vN = (v1N , . . . , vdN ), d = 2, 3. According to (3.23), the rescaled cellular

flow velocity vN is still sufficiently smooth and periodic, yet with higher frequency
compared to v. Now define

LN = � − NvN (x) · ∇

with D(LN ) = D(L1). One can show that

�N = N 2�1, (3.24)

where �N = �(LN ) is defined as in (2.2) for N ∈ N
+. The detailed proof is given

by [17, Proposition 3.1]. Therefore,

‖eLN t‖L (H) ≤ M0e
−�N t = M0e

−N2�1t , t ≥ 0,

which indicates that the decay rate of the semigroup eLN t can be made arbitrarily fast
if N is sufficiently large. According to Theorem 2.2, for a given initial condition ϑ0, as

123



   57 Page 14 of 28 Applied Mathematics & Optimization            (2024) 89:57 

long as the amplitude and the ordinary frequency N = N (ϑ0, θ̄ ) of the cellular flows
are large enough, the system is well-posed and exponentially stable.

For a fixed flow frequency, the objective of the optimal control design using cellular
flows is to determine an optimal time-dependent flow amplitude u(t) to regulate the
strength of the flow. The existence of such a solution follows from Theorem 2.4. It is
clear that it suffices to choose the upper bound of u(t) satisfying u ≥ N (ϑ0, θ̄ ). Again
we can simply set u = −u. Numerical experiments based on cellular flows will be
presented in the next section to demonstrate our control design.

4 Numerical Implementation

In this section, we present our numerical experiments for the suppression of singularity
of the PKS system in rectangle domains by utilizing the 2D cellular flows introduced in
Sect. 3.1. We use the spline collocation method to solve the optimality system (3.13)–
(3.15) along with the Euler forward method in time. The bivariate spline functions are
employed to approximate the system based on the weak formulation for parabolic-
elliptic PDEs. For the convenience of the reader, we provide a brief explanation in
Appendix 1. One can refer to [1, 10, 25–27] for a detailed study.

To validate the accuracy of our algorithms for solving the PKS system without flow
advection, we present numerical tests in Appendix A.1. In particular, we verify the
validity of the algorithm for conservation of mass and non-negativity of the solutions θ

and c. Following themain results in Theorem 3.2, we implement the optimality system
(3.13)–(3.15) using Algorithm 4.1 presented below. For computational convenience,
we replace ϑ by θ − θ̄ .

Algorithm 4.1: Adjoint Method for Optimal Control Problems
Given a final time t f > 0, a tolerance ε > 0, and constants α, β, γ > 0, for

j = 1, 2, . . . , we compute u j using the following iterations with known u j−1:

• Step 1: First, we use the initial function u j−1(t) and the given v(x, y). Let
θ(0, x) = θ0(x) ≥ 0 and c0(x) = c(0, x). Solve

−�c0(x) + c0(x) = θ0 and
∂c0
∂n

∣∣∣∣
�

= 0.

Let uk = u j−1(tk). Solve θk = θ(tk, x) and ck = c(tk, x) at each time step
tk, k = 1, 2, · · · , n, where n = [ t f

�t ], from the following equations

θk − θk−1

�t
= κ�θk−1 − ukv · ∇θk−1 − ∇ · (θk−1∇ck−1),

∂θk

∂n

∣∣
�

= 0,

and

−�ck(x) + ck(x) = θk and
∂ck
∂n

∣∣
�

= 0.

Stop if |θ |∞ > 5, 000 and set t f = tn .
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• Step 2 : Compute ρn = α(θn − θ̄n) using t f = tn and wn = A−1(∇ · (θn∇ρn)),
that is, we solve

(−� + I )wn = ∇ · (θn∇ρn) and
∂wn

∂n

∣∣
�

= 0.

• Step 3 : Set t f = tn . Use ρn , θn and cn to solve ρn−1 backward in time from the
adjoint equations

− ρn − ρn−1

�t
= κ�ρn + unv · ∇ρn + ∇cn · ∇ρn − wn + β(θn − θ̄n),

∂ρn−1

∂n

∣∣
�

= 0.

• Step 4 : For given ρn−1 and θn−1, compute wn−1 from

(−� + I )wn−1 = ∇ · (θn−1∇ρn−1).

• Step 5 : Find ρn−2 that satisfies

ρn−2 = ρn−1 + �t(κ�ρn−1 + un−1v · ∇ρn−1 + ∇cn−1 · ∇ρn−1 − wn−1

+ β(θn−1 − θ̄n−1)),

∂ρn−2

∂n

∣∣
�

= 0.

Repeat Steps 4–5 to solve ρn−3, · · · , ρ0.
• Step 6 : Compute

u j (tk) = P[u,u]
(

− 1

γ

∫
�

(θk∇ρk)) · v dx
)

, k = 0, 1, . . . , n.

where P[u,u] denotes the projection of R onto [u, u], that is, P[u,u]( f )
:= min{u,max{u, f }}.

• Stop, if
|J (u j ) − J (u j−1)|

J (u j−1)
< ε.

We begin with demonstrating the development of singularity in the solution to the
PKS system in finite time when there is no flow advection and the initial condition is
above a certain threshold. We then present our optimal control design for suppressing
such singularity formation. Nagai in [32] considered the system (1.1)–(1.5) without
advection in a 2D disk and showed that under the condition θ̄0 > 8π , the radial
solution blows up in finite time if

∫
�

θ0|x |2dx is sufficiently small. However, under
the condition θ̄0 < 8π , the radial solution exists globally in time. In our numerical
simulations, we first consider different Gaussian functions as the initial data as in [5]
to demonstrate the density evolution, in response to the influence of a chemoattractant
governed by the PKS system (1.1)–(1.5) without flow advection.
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Fig. 1 Density θ with (x0, y0) = (0.5, 0.5) for various initial mass

Example 4.1 Let � = (0, 1) × (0, 1) and consider the following Gaussian function:

θ0 = N0

2πρ
exp

(
− (x − x0)2 + (y − y0)2

2ρ

)
, N0 ∈ N

+, ρ > 0,

where (x0, y0) = (0.5, 0.5). It is easy to check that N0(1 − e− 1
8ρ ) <

∫
�

θ0 dx <

N0(1−e− 1
4ρ ). Thus

∫
�

θ0 dx ≈ N0 if ρ is small. Set ρ = 10−2 and the final time t f =
1. We test different initial mass by letting N0 be 7π, 8π, 9π, and 10π , respectively.

We set the mesh size h = 1
8 and the time step �t = 1e-5. Without flow advection,

our results show that for N0 ≤ 8π the density distribution approaches to its spatial
average over time as shown in Figs. 1a–1b. However, for N0 > 8π , the bump in the
density function develops rapidly during evolution as shown in Figs. 1c–1d. For the
latter, we refined the mesh near the center to get more accurate results. Figures2a–
2d demonstrate the density θ at various time steps for an initial mass about 9π with
(x0, y0) = (0.5, 0.5). We observe the rapid accumulation of mass toward the center,
which indicates a possible singularity formation in finite time.

With the same settings as in Example 4.1, we now exemplify the PKS system
with controlled flow advection and apply Algorithm 4.1 to solve the optimal system
(3.13)–(3.15) for an optimal control.
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Fig. 2 Uncontrolled evolution of density θ with (x0, y0) = (0.5, 0.5) and N0 = 9π at various time steps
t = 0, 0.005, 0.025, 0.091

Example 4.2 Consider the same domain and initial data with N0 = 9π as in Example
4.1. We further consider the cellular flow given by

vN (x, y) = 2π

(− sin(2Nπx) cos(2Nπ y)
cos(2Nπx) sin(2Nπ y),

)
, N ∈ N

+, (4.1)

as plotted in Fig. 3 for N = 1, 2.When u(t) = N is a constant, the density distribution
θ blows up for N = 1 but approaches to its spatial average for N ≥ 2. Here we set
N = 2, t f = 0.4, α = β = 1, γ = 1, u = N and u = −N . The stop criterion in
Algorithm 4.1 is set to be ε = 1e-08.

Figs. 4a–4d demonstrate the density evolutionwith optimally controlled flowadvec-
tion for N = 2 at t = 0, 0.005, 0.01, 0.4, respectively. The maximum value of θ in
space decreases from 450 to 9π and the sharp peak is quickly suppressed by flow
advection. Moreover, θ approaches to 9π as time evolves. The behavior of the optimal
control input u(t) is presented in Fig. 5a, which first oscillates and switches between
positive and negative values, and then converges to zero. This suggests that adjusting
flow orientation is important in optimal control of flow advection, which may be more
effective than simply increasing the flow strength for preventing the accumulation
of mass according to our cost criteria. Figure5b shows that the cost functional J (u)

decreases and converges. In Fig. 5c, we observe that ‖θ(t)‖L∞ quickly reaches the
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Fig. 3 v1(Left) and v2(Right)

Fig. 4 Controlled evolution of density θ with (x0, y0) = (0.5, 0.5), N0 = 9π , N = 2, u = 2 and u = −2
at various time steps t = 0, 0.005, 0.01, 0.4

exponential decay rate for t ∈ [0, 0.4] and converges to approximately 9π , which is
close to the spatial average θ̄ .

Next we investigate the effectiveness of flow advection with Gaussian initial data
centered at different locations. We repeat the experiments for the Gaussian initial data
with N0 = 9π and different centers (x0, y0), where x0 and y0 take on the values of
0.4, 0.5, 0.6, 0.7. Initially, we set N = 2 in (4.1) and u = N , but observe that θ blows
up in all cases except for (x0, y0) = (0.5, 0.5). To address this issue, we increase u to

123



Applied Mathematics & Optimization            (2024) 89:57 Page 19 of 28    57 

Fig. 5 Control input u(t), cost functional J (u j ), j = 1, · · · , 11, and ‖θ(t)‖L∞ for (x0, y0) =
(0.5, 0.5), N = 2, u = 2, u = −2, and t ∈ [0, 0.4]

20N and then θ does not blow up in any of these cases. As time progresses, we observe
that themaximum value of θ decreases and θ approaches to its spatial average θ̄ , which
is about 9π for different centers (x0, y0) = (0.4, 0.4), (0.4, 0.5), (0.4, 0.6), etc.

Example 4.3 We further examine the evolution of density θ by setting different upper
bounds for the control input for a Gaussian initial datum centered at (0.7, 0.7) with
N0 = 9π .

We take N = 2 and first conduct forward simulations by letting u(t) = u. Fig-
ures6a–6bpresent the density distribution at t = 0.0188 and t = 0.5 foru(t) = u = N
and u(t) = u = 20N , respectively. Figure6a shows that the singularity formation
occurs at the domain boundary for u(t) = u = 2 when t = 0.0188. In contrast, as
shown in Fig. 6b, increasing the upper bound u to 40 results in a significantly faster
decrease in the maximum value of θ and leads to convergence to its spatial average.

Now we set u = 40 and u = −40 and apply Algorithm 4.1 for solving the
optimal control. The optimal evolution of density is demonstrated in Figs. 7a–7d at
t = 0, 0.003, 0.01, 0.4. The maximum value of θ decreases and θ approaches to its
spatial average, which is about 9π . The behavior of the optimal control input u(t) is
depicted inFig. 8a. Similar toExample 4.2, it first oscillates and alternates betweenpos-
itive and negative values, and then converges to zero. Figure8b illustrates the decrease
and convergence of the cost functional J (u). Figure8c shows that ‖θ(t)‖L∞ quickly
reaches the exponential decay rate for t ∈ [0, 0.4] and converges to approximately
9π . It is clear that both the flow magnitude and orientation affect the effectiveness of
flow advection.

5 Conclusion

The idea of suppressing singularity formation via optimal control of flow advection
is employed in this work for chemotaxis modeled by the PKS system, which leads
to a nonlinear control and non-convex optimization problem. We established a rigor-
ous proof of the existence of an optimal control and derived the first-order optimality
conditions for solving such a control. Moreover, using spline collocation methods we
conducted numerical experiments based on 2D cellular flows to validate the effec-

123



   57 Page 20 of 28 Applied Mathematics & Optimization            (2024) 89:57 

Fig. 6 Density θ with (x0, y0) = (0.7, 0.7) and different u at t = 0.0188 and t = 0.5

Fig. 7 Controlled evolution of density θ with (x0, y0) = (0.7, 0.7), N0 = 9π , N = 2, u = 40 and u = −40
at various time steps: t = 0, 0.003, 0.01, 0.4

tiveness of our control design. For the Gaussian type of initial data, we observed that
treating different centers of the data may require different strength of the cellular flows
in order to effectively suppress the singularity formation. On the other hand, varying
the centers of cellular flows may help improve the efficiency for advection. This nat-
urally gives rise to the question of what are the optimal locations for the cellular flow
centers with respect to different initial data. We can further consider the linear com-
binations of the flows centered at different locations and with different magnitude for
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Fig. 8 Control input u(t), cost functional J (u j ), j = 1, · · · , 42, and ‖θ(t)‖L∞ for (x0, y0) =
(0.7, 0.7), N = 2, u = 40, u = −40, and t ∈ [0, 0.4]

generating the optimal velocity field. These topics will be further discussed in our
future work.
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Appendix

Bivariate Splines

Given a triangle T , we let |T | be the length of its longest edge, and ρT be the radius
of the the largest disk that can be inscribed in T . For any polygonal domain � ⊂ R

d

with d = 2, let � := {T1, · · · , Tn} be a triangulation of � which is a collection of
triangles and V be the set of vertices of�. We called a triangulation as a quasi-uniform
triangulation if all triangles T in � have comparable sizes in the sense that

|T |
ρT

≤ C < ∞, all triangles T ∈ �,

where ρT is the inradius of T . Let h be the length of the longest edge in �. For a
triangle T = (v1, v2, v3) ∈ �, we define the barycentric coordinates (b1, b2, b3) of
a point (x, y) ∈ �. These coordinates are the solution to the following system of
equations

b1 + b2 + b3 = 1,

b1v1,x + b2v2,x + b3v3,x = x,

b1v1,y + b2v2,y + b3v3,y = y,
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where the vertices vi = (vi,x , vi,y) for i = 1, 2, 3 and are nonnegative if (x, y) ∈ T .

We use the barycentric coordinates to define the Bernstein polynomials of degree D:

BT
i, j,k(x, y) := D!

i ! j !k!b
i
1b

j
2b

k
3, i + j + k = D, (A.1)

which form a basis for the space PD of polynomials of degree D. Therefore, we can
represent all s ∈ PD in B-form:

s|T =
∑

i+ j+k=D

ci jk B
T
i jk, ∀T ∈ �,

where the B-coefficients ci, j,k are uniquely determined by s.
Moreover, for given T = (v1, v2, v3) ∈ �, we define the associated set of domain

points to be

DD,T :=
{
iv1 + jv2 + kv3

D

}
i+ j+k=D

. (A.2)

Let DD,� = ∪T∈�DD,T be the domain points of triangulation � and degree D.
We use the discontinuous spline space S−1

D (�) := {s|T ∈ PD, T ∈ �} as a base.
Then we add the smoothness conditions to define the space Sr

D := Cr (�) ∩ S−1
D (�).

The smoothness conditions are explained in [27, Theorems 2.28 and 15.31]. Let c
be the coefficient vector of s ∈ S−1

D (�) and H be the matrix which consists of the
smoothness conditions across each interior edge of �. It is known that Hc = 0 if and
only if s ∈ Cr (�) (e.g. [27]).

Computations involving splines written in B-form can be performed easily accord-
ing to [1, 28, 29]. In fact, these spline functions have numerically stable, closed-form
formulas for differentiation, integration, and inner products. If D ≥ 3r + 2, spline
functions on quasi-uniform triangulations have optimal approximation power.

Lemma A.1 [27, Lai and Schumaker, 2007] Let k ≥ 3r + 2 with r ≥ 1. Suppose �
is a quasi-uniform triangulation of �. Then for every u ∈ Wk+1

q (�), there exists a
quasi-interpolatory spline su ∈ Sr

k (�) such that

‖Dα
x D

β
y (u − su)‖q,� ≤ Chk+1−α−β |u|k+1,q,�,

for a positive constant C dependent on u, r , k and the smallest angle of �, and for all
0 ≤ α + β ≤ k with

|u|k,q,� :=
( ∑
a+b=k

‖Da
x D

b
yu‖qLq (�)

) 1
q

.

In this section, we explain the spline collocation method for solving the follow-
ing PKS system in the absence of flow advection but with a nonzero force term f
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together with the Euler forward method. We shall use the bivariate spline functions to
approximate the solution of the PDE (e.g. [1, 25–27]).

∂θ

∂t
= �θ − ∇ · (θ∇c) + f in �, (A.3)

− �c + c = θ in �, (A.4)

∂θ

∂n
= ∂c

∂n
= 0 on �. (A.5)

Bivariate splines have been used to solve similar PDEs in [10]with satisfactory numeri-
cal performance. In this literature, the computationalmethodwas based on the standard
weak formulation. In the current work, we adopt the spline collocation method devel-
oped in [25], which produces a more accurate numerical solution than the bivariate
splines based on the weak formulation for elliptic equations. Also, the spline colloca-
tion method is easy to implement without using a quadrature formula.

A.1 A Spline-Based CollocationMethod for the Keller Segel Equation without Flow
Advection

Let � ⊂ R
2 be a polygonal domain. Given an integer NT and the final time t f > 0,

we let�t := t f
NT

be the constant time-step and tk := k�t, for k = 0, · · · , NT −1.We

consider a partitioning of the time interval [0, t f ] = ∪NT −1
k=0 [tk, tk+1] and approximate

the continuous-time derivative of the density using a forward Euler method

∂θ

∂t
≈ θk − θk−1

�t
.

Our computational scheme for the equations (A.3)–(A.5) is as follows:
Step 1: Using a given θ(0, x) = θ0(x), we get c0(x) = c(0, x) using the following
equations

− �c0(x) + c0(x) = θ0, c0(x) ≥ 0, and
∂c0
∂n

|� = 0. (A.6)

Step 2: Find θk = θ(tk, x) from

θk − θk−1

�t
= κ�θk−1 − ∇ · (θk−1∇ck−1) + fk−1 in �, (A.7)

θk ≥ 0 in �, (A.8)

∂θk

∂n
= 0 on �, (A.9)

where fk−1(x) = f (tk−1, x).
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Step 3: Calculate ck = c(tk, x) such that

−�ck(x) + ck(x) = θk, ck(x) ≥ 0, and
∂ck
∂n

|� = 0. (A.10)

Let us focus on how to solve (A.6) and (A.10). We first choose a set of domain points
{ξi }i=1,··· ,N (cf.A.2) as collocation points and then use the spline basis functionsBt

α(cf.
A.1). Using these functions, we find the spline solution θk = ∑

t∈�
∑

|α|=D at,kα Bt
α in

spline space SrD(�), ck = ∑
t∈�

∑
|α|=D bt,kα Bt

α in the same spline space SrD(�) with

the coefficient vectors ak ≥ 0,bk ≥ 0, respectively, satisfying

−�ck(ξi ) + ck(ξi ) = θk(ξi ) and
∂ck(ξi )

∂n
|� = 0, k = 0, 1, · · · NT ,

where {ξi }i=1,··· ,N ∈ DD,� are the domain points of � of degree D. We can rewrite
the above equation as the matrix equation:

(−K + MV )bk = MV ak and Bbk = 0,

where K = MxxV + MyyV = [
∂xxBt

α(xi , yi )
] + [

∂yyBt
α(xi , yi )

]
, MV =[Bt

α(xi , yi )
]
and Bbk = 0 is associated with the boundary condition. Also, we add

the smoothness conditions in terms of smooth matrix equation: Hbk = 0. Hence, our
spline collocation method is to find bk by solving the following constrained minimiza-
tion:

min
bk

J (bk) = 1

2
‖(−K + MV )bk − MV ak‖2 (A.11)

subject to Bbk = 0, Hbk = 0,bk ≥ 0. (A.12)

It is easy to see that such a constrained minimization has a unique solution as the
feasible set is convex and theminimizing functional is convex.We shall use the iterative
method in [25] to solve the above constrained minimization problem.

Similarly, we can solve the PDE in Step 2, i.e., (A.7) by finding the spline approx-
imation θk which satisfies the following collocation equations

⎧⎪⎪⎨
⎪⎪⎩

θk(ξi ) = θk−1(ξi ) + �t(κ�θk−1(ξi ) − ∇ · (θk−1(ξi )∇ck−1(ξi )) + fk−1(tk−1, ξi )),

∂θk(ξi )

∂n
|� = 0,

θ̄k = θ̄0,

(A.13)
where {ξi }i=1,··· ,N ∈ DD,� are the domain points of � of degree D. That is, we can
find θk by solving the following constrained minimization problem:

min
ak

J (ak) = 1

2
‖MV ak − fu‖2 (A.14)

subject to Bak = 0, Hak = 0, Iak = θ̄0, ak ≥ 0, (A.15)
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Fig. 9 Initial condition θ0 (Left), numerical solution c0 from Step 1 (Middle), and RMSEs for (θ, c) in
Example A.2

where I = [∫
�
Bt

α] is a row vector, B and 0 are derived from the boundary condition,
fu is from the right side of the equation (A.13) and H is thematrix of all the smoothness
conditions across each interior edge of triangulation �. Again, the above constrained
minimization problem has a unique solution and we can use the iterative method in
[25] to solve it. Repeating this process for each k, we can find the numerical solution
to (A.3)–(A.5).

A.2 Numerical Examples for the PKS SystemWithout Flow Advection

In this section, we present numerical experiments using the spline collocation method
for solving PKS and demonstrate the accuracy of our algorithms. More simulation
results can be found in [30].

We compute the root mean squared errors (RMSEs) of the approximate spline
solution θs and cs against the exact solutions θ and c based on 201 × 201 equally-
spaced points over the bounding box of the domain �. The errors we compute include
θ − θs , ∇(θ − θs), c − cs , and ∇(c − cs).

Example A.2 Let � = (−π, π)2. We consider the following exact solution satisfying
(A.3)–(A.5)

{
θ = 2e−t (cos(x) + cos(y))

c = e−t (cos(x) + cos(y))

with an appropriate f . We choose the final time t f = 1, �t = 1e-05, D = 10, r = 2,
and a mesh size of h = π/8. Figure9 shows the numerical solution of (θ, c) at t = 0
and the RMSEs of θ − θs , ∇(θ − θs), c− cs , and ∇(c− cs). The numerical errors are
close to 1e-09 at the beginning and remain between 1e-05 and 1e-09.
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Fig. 10 Initial condition θ0 (Left), numerical solution c0 from Step 1 (Middle), and RMSEs for solution θ

and c in Example A.3

Example A.3 Let � = (− 3π
2 , 3π

2 )2. Consider the exact solution for (A.3)–(A.5) given
by

{
θ = 2e−t (2 sin(x) + sin(y))

c = e−t (2 sin(x) + sin(y))

for an appropriate f .We use the same parameter settings as in Example A.2. Figure10
presents the numerical solution of (θ, c) at t = 0 and the RMSEs of θ − θs,∇(θ −
θs), c − cs and ∇(c − cs). Similar to the results of Example A.2, the RMSEs are
between 1e-05 and 1e-09.

References

1. Awanou, G., Lai, M.-J., Wenston, P.: The multivariate spline method for scattered data fitting and
numerical solutions of partial differential equations. In: Wavelets and Splines: Athens, pp. 24–74.
Nashboro Press, Brentwood (2005)

2. Bedrossian, J., He, S.: Suppression of blow-up in Patlak–Keller–Segel via shear flows. SIAM J. Math.
Anal. 49(6), 4722–4766 (2017)

3. Bisshopp, F.E.: On two-dimensional cell patterns. J. Math. Anal. Appl. 1(3–4), 373–385 (1960)
4. Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion and mixing in fluid flow. Ann. Math. 168,

643–674 (2008)
5. Filbet, F.:Afinite volume scheme for the Patlak–Keller–Segel chemotaxismodel.Numer.Math. 104(4),

457–488 (2006)
6. Fister, K.R., McCarthy, C.M.: Optimal control of a chemotaxis system. Q. Appl. Math. 61, 193–211

(2003)
7. Galdi, G.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State

Problems. Springer, Berlin (2011)
8. Guillén-González, F., Mallea-Zepeda, E., Rodríguez-Bellido, M.: Optimal bilinear control problem

related to a chemo-repulsion system in 2D domains. ESAIM 26, 29 (2020)
9. Guillen-Gonzalez, F., Mallea-Zepeda, E., Rodriguez-Bellido, M.A.: A regularity criterion for a 3D

chemo-repulsion system and its application to a bilinear optimal control problem. SIAM J. Control
Optim. 58(3), 1457–1490 (2020)

10. Gutierrez, J.B., Lai, M.-J., Slavov, G.: Bivariate spline solution of time dependent nonlinear PDE for
a population density over irregular domains. Math. Biosci. 270, 263–277 (2015)

11. Herrero, M.A.: Asymptotic properties of reaction-diffusion systems modeling chemotaxis. Appl. Ind.
Math. Venice 2(1998), 89–108 (2000)

123



Applied Mathematics & Optimization            (2024) 89:57 Page 27 of 28    57 

12. Herrero, M.A., Veláizquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Del. Scuola
Norm. Super. Pisa Classe Sci. 24(4), 633 (1997)

13. Herrero, M.A., Medina, E., Velázquez, J.J.L.: Finite-time aggregation into a single point in a reaction-
diffusion system. Nonlinearity 10(6), 1739–1754 (1997)

14. Herrero, M.A., Medina, E., Velázquez, J.J.L.: Self-similar blow-up for a reaction-diffusion system. J.
Comput. Appl. Math. 97(1–2), 99–119 (1998)

15. Horstmann, D.: The Keller–Segel model in chemotaxis and its consequences I. Jahresber. Deutsch.
Math.-Verein. 105, 103–165 (1970)

16. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences
II. Jahresber. Deutsch. Math.-Verein. 106, 51–69 (2004)

17. Hu, W.: Global regularity and stability analysis of the Patlak–Keller–Segel system with flow advection
in a bounded domain: a semigroup approach. Nonlinear Anal. 234, 113319 (2023)

18. Iyer, G., Xiaoqian, X., Zlatoš, A.: Convection-induced singularity suppression in the Keller–Segel and
other non-linear PDES. Trans. Am. Math. Soc. 374(09), 6039–6058 (2021)

19. Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations mod-
elling chemotaxis. Trans. Am. Math. Soc. 329(2), 819–824 (1992)

20. Kato, T.: Perturbation Theory for Linear Operators, vol. 132. Springer, New York (1966)
21. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol.

26(3), 399–415 (1970)
22. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theoret. Biol. 30(2), 225–234 (1971)
23. Kiselev, A., Xiaoqian, X.: Suppression of chemotactic explosion bymixing. Arch. Ration.Mech. Anal.

222(2), 1077–1112 (2016)
24. Lai, M.-J.: On construction of bivariate and trivariate vertex splines on arbitrary mixed grid partitions.

Texas A&M University (1989)
25. Lai, M.-J., Lee, J.: A multivariate spline based collocation method for numerical solution of partial

differential equations. SIAM J. Numer. Anal. 60(5), 2405–2434 (2022)
26. Lai, M.-J., Lee, J.: Trivariate spline collocation methods for numerical solution to 3DMonge–Ampére

equation. J. Sci. Comput. 95, 1 (2023)
27. Lai, M.-J., Schumaker, L.L.: Spline Functions over Triangulations. Cambridge University Press, Cam-

bridge (2007)
28. Lai, M.-J., Wang, C.: A bivariate spline method for second order elliptic equations in non-divergence

form. J. Sci. Comput. 75, 803–829 (2018)
29. Lai, M.-J., Wenston, P.: Bivariate splines for fluid flows. Comput. Fluids 33(8), 1047–1073 (2004)
30. Lee, J.: A multivariate spline method for numerical solution of partial differential equations. PhD

Dissertation, pp. 1–170 (2023)
31. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New

York (1971)
32. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5,

581–601 (1995)
33. Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15(3), 311–338

(1953)
34. Perthame, B., Dalibard, A.-L.: Existence of solutions of the hyperbolic Keller–Segel model. Trans.

Am. Math. Soc. 361(5), 2319–2335 (2009)
35. Rodríguez-Bellido, M., Rueda-Gómez, D.A., Villamizar-Roa, É.J.: On a distributed control problem

for a coupled chemotaxis-fluid model. Discret. Contin. Dyn. Syst. B 23(2), 557 (2018)
36. Ryu, S.-U.: Boundary control of chemotaxis reaction diffusion system. HonamMath. J. 30(3), 469–478

(2008)
37. Ryu, S.U., Yagi, A.: Optimal control of Keller–Segel equations. J. Math. Anal. Appl. 256(1), 45–66

(2001)
38. Ryzhik, L., Zlatoš, A.: Kpp pulsating front speed-up by flows. Commun. Math. Sci. 5(3), 575–593

(2007)
39. Senba, T., Suzuki, T.: Applied Analysis: Mathematical Methods in Natural Science. World Scientific,

Singapore (2011)
40. Suzuki, T.: Free Energy and Self-Interacting Particles. Springer, Berlin (2005)
41. Wei, D.: Diffusion and mixing in fluid flow via the resolvent estimate. Science China Math. 64(3),

507–518 (2021)

123



   57 Page 28 of 28 Applied Mathematics & Optimization            (2024) 89:57 

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Optimal Control for Suppression of Singularity in Chemotaxis via Flow Advection
	Abstract
	1 Introduction
	1.1 Control Design via Flow Advection 

	2 Well-Posedness of the PKS System and Existence of an Optimal Control
	2.1 Existence of an Optimal Control

	3 First-Order Optimality Conditions
	3.1 Control of Cellular Flows in Rectangle-Like Domains

	4 Numerical Implementation
	5 Conclusion
	Acknowledgements
	Appendix
	Bivariate Splines
	A.1 A Spline-Based Collocation Method for the Keller Segel Equation without Flow Advection
	A.2 Numerical Examples for the PKS System Without Flow Advection

	References


