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ABSTRACT: Convective initiation (CI) nowcasting remains a challenging problem for both nu-

merical weather prediction models and existing nowcasting algorithms. In this study, an object-

based probabilistic deep learning model is developed to predict CI based on multichannel infrared

GOES-16 satellite observations. The data come from patches surrounding potential CI events iden-

tified in Multi-Radar Multi-Sensor Doppler weather radar products over the Great Plains region

from June and July 2020 and June 2021. An objective radar-based approach is used to identify

these events. The deep learning model significantly outperforms the classical logistic model at

lead times up to 1 hour, especially on the false alarm ratio. Through case studies, the deep learn-

ing model exhibits dependence on the characteristics of clouds and moisture at multiple altitudes.

Model explanation further reveals that the contribution of features to model predictions is signifi-

cantly dependent on the baseline, a reference point against which the prediction is compared. Under

a moist baseline, moisture gradients in the lower and middle troposphere contribute most to correct

CI forecasts. In contrast, under clear-sky baselines, correct CI forecasts are dominated by cloud-

top features, including cloud-top glaciation, height, and cloud coverage. Our study demonstrates

the advantage of using different baselines in further understanding model behavior and gaining

scientific insights.
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1. Introduction

Convective initiation (CI) remains a significant and challenging forecasting problem within

the meteorological community. Accurately predicting the location and onset times of convec-

tion remains difficult for both empirical and numerical weather prediction (NWP) models (e.g.,

Mecikalski et al. 2015; Lawson et al. 2018; Cintineo et al. 2020a). The failure to forecast CI causes

delayed warnings of convective hazards like heavy rainfall, hail, and tornadoes, and disruptions

to outdoor activities and travel (Brooks et al. 2003; Brooks and Dotzek 2008; Dixon et al. 2011).

Given its socioeconomic impacts, more accurate and timely CI nowcasts and a more thorough

understanding of physical processes underlying CI are needed.

Multiple satellite-based algorithms have been developed to make use of cloud characteristics to

enhance the forecast skill of CI (Sieglaff et al. 2011; Walker et al. 2012; Nisi et al. 2014; Lee et al.

2017; Zhuge and Zou 2018; Han et al. 2019). The University of Wisconsin Convective Initiation

(UWCI) nowcasting algorithm (Sieglaff et al. 2011) was developed to nowcast CI based on box-

average cloud-top characteristics evident within Geostationary Operational Environmental Satellite

(GOES) observations. The Satellite Convection Analysis and Tracking, version 2, (SATCASTv2)

algorithm was developed by Walker et al. (2012) to track cumulus clouds and nowcast the proba-

bility of CI in the cloud objects. Cloud-top features, like cloud-top cooling rate and phase change,

were employed to predict CI (Sieglaff et al. 2011; Walker et al. 2012). Using similar features from

the Himawari-8 satellite, Lee et al. (2017) developed a random forest, a machine learning (ML)

model, to predict CI for tracked cloud objects. Han et al. (2019) extended the framework in Lee

et al. (2017) by integrating a procedure to iteratively expand the training dataset, resulting in a de-

cline in the overall CI forecast skill but slightly better skill at longer lead times. However, the high

false alarm ratio remains a significant issue in these algorithms (Sieglaff et al. 2011; Walker et al.

2012; Lee et al. 2017; Han et al. 2019). Another issue is that a substantial number of CI events

blocked by thick cirrus clouds were ignored. In these studies, spatial variations of cloud features

surrounding potential CI events were not used to improve the forecast skill.

Fine-resolution infrared observations are now available every few minutes from the current gen-

eration of geostationary satellites. These high spatiotemporal resolution satellite observations have

increased our ability to better represent cloud-top characteristics associated with convection (e.g.,

Senf and Deneke 2017; Apke et al. 2018; Fan et al. 2022). Enhanced spatial patterns of environ-
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mental information have been found critical for predicting severe hailstorms (Gagne et al. 2019)

and tornadoes (Lagerquist et al. 2019) using deep learning methods. However, spatial features in

these new satellite observations have not yet received much attention for increasing CI forecast

skill.

ML and deep learning methods have recently gained popularity as a powerful tool in convec-

tive weather detection and forecasting (Cintineo et al. 2014, 2018; McGovern et al. 2019; Gagne

et al. 2019; Lee et al. 2020; Cintineo et al. 2020a,b; Mecikalski et al. 2021; Leinonen et al. 2022).

Mecikalski et al. (2021) showed that a random forest model improved the forecast skill of se-

vere storms with satellite, radar, and lightning data as predictors. Leinonen et al. (2022), using a

gradient-boosted tree algorithm, demonstrated that satellite data are beneficial for ML-based severe

weather nowcasting, while radar data are the most important predictor overall. Lee et al. (2020) de-

veloped a convolutional neural network (CNN; Lecun et al. 2015), a popular deep learning method

that encodes spatial features within data to enhance forecast skill, for detecting convective regions

from satellite observations with improved accuracy. Lagerquist et al. (2021) further demonstrated

that deep learning provides skillful forecasts of the spatial coverage of convection at lead times up

to 120 minutes using infrared satellite data. Sun et al. (2023) developed a convolutional recurrent

neural network that leverages spatiotemporal features from satellite and radar data to predict con-

vective weather, and their model showed good forecast skill in several CI cases at lead times up

to 30 min. However, Sun et al. (2023) lacks an in-depth statistical evaluation of CI forecast skill.

The successful applications of deep learning to detect and forecast convection with satellite obser-

vations hold promise for our study on developing deep learning models for CI nowcasting using

infrared satellite data.

Despite the increase of ML’s successful applications in meteorology, it is often criticized by

forecasters and domain scientists as a “black box” technique because of our inability to readily

interpret its decision-making process in physical terms. Thus, explainable artificial intelligence

(XAI) has received a lot of attention in both the meteorology and ML communities (Olah et al.

2017; Lipton 2018; McGovern et al. 2019; Toms et al. 2020; Molnar 2020). XAI encapsulates and

approximates intricate relations between inputs and model predictions inherent in the decision-

making process, enabling domain scientists to gain trust in the model, as well as understand its

limitations. This facilitates application of the model to ideal scenarios (McGovern et al. 2019) and
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withholding it from inappropriate ones. XAI is becoming increasingly important as ML methods

outperform current NWP models in some applications.

Successful applications of XAI include Toms et al. (2020), who identified the spatial patterns

for two dominant modes of El Nino variability using layer-wise relevance propagation (LRP) and

backwards optimization, two XAI methods. Mayer and Barnes (2021) demonstrated that neural

networks are able to identify tropical hot spots that are important for subseasonal predictions in the

North Atlantic throughmodel explanations using LRP.Mamalakis et al. (2022) objectively assessed

the performance of different explanation methods on a large benchmark dataset and discussed their

reliability and limitations compared to the ground truth.

The purpose of this study is to characterize nowcasting skill of CI obtained through two ML

models trained on GOES-16 satellite infrared observations and to explore the radiative features

that lead to skill in forecasting CI through model explanation and visualization. A CNN model is

optimized and evaluated against logistic regression, a classical statistical method. False positive

prediction is a crucial issue in previous CI forecasting algorithms (Mecikalski et al. 2015; Apke

et al. 2015), so particular attention is paid to this challenge. The rest of this paper is organized as

follows. Section 2 describes CI identification and data preprocessing. Section 3 describes model

architectures, optimization, evaluation, and XAI method. Section 4 evaluates the CNN and logistic

regression models through performance statistics and case examples. Section 5 explains radiative

features in the decision-making process of the CNN with different choices of the baseline. Section

6 presents the main findings and limitations of the study, and includes concluding remarks.

2. Data

We use GOES-16 Advanced Baseline Imager (ABI) data to generate predictors for CI events

obtained from theMulti-RadarMulti-Sensor (MRMS; Lakshmanan et al. 2006, 2007) dataset. This

study focuses on the Great Plains in the United States (Fig. 1), following Apke et al. (2015) and

Walker et al. (2012), because of the importance of CI to this region and the availability of dense

radar observations within it.
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FIG. 1. Total area of study (blue box labeled with A), track-corrected area of study (green box labeled with B,

and ranging from 91°W to 104°W and from 34°N to 48°N), and validation domain for manually identified CI

true clusters (red box labeled with C).

a. CI definition and identification

Radars used to produce the MRMS dataset make azimuth scans at a number of elevation an-

gles (Lakshmanan et al. 2006). These radar data are then linearly interpolated onto a uniform grid

for postprocessing. Composite reflectivity, defined as the maximum reflectivity in a column on a

0.01° spatial grid and 2-min temporal grid in the MRMS dataset, is used for storm tracking and CI

identification. Use of a column-max value mitigates against the impacts of terrain blocking radar

beams and increases the probability of detecting convective cells in their early stages as hydrom-

eteors form at higher levels (e.g., Matthee et al. 2014; Apke et al. 2015; Senf and Deneke 2017;

Henderson et al. 2021). A radar reflectivity threshold of 35 dBZ is employed to distinguish between

convective and nonconvective regions (Mecikalski and Bedka 2006; Kain et al. 2013). Pixels are
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defined as being part of a CI cluster when the following conditions (adapted from Colbert et al.

2019) are met:

(1) composite reflectivity ≥ 35 dBZ;

(2) in the preceding 11 min, no points within 15 km exhibit composite reflectivity ≥ 35 dBZ; and

(3) in the preceding 30 min, no points within 5 km exhibit composite reflectivity ≥ 35 dBZ.

The first condition identifies pixels associated with convection either just initiated or advected to

the pixel from the surroundings. The second and third conditions eliminate pixels related to preex-

isting convection. Storm tracking and CI cluster identification are done in three steps. First, storm

cells are identified and clustered into tracks iteratively in time using the w2segmotionll algorithm

(Lakshmanan and Smith 2010), which is part of the Warning Decision Support System–Integrated

Information (WDSS-II) suite of algorithms. Combined K-means and enhanced watershed methods

(Lakshmanan and Smith 2009) are used for this purpose. Second, the tracks are corrected by a

modified best-track algorithm (Lakshmanan et al. 2015) using post-event tracking, which fits the

storm cells to a best-fit Theil-Sen trajectory and removes falsely truncated tracks. Third, the first

storm cells within the final tracks are identified as CI clusters. CI clusters are validated through two

examples selected from the area C in Fig. 1. (See the video in the online supplemental material.)

b. Feature engineering

An object-based forecasting method is designed to identify localized environments within which

to predict CI, thereby largely reducing the data volume. Both CI and non-CI events must be iden-

tified for the dataset. CI events are 48-km by 48-km square patches centered on at least one CI

cluster, whereas most (∼91%) non-CI events, called Near-Miss (NM) events, are 48-km by 48-km

square patches that are nearest neighbors to CI events and contain no CI cluster of their own. The

rest (∼9%) of the non-CI events, called RandoM (RM) events, are 48-km by 48-km square patches

randomly extracted across the Great Plains area and neither contain a CI cluster nor are a near-

est neighbor to a patch that does. To avoid the impacts of class imbalance on model performance

(Ukkonen and Mäkelä 2019), non-CI events, the majority class, are undersampled to produce a

balanced dataset that consists of 58% CI, 38% NM, and 4% RM events. We use binary labels

to classify these events, so that 1 indicates a CI event and 0 a non-CI event. Our entire dataset

consists of 94,618 samples. 45,077, and 19,320 samples from June and July 2020 are for training
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TABLE 1. Central wavelength, channel number, and description of BTs from seven GOES-16 infrared channels

used as predictors.

Central wavelength (𝜇m) Channel number description

6.2 8 Upper-level tropospheric water vapor

6.95 9 Mid-level tropospheric water vapor

7.3 10 Lower-level tropospheric water vapor

8.4 11 Cloud-top phase

9.6 12 Ozone

10.35 13 Cloud-top/Surface temperature

11.2 14 Cloud-top/Surface temperature

and validation, respectively, whereas 30,221 samples collected in June 2021 are for testing. Pre-

dictors for CI and non-CI events are brightness temperatures (BTs; Table 1) from seven GOES-16

ABI infrared channels with ∼2-km native horizontal resolution available every 5 minutes over the

continental United States (CONUS). Predictors are extracted from 48-km by 48-km square patches

(i.e., around 24 columns by 24 rows in a GOES-16 ABI image) at lead times from 60 minutes

down to 10 minutes before the occurrence time of an event. As GOES-16 ABI views clouds across

CONUS slantwise, their surface referenced latitudes and longitudes in the database differ from

their vertically projected latitudes and longitudes, with the difference largest for the highest al-

titude clouds. This displacement, called parallax error, is comparable to the scale of the clouds

during thunderstorm initiation (Zhang et al. 2019) and thus not negligible. Following Zhang et al.

(2019), parallax errors are corrected using the cloud-top height (ACHA) product of GOES-16 to

improve the quality of cloud locations.

The depth and performance of CNNs are largely limited by the size of the input (Thambawita

et al. 2021; Sabottke and Spieler 2020), with small-size inputs usually leading to shallow CNNs

with limited ability to encode complex spatial features. Thus, GOES-16 ABI BTs are remapped

to a 1.5-km mesh through linear interpolation, so that the 48-km by 48-km square patches contain

32×32 input BT values. Each predictor set of channel BTs is standardized using its mean and

standard deviation (Table 1) to a set of values with zero mean and standard deviation of one prior

to being fit by the two ML models.
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3. Methods

This section introduces the architecture of the logistic regression and CNN models, a hyperpa-

rameter optimization method, and model explanation approaches.

a. Logistic regression

Logistic regression is a nonlinear transformation with a sigmoid function applied to the weighted

sum of the predictors (𝑥𝑖):

𝑝 =
1

1+ 𝑒−𝑧 , where 𝑧 = 𝛽0 +
𝑁∑
𝑖=1

𝛽𝑖𝑥𝑖, (1)

𝑝 is the prediction in the range between zero and one, 𝑁 is the total number of predictors, 𝛽𝑖 is the

𝑖𝑡ℎ learned weight, and 𝛽0 is the bias term. Predictions from logistic regressions are often used to

estimate probabilities for classification problems with monotonic relationships between predictors

and predictands. Themodel weights are iteratively adjusted byminimizing the binary cross-entropy

𝐶
𝑀∑
𝑗=1

[𝑦 𝑗 log2(𝑝 𝑗 ) + (1− 𝑦 𝑗 ) log2(1− 𝑝 𝑗 )] +𝜆
𝑀∑
𝑗=1

|𝛽 𝑗 | +
1−𝜆
2

𝑀∑
𝑗=1

|𝛽 𝑗 |2 (2)

between the true labels (𝑦 𝑗 ) and the predictions (𝑝 𝑗 ), where the two additional terms, known as

elastic-net penalties, are for regularization, 𝑀 is the number of samples, 𝐶 is the inverse of the

regularization strength, and 𝜆 is the mixing parameter that controls the strengths of the two regu-

larization terms. The second term in Eq.(2) is known as the lasso penalty, or 𝐿1 regularization, and

rewards small weights by penalizing the sum of absolute values of the weights (Tibshirani 1996).

The third term is known as the ridge penalty, or 𝐿2 regularization, and reduces the impacts of mul-

ticollinearity, i.e., correlations between predictors, by adding additional penalties to large weights

(Hoerl and Kennard 1988).

Despite being a simpleMLmodel, logistic regression performswell on some problems inweather

forecasting, like distinguishing between lightning and non-lightning days (Bates et al. 2018) and

predicting CI using satellite observations (Mecikalski et al. 2015). In our study, the baseline logistic

model feeds flattened GOES-16 predictors into a logistic regression to predict the probability of

9
Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0098.1.Unauthenticated | Downloaded 06/07/24 01:37 PM UTC



FIG. 2. Schematic of the ResNet architecture. The curves connecting the input and output of residual blocks

indicate residual layers. The blocks marked by a star involve downsampling of features from the preceding

layer. The architecture parameters and components shown produced the highest validation score during the

hyperparameter optimization.

CI. The logistic model is implemented in version 0.20 of the scikit-learn (Pedregosa et al. 2011)

library.

b. Residual neural network

We also trained a deep CNN architecture to predict the probability of CI. Deep neural networks

often perform better than shallow networks by encoding spatial features across multiple scales

through higher-order abstraction. A drawback of deep learning networks is potential difficulty

with convergence resulting from vanishing gradients during the optimization process (Glorot and

Bengio 2010). Gradients decrease exponentially as they are propagated back to the early layers so

that optimization of the weights and biases in the early layers becomes problematic during training.

To avoid this issue, we used the residual neural network (ResNet) architecture (He et al. 2016) with

its residual connections. In this architecture, the output of earlier layers is added to the output of

later layers to preserve high-resolution information and thus preserve the gradients. The ResNet

method performed well in medium-range weather forecasting in the WeatherBench challenge, and

its skill is comparable to the baseline physical model at a similar resolution (Rasp and Thuerey

2021).

A schematic of the ResNet architecture used in this study is shown in Fig. 2. For the first layer,

a single two-dimensional (2D) convolutional block extracts features from the inputs using a kernel

size of (7, 7) to broaden the view of the field. The convolutional block is defined as a sequence of

2D convolution layer → Leaky rectified linear (Leaky ReLU; max(0.138x,x)) activation → Batch
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normalization → Dropout. The 2D convolution layer extracts spatial features from the inputs by

transforming them through a number of filters, which are small patches of weights and biases.

Then, the Leaky ReLU activation function is applied to feature maps to enable a small, non-zero

gradient for negative signals, mitigating the vanishing gradient problem by preventing inactive

neurons (Maas et al. 2013). Batch normalization (Ioffe and Szegedy 2015) is subsequently used to

rescale the values of the features in order to maintain a more stable structure during training and to

enable faster convergence of model errors with higher learning rates. Dropout regularization then

randomly sets the values of certain features to zero with a fixed probability to prevent overfitting

(Srivastava et al. 2014).

After the first convolutional block, there are six residual blocks with each block consisting of two

2D convolutional blocks with a 3×3 kernel and a residual layer. The residual layer adds the features

of the preceding layer to the features of the residual block to increase themagnitude of the gradients.

In the third and fifth residual blocks, the features from the preceding layer are downsampled via a

residual layer with a 1×1 kernel and a stride of 2 and a convolutional block with a 3×3 kernel and a

stride of 2. The number of convolutional filters increases by a factor of two from the second to third

and fourth to fifth residual blocks. This is done to offset the loss of information from a decrease in

spatial resolution at these steps. The spatial resolutions of the featuremaps decrease with increasing

depth, and the feature maps evolve to contain different levels of abstraction. The average pooling

layer reduces the dimensions of the feature maps by a factor of 2 via a convolution with a 2×2

kernel and a stride of 2, thereby refining the features used for prediction. The resulting features

are then flattened into a one-dimensional feature vector. The vector is then condensed through two

fully connected dense layers. Each feature of a dense layer is a weighted sum of features from the

previous layer. The outputs of the final dense layer are transformed through a sigmoid activation

function into the probability of CI.

We trained the ResNet model using binary cross-entropy as the loss function, and we used area-

under-curve (AUC) scoring as the metric to track model performance on the validation data during

training. An Adam optimizer was used with an initial learning rate. The learning rate was de-

creased by a factor of two after validation losses did not decrease across three training epochs. We

terminated training when the validation losses did not decrease across ten training epochs. We built
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the ResNet model using the Keras library (Chollet et al. 2015) with a Tensorflow low-level backend

(Abadi et al. 2016).

c. Model optimization and evaluation

To find the optimal configuration for both the logistic regression model and the ResNet, we per-

formed a guided search over a range of hyperparameters using Earth Computing Hyperparame-

ter Optimization (ECHO: https://doi.org/10.5281/zenodo.7787022). The search is based

on the Tree-structured Parzen Estimator (TPE) sampler, which samples the next hyperparameters

based on the ranking information of previous experiments. We performed 200 hyperparameter

searches and selected the model with the highest AUC score on the validation data. The AUC

score is the area under the receiver operating curve (ROC; Mason 1982) and assesses a model’s

ability to discriminate between classes. An AUC score of 0.5 indicates a no-skill forecast model,

while a score of 1.0 is an indication of a perfect discriminator. The selected hyperparameters,

search space, and optimal values are shown in Table A2.

We then evaluated the optimized logistic regression and ResNet models on the testing dataset.

Most performance metrics were derived from the relationship between CI/non-CI observations and

binary deterministic predictions (“yes”/”no”) converted from probabilistic forecasts using a proba-

bility threshold. The four possible outcomes are: 1) hits: correctly forecast CI occurrences, 2) false

alarms: CI forecast where no CI occurred, 3) correct negatives: correctly forecast non-CI occur-

rences, 4) misses: non-CI forecast where CI occurred. Commonly used metrics for deterministic

forecasts include probability of detection [POD; h/(h+m)], probability of false detection [POFD;

f/(f+c)], false alarm ratio [FAR; f/(f+h)], success ratio [SR; h/(h+f)], frequency bias [(h+f)/(h+m)]

and critical success index [CSI; h/(h+m+f)], where h, f, c, and m are the frequency of hits, false

alarms, correct negatives, and misses, respectively. The probability thresholds were selected to

maximize the CSI for both the logistic regression and ResNet models. The models were individ-

ually trained using the same architecture at lead times from 60 minutes to 10 minutes prior to the

event, in steps of 10 minutes. Then, the models were evaluated and compared to each other.

The final skill score in this study is the Brier skill score (BSS;Wilks 2019). The BSS is a measure

of the improvement of the forecast skill relative to climatology based on how well the probabilistic

forecast agrees with the observed event frequency. The BSS is decomposed into two terms with a
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scaling factor:

𝐵𝑆𝑆 =
𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
=

1
𝑁

∑𝐾
𝑘=1 𝑛𝑘 (𝑦𝑘 − 𝑦)2− 1

𝑁

∑𝐾
𝑘=1 𝑛𝑘 (𝑝𝑘 − 𝑦𝑘 )2

𝑦(1− 𝑦) (3)

where 𝑁 is the total number of samples, 𝐾 is the number of bins, 𝑛𝑘 is the number of samples

in the 𝑘 𝑡ℎ probability bin, 𝑦𝑘 is the conditional event frequency given the probability in the 𝑘 𝑡ℎ

bin, 𝑝𝑘 is the mean probability in the 𝑘 𝑡ℎ bin, and 𝑦 is the climatological event frequency. The

two terms in the numerator are known as the resolution and the reliability, while the scaling factor

in the denominator is known as the uncertainty. The resolution measures the difference between

conditional event frequencies and the observed climatological frequency, whereas the reliability

measures how close the forecast probabilities are to the observed frequency at the corresponding

probabilities. The uncertainty term rescales the BSS score based on the class proportion. A BSS

score of 1 represents a perfect model, whereas a score less than 0 indicates the model is worse than

climatology.

d. Explainable AI

To explain the encoding underlying the complex structures of the ResNet model, we employed

a model-agnostic method called SHapley Additive exPlanations (SHAP; Lundberg and Lee 2017).

SHAP explains individual predictions as a game played by features and fairly distributes the payout

among the features (Molnar 2020). A player of the game is an individual feature value or a group of

feature values. To explain an image input, pixels are grouped into superpixels and contributions to

the prediction are distributed among them. The SHAP method estimates the Shapley value of each

feature as its contribution to the prediction. The Shapley value is the only explanation method with

a solid theory (Young 1985) that satisfies symmetry, local accuracy (also known as additivity), and

consistency, properties not pertinent to other XAI methods.

4. Performance evaluation

We break down model performance into two parts. First, we present summary statistics of model

performance to provide an overview of how each model performed. Then, we present examples of

what the models got right and wrong.
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TABLE 2. Performance scores of the baseline logistic regression and ResNet models on the testing dataset at

lead times of 10-, 30-, and 60-min. The probability threshold was selected to generate the optimal CSI for the

validation dataset. Bold numbers indicate the best value for each metric.

Model Lead time (min) AUC CSI FAR BSS

Logistic Regression 10 0.758 0.666 0.302 0.238

ResNet 10 0.855 0.723 0.236 0.382
Logistic Regression 30 0.675 0.612 0.343 0.107

ResNet 30 0.744 0.647 0.328 0.182

Logistic Regression 60 0.629 0.587 0.385 0.051

ResNet 60 0.677 0.607 0.375 0.058

a. General performance

The primary performance statistics at lead times of 10-, 30-, and 60-min are presented in Table

2. The ResNet substantially outperforms the baseline logistic regression model in terms of the

AUC score (Table 2). While the AUC score is considered overly optimistic and less informative

for rare event predictions because it weighs positive and negative events equally (Flora et al. 2021;

Leinonen et al. 2022), it’s still a useful metric for our study because our testing dataset has been

downsampled to be balanced. ROCs of POD versus POFD, which are a measure of forecast skill

at different probability thresholds at lead times of 10, 30, and 60 minutes, are illustrated in Fig.

3a. Across all probability thresholds and lead times, the Resnet consistently performs better than

the logistic regression model, with the magnitude of their differences diminishing as lead time

increases. At the 10-min lead time, the maximum value of the Pierce skill score (PSS; defined as

POD-POFD) of 0.536 for ResNet is higher than 0.381 for the logistic regression.

Forecast skill is further evaluated with a performance diagram (Fig. 3b) at lead times of 10, 30,

and 60 minutes. The performance diagram contains the POD versus the SR, thereby emphasizing

a model’s ability to predict positive events while ignoring correct negative events (Roebber 2009).

Frequency bias (black dashed lines) and CSI (filled contours) are also displayed in the performance

diagram. Frequency bias, the ratio of total positive forecasts to total positive events, is a measure

of bias resulting from class imbalance; a balanced dataset has a value of 1. The CSI is a significant

metric for severe weather prediction because events like CI and tornado occurrences hold greater

importance than non-events. For the 10-min lead time, the optimal threshold that maximizes CSI

(Fig. 3b, stars) on the validation dataset almost maximizes CSI on the testing dataset for both
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FIG. 3. Performance of the logistic regression (blue) and ResNet (red) models on the testing dataset at lead

times of 10 (solid), 30 (dash-dotted), and 60 (dotted) minutes. Each curve shows the means for thresholds ranging

from 0 to 1. Light shading around each line shows the 95% confidence intervals determined by bootstrapping the

testing samples 1000 times. (a) ROCs with the diagonal black dashed line indicating a no-skill random classifier.

Filled contours are the Pierce skill scores (PSS; defined as POD - POFD). For the 10-min lead time, the threshold

that maximizes the PSS (0.536 for ResNet and 0.381 for logistic regression) on the validation data is marked by a

star on each curve. (b) Performance diagrams with the black dashed lines representing the frequency bias. Filled

contours are the critical success indices (CSIs). For the 10-min lead time, the threshold that maximizes the CSI

on the validation data is marked by a star on each curve.

models, suggesting that general characteristics, like class proportion and input feature distribution,

of the validation and testing datasets are highly consistent. At the optimal threshold, the ResNet

demonstrates a POD above 0.90, which is significantly higher than the SR. This indicates that the

ResNet model’s performance is primarily influenced by false alarms rather thanmisses. Brooks and

Correia (2018) have found that for rare event forecasts, achieving a certain amount of decrease in

false alarms requires a much larger increase in misses, consistent with our results. Given that both

the ROC and performance diagrams show separation between the logistic regression and ResNet

models, we conclude that the ResNet is utilizing additional information in the data that the logistic

regression does not. The ResNet produces a higher CSI with a lower FAR than the baseline logistic
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FIG. 4. Attribute diagrams for the logistic regression (blue) and ResNet (red) models on the testing dataset at

lead times of (a) 10, (b) 30, and (c) 60 minutes. Each curve shows the means achieved over all thresholds from

0 to 1. Light shading around each curve shows the 95% confidence intervals determined by bootstrapping the

testing samples 1000 times. The diagonal black dashed line indicates perfect reliability, and the horizontal black

dashed line represents the climatological event frequency. The gray shaded areas indicate regions where points

on the curves produce positive BSSs, whereas the white areas indicate regions where points on the curve generate

negative BSSs. The inset panel shows the binned frequencies of the forecast probabilities for each model.

regression model (Table 2) at the 10-min lead time. As the lead time increases, the advantage of

ResNet over logistic regression gradually decreases. High FAR is a noticeable issue in previous

satellite-based CI nowcasting algorithms (Mecikalski et al. 2015). These results indicate that the

additional complexity of the ResNet model encodes localized spatial features that help to reduce

FAR.

The BSS of ResNet is better than for the logistic regression model (Table 2) at the 10-min lead

time. Elements of the reliability and resolution terms in the BSS at lead times of 10, 30, and

60 minutes are illustrated in the attribute diagrams of Fig. 4, which show the conditional event

frequency against the forecast probability. Reliability measures how close the forecast probabilities

are to the observed frequency at the corresponding probabilities, while resolutionmeasures how the

conditional event frequencies differ from the climatological event frequency. The two gray areas

represent the regions of positive BSSs, where the resolution term is greater than the reliability term.

At all lead times, the reliability curves of both models are close to the perfect reliability curve (Fig.

4, diagonal black dashed line), and thus their differences in the reliability term are relatively small.

Consistently across all lead times, the ResNet has an over-forecasting bias at probabilities over 0.4,

16
Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0098.1.Unauthenticated | Downloaded 06/07/24 01:37 PM UTC



FIG. 5. (a) CSIs and (b) BSSs for the ResNet (red) and logistic regression (blue) models at lead times from 60

min to 10 min in 10-min steps. Each solid line represents an exponential fit using 𝑦 = 𝑎𝑒−𝜆𝑥 + 𝑏 (𝑏 is preset to

0.578 for fitting CSI). R-squared (𝑅2) values are also provided to assess the goodness of fit.

whereas the logistic regression model consistently displays an under-forecasting bias starting at

probabilities around 0.4. At the 10-min lead (Fig. 4a), the ResNet hasmore forecasts at probabilities

less than 0.2 and greater than 0.8 compared to the logistic regression model, leading to a higher

resolution term compared to the logistic regression model. Thus, the higher BSS of ResNet at the

10-min lead time is mainly attributable to the sharper forecast probability distribution than for the

logistic regression model. As the lead time increases (Fig. 4b-c), the number of forecasts from
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both models at probabilities less than 0.2 and greater than 0.8 decreases, signifying a reduction in

the resolution term at longer lead times.

The skills of both models are further evaluated at additional lead times. Figure 5 shows CSIs and

BSSs at lead times from 60 min to 10 min in 10-min steps along with exponential fits 𝑦 = 𝑎𝑒−𝜆𝑥 +𝑏
to them. The performances of both models degrade with increasing lead time as expected. For

both models, the high correlation coefficients between both CSIs and BSSs and their exponential

fits indicate that both scores decrease exponentially with lead time. With increasing lead time, CSIs

for both models trend asymptotically towards a lower limit close to the CSI (0.578) of the climato-

logical forecast using the event frequency of 0.578. BSSs for both models approach 0 asymptoti-

cally with increasing lead time, suggesting that both models degrade towards climatology. ResNet

performance decreases much faster than logistic regression for both scores, and their differences

largely disappear at longer lead times. Thus, local spatial features, as the major advantage of the

ResNet, likely become less important with increasing lead time.

b. Example cases

We chose three characteristic examples of good and poor forecasts from the ResNet at lead times

from 60 min to 10 min. The ResNet model, as the examples will show, is sensitive to a variety

of spatial features, including water vapor amounts and the location of clouds. The probabilistic

predictions of the logistic regressionmodel are also included to explain the skill differences between

the ResNet and the logistic regression models at different lead times.

The first example in Fig. 6 shows a hit case, a growing cloud object matched to a CI event with

high probabilities (close to 1) for both models at the lead time t = −10 min. The CI probability for

the logistic regression is low at t = −60 min likely because of the relatively homogeneous water

vapor amounts in the scene. In contrast, the CI probability for the ResNet is high, probably due

to the weak pre-cloud signal observed in the bottom of the scene in the 10.35-𝜇m BT. The CI

probability for the ResNet remains highwhen the cumulus cloud seed first appeared in the 10.35-𝜇m

BT at t = −50 min. From t = −50 min to −20 min, the probability for the ResNet increases gradually

to 0.993, while moisture convergence in the lower and middle troposphere likely intensified and the

cumulus cloud grew transporting hydrometeors upward to colder temperatures. At t = −20 min,

the much cooler cloud-top BTs of the cloud object indicate the occurrence of hydrometeors here,
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FIG. 6. A hit example of a growing cloud object matched to a CI event at 2259 UTC 7 June 2021 with high

probabilities for the ResNet and the logistic regression models at a 10-min lead time. The top four rows of

images show the observed GOES-16 6.2-, 6.95-, 7.3-, and 10.35-𝜇m BT, respectively, at lead times indicated on

the top of each column. The fifth row of images shows the observed GOES-16 0.64-𝜇m reflectance for visual

interpretation. The bottom row of images shows the observed MRMS composite reflectivity. The probabilistic

predictions of the ResNet and the logistic regression models at different lead times are indicated just underneath

the lead times at the top. The annotation highlights the cloud object seed associated with CI.

consistent with the observed 20-dBZ reflectivity. From t = −20 min to t = −10 min, the cumulus

cloud expanded, moved towards the center, and grew deeper with more moisture transported from

the lower troposphere to the upper troposphere. The location and coverage of the clouds shown in

the infrared observations match well with the radar reflectivity and visible reflectance observations.
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FIG. 7. As in Fig. 6, but for a false alarm example of a moving cloud object not matched to any CI event at

1942 UTC 25 June 2021 with high probabilities for both models at a 10-min lead time. The annotation highlights

the preexisting cloud object associated with high probabilities for CI.

This example demonstrates that the ResNet is sensitive to the location, height, and coverage of the

clouds, and water vapor amounts at different heights. Before condensed water forms, the ResNet

is perhaps using water vapor features indicating what will become the cloud object to predict CI.

In contrast, CI probability for the logistic regression model is less than 0.5 for lead times from 60

min to 30 min, quickly increasing from t = −30 min to t = −10 min. Thus, the logistic regression

model is likely sensitive to the lowest BTs in all channels and the number of cold BTs within the

cloud object. Note that these speculations on features leading to the evolution of CI probability for
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FIG. 8. As in Fig. 6, but for a miss example of a CI event at 0113 UTC 28 June 2021 obscured by cirrus clouds

with a low probability for the ResNet and a high probability for the logistic regression model at a 10-min lead

time. The annotation highlights the weak signature associated with the upcoming CI beneath the cirrus cloud.

The black circle in the 10.35-𝜇m BT indicates the cloud object associated with CI, while the red circle in the

0.64-𝜇m reflectance indicates the visual CI signatures.

ResNet is generally consistent with the model explanation results of the hit case shown in Fig. A1.

Details of model explanation methods are introduced in section 5.

In contrast to the first example, Fig. 7 shows a false alarm example of a moving cloud object not

matched to any CI event with high probabilities for both models at a 10-min lead time. Between

t = −60 min and t = −30 min, a preexisting cloud object covered the upper left quadrant of the

scene, corresponding to moderate CI probabilities around 0.6 for the ResNet. From t = −30 min
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to t = −10 min, a second cloud object moved from the bottom left of the scene to its center. The

high probability for the ResNet at t = −10 min indicates the ResNet is sensitive to the location and

the low 10.35-𝜇m BT values of cloud objects. The low probability for the ResNet at t = −20 min

might be associated with the limited cloud coverage and the location of the cloud away from the

center. The speculations are consistent with the model explanation results of this false alarm case

in Fig. A2. The increase of the probability for the logistic regression model from t = −20 min to t =

−10 min indicates that it might be sensitive to the lowest BTs in the lower and middle troposphere.

The slight increase in the cloud-top temperature of the second cloud object from t = −20 min to t

= −10 min in the 10.35-𝜇m BT implies that temporal variations, not encoded in this study, might

be useful for reducing false alarms for this and similar cases.

Unlike the previous two examples, Fig. 8 shows a miss example of a CI event obscured by cirrus

clouds. The cirrus anvil from a preexisting storm obscured a large region of the scene starting from

the top right at t = −60 min. Signatures associated with CI are obscured by the thick cirrus clouds

until t = 0 min. The CI probability for the ResNet is below 0.3 from t = −30 min to −10 min,

probably due to the almost homogeneous water vapor amount in the lower troposphere (see 7.3-

𝜇m BTs). These speculations are consistent with the model explanation results of this miss case in

Fig. A3. Note that the model explanation of these three cases (Fig. A1, A2, and A3) suggests that

water vapor in the upper troposphere (see 6.2-𝜇mBTs) has a minor contribution to CI probabilities

compared to the features in the other channels. Interestingly, the logistic regressionmodel produced

a high CI probability over 0.6 at t = −10 min. The logistic regression model is likely sensitive to

the number of cold BTs. In pre-CI environments, it’s common for growing cumulus clouds in the

lower troposphere to be obscured by cirrus anvils from pre-existing convection. However, previous

CI nowcasting algorithms (Mecikalski et al. 2015; Apke et al. 2015) focused on predicting CI for

cumulus cloud objects identified from satellite observations, ignoring CI events whose radiative

signatures were partially or completely obscured by cirrus clouds. While the ResNet is less skillful

for the cases obscured by cirrus clouds, this example indicates that temporal variations of cloud-top

BT might be essential for enhancing the predictive skill of similar cases, as done in prior studies

(e.g., Nisi et al. 2014; Mecikalski et al. 2015; Cintineo et al. 2020b).

These manually selected examples do not cover the wide variety of cases in the testing dataset

and the real world. However, they demonstrate how the models respond to different environments
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FIG. 9. Flowchart for the PartitionSHAP method. Each box represents an individual action.

at different lead times and how to overcome clear limitations in the current methodology, thereby

motivating specific improvements in future work.

5. Model explanation

In order to explain features encoded within the ResNet model, SHAP values were estimated

using PartitionSHAP by Krell (2021). The procedure of PartitionSHAP is shown in Figure 9.

PartitionSHAP applies feature partitioning to explain the contribution of features to the prediction.

Each sample input is recursively divided by channels, rows, and columns to generate a partition

tree. Correlated features are grouped into superpixels by the partition. For each partition, the

SHAP values, a measure of the contribution to the prediction, are estimated for superpixels while

considering interactions within the superpixels via the difference between the model’s predictions

for a specific sample with and without pixels replaced by the baseline. Then, the SHAP values

are averaged across partitions to obtain a single set of SHAP values as the measure of the feature

attribution. Given the additivity property of SHAP values, the sum of SHAP values for all features

approximates the prediction difference between the sample input and the baseline. Features with

higher positive SHAP values have a larger positive contribution to the prediction difference, while

features with higher negative SHAP values have a larger negative contribution to the prediction

difference.
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FIG. 10. Baselines used in SHAP calculations. (a): 0.5-probability composite baseline is the PMM composite

of 100 0.5-probability samples with a specific percentile range from 36.6% to 63.4% to uphold the composite’s

0.5 probability. (b): The ensemble mean of the 100 image-max baselines for the 100 cases. For each case,

the image-max baseline comprises seven 32×32 channel-specific uniform arrays representing the maximum BT

found in the image of each channel. (c): The channel-max baseline comprises seven 32×32 channel-specific

uniform arrays representing the maximum BT found across all 100 images for each channel.

SHAP output is a heat map overlaid on the deviation of the input from the baseline to reveal the

additive contribution of each pixel to the prediction difference between the input and the baseline.

The baseline is a reference against which changes in predictions using sample inputs are interpreted

by comparison. Mamalakis et al. (2022) demonstrated that model explanation is highly dependent

on the baseline and different baselines can be used to answer different science questions. In our

study, we computed the SHAP values for 100 individual cases and showed both the composite

SHAP and deviation to demonstrate their correlation. We first explored the important radiative

features behind the 100 best hit cases, CI cases with probabilities close to 1, using three different

baselines (Fig. 10). The first baseline is a composite of 0.5-probability samples (Fig. 10a, here-

after 0.5-probability composite), which represents a relatively moist environment. Here, we used

a probability-matched mean (PMM; Ebert 2001) composite of 100 0.5-probability samples with a

specific percentile range of BTs from 36.6% to 63.4% to uphold the composite’s 0.5 probability.

PMMs preserve spatial structures better than simply taking the mean of inputs. The large towering
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FIG. 11. (a): PMM BT composite inputs for seven infrared channels generated from the 100 best hit cases at a

10-min lead time. (b-d): Composite SHAP heat maps (contours) and composite deviations (shading) of the inputs

from the (b) 0.5-probability composite, (c) image-max, and (d) channel-max baselines. All of the composites are

created by applying the PMM method to the images from the 100 best hit cases. Positive SHAP values indicate

positive contributions to the prediction difference between the input and the baseline, whereas negative SHAP

values indicate negative contributions. The total SHAP of each channel is indicated at the top of each image.

The top three maximum total SHAPs for each baseline across channels are highlighted in bold.

cumulus cloud near the center of Fig. 10a is consistent with a moderate CI probability generated

by the ResNet. We call the second baseline the image-max baseline (Fig. 10b), a typical clear-sky

baseline. For each case, the image-max baseline comprises seven 32×32 channel-specific uniform

arrays representing the warmest BT found in the image of each channel. Figure 10b shows the

ensemble mean of the image-max baselines over the 100 cases. Finally, the channel-max base-

line (Fig. 10c), a dry clear-sky baseline, comprises seven 32×32 channel-specific uniform arrays

representing the warmest BT found across all 100 images for each channel.

Figure 11 shows composite inputs of the 100 best hit cases (Fig. 11a) and the SHAP and deviation

values for the three baselines (Fig. 11b-d). For each baseline, the top three maximum total SHAPs
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across the seven infrared channels are highlighted in bold, indicating the channels that receive the

highest attention from the ResNet model. The best hits composite (Fig. 11a) is characterized by

a cloud object near the center with moisture accumulated in the lower (7.3-𝜇m BTs) and middle

(6.95-𝜇m BTs) troposphere, localized moisture accumulation in the upper troposphere (6.2-𝜇m

BTs), and cloud coverage observed in the window channels (10.35-/11.2-𝜇m BTs). With the 0.5-

probability composite baseline, the question to be addressed is as follows: “Which features made

the model predict CI compared to a relatively moist environment with a cloud object?” Based on

SHAP results (Fig. 11b), CI probability mainly comes from moisture gradients between the cloud

object and the environment in the lower troposphere (7.3-𝜇mBTs), moisture gradients surrounding

the cloud object in the middle troposphere (6.95-𝜇mBTs), and the BT gradient at cloud boundaries

observed in 11.2-𝜇m BTs. Negative contributions are mainly from the drier areas in the middle

troposphere near the center. Thus, the results indicate that the model has learned that relative to the

0.5-probability composite baseline, CI is mostly determined by moisture gradients near the cloud

object, possibly associated with moisture convergence, in the lower and middle troposphere.

We then use the image-max baseline to answer the following question: “Which features made the

model predict CI compared to a typical clear-sky environment?” The SHAP results (Fig. 11c) high-

light positive contributions mainly from the cloud-top height observed in 10.35-𝜇m BTs, gradients

at cloud boundaries in 11.2-𝜇mBTs, and cloud-top glaciation near the cloud object in 8.4-𝜇mBTs.

While weak positive contributions arise from moisture gradients in the vicinity of the cloud object

in the lower troposphere (7.3-𝜇m BTs), they are largely counterbalanced by negative contributions

from the central regions. These negative SHAPs might arise from the model’s knowledge gained

from other CI cases, especially those obscured by cirrus clouds. With the image-max baseline, the

ResNet is more focused on cloud-top height and glaciation as well as cloud coverage. These critical

features behind CI forecasts are consistent with previous studies (Mecikalski et al. 2011; Han et al.

2019).

Model explanation is further explored with the channel-max baseline to gain insights on the

following question: “Which features made the model predict CI as opposed to a dry clear-sky

environment?” The SHAP results (Fig. 11d) highlight the positive contributions from cloud-top

height (10.35-/11.2-𝜇mBTs), cloud coverage (10.35-/11.2-𝜇mBTs), and the moisture environment

in the lower troposphere (7.3-𝜇mBTs). More positive contributions stem from the moisture within
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FIG. 12. (a) PMM composite of inputs over 100 worst miss cases and (b) the SHAP and deviation values relative

to the 0.5-probability composite baseline.

the lower troposphere compared to the results with the image-max baseline, possibly attributed to

a generally higher contrast of moisture content in the environment. The comparison demonstrates

that the model prediction is not only dependent on the characteristics of cloud objects, but also

takes environmental moisture into account.

We further explored the model explanation using the 0.5-probability composite baseline on the

100 worst miss cases. We aim to understand why the model missed some CI events through the

SHAP analysis. Figure 12 displays the PMM composite of inputs over the 100 worst miss cases

and the SHAP and deviation values from the 0.5-probability composite baseline. According to

the composite input (Fig. 12a), areas in the upper-left are in clear-sky conditions whereas in the

lower-right area it is cloudy. These conditions might obscure signals like moisture gradients in the

lower and middle troposphere. According to the SHAP and deviation values (Fig. 12b), the model

generated positive contributions from moisture gradients in the lower troposphere (7.3-𝜇m BTs)

in the central region. Negative contributions stem from the wide clear-sky areas in the window

channels (10.35-/11.2-𝜇m BTs) and the cloud-top temperature gradient near the cloud boundaries

observed in 8.4-𝜇m BTs. Combined with the third case example (Fig. 8), we hypothesize that the

ResNet fails to generate correct forecasts for these misses likely because the signatures in the mid-

dle and lower troposphere were blocked by the anvil clouds from preexisting convection. Surface

observations and satellite derived cloud property data would help infer these missing signatures

from convergence and differential heating near the surface (Weckwerth et al. 2011; Mecikalski

et al. 2013).
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In the Appendix, we further explored the model explanation on worst false alarm and best correct

null cases. The worst false alarms results (Fig. A4) are similar to the best hits results (Fig. 11),

suggesting that the model might be unable to distinguish between growing convective clouds and

mature or nonconvective clouds. The best correct null results (Fig. A5) are similar to the worst

misses results (Fig. 12), highlighting the negative contributions from the clear-sky regions.

6. Discussion and Conclusions

Convective initiation nowcasting from satellite observations has proved challenging for exist-

ing algorithms, yet this work demonstrates improvements in forecast skill and explainability. We

presented a data-driven method for CI nowcasting at lead times up to 1 hour using a ResNet ar-

chitecture for encoding spatial features of GOES-16 satellite observations. The ResNet model was

compared against the classical logistic regression model to evaluate improvements to skill added

by spatial encodings. The ResNet model significantly outperforms the logistic regression model in

multiple evaluation metrics at lead times up to 1 hour, especially for the false alarm ratio. However,

improvements in prediction skill via encoding of spatial features quickly decreases with increasing

lead time, indicating that spatial features associated with CI might be statistically weaker or omit-

ted altogether for fast-moving cloud objects at longer lead times. Interestingly, the performance of

both models decreases exponentially towards climatology with increasing lead time. Through case

studies, we found that the logistic regression model is sensitive to the lowest BTs and the number

of cold BTs, whereas the ResNet model is sensitive to the location, height, and coverage of clouds,

and moisture amounts at different altitudes. We also found that the ResNet model is unable to cor-

rectly forecast CI events whose signatures are obscured by overlying cirrus anvil clouds and non-CI

events associated with mature or nonconvective clouds.

We suggest that model explanation answers different science questions based on the choice of

baseline. We employed the PartitionSHAP method to better estimate contributions from feature

interactions. With the 0.5-probability composite baseline, a moist baseline with a moderate CI

probability, CI is mostly determined by moisture gradients near the cloud object, possibly associ-

ated with moisture convergence in the lower andmiddle troposphere. With the image-max baseline,

a typical clear-sky baseline, the model focused attention on cloud-top height and glaciation as well

as cloud coverage. With the channel-max baseline, a dry clear-sky baseline, contributions from
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cloud-top height, cloud coverage, and the moisture environment in the lower troposphere were

emphasized. Our study demonstrates the advantage of using different baselines in further under-

standing the ResNet model’s decision-making processes and gaining potential scientific insights.

The explanation results on worst miss cases indicate that the failure of the model in these instances

is likely caused by an inability to detect signatures in the lower and middle troposphere due to

obscuration by preexisting upper level clouds.

Though this work is on only a single component of an envisioned operational CI forecasting

system based on ML methods, it is an important one in demonstrating extraction of the physical

processes encoded in the model that impact CI forecasting. Subsequent work will focus on incor-

porating predictors across multiple timesteps and additional meteorological information into CI

nowcasting with an emphasis on forecast skill, understanding the encoded physical processes, and

operational resilience.

While these results are promising, there are some limitations that must be considered. First,

our dataset might omit cloud signals associated with CI for fast-moving cloud objects at longer

lead times. Based on our estimates, the patch size (48-km by 48-km) is able to capture CI-related

cloud features of moving cloud objects in most conditions, but it might not sufficiently capture

fast-moving cloud objects, as exemplified in Fig. 7. Second, we didn’t track cumulus cloud objects

or use a cloud-following patch. Given the high spatiotemporal resolution of GOES-16 observa-

tions, the tracking of cumulus cloud objects using satellite images is feasible and has been done

in previous studies (Mecikalski et al. 2015; Han et al. 2019), even for those cumulus cloud ob-

jects obscured by cirrus clouds (Mecikalski et al. 2013). Third, our study is focused on CI in the

U.S. Great Plains region and the findings, both evaluation and model explanation results, might

be biased by CI processes of the region. Fourth, because non-CI events have been downsampled

to be comparable to the number of CI events to make a balanced dataset, the class proportions

of our dataset are different from realistic class proportions in the real atmosphere. Thus, perfor-

mance evaluation against climatology, like the BSS score, might not be reliable. Fifth, the model

explanation is still affected by interactions between correlated features. Although PartitionSHAP

was initially designed to better estimate contributions from the interactions between features, the

results, especially the negative SHAP values, are still affected by interactions of localized features.

Feature correlation might have been encoded into the model during training. The model might
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have learned how to utilize correlated features to maximize its skill. For example, the difference

between 8.4- and 10.35-𝜇m BTs is usually used to provide information about cloud-top glaciation.

ResNet might have encoded this signature in inferring the timing of CI.
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APPENDIX

a. Storm-Tracking configuration

The w2segmotionll algorithm, a WDSS-II executable, and the modified best-track algorithm are

used for storm identification and tracking from radar MRMS radar dataset. Table A1 shows the

configuration options for these algorithms.

TABLE A1. Configuration options used for storm tracking and identification for w2segmotionll and post-event

track correction for best-track.

Parameter Flag Option

Storm tracking and identification for w2segmotionll
trackedProductName -T MergedReflectivity QCComposite

“min max incr maxdepth” -d “35 57 5 -1”

prunerSizeParameters -p 40, 200, 300, 0:0, 0, 0

smoothing filters -k percent:50:1:0:1, percent:75:1:0:1

clusterIDMatchingMethod -m MULTISTAGE: 2:10:0

Post-event track correction for best-track
Buffer distance -bd 16 (km)

Buffer time -BT 11 (min)

b. Hyperparameter tuning

Table A2 shows the selected hyperparameters, their search space, and optimal values for the

baseline logistic regression model and ResNet.

TABLE A2. Selected hyperparameters, their search space, and optimal values for the baseline logistic regression

model and ResNet.

Hyperparameter Search space Optimal value

Logistic regression
C 0.0001-1.0 (log-uniform) 0.212

𝜆 (mixing parameter) 0.0001-1.0 (log-uniform) 0.104

ResNet
Leaky alpha 0.0-0.4 0.138

Learning rate 0.0000001-0.001 (log-uniform) 0.0009

Initial number of filters 10-100 64

Batch size 256-2048 256

Dropout alpha 0.0-0.4 0.074
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c. SHAP results for case examples

Figure A1, A2, and A3 show the SHAP and deviation of 6.2-, 6.95-, 7.3- and 10.35-𝜇m BT

relative to the image-max baseline at lead times from 10 min to 60 min for the case shown in Fig.

6, 7, and 8 respectively. Note that for the false alarm case (Fig. A2), the negative SHAP related

to the lower-tropospheric water vapor (7.3-𝜇m) correctly lowered the CI probability, especially at

lead times longer than 20 min.

FIG. A1. SHAP and deviation of 6.2-, 6.95-, 7.3- and 10.35-𝜇m BT relative to the image-max baseline at lead

times from 10 min to 60 min for the hit case shown in Fig. 6.

d. SHAP results for false alarms and correct nulls

Figure A4 illustrates the composite inputs over 100 worst false alarm cases and SHAP results and

deviation values relative to the 0.5-probability composite baseline. Similar to the best hits results

(Fig. 11), the composite inputs of worst false alarms are characterized by moisture accumulated

near the center in the troposphere as well as cloud coverage observed in the window channels

(10.35- and 11.2-𝜇m). The SHAP results still highlights the positive contribution from themoisture
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FIG. A2. SHAP and deviation of 6.2-, 6.95-, 7.3- and 10.35-𝜇m BT relative to the image-max baseline at lead

times from 10 min to 60 min for the false alarm case shown in Fig. 7.

gradients between the cloud object and the surrounding area in the lower troposphere (7.3-𝜇m) and

middle troposphere (6.95-𝜇m) as well as the cloud-top height (10.35- and 11.2-𝜇m). The much

wider cloud coverage than the cloud of best hit cases (Fig. 11a) indicates the cloud might be a

decaying mature cloud or a nonconvective cloud advected from the surroundings, consistent with

the second case example (Fig. 7). Thus, the results suggest that the model might not be able to

distinguish between growing convective clouds and mature or nonconvective clouds.

Figure A5 shows the composite inputs over 100 best correct null cases and SHAP results and

deviation values relative to the 0.5-probability composite baseline. Similar to worst miss cases

(Fig. 12), negative contributions are mostly from the wide clear-sky regions in 8.4-, 10.35-, and

11.2-𝜇m.
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FIG. A3. SHAP and deviation of 6.2-, 6.95, 7.3- and 10.35-𝜇m BT relative to the image-max baseline at lead

times from 10 min to 60 min for the miss case shown in Fig. 8.

FIG. A4. (a) PMM composite of inputs over 100 worst false alarm cases and (b) the SHAP and deviation values

relative to the 0.5-probability composite baseline.
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FIG. A5. (a) PMM composite of inputs over 100 best correct null cases and (b) the SHAP and deviation values

relative to the 0.5-probability composite baseline.
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