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Dynamically field-programmable qubit arrays
(DPQA) have recently emerged as a promising
platform for quantum information processing.
In DPQA, atomic qubits are selectively loaded
into arrays of optical traps that can be reconfig-
ured during the computation itself. Leveraging
qubit transport and parallel, entangling quan-
tum operations, different pairs of qubits, even
those initially far away, can be entangled at dif-
ferent stages of the quantum program execution.
Such reconfigurability and non-local connectiv-
ity present new challenges for compilation, espe-
cially in the layout synthesis step which places
and routes the qubits and schedules the gates.
In this paper, we consider a DPQA architec-
ture that contains multiple arrays and supports
2D array movements, representing cutting-edge
experimental platforms. Within this architec-
ture, we discretize the state space and formu-
late layout synthesis as a satisfiability modulo
theories problem, which can be solved by exist-
ing solvers optimally in terms of circuit depth.
For a set of benchmark circuits generated by
random graphs with complex connectivities, our
compiler OLSQ-DPQA reduces the number of
two-qubit entangling gates on small problem in-
stances by 1.7x compared to optimal compila-
tion results on a fixed planar architecture. To
further improve scalability and practicality of
the method, we introduce a greedy heuristic in-
spired by the iterative peeling approach in clas-
sical integrated circuit routing. Using a hybrid
approach that combined the greedy and optimal
methods, we demonstrate that our DPQA-based
compiled circuits feature reduced scaling over-
head compared to a grid fixed architecture, re-
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sulting in 5.1X less two-qubit gates for 90 qubit
quantum circuits. These methods enable pro-
grammable, complex quantum circuits with neu-
tral atom quantum computers, as well as inform-
ing both future compilers and future hardware
choices.

1 Introduction
The power of quantum computing relies on the abil-
ity to generate large-scale entanglement among qubits.
Entangling operations such as two-qubit gates requires
qubits to interact, which often confines gate connec-
tivity to be geometrically local. Since superconduct-
ing quantum processors are fabricated on a 2D plane
[5, 6, 7], the qubit connectivities are planar with a low
node degree for practical reasons [8]. For small trapped-
ion quantum processors [9, 10], the connectivity is all-
to-all. However, it is challenging to maintain this fea-
ture when scaling up to multiple ion traps [11], although
exciting progress is being made [12].

Recently, neutral atoms trapped in arrays of opti-
cal tweezers have become a leading experimental plat-
form for quantum computing. These systems are read-
ily scaled to large numbers: Ebadi et al. [13] have
operated up to 289 neutral atom qubits, and signifi-
cant increases in system size are expected to continue.
Neutral atoms have recently also reached state-of-the-
art fidelities: Evered et al. [4] realized parallel CZ
gates on 60 qubits with fidelity 99.5%. Moreover, Blu-
vstein et al. [3] have demonstrated dynamically field-
programmable qubit arrays (DPQA) where the qubit
connectivity can be reconfigured dynamically during the
computation itself, as illustrated by Fig. 1a. We focus
on the DPQA architecture, aligning with the settings es-
tablished in these experimental works. Specifically, the
two-qubit gates are driven by a global Rydberg laser.

DPQA opens the field up to new opportunities for
running quantum circuits with non-local connectivities
and a high degree of parallelism. However, in addi-
tion to its flexibility, there are hardware constraints,
as shown in Fig. 1b. In the compilation flow of quan-
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Figure 1: Compiling quantum circuits to dynamically field-programmable qubit arrays (DPQA). (a) Non-local connectivity of
DPQA. Atoms are kept in traps generated by a 2D acousto-optic deflector (AOD, dashed grid) and a spatial light modulator (SLM,
all others). Entangling two-qubit gates are enabled by a Rydberg laser illuminating the plane (glow). Only when two atoms are
within the Rydberg blockade range rb can they perform an entangling gate (pairs in colored ovals). We can change the location
of AOD atoms, and transfer atoms between AOD and SLM traps [2] in the middle of computation (each arrow corresponding
to some AOD reconfiguration). Through such reconfigurations, new non-local connectivities are established (oval dashes), i.e.,
different pairs of atoms can now perform entangling gates. (b) Our compilation approach. The input consists of the quantum
circuit to execute and the DPQA architecture specification, e.g., how large the plane is and how many AOD rows and columns we
can have. The compiled instructions have to respect the constraints of DPQA. For example, when a two-qubit gate is executed,
the two qubits should be closer than rb and there cannot be another qubit nearby. Also, all traps in the same AOD row/column
move together and must stay in the same order from the beginning to the end of the process. We formulate all the constraints to a
satisfiability modulo theories (SMT) model and use an existing SMT solver to find solutions, with which we can derive valid DPQA
instructions to run the circuit. (c) Structure of compiled results. We discretize space by prescribing interaction sites shown as the
proximity of integer points in the plane. The distance between sites is sufficient to suppress Rydberg interaction strengths [3, 4]
so the two-qubit entangling gates can only take place within sites. Our compiler places the qubits in the quantum circuit to atoms
in SLM or AOD at a specific interaction site in the beginning of execution. We discretize time by setting stages when two-qubit
gates are performed. After each stage, some AOD movements and atom transfers serve as routing for the gates executed at the
next stage.

tum computing, layout synthesis (Appendix B) places
the qubits and routes them to execute the gates at
the appropriate time steps, as depicted in Fig. 1c.
Quantum layout synthesis has been studied for years
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33], but most previous works focus
on fixed architectures. A notable exception is Brand-
hofer et al.[33], which explores an architecture featur-
ing only ‘1D displacements’, much more restricted than
DPQA. Consequently, no previous compiler can fully
leverage the reconfigurability and non-local connectiv-

ity of DPQA while conforming to all its constraints.
Realizing a compiler for DPQA is an outstanding chal-
lenge that would enable unique opportunities in quan-
tum computing with such a flexible architecture.

In this work, we realize layout synthesis of complex
quantum circuits for neutral atom hardware in a com-
piler OLSQ-DPQA (optimal layout synthesizer of quan-
tum circuits for DPQA). We encode states of the archi-
tecture in discrete variables specifying the location of
qubits and the scheduling of gates. Based on these vari-
ables, we express constraints of DPQA with first-order
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logic and integer relations. Then, we use a satisfiability
modulo theories (SMT) solver to derive valid variable
assignments under the constraints yielding valid DPQA
instructions to execute circuits.

The manuscript is organized as follows. In Section 2,
we review the DPQA architecture, especially its con-
straints. In Section 3, we introduce the discrete vari-
ables that encode the state of DPQA in the computation
spacetime. Section 4 explains how the constraints are
constructed in SMT and how to invoke SMT solvers to
derive optimal solutions with respect to circuit depth.
In Section 5, we introduce a hybrid method including a
greedy heuristic to accelerate the compilation and scale
it to large sizes. Note that this method still relies on
SMT, which can take exponential runtime in the num-
ber of qubits. We demonstrate the effectiveness of our
compiler by comparing the results of both optimal and
optimal-greedy hybrid approaches to fixed planar ar-
chitectures using state-of-the-art compilers. Finally, in
Section 6, we conclude the paper and provide future
outlooks.

2 DPQA Architecture Description
In DPQA, every atom encodes a qubit, and they are
held in optical traps. A spatial light modulator (SLM)
generates some of the traps. These SLM-generated
traps are stationary just like quantum registers in a
fixed architecture, but can be placed in arbitrary lo-
cations [34, 35, 36]. However, there are also mobile
traps [2] generated by a crossed 2D acousto-optic de-
flector (AOD) are represented by the dashed grid in
Fig. 1a [37, 38]. Atoms can be transferred between
AOD and SLM. If two atoms are within a certain Ry-
dberg blockade range rb, we can apply an entangling
two-qubit gate on the pair with a so-called Rydberg
laser [39, 40, 4]. In fact, the laser illuminates the whole
plane where atoms are kept, so all pairs of qubits that
are within distance rb perform two-qubit gates in par-
allel (pairs in colored ovals in Fig. 1a) [3].

Different configurations, i.e., different locations of
AOD rows and columns, lead to different qubit connec-
tivities. In principle, we can couple any AOD qubit q at
(xq, yq) and any SLM qubit q′ at (xq′ , yq′) by moving q
to q′ by a distance roughly (xq′ − xq, yq′ − yq). Also, we
can bring adjacent AOD rows/columns close together
to couple qubits in these rows/columns. The dashed
ovals in Fig. 1a correspond to some of these potential
couplings that some AOD reconfigurations (arrows, not
necessarily simultaneously) can achieve.

Although the DPQA architecture offers a lot of flexi-
bility, it also has highly non-trivial constraints. As men-
tioned previously, two qubits need to be closer than rb

for an entangling gate, but if there is another qubit not

sufficiently separated (< 2.5 rb) from the pair, the quan-
tum evolution on these three qubits would not be a de-
sired gate (‘interaction exactness’ constraint in Fig. 1b).
The 2D AOD grid is the product of two 1D AODs as
the X and Y components. There is one AOD trap at ev-
ery intersection of the X and Y components. Thus, we
cannot move AOD traps individually. What we can do
to reconfigure the qubit connectivity is shift whole rows
and/or columns of AOD traps. Moreover, AOD rows/-
columns are not allowed to move across other rows/-
columns (to avoid heating / loss of the atoms during
this process) [3], so the order of AOD rows/columns
cannot change. For a more detailed and formal discus-
sion on DPQA, please refer to Appendix A.

3 Discretization of the Solution Space
As pointed out previously, we have the freedom to spec-
ify the locations of an AOD row r as a function of time
yr(t) and, similarly, xc(t) of an AOD column c. Model-
ing the DPQA architecture based on these continuous
functions is cumbersome and unnecessary for a com-
piler. In fact, the time domain can be easily discretized
to stages like in Fig. 1c because we only care about the
location of qubits when we turn on the Rydberg laser
to apply the entangling gates. As long as we do not vio-
late the DPQA constraints, the 2D planar movements of
AOD between any two stages can be straightforwardly
interpolated. We can implement single-qubit gates us-
ing individually addressable lasers between stages, so we
filter out the two-qubit gates and compile them. After
this compilation, we can reintroduce single-qubit gates.
For more details, kindly refer to Appendix F.

We also discretize the space domain to interaction
sites. The intuition behind the spatial discretization
is that the spatial sparsity of qubits is required to
avoid unwanted Rydberg interaction. At each stage, the
qubits need to be either in a pair sitting close to each
other (performing two-qubit gates) and away from all
other qubits or all alone (idling) and away from all other
qubits. Thus, we restrict the location of qubits at each
stage to the proximity of pre-defined grid points (inter-
action sites) on the 2D plane, as shown in Fig. 1c. The
unit separation between these sites is sufficiently large
so that no Rydberg interaction can take place among
qubits at different sites.

With the above discretizations, we can use discrete
variables to encode all possible configurations of the
architecture. We shall work through the example of
compiling the quantum circuit in Fig. 2a to DPQA to
explain the variables. More details about spatial dis-
cretization are provided in Appendix C. All values in
the running example are provided in Appendix G.

Site indices xi,s and yi,s: at stage s, qubit qi is at
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Figure 2: A compiled example. (a) The quantum circuit to compile. (b) Stage 0. Qubits are loaded to the corresponding traps
before this stage: blue qubits are in SLM, red qubits are in AOD. An AOD trap sits at every intersection of the AOD columns and
rows (x and y dashed lines). An open circle represents an unoccupied SLM trap. At stage 0, (q4, q2) and (q5, q3) are at same sites
to enable a Rydberg interaction. Thus, two gates g0 and g1 are applied to these two pairs of qubits. After stage 0, the movement
shifts the lower AOD row from y = 0 to 1 and the middle two columns go from x = 1 and 2 to x = 2 and 3, respectively. (c)
Stage 1. Shadows of qubits indicate the direction of the movements from the previous stage to the current one. (d) The moment
after the movement between stage 1 and 2. (e) Stage 2. q5 is transferred from AOD to SLM (red to blue) after the movement
and before stage 2 by shifting the leftmost AOD column to align with the SLM trap at (1, 0) and then turning off this column. (f)
Stage 3 finishing the circuit execution.

interaction site (xi,s, yi,s), e.g, for q0 at stage 0 (Fig. 2b),
x0,0 = 3 and y0,0 = 1; at stage 1 (Fig. 2c), x0,1 = 3 and
y0,1 = 1 still; at stage 2 (Fig. 2e), y0,2 = 1 still, but
x0,2 = 2 due to movements.

Array index ai,s: at stage s and the movement follow-
ing it, if qi is in SLM, ai,s = 0; if it is in AOD, ai,s = 1,
e.g., for q5 at stages 0 and 1, a5,0 = a5,1 = 1; before
stage 2, it is transferred to SLM, so a5,2 = 0.

AOD column/row indices ci,s and ri,s: at stage s and
the movement following it, qubit qi is at AOD column
ci,s and row ri,s, e.g., at stage 0, r5,0 = 0 and c5,0 = 0 for
q5; r0,0 = 1 and c0,0 = 3 for q0. (We index the row from
below and the column from left.) Since it is unknown
in advance whether a qubit will be in AOD or SLM, we
introduce the r and c variables for all qubits, but only
those for AOD qubits will play a role in constraints.

Time coordinate tj: gate gj is scheduled to stage tj ,
e.g., g0 in Fig. 2a is on q2 and q4 and at stage 0, so
t0 = 0; g1 is also at stage 0 (Fig. 2b), so t1 = 0. g7 and
g8 are at stage 3 (Fig. 2f), so t7 = t8 = 3.

4 Optimal Compilation with SMT
Given the variables above, we can express the DPQA
constraints. Usually, the constraints can be expressed
with integer inequality and first-order logic. The sim-
plest ones are the bounds for variables. As a part of the
architecture specification, we restrict the region where

qubits can be put and moved. Depending on our field
of view and rb, there are upper bounds X and Y of
how many traps we have in horizontal and vertical di-
rections. So, we have integer inequality constraints:

0 ≤ xi,s < X, 0 ≤ yi,s < Y ∀i, s. (1)

Depending on how many AOD columns and rows are
at our disposal, we also restrict the range of ci,s and
ri,s with constants C and R. Other constraints may
also require Boolean logic, e.g., the qubits in SLM are
stationary between two stages:

(ai,s = 0) ⇒ (xi,s+1 = xi,s)∧(yi,s+1 = yi,s) ∀i, s. (2)

For example, q4 is in SLM at stage 0, i.e., a4,0 = 0, so
its site indices remain the same between stage 0 and 1,
i.e., x4,1 = x4,0 and y4,1 = y4,0.

For a valid two-qubit gate, enforcing connectivity con-
straints is crucial. Taking g4 as an example, with q4 and
q5 requiring the same site, we express the constraint as

(t4 = 1) ⇒ ((x4,1 = x5,1) ∧ (y4,1 = y5,1)). (3)

AOD qubits, shifting by whole rows or columns dur-
ing movement, maintain constant row or column indices
across consecutive stages. For instance, with q5 in AOD
at stage 0, we have:

(a5,0 = 1) ⇒ ((c5,1 = c5,0) ∧ (r5,1 = r5,0)). (4)
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Figure 3: Workflow of our compiler OLSQ-DPQA. The inputs
to the compiler are the quantum circuit to execute and the spec-
ifications of the DPQA architecture considered. If the problem
is small, the compiler directly takes the optimal approach by
constructing an SMT model where all the gates are applied to
the first S stages. If the model is satisfiable, then we find a
solution; otherwise, we increase S and try again. Thus, we
find a solution with the minimum number of stages in the end,
because lower-depth models are all checked and unsatisfiable.
The SMT solution goes through a post-processing to extract
the instructions for executing the quantum circuit on DPQA.
There are only five types of instruction: init for initializa-
tion; rydberg to turn on the Rydberg laser and perform two-
qubit gates; move for changing the coordinates of AOD rows/-
columns; activate for turning on certain AOD rows/columns
for atom transfer; and deactivate for turning off certain AOD
rows/columns. If the problem is large, the compiler takes a hy-
brid approach by iteratively “peeling off” the maximum number
of gates possible. It generates a single-step (two-stage) SMT
model with a constraint of executing more than M gates in
one step. After possible decreases of M , we find the solution
with as many gates executed in one step as possible. Then,
we stitch this partial solution, which is one “layer peeled off”,
to the whole solution. When the problem becomes sufficiently
small (5% of gates left), the compiler switches to the optimal
approach.

To uphold order constraints during movement, we en-
force ordering of the site indices in the next stage. For
instance, at stage 0, where q1 is at row 0 and q0 is at
row 1, the constraint is expressed as

((a0,0 = 1) ∧ (a1,0 = 1) ∧ (r1,0 < r0,0)) ⇒ (y1,1 ≤ y0,1).
(5)

Following the above approach, all DPQA constraints
can be formulated using first-order logic and integer in-
equalities, facilitating automatic reasoning. Interested
readers can refer to the full list in Appendix D.

Once acquainted with the formulation, adapting
constraints to accommodate architectural changes is
straightforward. For instance, if the Rydberg laser only
illuminates the left part of the plane up to XL, the con-
nectivity constraint can be revised as follows:

(t4 = 1) ⇒ ((x4,1 = x5,1)∧ (y4,1 = y5,1)∧ (x4,1 ≤ XL)).
(6)

If there are multiple AODs, the array index variables
can be generalized to have a larger support than just 0
and 1. For instance, in addition to Eq. 5, an additional
constraint is introduced for a second AOD array:

((a0,0 = 2) ∧ (a1,0 = 2) ∧ (r1,0 < r0,0)) ⇒ (y1,1 ≤ y0,1).
(7)

Employing this approach, one can tailor the constraints
to specific architectural settings.

Satisfiability modulo theories (SMT) solvers are tools
that can solve valid variable assignments given this form
of constraint. SMT is an extension of Satisfiability
(SAT) that accommodates a broader range of variable
types beyond binary variables, as well as diverse types
of constraints that go beyond the confines of conjunctive
normal form. We can encapsulate the variable defini-
tions and constraints expressed with these variables in
an SMT model. When provided with a model, an SMT
solver can check whether it is satisfiable. If so, the solver
returns the variable assignments which are all we need
to execute circuits because our variables completely cap-
ture the architecture in spacetime. If the model is not
satisfiable, some of our bounds are too small for valid
variable assignments that will satisfy all the constraints.

With an SMT solver, we are able to not only solve
valid assignments to compile circuits, but also guaran-
tee the optimality of the solution with respect to some
objective function, presented as the optimal branch in
Fig. 3. So far, the dominating error source of DPQA
is the Rydberg laser (see Appendix A.4 for detail), so
we ignore the single-qubit gates for now and add them
back after layout synthesis. Then, our objective is the
number of times we turn on the Rydberg laser, i.e.,
the number of stages of parallel two-qubit gates, or,
circuit depth S. Thus, we use relatively large spatial
bounds (X, Y, R, C) which is more likely to yield sat-
isfiable models with a lower S. We start by setting S
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Figure 4: Evaluation of the optimal compiler. (a) Graph circuits. Given any graph, we treat each node as a qubit and add a
two-qubit entangling gate for every edge in the graph to construct the graph circuit. We assume the gates are commutable, so
gate order does not matter. The benchmarks used are graph circuits generated by 3-regular graphs of size 10 to 22. For each
size, we have 10 random graphs. (b) Comparison of infidelity caused by the Rydberg laser (performing two-qubit gates) and the
AOD movements. The latter is 27x smaller on average. We make such estimation using 99.5% two-qubit gate fidelity [4] and a
movement scheme that yields low atom heating as in Ref. [3]. (c) Comparison of the number of two-qubit gates required on a fixed
planar architecture (Google’s Sycamore) and DPQA employing different compilers. Error bars are standard deviations among 10
random graphs of the same size. The compilers are t|ket⟩, SABRE (integrated in Qiskit), and TB-OLSQ2. Note that TB-OLSQ2
is optimal for fixed architectures, but there is still a significant gap (1.7x) between it and the optimal DPQA compiler. The gaps
mainly come from SWAP gates inserted on the fixed architecture, which requires three entangling gates (controlled Rz) [41].

to a lower bound, e.g., the critical path in the circuit,
which is 3 for the one in Fig. 2a. If the SMT solver re-
turns unsatisfiable, we increase S and invoke the solver
again, until it finds a valid solution with Sopt stages.
With this procedure, the optimality is guaranteed since
we have checked for any smaller S yield unsatisfiable
models before finding the solution. If S increases be-
yond the number of gates, we conclude that the spatial
bounds are too small and increase them. The procedure
will terminate since any finite circuit of size P can be
run in a finite spacetime volume bounded by P ×P ×P .

The variable assignments are not yet a DPQA ex-
ecutable. We need to post-process the SMT solution
to produce DPQA instructions. For example, we must
know the beginning and end coordinates of each AOD
column, which are stored distributively in the xi,s and
ci,s variables. In the example of Fig. 2, we find q2 is
in column 1 and x = 1 at stage 0, i.e., c2,0 = 1 and
x2,0 = 1, and x = 2 at stage 1, i.e., when x2,1 = 2, we in-
fer that the AOD column 1 travels from x = 1 to x = 2.
As such, the information in the SMT solution will be
translated to five types of basic DPQA instructions:
init for initial qubit loading, rydberg for illuminating
the Rydberg laser, move for AOD movements, activate
for activating AOD rows/columns, and deactivate for

deactivating AOD rows/columns. These instructions
are readily executable on DPQA and our compiler can
also generate animations from the instructions to view
the execution process in action.

We benchmark the effectiveness of DPQA and our
compiler, OLSQ-DPQA, on a set of quantum circuits
constructed using random graphs, as illustrated in
Fig. 4a. For a given graph, we assign each node to
a qubit and apply a two-qubit gate for every edge. For
simplicity, we consider problems where these gates are
commutable, like the controlled-Rz gates available on
DPQA [40, 4], so the compiler also explores freedom
of permuting gate ordering. Compiling these circuits is
more challenging compared to generic circuits due to the
increased flexibility in commutation. For evaluations on
realistic generic circuits, please refer to Appendix F.

By considering measured 1.5 s coherence times [3]
and 99.5% CZ gate fidelity [4] in DPQA, as expected,
we find the main error source is the Rydberg laser
(Fig. 4b). The infidelity associated with AOD move-
ments based on real experimental parameters (details
in Appendices A and E), is revealed to be ∼ 27×
smaller than the infidelity of two-qubit gates, as shown
in Fig. 4c, indicating that DPQA is promising for real-
izing highly nonlocal graphs where motion can be com-
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plex, and that increasing two-qubit gate fidelity is the
main way to continue boosting fidelity.

We now compare our DPQA compilation results
to the compilation results on fixed planar architec-
tures, where instead of physically moving qubits around,
qubits are moved around using two-qubit SWAP gates.
As expected, DPQA combined with the optimal com-
piler requires significantly fewer two-qubit gates. We
tested a few compilers that perform layout synthesis
for the fixed architecture by inserting SWAP gates:
t|ket⟩ [42], a heuristic compiler used in leading QAOA
experiments [43]; SABRE [17], a heuristic compiler in-
tegrated in leading quantum programming framework,
Qiskit [44]; and TB-OLSQ2 [14], a leading optimal com-
piler for fixed architecture. The gaps of the number of
two-qubit gates for a QAOA benchmark with 22 nodes
in the graph are 4.5x, 2.5x, and 1.7x, respectively.

5 Hybrid Approach
The runtime for SMT solving scales exponentially in the
worst case, so the optimal compiler can take a very long
time to solve certain cases, as seen in Fig. 5f. Due to the
complicated constraints, it is also challenging to design
near-optimal purely heuristic algorithms to search the
solution space of DPQA. Therefore, we adopt a two-
level approach, as illustrated in the hybrid approach in
Fig. 3. For large problems, at the higher level, we ap-
ply a greedy heuristic in that, at every stage, we find
the AOD movement to maximize the number of gates
to execute in the next stage and we repeat this pro-
cess until there are a sufficiently small number of gates
remaining. Then, we switch to the optimal approach.
This technique is inspired by ‘iterative peeling’ for rout-
ing classical integrated circuits with multi-layer routing
layers [45].

Specifically, if there are still gates to execute, we con-
struct a “single-step” SMT model with two stages and
set the qubit location of the initial stage to that of the
current stage in the full solution. For instance, suppose
the compiler has already processed g0 to g4 in Fig. 2a
and progressed to stage 1 (Fig. 2c). In the single-step
model, all initial locations are set by the previous par-
tial solution, e.g., x4,0 = 1 since q4 at x = 1 in Fig. 2c.
Then, we optimize the number of gates executed in the
second stage in the single-step model with a procedure
similar to the one in the optimal approach, except that
we decrease the number of gates to execute in the each
stage from an upper bound of M instead of increasing
the number of stages from a lower bound. The upper
bound is the maximum matching number of the graph
constructed from the remaining gates. In our example,
the remaining gates g5 and g7 both act on q0, whereas
g6 and g8 both act on q1, so only one gate in each of

these two pairs can be executed together, i.e., the max-
imum matching number is 2. The compiler appends
the single-step model with a constraint that says there
are at least 2 gates executed at the next stage and in-
vokes the SMT solver, which can find such a solution
(Fig. 2e). We stitch this partial solution to the full so-
lution, remove gates g5 and g6 which is a layer of gates
“peeled off”, and continue to the next “peeling”. If there
are only a few gates remaining (we opt for 5%) the com-
piler switches to the optimal approach to solve for the
final stages.

The hybrid approach cannot fundamentally improve
the runtime scaling to polynomial because it still re-
lies on SMT solving, but it greatly accelerates the pro-
cess, with some sacrifice on optimality. As exhibited
in Fig. 5f, it is much faster than the optimal compiler
and the divergence of runtime within benchmarks of
the same size is also much smaller. Within a reasonable
amount of time (105s ≈ a day), the hybrid compiler
managed to compile some 90-qubit circuits whereas the
optimal compiler, in the worst case, can only compile
up to the 22-qubit circuit. We present one of the largest
circuits compiled in Fig. 5a-d: (a, b) exhibit the graph
generating the quantum circuit which has a complex
connectivity; (c, d) are two stages in the program ex-
ecution. This hybrid approach is implemented in the
OLSQ-DPQA compiler, which is open-source under the
BSD 3-clause license.1 The code base includes Python
scripts that 1) generate the SMT models and iteratively
invoke an SMT solver, Z3 [46] to solve them, 2) gener-
ate DPQA instructions and animations based on SMT
solutions, 3) draw plots in the evaluations. The de-
pendencies are Python packages Z3 [46], PySAT [47],
NetworkX [48], and Matplotlib [49]. The code base also
includes all SMT solutions in the evaluations and some
example animations.

We compare the required number of two-qubit gates
by DPQA and a fixed planar architecture (10x10 grid)
in Fig. 5e. We find that the savings from DPQA on
such a large system is significant compared to the fixed
architecture: 5.1x and 8.9x reduction in the number of
two-qubit gates, respectively, compared to the compi-
lation results by SABRE and t|ket⟩. If the heuristics
place qubits in an

√
n-by-

√
n region, each gate may re-

quire O(
√

n) SWAPs to route. Then, for O(n) gates,
as in our benchmark set, O(n1.5) SWAPs are required.
We observe this scaling in the results of SABRE: with a
log-log fitting, the number of two-qubit gates scales in
the 1.52 ± 0.02 power of the number of qubits. In com-
parison, DPQA routes the gates by AOD movements in-
stead of SWAPs, so the number of gates scales linearly.
This result assumes that DPQA is equipped with an in-

1https://github.com/UCLA-VAST/DPQA
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(e) (f)

(a)

(c)

(b)

(d)

Figure 5: Evaluation of the greedy-optimal hybrid compiler. (a, b) One of the largest benchmarks we are able to compile, a 90-node
3-regular graph. The highlighted edges are gates executed at the stages in (c) and (d), respectively. (c) One stage of the compiled
result. The dots are qubits in SLM. The ovals indicate two-qubit gates performed at this stage, which have a 1-to-1 correspondence
with the edges in (a). After this stage, some qubits are transferred to AOD and moved. (d) The next stage. The red dots are
the AOD qubits, and the arrows indicate the parallel movements from (c) to the current state. Readers are welcome to check out
our code base for this animation. (e) Comparison of the number of two-qubit gates required on a fixed planar architecture (10x10
grid) using different compilers and DPQA. For DPQA, the number of two-qubit gates scales as n, whereas for the state-of-the-art
heuristic solver on the fixed planar architecture, SABRE, scales as n1.52±0.02 where n is the number of qubits. DPQA requires far
less two-qubit gates, 5.1X less than SABRE, and scales linearly. (f) Comparison of runtime of the optimal and hybrid approaches
in OLSQ-DPQA. Since both of them internally rely on SMT solving, the runtime scalings are both exponential in the size of the
graph with which we generate the quantum circuit. However, the hybrid approach is significantly faster so that large instances
can be solved (up to 90 qubits in 105 ∼ a day). Compared to the optimal approach, the scaling of the hybrid approach is mainly
related to size rather than the specific graph, which is demonstrated by the much smaller spread of data points at the each size.
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dividually addressable Rydberg laser (or other methods
of turning off the Rydberg excitation locally) that does
not accumulate the same error on idling qubits (e.g., in
[50]).2

6 Discussion and Outlook
In this work, we studied the constraints of existing dy-
namically field-programmable qubit arrays (DPQA) ar-
chitecture regarding compilation and discretization of
the architecture. Then, we developed a compiler for the
architecture, OLSQ-DPQA. The compiler and results
developed here are suited to a wide range of applications
in neutral atom quantum computation. Broadly, com-
bined with state-of-the-art neutral atom hardware and
the ability of our compiler to output hardware-level in-
structions, these techniques would allow us to specify an
arbitrary quantum circuit with arbitrary connectivity
on approximately 100 qubits and then realize this circuit
on quantum hardware. This can allow, for example, im-
plementing circuits like the quantum fourier transform
on significantly larger numbers of qubits than previously
realized [51, 52], implementing nonlocally connected,
high-rate quantum low-density parity check (LDPC)
codes [53], or studying evolution in exotic Hamiltoni-
ans [54].

In particular, the results presented for realizing cir-
cuits on random 3-regular graphs on 90 qubits can di-
rectly be applied to various problems. For combina-
torial optimization, one can utilize the class of graphs
examined here to study the quantum algorithm per-
formance on problems such as MAXCUT or MIS with
either the Quantum Adiabatic Optimization Algorithm
(QAOA) [55] or the trotterized adiabatic evolution [13].
Realizing such a complex evolution on nonlocally con-
nected graphs such as in Fig. 5 can be used for efficient
quantum supremacy and information scrambling exper-
iments [56, 57]. In such an approach, one can choose to
employ the first few, most efficient layers of the compi-
lation to implement classes of random nonlocally con-
nected graphs.

The compiler used here can be expanded further
along multiple axes. Given the generality and flexibil-
ity of the framework, the compiler can adapt to new
hardware features before implementation and inform
hardware design for neutral atom quantum computers.

2Instead, if DPQA is equipped only with a global Rydberg
laser that illuminates the whole plane, although the number of
two-qubit gates is greatly reduced, the effective number of two-
qubit gates (the number of qubits times the number of stages
divided by 2) is only slightly better (7%) than the SABRE results
on the fixed architecture assuming that a global Rydberg laser
induces the similar error rate, at every stage, on idling qubits as
well as qubits involved in two-qubit gates [3].

We demonstrated a significant gate reduction showcas-
ing the power of the reconfigurable quantum comput-
ing architectures. Such results incentivize further de-
velopments of DPQA hardware, e.g., scaling up DPQA
to over 1000 qubits, including mid-circuit readout and
quantum error correction, to execute large scale quan-
tum circuits. To support hardware at such a scale, a
high-performance efficient compilation is required, and
our formulation provides a solid basis to start construct-
ing such compilation methods. In particular, the SMT
variables can function as the state variables within a
tree search node or a machine learning agent, while the
SMT constraints characterize the transitions to other
states. In addition, the comparison of results with local
and global Rydberg laser control indicates the impor-
tance of hardware to have locally switchable Rydberg
excitation [50] or “idle” zones [58]. Qubits can be stored
in these zones to avoid accumulating errors when other
qubits are being operated on. The idling zones also sim-
plifies the compilation problem since the qubits in these
zones do not need to be spatially separated to avoid
Rydberg interaction, which may greatly accelerate the
compilation.
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A DPQA Architecture
In an atom array system, each individual qubit is a
single atom trapped in an individual optical tweezer,
which enables a deterministic control over the qubit po-
sition. The physics of atomic trapping, optical tweez-
ers, and entangling gates leads to several key impli-
cations. These implications serve as the interface be-
tween physics and computer science with which we rea-
son about the variables, constraints, and optimization
procedure in our compilers. Thus, we enumerate them
in this appendix for reference. For the specific technical
parameters, we follow the state-of-the-art experimental
work [4, 3].

A.1 Atom Trapping
One trap cannot hold more than one atom. Otherwise,
the atoms may expel each other out of the trap.

Implication 1. One trap can hold zero or one atom at
any time during the computation.

Two orthogonal optical components generate AOD
tweezers. The X component produces a horizontal pat-
tern, and the Y component multiplies this pattern by a
vertical pattern. In contrast, an arbitrary phase holo-
gram on a spatial light modulator produces SLM tweez-
ers. As a result, we can place each SLM tweezer in an
arbitrary location. However, to enable massive paral-
lelism of gate execution, the geometry of the SLM and
the AOD should be similar.

Implication 2. AOD and SLM optical trap arrays are
rectangular arrays that extend in the X and Y direction
in the 2D plane.

E.g., in Fig. 2b, the AOD is a rectangular array with
two rows and four columns, indicated by the dashed
grid. The dynamically programmable processor in [3]
uses up to 24 qubits, but system sizes of 100s of qubits
are attainable as was done in [13], and both SLM and

AOD grids have been used in system sizes as large as
16x16 each [59].

Because of the finite optical resolution of the micro-
scope generating tweezers, traps of the same array can-
not be closer than a given minimum spacing. In [3], it
is 2µm.

Implication 3. There is a minimal separation between
two rows or columns of traps in the same array, ds.

A.2 Array Movements
AOD traps can move whereas SLM traps cannot. Thus,
it may seem to some readers that SLM is strictly less
general than AOD, rendering the notion of SLM redun-
dant for compilation. However, an advantage of SLM is
that we can turn off the unused traps based on the com-
pilation result. As part of the architecture specification,
we make a certain number of SLM traps available to
the compiler, but some of them are never used through-
out the compiled result. Then, we simply ignore them
when we generate the SLM in the beginning of the ex-
periment, which saves some laser power. Although total
laser power is not a bottleneck at the moment, the sav-
ings of SLM is beneficial for future scaling-up. Thus,
we keep SLM in the formulation instead of just treating
it as a special case of AOD.

Implication 4. If the array is the SLM type, the traps
are stationary.

E.g., q4 stays at the same place throughout Fig. 2b-2f.
The control we have on the AOD traps are the Y

coordinate of each row and the X coordinate of each
column.

Implication 5. If the array is the AOD type, a row/-
column of traps move together.

E.g., from Fig. 2b to 2c, the AOD row of q5, q3, and q1
moves upwards, and the column of q2 and q3 moves to
the right.

Per Impl. 3, we cannot place two rows/columns too
close together. If rows A and B move across each other,
they must have been closer than the minimum spacing
at some point, which is prohibited.

Implication 6. If the array is the AOD type, a row
cannot cross over another row, a column cannot move
over another column.

In [3], the relation between movement time t and
travel distance D is set as t = T0

√
D/D0 to maintain

constant heating of the atoms during movements. We
follow their setting T0 = 200µs and D0 = 110µm so
that the heating is sufficiently low.
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A.3 Quantum Gates
Single-qubit gates are high-fidelity operations that are
generically easy to perform locally (see [40]).

Implication 7. Arbitrary single-qubit gates can be ad-
dressed to each qubit individually.

We perform two-qubit operations with a specific type
of laser to excite the atoms to Rydberg state. In
this state, atoms within a certain distance will inter-
act strongly and cannot be excited simultaneously. The
characteristic distance of this interaction is the Rydberg
blockade radius rb (7.5µm in [3]). This blockade mech-
anism is the basis of two-qubit entangling gates; only if
two atoms are within an rb of each other can they per-
form a two-qubit gate. The specific gate implemented
in [3] is the Levine-Pichler CZ gate, which is a special
case of controlled-Rz gates available in DPQA [40].

Implication 8. Two qubits q and q′ can only perform
an entangling two-qubit gate when they are within a
blockade radius, i.e., |x⃗q − x⃗q′ | ≤ rb, and they are both
illuminated by the Rydberg laser.

The Rydberg laser is global in the sense that it illu-
minates all the qubits, as done in [13, 3]. When we turn
on the laser, we cannot “switch off” the interaction of a
pair if they are within range.

Implication 9. If q and q′ are within rb and illumi-
nated by the Rydberg laser, they will go through a two-
qubit entangling gate.

If two atoms are sufficiently separated, > 2.5rb in
practice, they will not interact even if excited by the
Rydberg laser. If there are more than two atoms that
are not sufficiently separated, they go through a joint
quantum process which is not a well-defined gate.

Implication 10. For any three qubits q0, q1, and q2,
at most one of the following is true when the Rydberg
laser is on: |x⃗q0 − x⃗q1 | < 2.5rb, |x⃗q1 − x⃗q2 | < 2.5rb,
|x⃗q2 − x⃗q0 | < 2.5rb. That is, only disjoint pairs of qubits
may entangle simultaneously.

A.4 Error Source
Errors can occur during the gates or the idling time (in-
cluding AOD movements, activation, and deactivation).
In the evaluation in this paper, the average idling time is
only 2.6% of the qubit lifetime (coherence time) in the
largest benchmark (90-node QAOA). Thus, the idling
time plays a relatively small role in the error source.
In addition, the single-qubit operations are significantly
higher fidelity (99.99%) than the two-qubit entangling
gates (99.5%) [3, 4]. A global Rydberg laser for the two-
qubit gates induces the same error rate on all qubits

q0 qi... qj -1 qj+1... ...

qj

2)
qj 3)

4)
qj1)

AOD

SLM

Figure 6: Universal QC with one AOD trap and one SLM row.
Single-qubit gates executes directly. To implement an entan-
gling gate on an arbitrary qubit pair: 1) pick qj from SLM to
AOD, so the original SLM trap is empty (dashes), 2) move the
AOD trap up, 3) adjust the AOD trap horizontally until qi and
qj align, then 4) shift the AOD trap down to perform the gate.

whether they are involved with a two-qubit gate at this
stage or not.

Implication 11. The main computational error source
is the number of layers of two-qubit gates.

A.5 Atom Transfer

So far, we have described atoms staying in their own in-
dividual tweezer traps, as was focused on in the exper-
iments of [3]. However, it has previously been demon-
strated that atoms can be transferred between tweezer
traps [2] by reducing the intensity of one tweezer trap
while increasing or maintaining the intensity of another
tweezer trap. In the system considered here, in an
AOD array, we can tune the individual intensity of AOD
rows and columns to transfer to/from SLM traps: e.g.,
Fig. 2e, we turn off the leftmost AOD column so that
q5 is transferred to SLM.

A.6 Universality

With atom transfers, the architecture can perform uni-
versal quantum computing given a large enough area.
Fig. 6 depicts a toy construction. We load the qubits
to one SLM row with sufficient separations between the
traps. There is one AOD trap working as delivery. Per
Impl. 7, single-qubit gates are always executable. To
apply an entangling gate on an arbitrary pair (qi, qj),
we perform the 4-step procedure illustrated in Fig. 6.
Finally, we reverse the movements and put qj back to
SLM. Now, we are ready for the next gate. With this
construction, we can execute any single-qubit and two-
qubit gate, so the architecture can perform universal
QC. Of course, this construction is like the demonstra-
tion of the Turing machine in classical universal com-
puting where efficiency is not considered. For example,
we can easily put atoms in a square array that reduces
the amount of time for movements.
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B Quantum Layout Synthesis
The input of quantum layout synthesis consists of two
parts: the coupling graph and the program/circuit to be
executed. For instance, the coupling graph of Google’s
Sycamore processor [5] is shown in Fig. 7a. In this
graph, every node is a quantum register that can hold
one qubit, and all possible two-qubit entangling opera-
tions/gates are represented by the edges. An example of
a quantum program is exhibited in Fig. 7c, which is the
quantum approximate optimization algorithm (QAOA)
[60] applied to the Max-Cut problem of a 3-regular
graph. The parameters γ’s and β’s are inputs from an
outer layer classical optimization. The quantum pro-
gram first initializes all qubits to state |0⟩ + |1⟩ and
iteratively applies the problem unitary UC(γ) and the
driver unitary UB(β) for p times, each iteration with dif-
ferent parameters γi and βi. UB consists of single-qubit
Rx gates on all qubits which can always be executed,
so it is not challenging for the compiler. On the other
hand, UC , consisting of nine two-qubit ZZ-phase gates
(Fig. 7b), is the center of attention in layout synthe-
sis. These gates are induced by the 3-regular graph: for
each edge in the graph, we apply a ZZ-phase gate to its
two qubits.

For this example, we first need to map the qubits q0
... q5 to quantum registers, i.e., nodes in the coupling
graph in Fig. 7a. E.g., on the top of the solution shown
in Fig. 7d, q2 is initially mapped to p1 and q4 is mapped
to p5. Since p1 and p5 are indeed adjacent in the cou-
pling graph, the gate g0 (on q2 and q4) can be executed.
However, g3 is on q2 and q3 that are mapped to nonad-
jacent registers p1 and p3. In this case, we need to insert
a special gate named SWAP on p1 and p2 before g3 that
exchanges the two registers’ qubits. After the SWAP,
q2 maps to p2 that is adjacent to p3 which is holding q3.
Then, g3 can be executed under this updated mapping.

Note that SWAP is not a native gate in most QC ar-
chitectures. To achieve its effect, we need three native
entangling gates and a few single-qubit gates, whether
the native entangling gate is a CNOT gate or a Cross-
Resonance gate on IBM processors [41], or a

√
iSWAP

gate or a SYC gate on Sycamore [43]. Currently, the
fidelity of entangling gates is low, so SWAPs are expen-
sive. Thus, layout synthesis [14, 15, 16] is a very im-
portant, if not the most important, step in compilation
as it determined the SWAPs to be inserted. It is also
referred to as qubit mapping [17, 18, 19, 20, 21, 22, 23],
qubit placement [24, 25, 26], or allocation [27, 28, 29].
Minimizing the number of SWAPs, or the number of
gate layers in layout synthesis is proven to be NP-hard
[24, 15, 27, 30]. Following the above approach, layout
synthesis for DPQA is even more challenging because
the coupling graph can change across different stages of

Input: “1, ..., “p, —1, ...,—p

Output: measurement results
1: Initialize all qubits to |0Í+ |1Í
2: for i = 1..p do
3: Problem unitary UC(“):
4: g0: ZZ(“i) on q2 and q4
5: g1: ZZ(“i) on q3 and q5
6: g2: ZZ(“i) on q0 and q1
7: g3: ZZ(“i) on q2 and q3
8: g4: ZZ(“i) on q4 and q5
9: g5: ZZ(“i) on q0 and q2

10: g6: ZZ(“i) on q1 and q3
11: g7: ZZ(“i) on q0 and q4
12: g8: ZZ(“i) on q1 and q5
13: Driver unitary UB(—):
14: Rx(—i) on all qubits
15: end for
16: Measure all qubits

(a) Pseudocode for QAOA applied to
the Max-Cut problem of a 3-regular
graph of size 6. There are p iterations of
applying problem unitary UC and then
driver unitary UB . The gates in UC are
induced by the graph.

// q0->p2 ,q1 ->p0 ,q2 ->p1
// q3->p3 ,q4 ->p5 ,q5 ->p7

g0 on p1 and p5
g1 on p3 and p7
g2 on p2 and p0
SWAP on p1 and p2
SWAP on p6 and p7
g3 on p2 and p3
g4 on p5 and p6
g5 on p1 and p2
3SWAP on p0 and p2
g6 on p2 and p3
g7 on p1 and p5
g8 on p2 and p6

// q0->p1 ,q1 ->p2 ,q2 ->p0
// q3->p3 ,q4 ->p5 ,q5 ->p6

(b) A layout synthesis solution that
maps the problem unitary UC in Fig-
ure 2a to Sycamore in ??. The com-
ments are initial and final qubit map-
pings.

q0
q1
q2
q3
q4
q5

g0       g1 g2        g3        g4        g5        g6        g7        g8  

(c) Circuit diagram for UC in Figure 2a.

Figure 2: The layout synthesis problem.

and entangling gates leads to several key implications
and constraints for our layout synthesis problem. For
the specific technical parameters, we follow the state-
of-the-art experimental work [11].

3.1 Atom trapping
One trap cannot hold more than one atom. Otherwise,
the atoms may expel each other out of the trap.

Implication 1. One trap can hold zero or one atom at
any time during the computation.

Two orthogonal optical components generate AOD
tweezers. The X component produces a horizontal pat-
tern, and the Y component multiplies this pattern by
a vertical pattern. Conversely, an arbitrary phase holo-
gram on a spatial light modulator produces SLM tweez-
ers. As a result, we can place each SLM tweezer in an
arbitrary location. However, to enable massive paral-
lelism of gate execution, the geometry of the two arrays
should be similar.

Implication 2. AOD and SLM optical trap arrays are
rectangular arrays that extend in X and Y direction in
the 2D plane.

E.g., in Figure 3a, the AOD is a rectangular array with
two rows and four columns, indicated by the yellow
dashes. The dynamically programmable processor in
[11] uses up to 24 qubits, but system sizes of 100s of
qubits are attainable as was done in [10], and both SLM
and AOD grids have been used in system sizes as large
as 16x16 each [30].

Because of the finite optical resolution of the micro-
scope generating tweezers, traps of the same array can-
not be closer than a given minimum spacing. In [11], it
is 2 µm.

Implication 3. There is a minimal separation between
two rows or columns of traps in the same array, ds.

3.2 Array movements
As mentioned in section 1, only AOD traps can move.
1

Implication 4. If the array is the SLM type, the traps
are stationary.

1It may seem to some readers that SLM is strictly less general
than AOD. However, an advantage of SLM is that we can turn
o� the empty traps, i.e., those that do not contain any atom
throughout the computation. Although total laser power is not
a bottleneck at the moment, the savings of SLM is beneficial for
future scaling-up. Thus, we keep SLM in the formulation instead
of just treating it as a special case of AOD.

3

Input: “1, ..., “p, —1, ...,—p

Output: measurement results
1: Initialize all qubits to |0Í+ |1Í
2: for i = 1..p do
3: Problem unitary UC(“):
4: g0: ZZ(“i) on q2 and q4
5: g1: ZZ(“i) on q3 and q5
6: g2: ZZ(“i) on q0 and q1
7: g3: ZZ(“i) on q2 and q3
8: g4: ZZ(“i) on q4 and q5
9: g5: ZZ(“i) on q0 and q2

10: g6: ZZ(“i) on q1 and q3
11: g7: ZZ(“i) on q0 and q4
12: g8: ZZ(“i) on q1 and q5
13: Driver unitary UB(—):
14: Rx(—i) on all qubits
15: end for
16: Measure all qubits

(a) Pseudocode for QAOA applied to
the Max-Cut problem of a 3-regular
graph of size 6. There are p iterations of
applying problem unitary UC and then
driver unitary UB . The gates in UC are
induced by the graph.

// q0->p2 ,q1 ->p0 ,q2 ->p1
// q3->p3 ,q4 ->p5 ,q5 ->p7

g0 on p1 and p5
g1 on p3 and p7
g2 on p2 and p0
SWAP on p1 and p2
SWAP on p6 and p7
g3 on p2 and p3
g4 on p5 and p6
g5 on p1 and p2
SWAP on p0 and p2
g6 on p2 and p3
g7 on p1 and p5
g8 on p2 and p6

// q0->p1 ,q1 ->p2 ,q2 ->p0
// q3->p3 ,q4 ->p5 ,q5 ->p6

(b) A layout synthesis solution that
maps the problem unitary UC in Fig-
ure 2a to Sycamore in ??. The com-
ments are initial and final qubit map-
pings.

q0
q1
q2
q3
q4
q5

g0       g1 g2        g3        g4        g5        g6        g7        g8  

(c) Circuit diagram for UC in Figure 2a.

Figure 2: The layout synthesis problem.

and entangling gates leads to several key implications
and constraints for our layout synthesis problem. For
the specific technical parameters, we follow the state-
of-the-art experimental work [11].

3.1 Atom trapping
One trap cannot hold more than one atom. Otherwise,
the atoms may expel each other out of the trap.

Implication 1. One trap can hold zero or one atom at
any time during the computation.

Two orthogonal optical components generate AOD
tweezers. The X component produces a horizontal pat-
tern, and the Y component multiplies this pattern by
a vertical pattern. Conversely, an arbitrary phase holo-
gram on a spatial light modulator produces SLM tweez-
ers. As a result, we can place each SLM tweezer in an
arbitrary location. However, to enable massive paral-
lelism of gate execution, the geometry of the two arrays
should be similar.

Implication 2. AOD and SLM optical trap arrays are
rectangular arrays that extend in X and Y direction in
the 2D plane.

E.g., in ??, the AOD is a rectangular array with two
rows and four columns, indicated by the yellow dashes.
The dynamically programmable processor in [11] uses
up to 24 qubits, but system sizes of 100s of qubits are
attainable as was done in [10], and both SLM and AOD
grids have been used in system sizes as large as 16x16
each [30].

Because of the finite optical resolution of the micro-
scope generating tweezers, traps of the same array can-
not be closer than a given minimum spacing. In [11], it
is 2 µm.

Implication 3. There is a minimal separation between
two rows or columns of traps in the same array, ds.

3.2 Array movements
As mentioned in section 1, only AOD traps can move.
1

Implication 4. If the array is the SLM type, the traps
are stationary.

1It may seem to some readers that SLM is strictly less general
than AOD. However, an advantage of SLM is that we can turn
o� the empty traps, i.e., those that do not contain any atom
throughout the computation. Although total laser power is not
a bottleneck at the moment, the savings of SLM is beneficial for
future scaling-up. Thus, we keep SLM in the formulation instead
of just treating it as a special case of AOD.

3

q0
q1
q2
q3
q4
q5

g0       g1 g2        g3        g4        g5        g6        g7        g8  

(b)

(c) (d)

(a)

p0 p1

p2 p5

p3 p6

p7

Figure 7: The quantum layout synthesis problem. (a) The
(partial) coupling graph of Google Sycamore processor, as in
[43]. The annotated quantum registers are made use of in this
example. (b) Diagram of the quantum circuit to execute. (c)
Pseudocode for QAOA applied to the Max-Cut problem. There
are p iterations of applying problem unitary UC and then driver
unitary UB . UC is implemented by the circuit in (b), though
on different parameter γ at different iterations. (d) A layout
synthesis solution that runs circuit (b) on architecture (a). The
comments are the initial and final qubit mappings.

the circuit execution, so we opt for a different formula-
tion in this work.

DPQA is a relatively new technology, so previous
works on compilation are for Rydberg atoms trapped
in an SLM array that has fixed connectivity during the
computation. There are both experimental [13] and
theoretical/computational [61, 62] works exploring solv-
ing the Max-Independent-Set problem using adiabatic
quantum algorithm on SLM arrays. Ref. [50] applies
QAOA to the Max-Cut problem on an SLM array. In
this case, the layout synthesis problem is as if for a fixed
architecture, like described above. Ref. [31] discusses
logic synthesis for hypothetical architectures that can
perform a three-qubit gate pulse sequence, but lever-
ages existing layout synthesis tools for fixed architec-
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tures. Ref. [32] also utilizes existing layout synthesis
tools but features the ability to perform long-range Ry-
dberg interaction. However, it requires a hypothetical
architecture where the Rydberg range of qubits can be
individually tuned.

The most relevant previous work, Brandhofer et
al. [33], explores a reconfigurable but more constrained
architecture. In this specific architecture, qubits are ar-
ranged in a 2D grid with nearest-neighbor connectivity,
and the assumption of local addressability for two-qubit
gates is made. The architecture permits ‘1D displace-
ments,’ allowing an entire row to shift left or right, alter-
ing the connectivity. However, this reconfiguration does
not facilitate all-to-all connectivity, as qubits separated
by multiple rows cannot be coupled through the 1D
displacements. In contrast, the 2D movements demon-
strated in Ref. [3] enable interactions between any two
qubits in principle. Importantly, the approach outlined
in Ref.[33] is intricately linked to its architecture as-
sumptions, rendering it inapplicable in our case.

C Spatial Discretization of DPQA
There may be parallel executions of two-qubit entan-
gling gates at different sites, so, per Impl. 10, the sites
should be sufficiently separated to avoid unwanted Ry-
dberg interactions. Also, to maximize usage, the tiling
pattern of the sites should accord to the geometry of the
tweezer arrays, which is a 2D grid per Impl. 2. The in-
teraction sites are illustrated as shades in Fig. 8. In fact,
our efforts in discretization is analogous to that of Mead
and Conway [63] in VLSI chip design where an abstract
basic length unit in semiconductor fabrication, λ, was
introduced. The chip area is discretized to separated
“lines” of 2λ’s wide layout design. These dimensionless
λ-rules helped the advancement of automated layout
tools despite the fast developments in the fabrication
technology that affects λ. Similarly, based on our dis-
cretization, our formulation holds even if the constants
rb, 2.5rb and ds change. It is crucial to retain this flex-
ibility for possible adjustments in physics experiments.
E.g., we may want to excite the qubits to a higher Ry-
dberg state, leading to a bigger rb; or upgrading to
higher-resolution microscope objective lenses, leading to
a smaller ds.

We allow several rows or columns to “stack” together
at one interaction site to support gates between two
AOD qubits. However, there is an upper bound on how
many AOD rows/columns can be stacked together at
a site because these AOD rows/columns cannot be too
close to each other (Impl. 3). We denote the maximal
stacking factor as RSTK and CSTK, respectively. They
are decided by the minimal AOD row/column separa-
tion ds and the Rydberg range rb. The callout in Fig. 8

1

y

x

0

0

ds

qi

qj

... 

...
 

... 

Figure 8: Discretization of space into interaction sites. The
unit of X and Y is a sufficient distance to prevent Rydberg
interaction. Interaction sites, indicated by shades, are centered
at integer points on the 2D plane. A limited number of AOD
rows or columns can stack together at one site. The callout is
zooming into a site with three AOD rows and three columns.

exhibits an extreme case where we need to entangle two
qubits qi and qj at the corners of the site. This requires
[(RSTK − 1)2 + (CSTK − 1)2]d2

s ≤ r2
b . rb = 7.5µm and

ds = 2µm, RSTK = CSTK = 3 satisfies the inequality.

In fact, the ticks on x and y axes in Fig. 1c and
Fig. 2b-f indicates the interaction sites. At each stage,
per Impl. 10, there can be at most two qubits. Thus,
there are five possible situations at a site: 1) empty,
e.g., (0,1) at stage 0 (Fig. 2b); 2) one SLM qubit, e.g.,
(1,1) at stage 2 holds only q4; 3) one AOD qubit, e.g.,
(3,1) at stage 0 holds only q0; 4) one SLM qubit and
one AOD qubit, e.g, (1,1) at stage 0 holds q4 and q2; 5)
two AOD qubits, e.g., (1,0) at stage 0 holds q5 and q3.

The discretized coordinates (of interactions sites) are
enough to specify AOD and SLM qubit locations, but
they are not sufficient as the state of the architecture
because of the stacking of rows/columns we just men-
tioned. For example, at stage 1 (Fig. 2c), both AOD
rows are at y = 1. Because of Impl. 6, the upper
row cannot move across the lower row, e.g., q2 cannot
move below q3. With only coordinates, it is hard to
enforce constraints like this. Thus, as part of the ar-
chitecture state, we also need to specify which row and
column each AOD qubit is in. Finally, we have to spec-
ify whether the qubit is in SLM or AOD at each stage
to handle atom transfers.

In conclusion, the computation progresses in multi-
ple stages: stage 0, AOD movement 0, stage 1, AOD
movement 1, stage 2, ... At each stage, the architecture
has a state consisting of interaction site indices (speci-
fying location), AOD row/column indices, and an array
index (specifying whether in SLM or AOD) for each
qubit. During the AOD movement, the AOD row/col-
umn indices and the array index are invariant, but the
site indices can change as AOD traps move in space.
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D SMT Constraints
Constraints in this subsection come from physics im-
plications on the architecture (circuit-independent), or
fundamental properties of quantum programs (circuit-
dependent). Let us use N for the number of qubits and
G for the number of gates. Note that in the constraints
below, we use ‘=’ to denote the operation that returns
Boolean true if the l.h.s equals the r.h.s, and returns
false otherwise. ‘[A, B)’ means from A to B −1. All the
concrete examples are from Fig. 2, and the reader can
plug in values from Appendix G for more examples.

D.1 Circuit-Independent Constraints
Upper bounding the variables: ∀i ∈ [0, N), s ∈ [0, S)

0 ≤ xi,s < X, (8)

similarly for y, c, and r with bounds Y , C, and R.
Stationary SLM enforces Impl. 4: ∀i ∈ [0, N), ∀s ∈

[0, S − 1)

(ai,s = 0) ⇒ ((xi,s+1 = xi,s) ∧ (yi,s+1 = yi,s)). (9)

E.g., q4 is in SLM at stage 0, i.e., a4,0 = 0, so its site
indices remain the same between stage 0 and 1, i.e.,
x4,1 = x4,0 and y4,1 = y4,0.

AOD moves by whole rows/columns enforcing
Impl. 5: ∀i ∈ [0, N), ∀s ∈ [0, S − 1)

(ai,s = 1) ⇒ ((ci,s+1 = ci,s) ∧ (ri,s+1 = ri,s)). (10)

E.g., q5 is at column 0 at stage 0, a5,0 = 1, so when it
arrives at stage 1, the row/column index remains the
same, i.e., c5,1 = c5,0 and r5,1 = r5,0, despite the chang-
ing site indices, i.e., y5,1 ̸= y5,0.

Site order implying row/column order enforcing
Impl. 6 in the case of non-stacking rows/columns:
∀i, i′ ∈ [0, N), ∀s ∈ [0, S)

(xi,s < xi′,s) ⇒ (ci,s < ci′,s),
(yi,s < yi′,s) ⇒ (ri,s < ri′,s).

(11)

E.g., at stage 0, q5 is at x = 1 while q1 is at x = 2, so
c5,0 < c1,0.

No crossing between AOD row/columns enforces
Impl. 6 in the case of stacked rows/columns: ∀i, i′ ∈
[0, N), ∀s ∈ [0, S − 1)

((ai,s = 1) ∧ (ai′,s = 1)∧(ci,s < ci′,s))
⇒ (xi,s+1 ≤ xi′,s+1),

((ai,s = 1) ∧ (ai′,s = 1)∧(ri,s < ri′,s))
⇒ (yi,s+1 ≤ yi′,s+1).

(12)

E.g., at stage 0, q1 is at row 0 and q0 is at row 1, so
r1,0 < r0,0; at stage 1, q1 and q0 are both at y = 1,
which satisfies y1,1 ≤ y0,1.

Maximal stacking as in Appendix C: ∀i, i′ ∈
[0, N), ∀s ∈ [0, S)

((ai,s−1 = 1) ∧ (ai′,s−1 = 1)∧
(ci,s−1 − ci′,s−1 ≥ CSTK)) ⇒ (xi,s > xi′,s),

((ai,s−1 = 1) ∧ (ai′,s−1 = 1)∧
(ri,s−1 − ri′,s−1 ≥ RSTK)) ⇒ (yi,s > yi′,s).

(13)

(When s = 0, the s−1 above is 0; otherwise, it is s−1.)
E.g., at stage 0, q5 is in column 0 while q0 is in column
3, c0,0 − c5,0 = 3 ≥ CSTK, so x0,1 > x5,1, i.e., they
cannot be at the same site at stage 1.

One atom, one trap. There cannot be two atoms
in one trap, thus imposing Impl. 1 and 10. If both
atoms are in AOD, either their row or column index is
different; if both are in SLM, either their site x or y
index is different: ∀i ∈ [0, N), ∀i′ ∈ [i + 1, N), ∀s ∈
[0, S)

((ai,s = 1) ∧ (ai′,s = 1)
⇒ ((ci,s ̸= ci′,s)) ∨ ((ri,s ̸= ri′,s)),

((ai,s = 0) ∧ (ai′,s = 0)
⇒ ((xi,s ̸= xi′,s)) ∨ ((yi,s ̸= yi′,s)).

(14)

(Optional) No atom transfer by fixing array index
(which is what we do in the evaluations for the optimal
compiler): ∀i ∈ [0, N), ∀s ∈ [0, S)

ai,s = ai,0. (15)

If it is allowed for an atom to transfer to an empty trap
at a same site, i.e., forbidding transfer when there are
two atoms at a site, ∀i ∈ [0, N), ∀i′ ∈ [i + 1, N), ∀s ∈
[0, S − 1)

((xi,s+1 =xi′,s+1) ∧ (yi,s+1 = yi′,s+1))
⇒ ((ai,s+1 = ai,s) ∧ (ai′,s+1 = ai′,s)).

(16)

D.2 Circuit-Dependent Constraints
Gate collision. If two gates act on the same qubit, they
cannot be executed at the same stage, e.g., g0 and g3
both act on q2, so t0 ̸= t3.

Gate dependence. If the order of execution between
two gates cannot be changed, we ensure this by tj < tj′

if gj′ depends on gj .
Connectivity ensures Impl. 8. Two qubits should be

at the same site in order for an entangling gate to exe-
cute: ∀j ∈ [0, G), gj acting on qi and qi′ , ∀s ∈ [0, S)

(tj = s) ⇒ ((xi,s = xi′,s) ∧ (yi,s = yi′,s)). (17)

E.g., g0 at stage 0 is on q2 and q4, so x2,0 = x4,0 and
y2,0 = y4,0.
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Interaction exactness enforces Impl. 9. We pre-
compute a list ρi,i′ for each pair of qubits (qi and qi′)
that contains all the j if gj acting on them. In the
example of Fig. 2, there is only one gate g2 acting
on q0 and q1, so ρ0,1 = {2}; in contrast, there is no
gates on q0 and q8, so ρ0,8 = ∅. If ρi,i′ ̸= ∅, then two
qubits must be at the same site at some stage, and one
of the gates on them is being executed at this stage:
∀i ∈ [0, N), ∀i′ ∈ [i + 1, N), s.t. ρi,i′ ̸= ∅, ∀s ∈ [0, S)

((xi,s = xi′,s)∧(yi,s = yi′,s)) ⇒

 ∨
j∈ρi,i′

tj = s

 . (18)

Conversely, if ρi,i′ = ∅, the qubits should not be at the
same site ever: ∀i ∈ [0, N), ∀i′ ∈ [i+1, N), s.t. ρ(i, i′) =
∅, ∀s ∈ [0, S)

(xi,s ̸= xi′,s) ∨ (yi,s ̸= yi′,s). (19)

D.3 Enforcing Cardinality
There are two ways to enforce cardinality: implicitly
in variable definition or explicitly with a cardinality
constraint. The implicit approach is mainly for dimen-
sions involved in the definition of the variables in the
SMT model. Our arrays of variables have two dimen-
sions: the qubit and the stage, which means whatever
the model can possibly express is a computation using
that many qubits and that many stages. The number
of stages, S, in the optimal compiler is bounded in this
approach: we only construct variables for S stages. If
S is too small to execute the whole circuit, the model is
unsatisfiable, so we need to add more variables. When
the model becomes satisfiable, we have not introduced
more variables than needed. Considering the exponen-
tial scaling of SMT solving to model size, we opt for the
implicit approach to force the cardinality of stages.

An example of the explicit approach appends the
SMT model with a constraint like∑

j∈[0,G),s∈[SLB,SUB)

ITE(tj = s, 1, 0) ≥ M, (20)

where the stages between SLB and SUB) are considered,
and ITE(ϕ, w, z) means if the Boolean expression ϕ eval-
uates to true, return value w, otherwise z. Essentially,
the l.h.s. is counting occurrences of a qubit pair appear-
ing at the the same site at the same stage. If this sum
is larger than M , then at least M gates are executed
between between stages SLB and SLB. There are many
ways to decompose the above equation to Boolean logic.
We utilize the sequential counter approach offered by
PySAT [47] in the hybrid method (Fig. 3). As a re-
sult, there are some intermediate Boolean variables in-
troduced in the SMT model that do not correspond to

any configurations of DPQA, purely for the sake of the
cardinality constraint.

D.4 Scalability of the Model
The total number of variables in the optimal approach
is 5NS + G where N is the number of qubits, S is
the number of stages, and G is the number of gates.
The total number of constraints is O(G2 + GS + N2S).
However, some of the variables have larger bounds.
If we represent the integer variables by bit-vectors,
the total number of bits to represent the variables
is NS log(2XY RC) + G log(S), where X and Y are
the dimensions of the interaction site grid, C and
R are the number of AOD columns and rows. The
worst-case runtime of SMT solving is exponential, i.e.,
O((NSLMNAOD)NS ·SG) where NSLM = XY is the total
number of SLM traps, and NAOD is the total number of
AOD traps. In the shallow circuit regime where S can
be seen as a constant, and if the program is induced by
sparse graphs so that G = O(N), the number of bits
required is O(N log(NSLMNAOD)) and the number of
constraints is O(N2). For each ‘peeling’ in the hybrid
compiler, S = 2.

E Evaluation Settings and Details
All the evaluation scripts are implemented in Python.
We used the following packages: pytket 1.13.2 which
is the Python interface of the compiler t|ket⟩ [42]; and
qiskit 0.42.1 which is the Qiskit [44] release con-
taining the compiler SABRE (originated from [17]).
Our compilers rely on a few Python packages. The
versions used during the evaluations are: z3-solver
4.12.1.0 which is the Z3 SMT solver (originated from
[46]); networkx 3.0 to calculate the maximum match-
ing number of graphs; python-sat 0.1.8.dev1 to gen-
erate cardinality constraints; and matplotlib 3.6.2 to
generate the figures. The compilation appeared in the
main text was ran on a desktop computer with an Intel
Core i7-10700KF CPU and 32 GB RAM. The compi-
lation appeared in the appendices was ran on a server
with two AMD EPYC 7V13 CPUs and 512 GB RAM.

In our compilers, we set the spatial bounds to X =
Y = R = C = 16. For fairness of comparison, we
assume the fixed architecture we are comparing with is
equipped with the same gate set of DPQA. The SWAP
gate requires three two-qubit entangling gates and six
single-qubit gates. The benchmarks are graph circuits
with 10, 12, 14, 16, 18, 20, 22, 30, 40, 50, 60, 70, 80,
and 90 qubits. We generated 10 3-regular graphs of
each size. For each graph, we assign a qubit to each
node and append a two-qubit entangling gate for each
pair of qubits connected by an edge to construct the
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Figure 9: Handling generic circuits. (a) Example circuit. (b)
Dependency graph of two-qubit gates. (c) Compilation pro-
cess. OLSQ-DPQA is invoked 3 times. Each time, only the
front layer (red nodes) is processed. It is possible the entire
front layer is not executed, leading to the inclusion of the re-
maining nodes in the subsequent front layer (e.g., g8). (d) Final
result. Prior to each Rydberg stage, we execute all single-qubit
gates that has no dependency to any gates not yet executed.

graph circuit. We set the time limit to 105 seconds
which is approximately a day. Note that the compiler
runtime can vary depending on the specific hardware
and environment where it is run. The timeout instances
are 205, 225, and 228 for the optimal approach, 801, 900,
902, 906, 908, and 909 for the hybrid approach, where
the subscripts are the indices of the graph. All the
random graphs used are provided in the code base.

F Handling Generic Quantum Circuits
In the main text, our attention is primarily on the com-
pilation of circuits comprised of commutable two-qubit
gates. We find that these circuits showcase the massive
parallelism of DPQA architecture. Also, the flexibility
in commutation adds extra challenges to the compila-
tion problems. In generic circuits, e.g., Fig. 9a, there
are two notable differences. Firstly, these circuits in-
clude single-qubit gates (e.g., g0 and g1). Secondly, the
gates in these generic circuits are not necessarily com-
mutable. We assume a dependency in cases where two
gates act on the same qubit, dictating a fixed order; for

instance, g0 and g3 both acting on q1 means g3 must
be scheduled after g0. Our software implementation in-
cludes an all_commutable flag as part of the problem
specification. When this flag is inactive, OLSQ-DPQA
defaults to the workflow illustrated in Fig. 9c: prior to
compilation, we remove all single-qubit gates to derive
the dependency graph of two-qubit gates, as shown in
Fig. 9b. Due to the dependencies, only the front layer
of the graph, represented by the red nodes (e.g., g2 and
g3 initially), can be processed. OLSQ-DPQA compiles
the qubit movements for these gates, maximizing the
number of executed gates, and removes them from the
dependency graph (grayed out nodes). Sometimes, not
the entire front layer is executed depending on the qubit
locations (e.g., g5 is executed at s1 while g8 is not), leav-
ing the remaining gates for the next round. This process
continues until all nodes are processed. Finally, we rein-
troduce the single-qubit gates, as depicted in Fig. 9d.
Prior to each two-qubit gate stage, we execute all single-
qubit gates without dependencies at this point. For in-
stance, g7 only depends on g3, which is executed at s0,
allowing g7 to be executed before s1.

We benchmark OLSQ-DPQA on realistic generic cir-
cuits from QASMBench [64], detailed in Table 1. Specif-
ically, we picked all the ‘medium’ and ‘large’ bench-
marks with fewer than 100 qubits and less than 1000
gates. Certain benchmarks share the same circuit fam-
ily but differ in size, such as various-sized adders. The
2Q depth of a circuit is the length of the longest path
in the two-qubit dependency graph like Fig. 9b. For
a fixed 10x10 grid qubit coupling graph, we utilized
SABRE [17] within Qiskit [44] to layout qubits and in-
sert SWAPs. In contrast, OLSQ-DPQA relies solely
on qubit movement to route qubits, resulting in a re-
duction of two-qubit gates by 1.8X geomean, as shown
in the rightmost column of Table 1. While, in most
instances, the number of two-qubit stages (Rydberg)
aligns closely with the 2Q depth of the circuit, OLSQ-
DPQA may require a larger number of stages. This
arises from the fact that not all gates in the front layer
can be executed at every stage due to the specific qubit
locations at that point. These front layers are generally
less complicated than random graphs. Consequently,
even in cases where these benchmarks have more gates
than graph circuits in the main text, the compiler run-
time tends to be shorter.

G SMT Values in the Running Example
We provide the values of all the SMT variables in the
running example illustrated in Fig. 2. This example in-
cludes 9 gates on 6 qubits. Table 2 provides the qubits
each gate acts on along with the time coordinates of
these gates. Table 3 provides the array index of each
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Table 1: Compilation results of QASMBench [64]. We pick all of their ‘medium’ and ‘large’ benchmarks with less than 100 qubits
and less than 1000 gates. ‘2Q depth’ of a circuit is the length of the longest path in the two-qubit dependency graph. The number
of Rydberg stages in the OLSQ-DPQA results is close to 2Q depth (1.13X geomean). The SABRE results assume a 10x10 grid
qubit coupling graph. OLSQ-DPQA reduces two-qubit gates because it uses movements instead of SWAPs to route qubits.

Benchmark statistics SABRE OLSQ-DPQA Reduction
Name Qubits 2Q gates 2Q depth 2Q gates 2Q gates Rydbergs Runtime/s 2Q gates
seca 11 84 41 129 84 41 2.07E+1 1.54X
sat 11 252 204 444 252 205 1.05E+2 1.76X
cc 12 12 12 21 12 12 7.41E+0 1.75X

multiply 13 40 23 64 40 23 1.63E+1 1.60X
gcm 13 762 762 1257 762 762 5.27E+2 1.65X
bv 14 13 13 25 13 13 1.10E+1 1.92X

qf21 15 115 112 202 115 112 1.07E+2 1.76X
multiplier 15 222 133 414 222 137 1.33E+2 1.86X

dnn 16 384 48 384 384 53 6.47E+1 1.00X
qec9xz 17 32 12 62 32 16 2.03E+1 1.94X

qft 18 306 66 549 306 82 1.20E+2 1.79X
bigadder 18 130 88 220 130 89 1.32E+2 1.69X

square_root 18 898 644 1909 898 651 8.52E+2 2.13X
bv 19 18 18 39 18 18 2.88E+1 2.17X

qram 20 136 80 247 136 82 1.49E+2 1.82X
cat_state 22 21 21 39 21 21 4.76E+1 1.86X
ghz_state 23 22 22 40 22 22 5.55E+1 1.82X
swap_test 25 96 63 147 96 63 1.90E+2 1.53X

knn 25 96 63 144 96 63 1.89E+2 1.50X
ising 26 50 4 59 50 7 2.33E+1 1.18X

wstate 27 52 28 67 52 28 1.02E+2 1.29X
adder 28 195 97 321 195 98 3.90E+2 1.65X
adder 64 455 181 845 455 188 8.32E+3 1.86X

bv 30 18 18 42 18 18 8.66E+1 2.33X
bv 70 36 36 108 36 36 2.72E+3 3.00X
cat 35 34 34 58 34 34 2.30E+2 1.71X
cat 65 64 64 154 64 64 3.05E+3 2.41X
cc 32 32 32 95 32 32 1.77E+2 2.97X
cc 64 64 64 202 64 64 2.96E+3 3.16X

dnn 33 248 95 365 248 97 5.59E+2 1.47X
dnn 51 392 140 632 392 152 2.91E+3 1.61X
ghz 40 39 39 87 39 39 3.86E+2 2.23X
ghz 78 77 77 215 77 77 1.02E+4 2.79X
ising 34 66 4 84 66 10 7.65E+1 1.27X
ising 66 130 4 205 130 12 1.46E+3 1.58X
ising 98 194 4 347 194 17 3.25E+4 1.79X
knn 31 120 78 186 120 78 4.07E+2 1.55X
knn 67 264 168 486 264 168 8.14E+3 1.84X
qft 29 812 110 1547 812 178 7.37E+2 1.91X

qugan 39 296 102 467 296 113 1.07E+3 1.58X
qugan 71 552 182 936 552 193 1.36E+4 1.70X

swap_test 41 160 103 277 160 103 1.15E+3 1.73X
swap_test 83 328 208 628 328 208 3.71E+4 1.91X

wstate 36 70 37 94 70 37 3.01E+2 1.34X
wstate 76 150 77 273 150 77 9.40E+3 1.82X

geomean 1.8X
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Table 2: Gate variable values in Fig. 2

gate qubits it acts on t
g0 q2 and q4 0
g1 q3 and q5 0
g2 q0 and q1 1
g3 q2 and q3 1
g4 q4 and q5 1
g5 q0 and q2 2
g6 q1 and q3 2
g7 q0 and q4 3
g8 q1 and q5 3

Table 3: a variable values in Fig. 2

q0 q1 q2 q3 q4 q5
s0 1 1 1 1 0 1
s1 1 1 1 1 0 1
s2 1 1 1 1 0 0
s3 1 1 0 1 0 1

Table 4: x variable values in Fig. 2

q0 q1 q2 q3 q4 q5
s0 3 2 1 1 1 1
s1 3 3 2 2 1 1
s2 2 2 2 2 1 1
s3 1 1 0 0 1 1

Table 5: y variable values in Fig. 2

q0 q1 q2 q3 q4 q5
s0 1 0 1 0 1 0
s1 1 1 1 1 1 1
s2 1 0 1 0 1 0
s3 1 0 1 0 1 0

Table 6: c variable values in Fig. 2

q0 q1 q2 q3 q4 q5
s0 3 2 1 1 2 0
s1 3 2 1 1 1 0
s2 3 2 1 1 1 1
s3 3 2 1 1 2 3

Table 7: r variable values in Fig. 2

q0 q1 q2 q3 q4 q5
s0 1 0 1 0 1 0
s1 1 0 1 0 0 0
s2 1 0 1 0 0 1
s3 1 0 1 0 1 1

qubit at each stage. We make the values for the last
stage gray because they do not affect the solution in
any way. (Note that for S stages, there are only S − 1
movements in between; and our convention is that the
movement between si and si+1 is encoded in the a, c,
and r variables of si.) Table 4 and Table 5 provides the
site indices. In this example, X = 4 and Y = 2, mean-
ing all x variables are in {0, 1, 2, 3} and all y variables
are in {0, 1}. Table 6 and Table 7 provides the AOD
column and row indices. In this example, C = 4 and
R = 2. Apart from the values for the last stage, some
other values are also gray because the corresponding
qubit is in SLM in that stage. For convenience in com-
paring with Fig. 2, we also reorganize the values based
on stages as follows.

stage0: [
{qubit: 0, a: 1, x: 3, y: 1, c: 3, r: 1},
{qubit: 1, a: 1, x: 2, y: 0, c: 2, r: 0},
{qubit: 2, a: 1, x: 1, y: 1, c: 1, r: 1},
{qubit: 3, a: 1, x: 1, y: 0, c: 1, r: 0},
{qubit: 4, a: 0, x: 1, y: 1, c: 2, r: 1},
{qubit: 5, a: 1, x: 1, y: 0, c: 0, r: 0} ];

stage1: [
{qubit: 0, a: 1, x: 3, y: 1, c: 3, r: 1},
{qubit: 1, a: 1, x: 3, y: 1, c: 2, r: 0},
{qubit: 2, a: 1, x: 2, y: 1, c: 1, r: 1},
{qubit: 3, a: 1, x: 2, y: 1, c: 1, r: 0},
{qubit: 4, a: 0, x: 1, y: 1, c: 1, r: 0},
{qubit: 5, a: 1, x: 1, y: 1, c: 0, r: 0} ];

stage2: [
{qubit: 0, a: 1, x: 2, y: 1, c: 3, r: 1},
{qubit: 1, a: 1, x: 2, y: 0, c: 2, r: 0},
{qubit: 2, a: 1, x: 2, y: 1, c: 1, r: 1},
{qubit: 3, a: 1, x: 2, y: 0, c: 1, r: 0},
{qubit: 4, a: 0, x: 1, y: 1, c: 1, r: 0},
{qubit: 5, a: 0, x: 1, y: 0, c: 1, r: 1} ];

stage3: [
{qubit: 0, a: 1, x: 1, y: 1, c: 3, r: 1},
{qubit: 1, a: 1, x: 1, y: 0, c: 2, r: 0},
{qubit: 2, a: 0, x: 0, y: 1, c: 1, r: 1},
{qubit: 3, a: 1, x: 0, y: 0, c: 1, r: 0},
{qubit: 4, a: 0, x: 1, y: 1, c: 2, r: 1},
{qubit: 5, a: 1, x: 1, y: 0, c: 3, r: 1} ].
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