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ABSTRACT: Vertical profiles of temperature and dewpoint are useful in predicting deep convection that leads to severe
weather, which threatens property and lives. Currently, forecasters rely on observations from radiosonde launches and nu-
merical weather prediction (NWP) models. Radiosonde observations are, however, temporally and spatially sparse, and
NWP models contain inherent errors that influence short-term predictions of high impact events. This work explores using
machine learning (ML) to postprocess NWP model forecasts, combining them with satellite data to improve vertical pro-
files of temperature and dewpoint. We focus on different ML architectures, loss functions, and input features to optimize
predictions. Because we are predicting vertical profiles at 256 levels in the atmosphere, this work provides a unique per-
spective at using ML for 1D tasks. Compared to baseline profiles from the Rapid Refresh (RAP), ML predictions offer the
largest improvement for dewpoint, particularly in the middle and upper atmosphere. Temperature improvements are mod-
est, but CAPE values are improved by up to 40%. Feature importance analyses indicate that the ML models are primarily
improving incoming RAP biases. While additional model and satellite data offer some improvement to the predictions,
architecture choice is more important than feature selection in fine-tuning the results. Our proposed deep residual U-Net
performs the best by leveraging spatial context from the input RAP profiles; however, the results are remarkably robust
across model architecture. Further, uncertainty estimates for every level are well calibrated and can provide useful infor-
mation to forecasters.
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1. Introduction

Atmospheric instability is a key ingredient in the formation
of thunderstorms, which can produce severe weather. To ac-
curately forecast these potentially hazardous events and to
conduct near-term threat assessments, it is crucial to have fre-
quent and accurate vertical profiles of temperature and dew-
point because they affect the instability of the atmosphere,
which is often measured by the convective available potential
energy (CAPE). The likelihood that the instability will be re-
alized, measured by the convective inhibition (CIN), is also
strongly dependent on the thermodynamic structure, particu-
larly in the lowest layers in the atmosphere.

Radiosondes produce high quality thermodynamical pro-
files with high vertical resolution while ascending in the atmo-
sphere; however, balloon releases are conducted routinely
only twice a day with an average of several hundred kilo-
meters separating the stations of the irregularly spaced net-
work. This sparsity remains a leading cause for errors, and the
cost and environmental impact of launching enough radio-
sondes to overcome this limitation hampers our ability to

resolve this sparsity issue (Hurlbut and Cohen 2014). As a re-
sult, forecasters leverage vertical profiles generated by numer-
ical weather prediction (NWP) models because they have a
high temporal resolution and are produced on a dense, regu-
larly spaced grid. These models are based on observational
data that are assimilated to predict three-dimensional temper-
ature, moisture, and other atmospheric variables. Generally,
NWP models produce excellent short-term forecasts, but un-
certain initial conditions, the application of necessary assump-
tions, and the mathematics of prognosis produce errors in a
model’s output.

Using statistical models to postprocess NWP model fore-
casts in order to improve severe weather prediction has been
a topic of research for decades (Vannitsem et al. 2018). To im-
prove NWP model predictions, work has been ongoing to de-
velop different postprocessing statistical methods aiming to
remove systematic biases, correct errors, incorporate local-
scale adjustments, and produce finer-scale end-use products
(Schultz et al. 2021; Rojas-Campos et al. 2023). Originally this
work focused on uni- and multivariate corrections of hori-
zontal atmospheric variables (Schoenach et al. 2020). Re-
cently, postprocessing methods have extended to employ
deep learning neural networks, and machine learning imple-
mentations exist for optimizing temperature (e.g., Rasp and
Lerch 2018; Peng et al. 2020), wind speed (e.g., Candido
et al. 2020; Veldkamp et al. 2021, and precipitation (e.g.,
Rojas-Campos et al. 2023).

Despite the importance of vertical profiles of temperature
and dewpoint in weather forecasting, little work has been
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done to improve vertical profile prediction with two notable
exceptions. First, Renkl (2013) postprocessed ensemble NWP
predictions to approximate the vertical profiles using vertical
normal modes and kriging. Recently, Schoenach et al. (2020)
utilized a two-step strategy to correct ensemble NWP fore-
casts, first using univariate distributional regression to correct
the probability distribution separately at each vertical level,
then using the forecast rank order structure to reinstall verti-
cal dependence among neighboring levels.

In this work, we investigate using deep learning as a postpro-
cessing tool to correct NWP vertical profiles of temperature and
dewpoint. Specifically, we use machine learning (ML) to post-
process NWP profiles from the Rapid Refresh (RAP) model
and combine them with surface analyses from the Real-Time
Mesoscale Analysis (RTMA) and satellite radiances from the
Geostationary Operational Environmental Satellite (GOES) to
optimize temperature and dewpoint profiles. We perform a
comprehensive analysis over various neural network architec-
tures and physically meaningful training methodologies. Our
contributions can be summarized as follows:

• We apply ML to 1D vectors and show the limitations of
fully connected and convolutional neural networks for pre-
dicting vertical profiles. As also shown in Lagerquist et al.
(2021), a U-Net structure leverages relationships between
vertical levels for accurate profiles with low variance.

• We present three physically inspired loss functions that are
built on the mean absolute error (MAE) or the mean-square
error (MSE). These functions adjust the profile weights with
height, yielding more accurate near-surface predictions than
using the traditional metrics.

• We show that ML is able to improve existing biases in the
RAP, regardless of cloud cover, month, or location, using
six physically based metrics.

• We demonstrate that ML models are able to provide use-
ful, well-calibrated uncertainty estimates at every level in
the vertical column.

2. Methods

a. Data

Data are collected from January 2017 through May 2020 over
18 sounding locations that span between North Dakota and
Texas. This region, known as “Tornado Alley,” constitutes a sig-
nificant number of severe weather events each spring and sum-
mer. The target values in this study are 1D vertical profiles of
temperature and dewpoint from the radiosonde observations
(raob). The input features (predictors) are 1D vertical profiles
from the RAP model, spatially averaged surface data from the
RTMA, and spatially averaged satellite data from GOES-16. A
sample is a single 1D profile in space and time, where all the in-
put features are collocated with the 1D target profile using the
raob release location and time. Because we are focused on con-
vective activity that has the potential to result in severe weather,
we restrict the samples to those occurring from April through
August (except for the seasonal and regional analyses where we
use all the data). To reduce bias to any given launch location

and release time, we use a spatiotemporally stratified sampling
approach to split the data into 0.75, 0.1, and 0.15 partitions for
training, validation, and testing, respectively, ensuring that each
site occurs in all three partitions for all months. By temporally
ordering the sites, the testing partition has no overlaps in time
and includes the latest 15% of the data. This results in 12929
training, 1727 validation, and 2574 test samples. We use the vali-
dation dataset for the architecture search and hyperparameter
tuning, and all reported statistics for the analyses shown use the
test dataset.

For training and testing, we standardize the input features and
target values to have a mean of zero and unit variance (z-score
normalization). Every vertical level and each observational vari-
able are standardized independently by subtracting the mean and
dividing by the standard deviation from the training data. To con-
vert predictions from a model back to their original units, we sim-
ply multiply by the standard deviation and add the mean using
the statistical values from the training dataset.

1) RAOB

Data are from the National Oceanic and Atmospheric Ad-
ministration’s Earth System Research Laboratories radio-
sonde archive for the locations of interest (Schwartz and
Govett 1992). The majority of these samples are from daily
NWS launches that occur shortly before 0000 and 1200 UTC.
Less common, but still prevalent, are radiosondes launched
when atmospheric conditions are of interest (i.e., during se-
vere weather events). These launches usually occur between
1800 and 2100 UTC. Every observation in the archive under-
goes extensive quality assurance analysis and correction pro-
cedures to resolve erroneous data and to check for various
hydrostatic consistencies. Thus, only minimal preprocessing is
needed. Dewpoint depression is converted to dewpoint tem-
perature (herein referred to as dewpoint) and profiles with
missing values are removed. Profiles are linearly interpolated
to regularly spaced intervals of geopotential height coordi-
nates that are consistent across geographic regions; this estab-
lishes 256 fixed vertical levels extending up to 17 km above
the surface.

2) RAP

The Rapid Refresh is an operational assimilation and modeling
system for North America. Designed primarily for NWP guid-
ance, the RAP provides hourly updated short-range weather
forecasts out to 18 h (Benjamin et al. 2016). The community-
driven Advanced Research Weather Research and Forecasting
(WRF) Model (Skamarock et al. 2008) underpins the NWP, and
the Gridpoint Statistical Interpolation analysis system (Wu et al.
2002; Whitaker et al. 2008; Kleist et al. 2009) is used for data as-
similation and initializing the model. The RAP has a horizontal
grid spacing of 13 km and a hybrid sigma vertical coordinate sys-
tem with 50 levels.

The time and location of the raob launch is used to locate the
nearest RAP forecast, and we assume that the raob does not
drift outside of the 169-km2 grid cell. We extract the total pres-
sure, temperature, specific humidity, and geopotential height at
every vertical level. To better align with the raobs, we convert
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specific humidity to dewpoint (see section S1 in the online
supplemental material for details). The four 1D profile compo-
nents (i.e., total pressure, temperature, dewpoint, and geopoten-
tial height) are linearly interpolated with respect to geopotential
height to align with the raobs, having 256 levels up to a top
boundary layer of 17 km above the surface.

3) RTMA

The RTMA provides accurate near-surface weather conditions
at a high spatial resolution (De Pondeca et al. 2011). Observa-
tions centered 612 min around the analysis time are assimilated
following the Gridpoint Statistical Interpolation system (Wu et al.
2002). The result is a 2.5-km grid over the conterminous United
States (CONUS) with analyses of 2-m temperature, 2-m dew-
point, 10-m wind components, and surface pressure. Several
quality-control steps are done during analysis to remove errone-
ous data, verify threshold constraints, and resolve static and dy-
namic blacklisted data, which eliminates the need for additional
variable corrections.

The temperature, dewpoint, and pressure from the RTMA
are temporally aligned with the release time of individual raobs.
RTMA samples from the nearest hour, prior or in the future,
are used for irregular or late-release radiosondes. Although
rare, data samples may be discarded when there are no RTMA
data within an hour window. Once aligned, the samples are
cropped to the neighborhood around each launch location. Spe-
cifically, we extract a 3 3 3 or 56.25-km2 patch from each
RTMA variable centered closest to the latitude and longitude
of a given raob. Note that radiosondes take roughly 30 min to
ascend, and with wind speeds of 20 m s21, neither their exact
time nor location is fixed. Thus, we take the spatial mean of
each patch to generally represent the area with a single scalar
value (per variable).

4) GOES-16

Satellite data are from a multichannel passive imaging radiom-
eter, the Advanced Baseline Imager (ABI), onboard GOES-16
(Schmit et al. 2017). The ABI captures imagery every 5 min over
CONUS with a nadir footprint of 0.5–2 km in 16 spectral wave-
lengths covering the visible, near-infrared, and infrared spectrum.
Each channel is centered on specific wavelengths to highlight cer-
tain atmospheric properties. In this study, we use the radiances
from a subset of infrared wavelengths commonly used to retrieve
vertical profiles of temperature and moisture (Schmit et al. 2019;
Hilburn 2020). The specific channels chosen are the 6.2-, 6.9-,
and 7.3-mm water vapor channels, the 8.4-, 10.3-, 11.2-, and
12.3-mm infrared window channels, and the 13.3-mm CO2

channel. As with the RTMA data, we use a 3 3 3 grouping of
ABI pixels for the satellite input. The channels used have na-
dir footprints of 2 km, resulting in a 36-km2 (nominal) area of
consideration. The cadence of the ABI instrument ensures at
most 5 min of separation between the satellite data and the
release time of the radiosonde.

b. Evaluation metrics

The goal of this work is to predict profiles of both temperature
and dewpoint. Because the mechanisms driving the variability in

these profiles are different, we utilize traditional metrics and at-
mospheric quantities to analyze each separately as well as their
interactions. First, we use the root-mean-square errors (RMSEs)
of the entire profile of temperature (T) and dewpoint (TD) sepa-
rately. Second, as the boundary layer is the most important for
forecasting convection and severe weather, we evaluate the
RMSEs for both in the lowest 25 layers (SFC T, TD), which cor-
responds to;2 km above ground level.

In addition to evaluating the profiles, we use two important
atmospheric quantities derived from the profiles. The first is
mixed-layer CAPE, which is a measure of atmospheric instabil-
ity and indicates the energy available for thunderstorm develop-
ment. The second is CIN, which corresponds to the amount of
energy that prevents air parcels from rising buoyantly, suppress-
ing convection. Since both of these metrics require the pressure
profile (which is not predicted), we use the corresponding RAP
pressure profiles.

Because the different evaluation metrics have different scales,
to allow for comparison among them we use two derived scores.
The first is a normalized RMSE score (NRS), which is given by

NRS(x) 5 1 2
MLRMSE(x) 2 MLmin

RMSE(x)
MLmax

RMSE(x) 2 MLmin
RMSE(x)

, (1)

where for each metric x, MLRMSE is the RMSE for each ML
model, MLmin

RMSE is the minimum RMSE across all models,
and MLmax

RMSE is the maximum RMSE across all models. The
second is a normalized improvement score (NIS), which is cal-
culated as

NIS(x) 5 I(x)
Imax

, and (2)

I(x) 5 RAPRMSE(x) 2 MLRMSE(x)
RAPRMSE(x)

, (3)

where for metric x, I(x) is the improvement, RAPRMSE(x) is
the RAP RMSE, and Imax is the maximum improvement
across all models. For both scores, 1 is the highest value and
skill decreases with decreasing values.

c. Machine learning models

1) MODEL ARCHITECTURES

We focus on neural networks to learn nonlinear mappings be-
tween initial guess RAP profiles and ground truth raobs. In addi-
tion to learning existing RAP model biases, we provide the ML
models with the GOES and RTMA data. We explore four differ-
ent ML model architectures, each with added complexity: linear
regression (LIN), fully connected neural networks (NN), convo-
lutional neural networks (CNN), and deep residual U-Nets. For
all architectures, the target temperature and dewpoint pro-
files are flattened and concatenated to 512 output features
(256 levels 3 2 variables).

For the LIN and NN models, we flattened the input fea-
tures into a 1D vector for each observation, where all the in-
put levels are treated independently. Thus, for experiments
using all possible inputs, the data are concatenated together
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to create 1035 input features (4 RAP Profiles3 256 levels1 8
GOES 1 3 RTMA). For the LIN and NN models, we per-
formed an ablation study to reduce the number of input fea-
tures. We tested averaging from 1 to 25 levels and evaluated
the results using the normalized RMSE score from the six
metrics (RMSEs of T and TD, SFC T and TD, CAPE, CIN).
We found that for both the LIN and NN models, the highest
score used every RAP level in the lowest 25 levels and an av-
erage of 8 levels above. This decreases the total number of
possible input features down to 226.

CNNs and U-Nets take spatial information into account by
considering patterns in neighboring levels, thus these ML models
may be able to detect patterns and relationships in the vertical
profile. For both of these architectures, we performed convolu-
tions over the input RAP profiles and ended with a linear output
layer matching the size of the raob profiles (256 levels 3 2 varia-
bles). For the CNN, we evaluated a sequence of convolutional
layers followed by pooling layers, concatenating the GOES and
RTMA data with the output of the last pooling layer.

U-Nets are a type of CNN that encodes input through down-
sampling layers and then decode the compressed representation
of the input through a series of upsampling layers via U-shaped
stacked connections (Ronneberger et al. 2015). Figure 1 shows
the U-Net architecture, which includes downsampling blocks
(blue), a bottleneck layer, and upsampling blocks (green) with
stacked connections to the downsampling layers. The GOES
and RTMA data are concatenated in the bottleneck layer, and
we include an additive connection between the input profile
with the final output of the upsampling layer, forcing the model
to learn the residuals between the input and target profiles.

To find the highest-performing NN, CNN, and U-Net
model architectures, we performed hyperparameter searches
to optimize the number of layers, number of weights, and ker-
nel size/stride (for the CNN and U-Net). Full details are in
Stock (2021, chapter 6, hereafter S21). For the NN, 2 layers
both with 1024 weights was the best-performing model (S21,

Fig. 6.1). For the CNN, the model with the smallest profile
RMSEs contained five convolutional blocks of size [32, 64,
128, 256, 512] each using a filter size of 3 3 1 with a stride size
of one, followed by two fully connected layers of size [512,
256], and a final output layer (S21, Fig. 6.3). For the U-Net, a
network structure of size [32, 64, 128, 256] with a mirrored de-
sign around the bottleneck and no additional layers after the
U-Net had the lowest mean near-surface error (S21, Fig. 6.4).
S21 also showed that maintaining the structural integrity of
the RAP profile using symmetrical skip connections resulted
in the U-Net outperforming the traditional CNN; thus, in this
study we will not show any CNN results. For all architectures,
we used the Adam optimizer, the ReLU activation function,
and batch size of 128. For the deterministic loss functions, we
used a learning rate of 0.001; for the models predicting uncer-
tainty, we used a learning rate of 0.0001.

To avoid overfitting, we performed hyperparameter searches of
the final model architectures to optimize the dropout (final layer,
internal dense layers, and convolutional layers) and kernel regu-
larization. Using the validation data, we performed both gridded
and guided searches using Hyperopt with the tree of Parzen esti-
mators algorithm (Bergstra et al. 2013). We found kernel regulari-
zation was not helpful for this application. The top NN model
uses a dropout of 0.05 in the last layer and the top U-Net uses 0.1
dropout in the last layer and 0.05 dropout in the convolutional
layers. Further, we employed early stopping to quit training when
the model validation score did not continue to improve, and plots
of the validation and training loss ensured that during training the
validation score remained similar to the training score.

2) LOSS FUNCTIONS AND UNCERTAINTY ESTIMATES

To optimize performance, we tested seven loss functions, of
which four are deterministic. Because it is essential to have
accurate profiles near the surface in order to accurately pre-
dict the convective activity, we developed three custom loss
functions. While all of these loss functions are designed to

FIG. 1. U-Net architecture using the RAP temperature and moisture profiles as inputs and concatenating the GOES ABI and RTMA
data at the bottleneck of the network. After completing the stacked connections, the architecture includes an additive connection between
the input and output profiles, as indicated by the “1” symbol. The outputs are the reconstructed temperature and dewpoint profiles, which
can be directly compared to the radiosonde observations. Additionally, uncertainty information is predicted for each layer in the profiles.
Adapted from S21, which did not include uncertainty estimates.
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more heavily weight the near-surface levels, they vary in the
way the weights decrease with height. The four deterministic
loss functions are as follows:

• MSE:

MSE 5
1

512n
∑
n

i51
∑
256

y51
∑
2

t51
(yi,y ,t 2 ŷi,y ,t)2, (4)

where y are the raob observations and ŷ are the predictions.
The average square difference is taken over n samples
across y 5 256 vertical levels and t 5 2 variables (tempera-
ture and dewpoint).

• Surface-weighted mean absolute error (MAES): MAE where
the performance of the output temperature and dewpoint in
the lowest 25 levels accounts for 80% of the error and the re-
maining upper profile accounts for 20% of the error:

MAES 5
0:8
50n

∑
n

i51
∑
25

y51
∑
2

t51
yi,y ,t 2 ŷi,y ,t

∣∣∣ ∣∣∣

1
0:2
462n

∑
n

i51
∑
256

y526
∑
2

t51
yi,y ,t 2 ŷi,y ,t

∣∣∣ ∣∣∣: (5)

• Exponentially weighted mean absolute error (MAEW):
MAE where the weight of the temperature and dewpoint
in the profile decreases exponentially with height:

MAEW 5
1
2n
∑
n

i51
∑
2

t51
∑
256

y51
(ae2ly 1 b)|yi,t,y 2 ŷi,t,y |

[ ]
, (6)

where a is an initial value, l is a decay constant, and b is an
offset value for an exponential decay function. The absolute
difference of the profile is multiplied by an exponential decay
function so that the weights applied per vertical level decrease
with altitude. Through initial experiments, we found a 5 3.75,
l 5 0.01, and b 5 0.25 to be appropriate values for the data.

• Pressure-weighted mean square error (MSEW): MSE where
the weight of the temperature and dewpoint decreases expo-
nentially with pressure:

MSEW 5
1
2n
∑
n

i51
∑
2

t51
∑
256

y51

py
pTot

(yi,t,y 2 ŷi,t,y )2
[ ]

, and (7)

pTot 5 ∑
256

y51
py , (8)

where p is the pressure in the profile level and pTot is the sum
of the pressure in the vertical profile. Since the ML models do
not predict pressure, we use the RAP pressure.
In addition to deterministic prediction, we also tested three

probabilistic approaches to obtain a forecast distribution that
predicts not only the vertical profiles of temperature and dew-
point, but also the associated uncertainty of each per vertical
level. The approaches are the following:

• Gaussian parametric distribution prediction (NORM): The
loss function trains the NN to predict the parameters of the
normal distribution by maximizing the Bayesian likelihood be-
tween the true and observed distribution (e.g., Rasp and Lerch
2018; Schoenach et al. 2020; Veldkamp et al. 2021). In this
case, the mean is the central prediction, and the standard devi-
ation of the prediction is used to calculate the uncertainty.

• Sinh–arcsinh parametric distribution prediction (SHASH):
The loss function trains the NN to predict the parameters
of a sinh–arcsinh–normal distribution, with four parameters
to represent the shape of the distribution (e.g., Barnes et al.
2023, 2021; Haynes et al. 2023). The predictions can then
be drawn from the full distribution, where the mean of the
distribution is used as the central predicted value and the
95% range of the distribution is used for the uncertainty.

• Ensemble prediction with the continuous-ranked probability
score (CRPS): Ensemble-based approach that minimizes the
cumulative distribution function (CDF) of the ensemble
members (e.g., Matheson and Winkler 1976; Hersbach 2000;
Gneiting et al. 2005), which has been used as an NN loss func-
tion for numerous postprocessing applications (e.g., Dai and
Hemri 2021; Ghazvinian et al. 2021; Scheuerer et al. 2020;
Schulz and Lerch 2022). The CRPS is a generalization of the
MAE for probabilistic forecasts:

CRPS(F, y) 5
�‘

2‘
[F(ŷ) 2 H (ŷ 2 y)]2dŷ, (9)

where y is the single observed value; F is the CDF of the pre-
dicted distribution; ŷ, the variable of integration, is one value in
the predicted distribution; and H is the Heaviside step func-
tion, evaluating to 1 if ŷ $ y and 0 otherwise. Thus, Eq. (9) is
the error between the predicted and observed CDF. The CRPS
can be modified to be used as a loss function with uncertainty
quantification for NNs, as shown in Haynes et al. (2023), where
the central prediction is the median of the ensemble members,
and the uncertainty is calculated from their spread.

Both the NORM and SHASH loss functions use the
maximum-likelihood approach with a log-loss formulation to
optimize the distribution parameters. For CRPS prediction,
we use 60 ensemble members, which was optimized during the
hyperparameter search. All three of these methods are proba-
bilistic approaches to predict a temperature and dewpoint dis-
tribution at every level in the vertical profile.

3. Model comparisons

a. Architectures and loss functions

We ran each of the model architectures (LIN, NN, U-Net)
with the seven loss functions. The results are shown in Fig. 2a,
which compares the model architectures and loss functions using
the NRS score for the six metrics. The RAP is shown in the top
line in Fig. 2a. Postprocessing using ML improves all dewpoint,
CAPE, and CIN predictions. Overall, the U-Net architecture has
the highest performances. Comparing the loss functions, the
U-Net MAEW predicts the best surface dewpoint, the U-Net
MSE predicts the best dewpoint profile, and the U-Net MAEW
predicts the best surface temperature and dewpoint. While most
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of the LIN models have an average performance compared
with the other architectures, LIN CRPS is the most consistent
across all evaluation metrics, with the best predictions for the
temperature profile, CAPE and CIN. The NN models do not
perform well, particularly for temperature; however, the dew-
point, CAPE, and CIN improve over the RAP. Of the different
loss functions with the NN architecture, NN SHASH has the
most consistent performance and is the only NN model to im-
prove over the RAP across all metrics.

To rank the overall model performance, we added the NRS
and NIS scores for the six metrics (Fig. 2b). LIN CRPS performs
the best overall, followed by the U-Net models. The NN architec-
ture performs the worst, except NN SHASH, which has scores
comparable to the U-Nets. Each architecture takes advantage of
different loss functions. The LIN model takes advantage of the
CRPS ensemble approach, whereas the NN performs best with
the SHASH loss function, which focuses on predicting a nonsym-
metric distribution associated with each prediction. The U-Net is
able to take advantage of the custom loss functions, with the
weighted and surface MAE losses being top performers.

b. Feature importance via ablation

To test feature importance, we performed an ablation
study where we removed the GOES and RTMA data (al-
ways keeping RAP profiles as inputs). This results in four

different combinations per model: 1) using only the RAP
input; 2) using RAP and RTMA data (“R”); 3) using RAP
and GOES data (“G”); 4) using RAP, RTMA, and GOES
data (“R 1 G”). We tested this for all model combinations
(3 architectures 3 7 loss functions) and then calculated the
number of times each combination had the lowest RMSE
per evaluation metric (Fig. 3a). For all evaluation metrics,
adding RTMA data to the RAP profiles improves perfor-
mance. Adding GOES data does not improve profile pre-
diction; however, GOES does improve the CAPE and CIN
performances, indicating that they are providing informa-
tion on the profile structure even if they do not directly re-
duce the profile errors. Overall, adding RTMA data
results in the highest profile performances, but adding
RTMA and GOES data yields the highest CAPE and CIN
performances.

Comparing the model performances, Fig. 3b shows the
NRS scores for the ablation experiments with the top LIN,
NN, and U-Net models. For these models, adding both
RTMA and GOES data improves performances, particu-
larly for dewpoint, CAPE and CIN; and these models are
the top performers. In contrast, the ML models using only
RAP data perform the worst, although they all improve
over the RAP (Fig. 3c).

FIG. 2. Performance comparisons between model architectures and loss functions, with the RAP included for refer-
ence. (a) NRS scores per metric. (b) Model performances ranked by total NRS and NIS scores. The totals are the
score sums for the six evaluation metrics.
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4. Evaluation results: How well do the best ML
models perform?

a. Metrics evaluation

Until now, we have been looking at normalized errors to
compare the different models. In Fig. 4, we evaluate actual
performance for the six metrics. We selected the top four
performing U-Net models along with the top-performing
LIN and NN models. Starting with temperature (Figs. 4a,c),
the performance for near-surface and total column is similar,
and all ML models improve over the RAP baseline perfor-
mance. Looking at the magnitude of the errors, the tempera-
ture errors are ;18C, which is much smaller than the
dewpoint errors, and the improvement is ,10%. For dew-
point (Figs. 4b,d), all models perform similarly and improve
substantially over the RAP baseline. Near the surface, the er-
rors are ;2.48C, which is ;13% improvement; over the total
column the dewpoint errors are ;58C, a ;25% improvement
compared to the RAP. Substantial improvements are also
seen in the CAPE predictions, where the ML models reduce
the CAPE errors by ;40%. The CIN improvement is mod-
est, with the best ML model reducing the error by ;14%.

Overall, differences in performance between specific archi-
tectures are small compared to the improvement against the

RAP, revealing that the ML models are robust. As expected
with postprocessing techniques, the ML models are primarily
learning and fixing RAP biases. The improvements are great-
est for dewpoint and CAPE, with more modest temperature
and CIN improvements.

b. Evaluation across convective potential

Because CAPE is an important indicator of convective ac-
tivity, we looked at model predictions across the range of
mixed-layer CAPE values. Figure 5 shows the RMSE in tem-
perature and dewpoint binned by observed CAPE. The gray
histograms show the number of profiles per CAPE bin, re-
vealing that most of the cases have ,50 J kg21 of CAPE, and
the number of samples decreases with increasing CAPE
(which makes sense because intense storms are associated
with high CAPE and are rare events).

All ML models improve upon the RAP across CAPE bins
for both temperature and dewpoint, with the U-Net perform-
ing the best (Figs. 5a,d). The errors in the ML models follow
the shape of the RAP errors, and there are relatively constant
offsets of;0.18 and;1.58C for temperature and dewpoint, re-
spectively, across all CAPE bins. This indicates the ML mod-
els are improving the profiles for both convectively active and
nonconvectively active scenarios.

FIG. 3. (a) Counts of the feature combinations resulting in the top-performing model per architecture/loss combina-
tion. All simulations use the RAP data; “R” indicates RTMA data are added; “G” indicates GOES data are added;
and “R 1 G” indicates both RTMA and GOES data are added. (b) NRS scores per metric comparing feature abla-
tion performances for the top LIN, NN, and U-Net models. (c) Ranked NRS and NIS scores from (b). Note that for
the combinations that are the same as in Fig. 2 (e.g., models with R 1 G), the exact values may be different because
these scores depend on the population statistics.

H AYNE S E T A L . 7JANUARY 2024

Unauthenticated | Downloaded 06/07/24 01:49 PM UTC



To determine how often the temperature profiles are
improved, Fig. 5b shows the fraction of samples where
the ML RMSE is lower than the RAP RMSE by CAPE bin.
The NN model has the lowest number of samples improved,
and the U-Net has the highest fraction of improved cases, with
an average of 71% of the profiles improving over the RAP.
Since the near surface levels are the most influential as to
whether storms will develop, Fig. 5c shows the fraction of im-
proved temperature samples near the surface. None of the ML
models offers substantial, consistent improvement in near-
surface temperature over the RAPmodel.

Looking at dewpoint, all ML models improve the dew-
point profiles across all CAPE bins, improving ;82% of the
profiles (Fig. 5e). The improvement is less near the surface,
where on average the ML models improve 69% of the pro-
files, with slightly less improvement for profiles with higher
CAPE than for profiles with lower CAPE. The performances
near the surface for both temperature and dewpoint vary be-
tween bins, indicating that specific cases may be driving the
errors and that the models could likely benefit from addi-
tional training data for convectively active conditions.

c. Gradient and gradient rate of change

The vertical thermal gradient is an important quantity in
weather forecasting: it determines how easily an air parcel
rises, which drives exchange processes. In addition to pre-
serving the temperature and dewpoint profile values, it is es-
sential for postprocessing methods to capture the vertical
gradients of these profiles (Schoenach et al. 2020). Mean ab-
solute value observed and modeled temperature gradient
profiles are shown in Fig. 6a. Positive gradients up to 300 mb
(1 mb 5 1 hPa) indicate the temperature decreases with
height on average, as expected. The observed and modeled
profiles all show a sharp gradient in the lowest level of the
profile. This feature is particularly prominent when using the
absolute value of the gradients to calculate the mean profile,
because this formulation does not allow for cancellation due
to the sign of the gradient. All models systematically under-
estimate the gradient in the surface layer from 900 to 750 mb,
indicating that there are large temperature swings through
this layer that are not fully predicted. Above the surface
layer, the models capture the thermal gradient well.

FIG. 4. Top model evaluation for the six metrics. The dashed line indicates the RAP baseline performance. (a) Near surface
temperature, (b) near surface dewpoint, (c) temperature, (d) dewpoint, (e) CAPE, and (f) CIN.
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Looking at the dewpoint in Fig. 6b, it also decreases with
height on average, and the models consistently underestimate
the dewpoint gradient throughout the atmosphere. This phe-
nomenon is seen only in the absolute value formulation when
taking the mean gradient across all cases, indicating that the
models underestimate the change of signs in the dewpoint
gradient, which cancel out when using signed values. Interest-
ingly, the LIN and NN models do better than the U-Net at
capturing the dewpoint gradient.

In addition to preserving vertical profile gradients, postpro-
cessing methods should also preserve realistic smoothness in
the profiles, which can be seen via the profile second deriva-
tive, or the rate of change of the gradients. We used the sec-
ond derivative as a proxy for the curvature to provide an
estimate as to how much the temperatures and dewpoints
change between each level in the profile. This is important be-
cause changes that occur between neighboring levels impact

forecaster confidence: noisier profiles with alternating jumps
in temperature between adjacent levels are not only less
pleasing to look at but are less physical and can lower fore-
caster confidence.

The mean temperature second derivatives are shown in Fig. 6c,
which shows that on average the observations have a mean second
derivative of 0.028C mb22, with a maximum of ;0.058C mb22.
The RAP underestimates this, indicating that the RAP profiles
are too smooth compared to the observations. In contrast, using
the CRPS and SHASH loss functions overestimates the second
derivative, indicating that these profiles are too jumpy. The U-Net
models with the physical-based loss functions do the best job of
matching the profile smoothness, which is not surprising given that
they take into account vertical profile information.

The dewpoint second derivatives (Fig. 6b) show similar
characteristics to temperature: the RAP profiles are smoother
than the radiosondes and the LIN, NN, and U-Net models

FIG. 5. Model performance binned by observed CAPE. (a) Temperature errors per CAPE bin (colors). The counts per bin are shown
in the gray bars. (b) Fraction of temperature samples that improve over the RAP per CAPE bin. (c) As in (b), but for the surface temper-
ature. (d) Dewpoint errors per CAPE bin. (e) Fraction of dewpoint samples that improves over the RAP per CAPE bin. (f) As in (e), but
for surface dewpoint. For each model, the mean across CAPE bins is shown in parentheses.
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with uncertainty contain more noise than the radiosondes,
while the U-Net profiles with physics-based loss have second de-
rivatives similar to the radiosondes. This analysis suggests that
while the LIN and NN models yield similar error statistics, the
U-Net model may be more desirable in practice because the
profiles have less variance between levels, with curvature char-
acteristics that are more similar to the observations.

d. Profile analysis

1) PROFILE ERRORS

Figure 7 shows the mean profile RMSEs for RAP and the
top ML models, one per architecture type. For temperature,
the errors range from 0.68 to 1.58C, while for dewpoint the er-
rors are larger and range from;18C near the surface up to al-
most 88C in the upper atmosphere for the RAP. For both
temperature and dewpoint, all ML models have lower errors
than the RAP over the entire profile. The U-Net has the low-
est RMSEs; however, all models perform similarly throughout
both profiles, except briefly from 800 to 700 mb when the LIN
and NN models have slightly higher temperature errors. For
temperature, the ML models reduce the RAP errors from

;15% near the surface to ;2% in the upper atmosphere,
while for dewpoint the error reduction is modest at the
surface (;5%–8%) but increases up to ;40% in the upper
atmosphere.

2) BEST PROFILES

To provide an example of individual soundings, the best
and most improved profiles are shown in Fig. 8. Differences
between the RAP and ML models for the temperature pro-
files are difficult to see, highlighting the small existing errors
in the RAP and the minimal improvements from the ML
models. For the best temperature profile (Fig. 8a), the RAP
already has low errors and improvements by the ML models
are minimal. The ML improvements can best be seen in the
most improved T profile shown in Fig. 8c, where the ML mod-
els lower the near-surface temperatures (below 850 mb) to
more closely match the observations.

Improvements to the dewpoint profiles can be seen in all
the selected soundings. In all panels, the ML models come
closer to matching the lower dewpoints seen above 400 mb.
For the best dewpoint sounding (Fig. 8b), the U-Net lowers

FIG. 6. (a) Mean vertical temperature gradient profile. (b) Mean vertical dewpoint gradient profile. (c) Mean vertical temperature gradi-
ent rate of change (T second derivative). (d) Mean vertical dewpoint gradient rate of change (TD second derivative). Note that for all
plots, we used the absolute values to calculate the mean across all cases.
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the errors by improving the profile primarily above 650 mb.
For the sounding with the most improved dewpoint profile
(Fig. 8d), the RAP has two major difficulties: 1) predicting
too low temperatures lower than 500 mb and 2) predicting
too high temperatures above 400 mb. The ML models address
both problems, reducing the low temperature bias near the
surface and more closely matching the observations in the up-
per atmosphere.

3) WORST PROFILES

The worst and most degraded near-surface profiles are shown
in Fig. 9. These are shown for the top-performing U-Net model
with uncertainty estimates, which uses a CRPS loss function
with 60 ensemble members. As throughout, the central line
shown for the U-Net CRPS is the ensemble median and the
95% error bar is the corresponding range in ensemble members
per vertical level. We demonstrate in section S2 in the online
supplemental material that the predicted uncertainty estimates
are well calibrated using spread–skill diagrams, PIT histograms,
and discard tests.

For the worst near-surface temperature profile (Fig. 9a),
both the RAP and the U-Net miss a strong surface tempera-
ture inversion. While the uncertainty estimates increase over
the poorly performing region, they do not cover the discrep-
ancies seen between the predictions and the observations. For
the most degraded temperature sounding (Fig. 9c), while the
differences are difficult to see, the U-Net shifts the RAP pro-
file further from the observations throughout the majority of
the profile. Lower than 500 mb, the U-Net lowers the RAP

temperatures below the observations, and above 500 mb the
U-Net increases the temperatures above the observations.
The U-Net degrades the RAP performance by 22%; however,
the degradation is in the uncertainty range predicted by the
model.

For the worst near-surface dewpoint profile (Fig. 9b), both
the RAP and the U-Net miss a region of low dewpoints
around 800 mb, which is also outside of the expected uncer-
tainty. This supports the gradient results (Fig. 6b), where the
models underestimate the dewpoint gradients compared to
the radiosondes. The U-Net improvements in the upper atmo-
sphere compensate for the higher errors lower in the atmo-
sphere, causing the U-Net to have lower overall errors than
the RAP. This is not true for the degraded profile (Fig. 9d),
where the U-Net has a higher RMSE than the RAP because
the U-Net shifts the dewpoints colder both lower than 700 mb
and above 400 mb, both of which shifts the dewpoints away
from the observations. Utilizing the probabilistic predictions,
the U-Net predicts higher uncertainties for this case, which
mostly cover the model errors.

4) CONVECTIVELY ACTIVE PROFILES

Figure 10 shows soundings for two cases with high mixed-
layer CAPE, indicating they have the potential to be convec-
tively active. In Fig. 10a, this sounding occurred on a day
when there were severe weather reports throughout the re-
gion, including tornadoes. For this case, both the LIN CRPS
and U-Net MAEW models most closely match the observa-
tions, improving upon the RAP by ;45%. While the RAP

FIG. 7. Mean profile RMSEs for (a) temperature and (b) dewpoint.
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predicts the temperature profile pretty well, it overestimates
the dewpoints near the surface, particularly at 800 mb. The
ML models lower the dewpoints at this altitude, making them
more in line with the observations, which shifts the CAPE to-
ward the lower observations as well.

In Fig. 10b, the sounding shows significant CAPE above a re-
gion of CIN, and on this day there were reports of wind and hail
throughout the region, but no tornadoes. In this case, all the
models have large errors in near-surface temperature and dew-
point, where they miss strong gradients at;880 mb. Because of

this, all models underestimate the CIN; however, slight shifts in
the temperature and dewpoint profiles near the surface help the
ML models have lower CAPE values closer to the observations.

e. CAPE/CIN direct predictions

We tested directly predicting CAPE and CIN, rather than de-
riving these from the predicted profiles. To do this, we used ran-
dom forests (RF), LIN, and fully connected NN architectures.
We used the same inputs as for the profile predictions, including

FIG. 8. Example soundings. Temperature profiles are solid lines; dewpoint profiles are dashed lines. The different
colors show the observations (black), RAP (pink), and ML model results. Best (a) temperature and (b) dewpoint;
most improved (c) temperature and (d) dewpoint. The RMSE shown in parentheses is the combined errors for both
temperature and dewpoint.
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the RAP, GOES, and RTMA data, and all models are optimized
using a hyperparameter search. Rather than predicting profiles,
the outputs are now scalars for CAPE and CIN, and these are
evaluated against CAPE and CIN computed from the raob ob-
servations. The results are shown in Table 1.

Predicting CAPE and CIN directly improves the performance
over the RAP for all ML models, and all models improve the
CAPE predictions more than the CIN predictions, decreasing the
prior RAP CAPE and CIN errors by ;32% and ;13%, respec-
tively. For CAPE, the models that predict the profiles perform

FIG. 9. Temperature (solid) and dewpoint (dashed) profiles for the (top) worst and (bottom)most degraded performance
near the surface (first 25 levels up to 800mb).Worst (a) temperature and (b) dewpoint; most degraded (c) temperature and
(d) dewpoint.As in Fig. 8, the total RMSE for both temperature and dewpoint is shown in parentheses.
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the best. For CIN, direct prediction using an NN has the lowest
error; however, the profile models have only slightly worse per-
formances with the advantage of providing additional information
regarding the temperature and dewpoint profiles.

5. Discussion and conclusions

This study investigates the potential to use ML to post-
process NWP output for improving vertical profiles of

temperature and dewpoint. We explored the use of differ-
ent ML model architectures, including linear regression,
fully connected neural networks, convolutional neural net-
works, and deep residual U-Nets. Since the target data for
this project are 1D vertical profiles, we outlined methods to
incorporate 1D profiles with 2D image data in unified net-
works. To improve model training, we introduced physically
inspired custom loss functions designed specifically for this
task in order to accentuate different levels in the vertical
profile. Finally, we utilized six physically based metrics to
evaluate model performance. All the ML models improved
the dewpoint profiles by up to 45%, particularly in the mid-
dle and upper atmosphere, and these improvements occur
;82% of the time. The improvements to the temperature
profiles are more modest and less robust, with improve-
ments of ;10% that occur 68% of the time. The modest
temperature improvements are likely due to the RAP al-
ready having significantly lower temperature errors com-
pared to dewpoint, making improvements more difficult.

While the overall results are relatively robust among the dif-
ferent model architectures, model performance differences il-
luminate important science and ML aspects. First, the U-Net

FIG. 10. Soundings for atmospheric conditions supporting high CAPE. Red (blue) shading has been added for CAPE
(CIN), and the total combined temperature and dewpoint RMSEs are in parentheses. (a) Example of U-Net improving
over RAP. (b) Example of already well-predicted RAP.

TABLE 1. Results for predicting CAPE/CIN directly vs calculating
these from predicted temperature and dewpoint profiles. The values
shown are the RMSEs (J kg21). The RF, LIN, and NNmodels predict
CAPE/CIN directly. The LINP, NNP, andU-NetPmodels are the best
models predicting temperature/dewpoint profiles. Predicting the
CAPE/CIN from theML-predicted temperature and dewpoint profiles
uses the RAP pressure. The best performing models for CAPE and
CINare shown in bold.

RAP RF LIN NN LINP NNP U-NetP

CAPE 378 267 278 243 240 241 244
CIN 108 96 98 93 95 95 96

ART I F I C I AL I N TELL IGENCE FOR THE EARTH SY S TEMS VOLUME 314

Unauthenticated | Downloaded 06/07/24 01:49 PM UTC



models perform the best overall. This indicates that using verti-
cal spatial information and skip connections helps improve the
model, particularly for the temperature profiles, and it also al-
lows the U-Net-predicted profiles to have similar gradients
and smoothness as the observations. Since the ML models are
able to improve both the temperature and dewpoint profiles,
resulting predictions of both CAPE and CIN substantially out-
perform the RAP predictions by up to 36%. These improve-
ments are greater than using ML models to predict CAPE/
CIN directly.

Second, the NN models perform worse than the linear re-
gression models, indicating that adding model complexity
does not improve performance, especially given the cost of
reduced understanding for these large models. While these
models perform comparably in obtaining the CAPE and
CIN, the vertical profiles of dewpoint and temperature are
lower performing than their linear and U-Net counterparts.
Additionally, these models create profiles that are noisier
than the observations due to not taking spatial context into
account, evident from comparing second order derivatives.

Third, the majority of the information learned by the mod-
els is obtained from the RAP profiles, indicating that these
models are primarily fixing existing biases in the RAP. While
adding the RTMA and GOES data improves the results, par-
ticularly for CAPE and CIN, these improvements are mod-
est. Investigating the performance of the models for various
cloud cover conditions (see supplemental section S3a) reveals
that the ML improvement is not sensitive to cloud cover, indicat-
ing that any potential consequences from cloud contamination to
the data are more than offset by the increase in sample size. Fur-
ther, the ML predictions do not exhibit any monthly or regional
biases (see supplemental sections S3b and S3c), indicating the
improvements to the RAPmodel are robust and reliable, regard-
less of location or time of year.

Fourth, the ML models are able to provide well-calibrated
uncertainty estimates that may be useful to the forecasting
community (see supplemental section S2). The ML models
predict uncertainty estimates that match the corresponding
error for the majority of the predictions without suffering
any degradation to the temperature and dewpoint predic-
tions. Having uncertainty estimates at all vertical levels helps
identify where the ML model may have the largest errors,
providing forecasters not only with a heads-up for potential
errors, but also with information regarding where in the pro-
file these errors are occurring so that they may use their
domain expertise to help overcome them. Further, since re-
moving the most uncertain samples results in improved model
performance, aggregating uncertainty estimates over the entire
profile provides an estimate of how uncertain the entire profiles
are. If specific applications require more accurate results, thresh-
olds can be established to utilize only the most-certain profiles
with reasonable confidence. And since both temperature and
dewpoint profiles are predicted separately, users can adjust their
quality requirements to temperature and dewpoint separately.

A few limitations of this work are to be noted. This
study focused on the central United States; thus, the re-
sults are not expected to generalize to sites outside of this

region. In our study region, while the overall statistics indi-
cate the ML models are an improvement over the RAP,
this is sounding specific and is not the case for all profiles.
As seen in the worst and most degraded soundings, cases
exist where the ML model degrades the RAP performance,
adjusting the profiles incorrectly. Further, the improve-
ment to the RAP is not uniform across all samples, with
the ML models doing the best job at correcting large errors
in the dewpoint profiles, particularly in the middle to up-
per atmosphere levels. However, this work suggests that
the postprocessing the RAP using ML offers improvements to
the temperature and dewpoint profiles, as well as derived
CAPE and CIN values, and that when taken with the knowl-
edge of the model’s limitations, the ML-predicted profiles can
provide useful information. Last, we note that this work was
performed with RAPv4. Due to data limitations, we cannot
test this proposed approach on RAPv5; however, we hypothe-
size that it could be extended to other versions and NWPmod-
els with proper training data.

Although this study focused on improving temperature
and moisture profiles for severe weather forecasting, ad-
justing a first guess model profile with satellite and other
data can be used in other applications as well. For exam-
ple, moisture throughout the entire atmospheric column is
of interest to the climate community, and the improve-
ments in upper-level water vapor demonstrated here may
benefit research and forecasting on processes at longer
time scales.

Finally, this study suggests several topics for future work.
First is to include skin temperature as an input feature, which
could be derived from the satellite data and may help the pre-
dictions in the lower level. Second is to include the winds from
the RAP data, which may provide more information to the
ML models. Third is to incorporate CAPE and CIN in the loss
functions, which we currently found to be too time-consuming
for training; however, as computer resources improve this
could be a possible avenue for improvement in the future. Fi-
nally, since one of the current weaknesses is in predicting the
temperature and dewpoint in the boundary layers, including
more information regarding boundary layer height could be
helpful. For example, estimates derived from the temperature
gradients and wind profile could improve performance.
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