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Enhancing detection of topological order by
local error correction

Iris Cong 1,5, Nishad Maskara 1,5, Minh C. Tran 1,2, Hannes Pichler 3,4,
Giulia Semeghini1, Susanne F. Yelin 1, Soonwon Choi 2 &Mikhail D. Lukin 1

The exploration of topologically-ordered states of matter is a long-standing
goal at the interface of several subfields of the physical sciences. Such states
feature intriguing physical properties such as long-range entanglement,
emergent gauge fields and non-local correlations, and can aid in realization of
scalable fault-tolerant quantum computation. However, these same features
also make creation, detection, and characterization of topologically-ordered
states particularly challenging. Motivated by recent experimental demon-
strations, we introduce a paradigm for quantifying topological states—locally
error-corrected decoration (LED)—by combining methods of error correction
with ideas of renormalization-group flow. Our approach allows for efficient
and robust identification of topological order, and is applicable in the
presence of incoherent noise sources, making it particularly suitable for
realistic experiments. We demonstrate the power of LED using numerical
simulations of the toric code under a variety of perturbations. We sub-
sequently apply it to an experimental realization, providing new insights
into a quantum spin liquid created on a Rydberg-atom simulator. Finally,
we extend LED to generic topological phases, including those with non-
abelian order.

Topological ordering is an exotic phenomenon that can occur when
quantum fluctuations and local constraints stabilize a state with long-
range entanglement1. With their non-local correlations, topologically
ordered states feature many remarkable properties and can be used
for protecting quantum information non-locally1–3. Yet, because these
states appear to be liquid-like at short length-scales4, they cannot be
identified or characterized using any local order parameters. Instead,
the canonical approach to discern topological order is to measure
operators supported on large closed loops, the Wilson loops1,5–7.
However, such operators are challenging to identify or measure: while
they have simple forms in certain fixed-point models, this is generally
not the case for states realized experimentally in the presence of noise
or other perturbations. In these cases, the expectation values of the
simple or ‘bare’ Wilson loop operators described above decay

exponentially with the loop’s perimeter, which hinders the experi-
mental certification of topological order.

To address these challenges, several methods have been devel-
oped to construct ‘fattened’ Wilson loops which do not decay with
loop size. These include a systematic method utilizing quasi-adiabatic
connections to the fixed-point models5, as well as variational and
tensor-network-based approaches8–11. Nevertheless, thesemethods are
challenging to apply in realistic experiments, especially in the presence
of incoherent noise (e.g., spontaneous emission). Other signatures,
such as topological entanglement entropy12,13 are likewise difficult to
measure in large systems.

Motivated by these considerations, we introduce a powerful fra-
mework, locally error-corrected decoration (LED), for studying and
characterizing topologically ordered states. By leveraging the error-
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correcting properties of topological phases, LED provides a systematic
method to construct and efficiently measure ‘decorated’ Wilson loop
operators, a variant of the fattened loop operators. This enables the
identification and characterization of topological order at large length-
scales in the presence of both coherent perturbations and incoherent
noise, which are particularly challenging or impossible using conven-
tional methods.

In its most general form, LED corresponds to a class of hier-
archically structured quantum circuits that resemble the classification
of quantum phases using RG flow14,15. Yet, for a wide range of experi-
ments where the prepared state is known to approximate a fixed-point
state with zero correlation length (see Supplementary Information),
there is an efficient ‘snapshot-based’ realization of LED using only
classical post-processing of experimental measurements in a few fixed
bases. In this work, we primarily focus on snapshot-based LED due to
current experimental limitations and the hardness of simulating 2D
quantum circuits.

Results
LED approach
The key idea of LED can be understood by considering Kitaev’s toric
codemodel, a canonical example of topological order. Specifically, we

consider qubits localized on the edges of a square lattice. The ideal,
fixed-point Hamiltonian is defined as16:

HTC = � J
X
v

Av � J
X
p

Bp ð1Þ

where Av =∏i∈adj(v)Xi, Bp =∏i∈adj(p)Zi, and adj(v) (resp., adj(p)) denote
the set of edges touching a given vertex v (plaquette p) of the lattice.
The ground state space, given by the simultaneous + 1 eigenspaceof all
stabilizer operators {Av, Bp}, forms a quantum error-correcting code: all
local operators either act trivially on ground states or couple them to
excited states16. By measuring stabilizers, one can detect the presence
of excitations and apply a recovery procedure to return the system
back to this ground state space.

In this model, contractible Wilson loops can be constructed by
multiplying stabilizers, so their expectation values in any ground state
ofHTC are +1, independent of loop size. However, in realistic situations,
the prepared state differs from the fixed-point state by local fluctua-
tions such as coherent perturbations and incoherent errors (Fig. 1a).
This causes bareWilson loops to decay exponentially with the number
of locations where a fluctuation can intersect the loop (i.e., its
perimeter).

Fig. 1 | Detecting topological phases via snapshot-basedLED. a In the absenceof
perturbations, a topologically ordered state with zero correlation length such as
Kitaev’s toric code state16 is characterized by +1 expectation values of `bare'Wilson
loop operators, which are typically tensor products of single-site operators (dotted
blue loop). In realistic systems, however, coherent perturbations give rise to virtual
anyon pairs (red dots/straight lines), and incoherent errors introduce physical
anyon pairs (orange dots/wavy lines); this causes the expectation value of bare
Wilson operators to decay exponentially with the loop’s perimeter. To account for
these localfluctuations, one canmeasure `fattened'Wilsonoperators supportedon
an annulus (blue); the LED loops constitute one realization of this.b LEDmethod to
measure decorated Wilson loop observables for Z2 topological order in a system

where qubits live on the links of a square lattice, and stabilizers are associated with
vertices. Given an experimental snapshot of all qubits in the Z or X basis, one can
obtain values for all stabilizer operators in that basis, thereby identifying the
locations of all e orm anyons, respectively. In the first step, neighboring anyons are
paired using a local decoder (dashed pairings), and each pair is removed by flipping
the value(s) of qubit(s) lying on a path of minimal length connecting the two
anyons; subsequently, the lattice is coarse-grained so that only a fraction of the
original qubits remain. These two steps are iteratedn times (here,n = 2), afterwhich
a bare Wilson loop is evaluated on the final, coarse-grained state. c The final, bare
Wilson loop operator evaluated on the final state is equivalent to decoratedWilson
loop operators evaluated at earlier iterations (see Methods).
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The snapshot-based LED approach begins with a measurement of
all qubits in the same (Pauli-Z or Pauli-X) basis. For each measurement
snapshot, one can calculate the stabilizer andWilson loop values. Local
fluctuations appear as stabilizer violations, which are identified with
anyonic excitations16 (Fig. 1b). A local decoder partially removes such
fluctuations by flipping measured qubits using only nearby stabilizer
values. The simplest such local decoder can remove single-qubit
errors, by flipping a qubit if and only if both adjacent vertices (resp.,
plaquettes) are occupied by an m (e-anyon). However, it cannot
remove higher-weight errors, which flip two or more adjacent qubits.
Subsequently, the lattice is coarse-grained, which can also be done
efficiently on measurement snapshots (see methods). Together, the
anyon-pairing and coarse-graining steps are repeated for n layers.
Crucially, the weight of uncorrected errors is reduced in each layer, so
that all local errors eventually become single-qubit errors, which the
decoder can correct; this mimics a real-space RG flow towards the
fluctuation-free fixed-point state (see Methods). Finally, a bare Wilson
loop is measured on the final, corrected and coarse-grained
state (Fig. 1b).

This bare operator measured on the final state is equivalent to a
decoratedWilson loopoperatormeasured on the original state (Fig. 1).
Moreover, it is determined solely by the fixed-point state and is inde-
pendent of the specific fluctuations in the system; this crucially dif-
ferentiates LED from prior approaches to construct fattened loop
operators5,8,9. Notice that all steps in snapshot-based LED can be per-
formed in post-processing (see Methods), making it uniquely suited
for integration into experimental measurement procedures. More
general LED operators can be constructed through the quantum cir-
cuit formulation; one example is presented in the Supplementary
Information.

The hierarchical LED procedure is also inspired by the quantum
convolutional neural network (QCNN) approach to phase classifica-
tion, and the decoratedWilson loopoperators resemble themultiscale
string order parameters studied in ref. 17. However, in this context, the
LED framework is more general: one can construct LED Wilson
operators of diameter L with any desired correction distance d≪ L

(Fig. 2a) by choosing any local decoder which pairs anyons up to dis-
tance d (see Methods). The construction of Fig. 1b with alternating
local-decoding and coarse-graining layers is a particularly efficient way
to construct local decoders and LED loops with longer-range
(e.g., d, L∝ 2n).

We emphasize that the locality of our procedure ensures that only
topologically ordered states can flow to the fixed-point state. Thus,
LED gives rise to a sufficient condition orwitness for topological order.
This distinguishes LED from general decoders, which do not typically
respect locality and hence cannot be used to certify topological order.

Numerical detection of topological order with coherent
perturbations
To demonstrate the applicability of LED for coherent local perturba-
tions to HTC, we consider a family of states

ψðgX , gZ Þ
�� �

=
1
N e

gX

P
i

X i + gZ

P
i

Z i

ψTC

�� �
, ð2Þ

generated by imaginary-time evolution of a toric code ground state
∣ψTC

�
18–20. As each operator Zi (resp., Xi) creates a pair of m anyons (e

anyons), ∣ψðgX , gZ Þ
�
contains virtual anyon fluctuations on top of

∣ψTC

�
. In the special case where gX =0, topological order is known to

survive for perturbations gZ ≤ gc =0.220343, beyond which the m-
anyons condense, driving a second-order phase transition into the Z-
paramagnet state21. More generally, ∣ψðgX≠0,gZ≠0Þ

�
is also topologi-

cally ordered for small gX and gZ, but the transitions to paramagnetic
phases can occur at points that differ from gc.

In testing LED, we numerically simulate projective measurements
of ∣ψðgX , gZ Þ

�
and use them as input “experimental snapshots” in

Fig. 1b (see Methods). Figure 2b shows the value of the LED order
parameter for a trivial and a topological state with gZ =0.14, when n is
varied (and d, L∝ 2n). Clearly, the order parameter stays at 0 for the
trivial state, but increases from a small, finite value to one for the
topological state as n is increased. Similar behavior is also observed
throughout a one-dimensional parameter space in Fig. 2c, d, whenever

Fig. 2 | Numerical demonstration with coherently perturbed toric code states.
a In a general construction of our LED Wilson loop operator, we use a local
decoder which pairs anyons within a region of radius d (blue annulus). Conjugate
LED open string operators (red stripe) anti-commute with Wilson loops, and
hencemust vanish in the topological phase. bOrder parameter 〈Xloop〉〈Zloop〉 for a
trivial state (gZ = 0.0, gX = 0.26) and a topological state (gZ = 0.12, gX = 0.12), upon
varying n, using a distance-four patch decoder and coarse-graining blocksize two
respectively (see Methods). c Output at different n along the gZ = 0.14 line of the
phase diagram. Gray dotted line is conjectured phase transition region.

d Expectation values of generic LEDWilson loops with the same diameter L, using
the pairing decoder (d = 1) and distance-four patch decoder (d = 2) without
coarse-graining. e, f Corresponding expectation values of bare and decorated
open string operators. g Order parameter values constructed from bare Wilson
loops (n = 0) and LEDWilson loops (n = 3), using the same LED procedure as (c, e),
across varying values of (gX, gZ). Dark gray regions are numerical estimates for the
phase boundary between topological and trivial (Methods). Light gray regions
correspond to locations where sampling is expensive due to large correlation
length.
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the correction distance d is increased, while keeping d≪ L to prevent
overcorrection (see Methods). Importantly, amplification occurs only
if the input state is topological, and the order parameter approaches 0
for all trivial states.

Another important set of observables for characterizing topolo-
gical order are X and Z open string operators, which detect the tran-
sition from the topological phase to the trivial, paramagnet phase.
Because LED Wilson Z-loop operators (resp., X-loop operators) are
linear combinations of Z (X) closed loops supported on an annulus,
they anti-commute with conjugate X (Z) open strings connecting the
interior and exterior of the annulus. As such, the expectation value of
any long, open string must flow to zero in the topological phase,
whereas closed-loopLEDoperators flow to unitywith increasingd. The
topological-to-trivial phase transitionoccurswhen certain long, openX
or Z strings acquire non-zero expectation value, due to the con-
densation of m or e anyons, respectively. Indeed, deep in the para-
magnetic phase the state lim

gx!1
∣ðgx ,gzÞ

�
is polarized along the X

direction, and X open strings become unity. However, for generic tri-
vial states, open strings also decay exponentially with length, due to
local fluctuations of the opposite type; nevertheless, LED can still
amplify their expectation values by removing the effect of local fluc-
tuations. This behavior is demonstrated in our simulations: in Fig. 2e, f,
open string expectation values stay at 0 in the topological phase, but
are amplified and saturate to a non-zero value in the trivial (para-
magnetic) phase. Because LED amplifies the contrast between trivial
states and a large class of topological states, the topological order can
be detected using with lower sample complexity—that is, by using
substantially fewer experimental repetitions17,22 (see Supplementary
Information).

Let us note that the boundary dividing the states whose LED
operators approach zero and one does not necessarily correspond to
the topological phaseboundary: in general, it dependson the choiceof
decoder and coarse-graining length-scale. For instance, this is
observed in Fig. 2g, where closed loops are nearly one after n = 3 layers
for a large region within, but not fully encompassing, the topological
phase. Hence, LED is not always a necessary condition for
topological order.

Effect of incoherent errors
We next demonstrate the application of LED in the presence of inco-
herent local noise such as spontaneous emission or dephasing, which
commonly occur in experiments. Because local decoders can recover
topologically encoded information in the presence of small, local error
channels12,23 it is reasonable to ask whether mixed states prepared in
these systems exhibit topological ordering.

To study such examples, we introduce incoherent bit- and phase-
flip errors by independently flipping, with probability pflip, each mea-
sured qubit in a snapshot of ∣ψðgX ,gZ Þ

�
. Here, we associate topological

orderwith states that canbe transformed into a ground state ofHTC via
local operations. Our analysis then suggests that the resulting mixed-
state phase space contains aZ2-topological phase, a Z-paramagnet, an
X-paramagnet, and a disordered phase with large incoherent error
rates. However, it is especially difficult to distinguish the topological
anddisorderedphases usingmeasurements ofbareoperators alone: in
both phases, open strings remain close to zero, while bare Wilson
loops decay exponentiallywith perimeter as e−αL, where the exponentα
interpolates smoothly between the phases (Fig. 3a, b). This is in con-
trast to the paramagnet phases, where closed loops exhibit similar
behavior, but certain open strings decay with the same exponent α as
the closed loops24.

Upon studying the behavior of LED operators, one finds that the
mixed-state phase space exhibits two qualitatively different regimes
(Fig. 3b). LED reduces α to 0 with increasing d in the ‘correctable’
regime, while α grows in the ‘uncorrectable’ regime. Further,

correctable states with small pflip are connected to topologically
ordered pure states, suggesting these mixed states are topologically
ordered as well. Indeed, we show that correctability implies the input
state cannot be prepared from a product state using only local
operations. In particular, if LED Wilson loops are amplified to above
1 − ϵ under depth d correction, this certifies topological order up to
length-scale OðL� dÞ where L∼ 1=

ffiffiffi
ϵ

p
. Furthermore, we argue (see

Methods) that, under plausible conditions, this implies the entangle-
ment negativity of the input state contains a topological term; this
connects the LED characterization of mixed state topological order to
other studies25–27.

The ability of LED to distinguish between the topological and
disordered phases can be understood by analogy to quantum error
correction. Conceptually, since any given LED loop operator is sup-
ported on an annulus, we can consider this operator as being
embedded in a surface code on this annulus with open boundary
conditions, which supports a logical qubit. Then, an LED Z-loop
operator corresponds to a logical-Z operator for this qubit, while an X-
string connecting the interior of the annulus to the exterior corre-
sponds to a logical-X operator (Fig. 2a). In this framework, the decay
rate α ofWilson loops corresponds to a local logical error rate per unit
length, and in the correctable phase, LED-based decoding succeeds
with high probability as long as the code distance d is sufficiently large
(Fig. 3c). However, in the uncorrectable phase, such as when pflip is
above the error correction threshold or when long, open strings con-
dense in aparamagnetic phase, decoding cannot correctly pair anyons,
resulting in a high rate of logical errors23.

The above results are deeply rooted in the stability of topological
order against local perturbations. In contrast, any finite temperature
destroys long-range topological order as it leads to freely propagating
thermal anyons. In Fig. 3d, we consider the toric code model at finite
temperature, with local incoherent errors, and find that the LED loop
operators indeed approach zero upon increasing n. Interestingly, their
expectation values flow non-monotonically, being amplified at small n
before eventually turning to 0. This occurs because of a competition
between two effects: thermal anyons are uncorrectable, so their den-
sity accumulates under RG flow; however, local fluctuations are cor-
rected at early layers, which initially amplifies LED loop expectation
values. Because loops at different n probe correlations at different
length-scales, the turning point in these curves can be used to identify
the characteristic length-scale of separation between thermal anyons,
or equivalently, the system’s temperature.

Experimental realization in Rydberg atom arrays
We now use LED to characterize and provide new insights into the
Z2-topologically ordered states recently realized on a 219-qubit pro-
grammable quantum simulator28. In the experiment, qubits are enco-
ded in ground states and n = 70 Rydberg states of neutral 87Rb atoms
and placed in an array on the links of a kagome lattice (Fig. 4). This
model maps onto a dimer model, where each Rydberg atom can be
viewed as a dimer covering the two adjacent vertices of the kagome
lattice29: the Rydberg blockade interaction between nearby atoms
enforces a “dimer constraint” by preventing, with high probability, any
vertex from being covered by more than one dimer30.

This dimer model is predicted to support a Z2-topologically
ordered state of the resonating valence bond (RVB) type, involving the
equally weighted superposition of all dimer coverings29,31,32. In this
model, Z-stabilizers are given by (−1) times the product of single-qubit
Z-operators on the edges touching a vertex, X-stabilizers are given by
the product of off-diagonal operators supported on the triangles
bordering a hexagon (see Methods), and the RVB state forms a fixed-
point state. An e (resp., m) anyon arises when a Z (X) stabilizer is
violated33–35. Here, the (−1) factor for Z-stabilizers ensures stabilizer
expectation values of +1, because each vertex is touched by exactly
one dimer.
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In the experiment, a topologically ordered state is prepared
by quasi-adiabatically adjusting the detuning Δ and Rabi frequency
Ω of a global laser drive28. The onset of topological order is
observed by studying the expectation values of Wilson loops and
open strings24,28,29,36,37. A state consistent with Z2 topological order
emerges when using a quasi-adiabatic sweep from initial Δ/Ω < 0 to
a final value of Δ/Ω in the range 3.3 ≲ Δ/Ω ≲ 4.5. In practice, several
factors make quantitative characterization of such states difficult,
as they cause the prepared state to differ from the ideal fixed-point
state for the dimer model. In particular, the finite sweep speed and
experimental imperfections (e.g., off-resonant scattering, laser
phase noise, spontaneous emission events) can modify the
experimentally created state. Moreover, the Rydberg interaction
Hamiltonian is only an approximation of the parent Hamiltonian of
the fixed-point state: for example, the 1/r6 interaction between
Rydberg atoms gives rise to long-range tails in the interaction
Hamiltonian. These long-range tails also destabilize the spin-liquid
ground state, which could cause a first-order phase transition
between regions (II) and (IV) in Fig. 4. Nonetheless, a spin-liquid
state can be prepared by using finite ramp speeds, as was done in
the experiments29,38,39. These factors correspond to both coherent
and incoherent perturbations, similar to those considered in our
toric code simulations. As a result, while topological order can be
discerned at modest length-scales, the expectation values of large,

bare Wilson loop observables have nearly vanishing signal for
almost all final values of Δ/Ω (Fig. 4b, e).

To circumvent these imperfections, we measure LED loops on
the experimentally prepared states. Due to the limited experi-
mental system size, it is not possible to consider loops that strictly
satisfy the limit where ξ≪ d≪ L, resulting in relatively small
expectation values for the LED loop operators. Nonetheless, we
clearly observe a range of values of Δ/Ω where both Z- and X-loops
are amplified, which corresponds to the spin-liquid interval iden-
tified in ref. 28 (blue shaded region in Fig. 4). In particular, some of
the largest loops within the system acquire non-zero expectation
values in this parameter regime. To further confirm our findings in
this intermediate system size setting, we also examine the behavior
of open Z- and X-strings under LED, and we find that there are four
regimes (I–IV). Regimes I, II, and III correspond to the Z-para-
magnet, X-paramagnet, and spin-liquid regime, in agreement with
the prior interpretation of experimental results28. We emphasize
that our analysis of Regime III goes beyond that of28, showing non-
trivial coherence in closed loops at significantly longer length-
scales. Furthermore, LED provides novel insights into the nature of
Regime IV: because LED does not amplify open or closed string
expectation values, our analysis appears to be consistent with a
decoherence-dominated disordered phase (see also Supplemen-
tary Information). Such a phase is analogous to the disordered part

Fig. 3 | Application tomixed states. aWithout error correction, generic points in
the topological and trivial, disordered phase (gZ =0.12, gX =0.18, pflip = 0.0 and
gZ =0.06, gX =0.0, pflip = 0.11 resp. shown in the plot) appear very similar qualita-
tively, as closed loops decay exponentially with loop perimeter in both cases, while
open strings remain close to zero (see Methods). In contrast, in the trivial, para-
magnet phase (gZ =0.32, gX =0.2,pflip = 0), open strings decay with the same
perimeter-law as closed loops. b gZ =0.14 slice of mixed state phase diagram,
containing topological, disordered, and X-paramagnetic phases. These phases are
associated with fixed-point states gx7D2 = 7D2gz7D2 = 7D2pflip7D2 = 7D20,
gz7D2→ 7D2∞, gx7D2→ 7D2∞, and pflip7D2→ 7D20.5, respectively. The flow of the
closed-loop decay exponent α under LED provides a sharp divider between two
kinds of perimeter-law decay, observed in different regimes of the mixed-state
phase diagram. c In the uncorrectable regime (i), the local decoder of LED pairs

anyons incorrectly, resulting in perimeter-law decay with large α in disordered and
paramagnetic phases. Moreover, the probability of such an incorrect pairing can
increase with the number n of LED iterations. Here, the black pairings are made by
LED at or before one specific value of n, and gray pairings are made upon per-
forming one additional LED iteration. In the correctable (topological) regime (ii),
increasing n can reduce α to zero, as fluctuations of higher characteristic length ξ

canbe reliably corrected using only local information. In the conceptual framework
where an LED operator is embedded in a surface code on an annulus (Fig. 2a),
incorrect pairings corresponds to logical errors (e.g. XL). d Expectation values of
LED loop observables upon increasing n (d, L∝ 2n), in thermal states of varying
temperatures (between 0 and 0.35, with darker colors indicating higher tempera-
tures) and pflip = 0.02.
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of themixed-state phase diagram (Fig. 3c), which has a high density
of dephasing (Z) errors, in contrast to the valence-bond solid (VBS)
phase predicted for the ground state29.

Circuit-based LED and generic topological phases
While our current LED analysis uses classical post-processing of Z-
and X-basis experimental snapshots, the most generic LED for-
mulation involves a quantum circuit model following the QCNN
framework of ref. 17. Here, the entropy associated with both
incoherent and coherent fluctuations are systematically removed

by introducing ancillary degrees of freedom and applying local
unitary transformations, ultimately leaving a purified state sup-
ported on fewer degrees of freedom. Notably, this enables the
application of LED to a large class of non-abelian topological
orders known as string-net models16,40. The anyon content of
these models is characterized by a modular tensor category
(MTC)C =ZðAÞ, where Z denotes the Drinfeld center41,42 of a uni-
tary fusion category A16. Here, the possible topological charges
(i.e., anyon types) are given by the simple objects α0, α1, . . . , αN−1

of C. It is conjectured that any MTC is uniquely determined by

Fig. 4 | Enhancing experimental detection of Z2 spin liquid. a, d In the
experiment28, 219 qubits are placed on the links of a kagome lattice. Upon applying
LED, the Z and X closed-loop observables are amplified for certain ranges of Δ/Ω.
The shaded purple regions show the support of large, decoratedWilson loops after
one layer of correctionwith n = 1.b, e Expectation value ofWilson loopsdepicted in
(a, c) for different correction layers n. Plotted error bars (shaded regions) show
expected variation (one standard error) of the mean. The regime in which both
types of loops are amplified corresponds nicely to the spin-liquid regime identified

in ref. 28 (shaded blue region). c, f The behavior of expectation values of open Z-
andX-strings under LED further confirmsourfindings, as both typesof open strings
stay at 0 in the spin-liquid regime. Here, the measured open strings are half of the
Wilson loops. By considering the behavior of all types of loops and strings---closed
and open, Z and X---we find that there are four regimes (I-IV), corresponding to four
phases: (I) Z-paramagnet, (II) X-paramagnet, (III) topological spin liquid (blue), and
(IV) a phase which is consistent with strong decoherence effects (gray). In our
analysis, the progression from Regime (III) to (IV) appears to be smooth.
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modular S and T matrices which capture its anyon braiding sta-
tistics:

ð3Þ

ð4Þ

where di is the quantum dimension of αi andD=
ffiffiffiffiffiffiffiffiffiffiffiffiP

id
2
i

q
. For example,

a key signature of the toric codeMTC C =DðZ2Þ is the − 1 twist product
between e and m anyon loops (sem = −1).

Direct measurements of sij and tij involve braiding anyons along
large loops, and hence are affected by coherent perturbations and
incoherent errors. The inability to extract their precise values prevents
accurate identification of the topological phase. To circumvent this, we
use a hierarchical LED circuit which systematically detects and identifies
errors (anyons) at each site by using ancillary qubits, removes them by
inputting the fusion rules of C into a maximum-likelihood decoder, and
applies an entanglement renormalization circuit to coarse-grain the
system43. After multiple layers, the S and T matrices can be measured
with much higher accuracy and efficiency (Fig. 5). We note that circuit-
based LED is required for the detection and removal of non-abelian
anyons. More details on circuit-based LED and generic topological
phases can be found in Methods and Supplementary Information.

Discussion
These results demonstrate that LED constitutes an exceptionally pro-
mising approach to enhance the detection and characterization of
topological order. Several generalizations and future avenues can be
considered. For example, the variational methods of QCNN circuits can
enable adaptivemeasurement procedures, which can recognize amuch
larger portion of the topological phase. This opens the door towards
achieving a necessary and sufficient criterion for topological order
using LED, which cannot be done using any fixed linear observable44.
Moreover, our results indicate that LED is applicable to generic topo-
logical orders in higher dimensions, which is challenging to analyze
using any currently known techniques. LED can also potentially serve as

an order parameter for efficiently characterizing glassy gaugemodels45,
through a mapping shown in Methods. In addition, while our present
work analyzes a spin-liquid state prepared using a Rydberg-atom
quantum simulator, LED is also directly applicable to other platforms
such as superconducting qubits46 or trapped ions47.

Another promising direction is to further study whether the “cor-
rectability” of states in our mixed-state phase diagram can be used to
characterize topological order in mixed states more generally11,27,48–50. In
particular, it could be intriguing to further explore the dependence of
the correctable regime on the choice of local error correction and/or
coarse-graining procedure. Finally, while our approach can be directly
applied to any string-net topological order, it could be interesting to
consider more general topological phases, fracton phases or gauge
theories with continuous gauge groups35,51. Such methods can then
become indispensable parts of quantum simulation toolboxes for
understanding exotic states of entangled quantum matter.

Methods
Numerical simulations for the toric code
In this section, we explain how the numerical simulations underlying
Figs. 2 and 3 are performed. We begin by constructing a projected
entangled pair state (PEPS) representation of the exact toric code
ground state52. This construction utilizes a parity tensor P defined as

Pijkl =
1 if i+ j + k + l =0mod 2

0 otherwise

�
ð5Þ

where each index i, j, k, l∈ {0, 1} (i.e., the tensor P has bond dimension
two). Because the toric code is defined with qubits on the links of a
square lattice, our PEPS representationof the state has onePEPS tensor
with two physical indices per unit cell. Letting p, q be the physical
indices and ijkl be the virtual indices, the toric code PEPS tensor A is
then given by Apq

ijkl = δ
p
i δ

q
j Pijkl . Our perturbed states ∣ψðgX ,gZ Þ

�
are

constructed from the toric code state by applying imaginary time
evolution to each site LðgX , gZ Þ= egXX + gZZ :

AðgX , gZ Þpqijkl =
X
p0 ,q0

LðgX , gZ Þpp0LðgX , gZ Þqq0Ap0q0

ijkl : ð6Þ

Notice that this operation does not change the PEPS bond dimension,
thereby allowing for efficient simulation.

Fig. 5 | LED for generic string-netmodels. aAnancillaqudit is used tomeasure the
topological charge within each local regionR: we initialize the ancilla in ∣0i, apply a
local unitary U =

PN�1
i,j =0∣ði + jÞmodN

�
j

�
∣anc � Pi, where Pi projects R onto the

subspace with topological charge αi, and finally measure the ancilla’s state. b Local
error correction is performed by inputting the fusion rules of C into a maximum-
likelihood patch-based decoder. Given any l × l patch, one identifies possible
groupings of anyons (including groupings to the boundary) that can remove all
nontrivial topological charges within the patch. The decoder performs the group-
ingofhighest probability by fusing anyons or dragging them to the boundary of the

patch59. If C is non-abelian, the vacuum topological charge may only be attained
probabilistically with probability 1 −∑αpα, or a nontrivial topological charge α

remainswith someprobabilitypα. cThe system is then coarse-grainedby applying a
quantum circuit corresponding to a multiscale entanglement renormalization
ansatz (MERA) representation of the fixed-point state43.dAt the final layer, S- and T-
matrix elements can be measured by introducing an ancilla qubit in the ∣+ i state
and applying controlled-anyon-braiding operations. More details on implementing
Steps (c) and (d) can be found in Methods.
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Our goal is to simulate projective Z-basis measurements to serve
as the “experimental snapshot” input in Fig. 1b. The key ingredient
that enables efficient sampling is an algorithm for efficiently com-
puting marginal and conditional probabilities, which can be imple-
mented as follows: We first label every unit cell by its coordinate
(x, y). There are four possible measurement outcomes at each unit
cell, and we compute the probability P(σ(1, 1) = ab) that measurement
of the first site (x, y) = (1, 1) yields the outcome ab = 00, 01, 10, or 11.
Next, we select a sample ab11 based on this probability distribution,
compute the conditional probability distribution on the second site,
P(σ(2, 1) = ab∣σ(1, 1) = ab11), and sample the second measurement out-
come ab21. The process then repeats, with each subsequent dis-
tribution being conditioned on all prior measurements.

Computing the probabilities requires contracting a 2D tensor
network (Fig. 6), which is in general#P-hard53. In practice, however, the
states we encounter have finite correlation length, and the computa-
tion becomes remarkably efficient throughout much of the phase
diagram54. In particular, we work on a strip of finite height Lx and
infinite length Ly, and introduce boundarymatrix product states (MPS)
to efficiently capture the effect of the environment—that is, the sites
different from the one currently being sampled55. Because singular-
value decomposition truncation is used at each step to prevent the
bond dimension of the boundary MPS from growing exponentially56,
the method is approximate; however, we only discard singular
values < 10−8, so truncation errors are insignificant. Details of the
boundary conditions and contraction ordering are discussed in
the Supplementary Information.

In our simulations, we choose Lx = 300 unit cells and sample
1000 columns, giving us access to very large snapshots with
600,000 qubits. To minimize boundary effects, we compute

observables supported on sites at least 30 unit cells away from the
boundaries. Near the phase boundaries, the bond dimension
(entanglement) of the boundary MPS becomes large due to the large
correlation length, which increases the computational demands for
sampling (gray data points in Fig. 2g). We numerically confirm this
phase boundary with an independent calculation (see Supplemen-
tary Information).

Details on error-correction and coarse-graining procedures
Here, we explain the details of the LED decoding and coarse-graining
procedures and demonstrate how bare Wilson loops become deco-
rated under the LED protocol. Without loss of generality, we consider
Z-basis measurements, from which we can calculate plaquette stabi-
lizersBu. Here, eachplaquette is labeledby the 2D coordinate of its unit
cell u = (x, y). Since there are two qubits per unit cell, each qubit carries
a coordinate and a link label v or h, depending on whether its corre-
sponding edge in the square lattice is vertical or horizontal, respec-
tively. Finally, the projective measurement outcomes are denoted by
σ∈ {+1, −1} (Fig. 7).

To illustrate local error correction, we consider the “pairing
decoder,” which flips a qubit if and only if its two neighboring pla-
quettes are simultaneously occupied. Importantly, to preserve locality,
we first compute all stabilizer values and then flip qubits based on
these values. The decision of whether to flip any qubit then depends
only on its value, and the values of the six adjacent qubits with which it
shares a plaquette. Equivalently, this error correction procedure cor-
responds to an operator transformation

σu+ x̂,v ! σu+ x̂,v 1 +Bu +Bu+ x̂ � BuBu+ x̂

� �
=2 ð7Þ

Fig. 6 | PEPS sampling algorithm. Expectation values are computed with respect
to both ∣ψ

�
(back) and ψ

�
∣ (front). a Tracing, or averaging over measurement

outcomes can be done by contracting the physical indices, and is needed to
compute marginal probabilities. b To compute the probability of a particular Z
basis measurement, the physical index is assigned a particular value ab. c We can
efficiently contract a 2D PEPS tensor network on an infinite strip of finite height, by
using a left and right boundary MPS (only top four rows shown). The probability

distribution for projective measurements on a particular site, e.g., xy= 11, can then
be computed efficiently. d Once an entire column has been sampled, the
measurement-dependent MPO can applied to the boundary MPS. Although per-
forming this contraction exactly causes the bond-dimension to grow rapidly, away
from phase boundaries, finite bond dimension is sufficient for accurate simulation.
See Supplementary Information for more details.
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σu+ ŷ,h ! σu+ ŷ,v 1 +Bu +Bu+ ŷ � BuBu+ ŷ

	 

=2 ð8Þ

To ensure all local errors are removed after a finite number of LED
steps,wealsopair anyons,whichoccupy twoplaquettes separatedbya
diagonal, such as Bu and Bu+ x̂ + ŷ. The locality of the decoder ensures
that the support of any local operator only grows by a finite amount
with each step. Subsequently, the coarse-graining procedure replaces
each b × b block of plaquettes with a single plaquette whose value is
the product of b2 plaquettes; microscopically, this can be done by
defining new qubits as a product of b corresponding qubits in the
original lattice. The combination of a local pairing step and a coarse-
graining step forms a layer of real-spaceRG; with each additional layer,
one can correct errors of higher and higher weight.

ThebareWilson loopsmeasured in thefinal state areequivalent to
decorated loop operators acting on the original state. Thesedecorated
operators can be efficiently computed from projective measurement
data, since their eigenstates are product states in the Z and X bases,
respectively. Furthermore, in the operator transformation picture, any
loop or string of length L maps onto a linear combination of expo-
nentially many (2O(L)) loops or strings, respectively. Thus, while the
operator transformation picture is helpful for conceptual reasons, it is
computationally much easier to use the original picture of error-
correction and coarse-graining.

A few remarks are in order. First, one important property of LED is
that it preserves commutation relations: consider two anti-commuting
X and Z strings that intersect at a single point, far from the strings’
endpoints. Upon applying LED, the resulting decorated strings still
anti-commute. This is because the correction is computed only using
stabilizers, so it decorates Z-operators by a linear combination of
closed Z-loops, and similarly for X. Moreover, other local decoding
algorithms, such as cellular automata and RG decoders, can also be
used to generate different LEDoperators57. In the following section, we
describe a flexible, “patch-based” local decoder for the toric code,
which allows LED to classify a wider range of states as topological.

Patch-based decoder
The patch-based decoder with variable correction distance d is based
on a local minimum-weight perfect matching (MWPM) procedure. In

the first decoding step, a local MWPM decoder is convolved with all l
by l square regions of the toric code, where l ~ d; for each region,
MWPM takes as input the location of the enclosed anyons. Because
both e andm anyons can freely move into and out of the region, this is
analogous to decoding a surface code with open boundaries. There-
fore, MWPM pairs any given anyon either with another anyon or with
the boundary.

The second step aggregates MWPM pairings. Since the square
regions can overlap, a pair may appear more than once. As such, after
choosing a natural indexing of the plaquettes, we create a list of all
MWPMpairings between two plaquettes (p, q) with p < q; pairings with
the boundary are not included (Fig. 8). For eachplaquette p containing
an anyon, the patch-based decoder then performs the pairing (p, q)
which occurs most often. This procedure naturally favors pairings that
flip fewer qubits, because shorter-range pairings can be included in
more local patches.

A critical property of this decoder is that it preserves locality. In
the first step, MWPM only uses information from local l by l patches,
while the distance between partner plaquettes in the second step is
always less than l. Aggregation can thus be performed using only the
results from a small number of overlapping local patches.

Decoder details for the ruby lattice spin liquid
We now explain the decoding procedure for a dimer model where
qubits lie on the vertices of the ruby lattice, or equivalently, on the
links of a kagome lattice. This dimer model supports a Z2 spin-liquid
phase, whose fixed-point is a resonating valence-bond (RVB) state29.
This state is in the same universality class as the toric code, as it sup-
ports e and m anyons with similar string operators.

We first describe the decoding procedure for e anyons, which
correspond to vertices with an even number of adjacent dimers. (We
note that this is an odd Z2 spin liquid, and the trivial empty state
corresponds to maximal occupation of e anyon states.) In the first
correction step, we apply the pairing decoder between adjacent ver-
tices.We then coarse-grain the kagome lattice to a triangular lattice by
grouping vertices within each upward-pointing triangle. This trans-
formsvertex stabilizers in thekagome lattice to vertex stabilizers in the
triangular lattice (Fig. 9a). The pairing decoder is then applied between
adjacent triangles in the second correction step. In the main text, we

Fig. 7 | LED coarse-graining and operator transformation. a In the toric code
model, qubits are located on the links of a square lattice, and the stabilizer asso-
ciated with any plaquette is given by a product of four single-qubit Pauli-Z opera-
tors. bCoarse-grainingmaps a b × b block of plaquettes to a single plaquette whose
value is the product of the b2 plaquettes (here b = 2). Microscopically, coarse-

grained qubits σ0 are products of b lower-level qubits σ. Coarse-grained stabilizers
B0
u are therefore equivalent to a product of b × b stabilizers at the lower level.

c Pairing correction flips a qubit conditioned on the state of its two neighboring
stabilizers. This is equivalent to an operator transformation where the qubit is
decorated by products of closed loops.
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study the flow from uncorrected loops to vertex-paired and triangle-
paired loops, which are denoted as as layers 0, 1, and 2, respectively.

We next consider the m anyons, which are associated with hex-
agonal plaquettes. A rotation is first performed within each triangle,
such that the string operators associated with m anyons become
diagonal in the measurement basis. This allows us to map each con-
figuration onto a triangular lattice, whose vertices are located at the
center of each hexagon in the kagome lattice; thismapping transforms
X-stabilizers of the dimer model into vertex Z-stabilizers in the trian-
gular lattice (Fig. 9b). Due to the small experimental system size, we
can only perform one layer of correction, and we use the pairing
decoder on the triangular lattice. We note that open strings on the
triangular lattice map onto open strings on the ruby lattice, although
the resultant strings are slightly different from the ones measured in
refs. 28, 29.

Quantum circuit formulation of LED
As discussed in the main text, the most general formulation of LED
uses a hierarchical quantumcircuit like theQCNN circuit introduced in
ref. 17. The structure of such a circuit is illustrated in Supplementary
Fig. S11 in a one-dimensional example for simplicity of illustration, but
can be easily generalized to the two-dimensional cases con-
sidered in LED.

In this framework, stabilizermeasurements are performed at each
layer using quantum circuits to preserve the coherence of qubits in the
system, in the same fashion as for surface-code quantum
computation58. When the lattice is coarse-grained as in Figs. 1, 7, a
fraction of the system’s qubits are measured, and local operations are
applied to each remaining qubit based on nearby stabilizer measure-
ment values, to correct for local errors. One example circuit con-
struction of LED stabilizer measurement, decoding, and coarse-

graining for recognizing the toric code phase is presented in the Sup-
plementary Information. For more general string-net models, ancillas
can be used to detect the presence of anyons, and the decoding steps
perform anyon transport and fusion via procedures described in
ref. 59; meanwhile, the coarse-graining circuit is constructed as the
inverse circuit of a multiscale entanglement renormalization ansatz
(MERA) representation of the fixed-point state (Fig. 5)43. In addition, a
layer of variational unitary operations is placed in front of each anyon-
detection step.

These variational unitaries can be tuned to optimize the LEDorder
parameter values, especially in the presence of (quasi-)local rotations
of qubits on top of a known fixed-point state. For example, if every
qubit in a perfectly prepared toric code state underwent a Haar-ran-
dom, single-qubit operation, both the bare and snapshot-based LED
Wilson loop operators will be exponentially small. However, the layer
of variational unitaries in front of the first local decoding step enables
one to un-do these single-qubit operations and again achieve a high
LED signal. In particular, one uses here an adaptive procedure,
whereby ahybridquantum-classical feedback loop isused to tune each
unitary to optimize LED loop values. More generally, variational uni-
taries in front of subsequent local decoding steps l allow us to com-
pensate for local operations acting on multiple qubits of the system.
This is a major step towards achieving a necessary and sufficient cri-
terion for topological order, which is not possible using a single, fixed
observable such as a bareWilson loopoperator44.Moreover, due to the
special hierarchical structure of QCNN and LED circuits, the optimi-
zation of the variational unitaries can be done efficiently without
encountering the so-called “barren plateau” challenges of variational
quantum circuits60,61.

Finally, one other advantage of circuit-based LED is that it enables
the simultaneous measurement of loop operators in multiple bases in

Fig. 8 | MWPM-based patch decoder. a Example of an error chain which creates
four e-anyons. b The decoding algorithm performs correction using only local
information by splitting the large system into smaller overlapping regions, within
each of which the MWPM algorithm is used to find the lowest-weight pairing of
anyons. These local regions have open boundaries, hence MWPM can also pair
anyons to the boundaries if this is of lower weight. In practice, a slight boundary
bias is added to break ties in favor of boundary pairing. c The final step requires
locally combining the pairing outputs to determine the final pairing. In particular,
we count the number of times each site p is paired to sites q > p. In the diagram, two

equal-weight pairings contribute 0.5 each, though we randomly break the tie in
practice. Then, the algorithm pairs p with the q that appears most often. In this
example diagram, we connect two pairs that have weight = 5.5, and do not form the
weight = 2 pairing. We see in the simple four-anyon case depicted above, the pro-
cedure correctly recovers the pairing with windows of size l = 3. In general, this
patch-based decoder can correct errors up to distance d = ⌊l/2⌋; moreover, the
distance by which it spreads information and the thickness of any associated LED
operators are both proportional to l.
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each experimental repetition. This allows us to capture anyonic
braiding statistics, which is critical to the application of LED to non-
abelian phases. In particular, the final measurement of sij (Fig. 5d) can
be performed by initializing an ancilla qubit in the state
∣+ i= 1ffiffi

2
p ð∣0i+ ∣1iÞ, and applying a controlled operation which, condi-

tioned on the ancilla being in ∣1i, creates anyon pairs αi,αi and αj,αj ,
braids αi around αj, and fuses the pairs αi,αi and αj,αj . sij is then
measured in two steps: First, the magnitude ∣sij∣2 is equal to the prob-
ability of αj,αj fusing to vacuum when the ancilla is in ∣1i; this prob-
ability can be obtained by measuring local energy densities (e.g., by
performing stabilizer measurements). Then, when ∣sij∣2 > 0, we post-
select on both αi,αi and αj ,αj fusing to vacuum and measure the
ancilla’s final state

∣Siji / ∣0i+ sij ∣1i ð9Þ

in an appropriate basis to obtain the phase of sij.
For topological phases described by Abelian quantum double

models16, the quantum circuit and snapshot-based versions of LED can
be combined bymeasuring all qubits in a fixed basis after some chosen
depth d, and performing snapshot-based LED using the resulting sta-
bilizer measurement values (see Supplementary Information). The
choice of d is then determined by a tradeoff between the quantum
circuit depth/fidelity and the generality of local rotations,which can be
compensated for.

Topological order witness
Here, we show that LED provides a topological order witness—that is, it
does not misclassify any trivial product state as topological. For sim-
plicity, we study the case of Z2 topological order on a surface with
trivial topology, where the fixed-point state is the unique ground state
∣ψTC

�
of HTC. We begin by considering the ideal case where LED

operators go to one.

Theorem 1. Let ρ be an arbitrary input state defined on a surface with
trivial topology. Then, after performing LED with correction distance
d, assume the resultant state ρf has, as a subsystem, qubits living on the
links of a square lattice, as in the toric code. Then, if the stabilizer

expectation values 1+Av
2

D E
=

1+Bp

2

D E
= 1 at every vertex v and plaquette p

of the subsystem, then, the input state ρ is topologically ordered, in the
sense that it is connected to an output state of the form
ρf = ∣ψTC

�
ψTC

�
∣� αanc by generalized local unitary (gLU) transforma-

tion of depth O(d).

The key to the proof is a unitary implementation of LED by
introducing product state ancillas and performing local unitary gates
toperformstabilizermeasurement and correction (see Supplementary
Information for details). These operations, which cannot change the
long-range entanglement structure of the state, are known as gLU
transformations18, and preserve phase boundaries. Thus, if we further
assume the output ancillas αanc are in a trivial state, Theorem 1 guar-
antees the input state is in the toric code phase. However, we do not
certify this condition holds, which is in general more difficult: mea-
surements in multiple bases are needed to uniquely determine αanc.
Instead, LED certifies that the toric code state can be distilled from the
input state by gLU transformations. Because long-range entanglement
cannot be created from a trivial state by gLU transformations18, The-
orem 1 implies that LED operators flowing to unity forms a sufficient
condition for topological order, or equivalently, a topological order
witness (see also ref. 7).

While the above argument works well in theory, any practical
system cannot measure LED observables equal to one with infinite
precision. Indeed, even infinitesimal local perturbations to the toric
code ground state, such as e�iϵH ∣ψTC

�
for arbitrarily small ϵ and some

local HamiltonianH, can create error strings larger than the correction
length d. This causes LED loop expectation values to decay exponen-
tially, even in the topological phase. To show that LED still provides a
topological order witness in the presence of local perturbations, finite
measurement errors, and finite system size, we show the following
Theorem:

Theorem 2. Consider an arbitrary input state ρ and LED with correc-
tion distance d, as in Theorem 1. Suppose the corresponding sub-

system of ρf has stabilizer expectation values 1+Av
2

D E
>1� ϵ,

1 +Bp

2

D E
>1� ϵ at every vertex v and plaquette p. Then, the input state ρ

Fig. 9 | Decoding for the ruby lattice spin liquid realized in ref. 28. a For Z-loops,
two layers of LED can be performed. In both layers, we use the pairing decoder,
which flips a qubit (e.g., red or orange circle) if and only if both neighboring sta-
bilizers (e.g., red ororange squares) are equal to −1. Stabilizers in the first layer (e.g.,
red squares) are given by (−1)∏i∈vZi for each vertex v of the kagome lattice. The
coarse-graining procedure after the first decoding step maps three stabilizers to a
single stabilizer (e.g., orange square) in the coarse-grained lattice (blue lines),
whose value is determined by the product of the qubits along a loop enclosing a
triangle (e.g., purple closed loop). The open strings considered in the main text
start and end at hexagons (e.g., purple open string). b Tomeasure X-loops, a basis

rotation is first performed within each triangle of the kagome lattice, so that the X-
string operators become diagonal in themeasurement basis (inset and refs. 28, 29).
Each configuration is then mapped to a triangular lattice (blue lines), where each
edge of the triangular lattice is determined by the product of four qubits in the
original lattice (e.g., red circles); moreover, the X stabilizers of the dimer model
becomevertex stabilizers in the triangular lattice (e.g., purplehexagons). Asbefore,
the pairing decoder flips qubits (orange edges) conditioned on the values of sta-
bilizers (e.g., orange squares). Open strings on the triangular lattice also map to
open strings in the kagome lattice (e.g., red string), although the resulting strings
are slightly different from the ones measured in refs. 28, 29.
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exhibits topological ordering at least up to a length-scale OðL� dÞ;
that is, no purification of ρ can be prepared using a local quantum
circuit of depth less than OðL� dÞ, whereL∼ 1=

ffiffiffi
ϵ

p
.

Our proof of Theorem 2 hinges on the following two Lemmas,
proved in the supplement.

Lemma 3. Given an output state ρf satisfying the conditions of Theo-
rem 2, and a simply connected ðL� 2Þ× ðL� 2Þ square region R on
the system part, the reduced density matrix ρd =TrRc ½ρf � is indis-
tinguishable from the toric code reduced density matrix
σTC =TrRc ½∣ψTC

�
ψTC

�
∣� defined on the same region, up to the

bound jjρd � σTCjj≤ max
ffiffiffi
ϵ

p
,2L2ϵ

� �
.

Lemma 4. Consider an input state ρ and an LED procedure satisfying
the conditions of Theorem2. Then the final state ρf after LED cannot be
prepared using a local quantum circuit with depth less
than OðLÞ∼Oð1= ffiffiffi

ϵ
p Þ.

Upon combining the result of Lemma 4 with the fact that our LED
procedure corresponds to a local quantum circuit with depthO(d), we
find that the original input state ∣ψ

�
cannot be prepared using a

quantum circuit of depth smaller than OðL� dÞ—which is precisely
the statement of Theorem 2. So, if wemeasure loops of length L≫ d to
be 1 − ϵ, this shows that LED provides a topological order witness up to
length-scales of OðL= ffiffiffi

ϵ
p Þ.

We now discuss how these theoretical results are reflected in our
numerical simulations. First, when fluctuations are local, the prob-
ability of having an error string of length ℓ decays exponentially with ℓ,
and the exponent is determined by the characteristic length-scale ξ of
fluctuations. In these systems, we expect the error rate after anoptimal
LED procedure with correction distance d to be given by ϵ(d)∝ e−d/ξ, so
correction distance d =Ωðξ logLÞ is sufficient to certify topological
order up to length-scale L. Second, when LED uses the hierarchical,
anyon-pairing decoder, the anyon density is observed to decrease
faster than exponentially in the number n of LED steps (Fig. 10). In this
case, both the measured stabilizer size and the correction distance d
grow exponentially with n, which implies that the certification length-
scale L grows at least exponentially with n as well. Third, our

argument does not certify topological order to any length-scale when
L < d; this is because the support of such anLEDoperator no longer has
an interior, potentially giving rise to signal even in the trivial phase.
Indeed, this is reflected in our numerics as well (Supplementary
Information, Fig. S12).

Connection to topological entanglement negativity
The entanglement negativity of a mixed state ρS is defined as
SNðρÞ= log jjρjj1 = logðP λiÞ, where λi are the eigenvalues of ρ. Prior
works have shown, via a combination of analytical arguments and
numerical results, that in a topologicalphase, SNobeys anarea-lawwith
a constant correction, i.e. SN = αL − γ. Further, recent results have also
shown that the topological term γ vanishes at finite-temperature62, or
for high incoherent error rates63. Thus, the negativity appears to cap-
ture important features of mixed state topological order.

The unitary circuit construction of LED also enables us to connect
a positive classification under LED, to the topological entanglement
negativity of the input state. In particular, theorem 1 implies that states
classified as topological are connected to an output state
ρf = ∣ψTC

�
ψTC

�
∣� αanc via local unitary circuits. If we further assume

the ancillas contain no long-range order (see SM for rigorous defini-
tion), then since ∣ψTC

�
is topologically ordered, theoutput state indeed

has a topological correction in the entanglement negativity. It is fur-
ther believed that γ is a topological invariant, i.e., it should remain
invariant under local unitary circuits. As such, this should be sufficient
to certify the input state ρS has topological order.

We show this in the SM, for the special case where the LED circuit
is composed of Clifford gates, by extending the stabilizer formalism
introduced in ref. 62. Interestingly, there, the topological correction to
SN comes from the presence of decorated Wilson loops operators
with non-trivial twist product in the input state ρS (see also proof of
Lemma 4). Thus we conjecture a connection to topological entangle-
ment negativity holds for LED Wilson loops more generally.

Data availability
The data that support the plots within this paper and other findings of
this study are available at https://osf.io/k8up2/. We note that more
extensive data from the Rydberg-atom spin liquid experiment of

Fig. 10 | Perimeter-law decay ofWilson loops is clearly visible at various points
in the topological phase—(orange) gZ =0, gX =0.18,pflip = 0, (red)
gZ =0.18, gX =0.18,pflip = 0, (purple) gZ =0.10, gX =0.18,pflip = 0.03. This is
observed for both (a) uncorrected loops and (b) d = 6 corrected loops under two
layers of d = 3 MWPMpatch decoding. c LEDWilson loops appear to approach one

faster than exponential in n. d In a model with only incoherent errors (pflip = 0.02
(blue), 0.03 (orange), 0.04 (green), 0.05 (red)), we can study the effect of even
more layers, where we see hints that the decay is doubly exponential in n, or
exponential in d ~ 2n.
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ref. 28 are available at https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/BDCTRX.

Code availability
The data that support the plots within this paper and other findings of
this study are available at https://osf.io/k8up2/. We note that more
extensive data from the Rydberg-atom spin liquid experiment of
ref. 28 are available at https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/BDCTRX.

References
1. Wen, X.-G. Colloquium: Zoo of quantum-topological phases of

matter. Rev. Mod. Phys. 89, 041004 (2017).
2. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S.

Non-abelian anyons and topological quantum computation. Rev.
Mod. Phys. 80, 1083–1159 (2008).

3. Terhal, B.M. Quantumerror correction for quantummemories.Rev.
Mod. Phys. 87, 307–346 (2015).

4. Sachdev, S. Kagome- and triangular-lattice Heisenberg antiferro-
magnets: Ordering from quantum fluctuations and quantum-
disordered ground states with unconfined bosonic spinons. Phys.
Rev. B 45, 12377–12396 (1992).

5. Hastings, M. B. & Wen, X.-G. Quasiadiabatic continuation of quan-
tum states: the stability of topological ground-state degeneracy
and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005).

6. Wilson, K. G. Confinement of quarks. Phys. Rev. D 10,
2445–2459 (1974).

7. Haah, J. An invariant of topologically ordered states under local
unitary transformations. Commun. Math. Phys. 342, 771–801 (2016).

8. Bridgeman, J. C., Flammia, S. T. & Poulin, D. Detecting topological
order with ribbon operators. Phys. Rev. B 94, 205123 (2016).

9. Iqbal, M. & Schuch, N. Entanglement order parameters and critical
behavior for topological phase transitions and beyond. Phys. Rev. X
11, 041014 (2021).

10. Duivenvoorden, K., Iqbal,M., Haegeman, J., Verstraete, F. &Schuch,
N. Entanglement phases as holographic duals of anyon con-
densates. Phys. Rev. B 95, 235119 (2017).

11. Jamadagni, A., Kazemi, J. & Weimer, H. Learning of error statistics
for the detection of quantum phases https://arxiv.org/abs/2205.
12966 (2022).

12. Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys.
Rev. Lett. 96, 110404 (2006).

13. Levin,M. &Wen, X.-G. Detecting topological order in a ground state
wave function. Phys. Rev. Lett. 96, 110405 (2006).

14. Schuch, N., Pérez-García, D. & Cirac, I. Classifying quantum phases
using matrix product states and projected entangled pair states.
Phys. Rev. B 84, 165139 (2011).

15. Chen, X., Gu, Z.-C. &Wen, X.-G. Classification of gapped symmetric
phases in one-dimensional spin systems. Phys. Rev. B 83,
035107 (2011).

16. Kitaev, A. Fault-tolerant quantum computation by anyons. Ann.
Phys. 303, 2–30 (2003).

17. Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural
networks. Nat. Phys. 15, 1273–1278 (2019).

18. Chen, X., Gu, Z.-C. &Wen, X.-G. Local unitary transformation, long-
range quantum entanglement, wave function renormalization, and
topological order. Phys. Rev. B 82, 155138 (2010).

19. Haegeman, J., VanAcoleyen, K., Schuch, N., Cirac, J. I. & Verstraete,
F. Gauging quantum states: from global to local symmetries in
many-body systems. Phys. Rev. X 5, 011024 (2015).

20. Zhu, G.-Y. & Zhang, G.-M. Gapless coulomb state emerging from a
self-dual topological tensor-network state. Phys. Rev. Lett. 122,
176401 (2019).

21. Castelnovo, C. &Chamon, C.Quantum topological phase transition
at the microscopic level. Phys. Rev. B 77, 054433 (2008).

22. Haah, J., Harrow, A. W., Ji, Z., Wu, X. & Yu, N. Sample-optimal
tomography of quantum states. IEEE Trans. Inf. Theory 63,
5628–5641 (2017).

23. Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum
memory. J. Math. Phys. 43, 4452–4505 (2002).

24. Fredenhagen, K. & Marcu, M. Charged states in Z2 gauge theories.
Commun. Math. Phys. 92, 81–119 (1983).

25. Peres, A. Separability criterion for density matrices. Phys. Rev. Lett.
77, 1413–1415 (1996).

26. Horodecki, M., Horodecki, P. & Horodecki, R. Separability of mixed
states: necessary and sufficient conditions. Phys. Lett. A 223,
1–8 (1996).

27. Lee, Y. A. &Vidal, G. Entanglement negativity and topological order.
Phys. Rev. A 88, 042318 (2013).

28. Semeghini, G. et al. Probing topological spin liquids on a pro-
grammable quantum simulator. Science 374, 1242–1247 (2021).

29. Verresen, R., Lukin, M. D. & Vishwanath, A. Prediction of toric code
topological order from Rydberg blockade. Phys. Rev. X 11,
031005 (2021).

30. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with
rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

31. Misguich, G., Serban, D. & Pasquier, V. Quantum Dimer Model on
the KagomeLattice: Solvable Dimer-Liquid and IsingGauge Theory.
Phys. Rev. Lett. 89, 137202 (2002).

32. Poilblanc, D., Schuch, N., Pérez-García, D. & Cirac, J. I. Topological
and entanglement properties of resonating valence bond wave
functions. Phys. Rev. B 86, 014404 (2012).

33. Samajdar, R., Joshi, D. G., Teng, Y. & Sachdev, S. Emergent Z2

gauge theories and topological excitations in Rydberg atom arrays
https://arxiv.org/abs/2204.00632 (2022).

34. Tarabunga, P. S., Surace, F. M., Andreoni, R., Angelone, A. & Dal-
monte, M. Gauge-theoretic origin of rydberg quantum spin liquids.
Phys. Rev. Lett. 129, 195301 (2022).

35. Verresen, R. & Vishwanath, A. Unifying Kitaev magnets, kagome
dimer models and ruby Rydberg spin liquids. Phys. Rev. X 12,
041029 (2022).

36. Bricmont, J. & Frölich, J. Anorderparameterdistinguishingbetween
different phases of lattice gauge theories with matter fields. Phys.
Lett. B 122, 73–77 (1983).

37. Gregor, K., Huse, D. A., Moessner, R. & Sondhi, S. L. Diagnosing
deconfinement and topological order.N. J. Phys. 13, 025009 (2011).

38. Giudici, G., Lukin, M. D. & Pichler, H. Dynamical preparation of
quantum spin liquids in Rydberg atom arrays. Phys. Rev. Lett. 129,
090401 (2022).

39. Cheng, Y., Li, C. & Zhai, H. Variational approach to quantum spin
liquid in a Rydberg atom simulator https://arxiv.org/abs/2112.
13688 (2021).

40. Levin, M. A. & Wen, X.-G. String-net condensation: A physical
mechanism for topological phases. Phys. Rev. B 71, 045110 (2005).

41. Wang, Z.Topological Quantum Computation. 112 (American Mathe-
matical Soc., 2010).

42. Bakalov, B. & Kirillov, A. A. Lectures on Tensor Categories and
Modular Functors, vol. 21 (American Mathematical Soc., 2001).

43. König, R., Reichardt, B. W. & Vidal, G. Exact entanglement renor-
malization for string-net models. Phys. Rev. B 79, 195123 (2009).

44. Huang,H.-Y., Kueng, R., Torlai, G., Albert, V. V. & Preskill, J. Provably
efficient machine learning for quantum many-body problems. Sci-
ence 377, eabk3333 (2022).

45. Wang, C., Harrington, J. & Preskill, J. Confinement-higgs transition
in a disordered gauge theory and the accuracy threshold for
quantum memory. Ann. Phys. 303, 31–58 (2003).

46. Satzinger, K. et al. Realizing topologically ordered states on a
quantum processor. Science 374, 1237–1241 (2021).

47. Stricker, R. et al. Experimental deterministic correction of qubit
loss. Nature 585, 207–210 (2020).

Article https://doi.org/10.1038/s41467-024-45584-6

Nature Communications | (2024)15:1527 13

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BDCTRX
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BDCTRX
https://osf.io/k8up2/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BDCTRX
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BDCTRX
https://arxiv.org/abs/2205.12966
https://arxiv.org/abs/2205.12966
https://arxiv.org/abs/2204.00632
https://arxiv.org/abs/2112.13688
https://arxiv.org/abs/2112.13688


48. Jamadagni, A. & Weimer, H. Operational definition of topological
order. Phys. Rev. B 106, 085143 (2022).

49. Bao, Y., Fan, R., Vishwanath, A. & Altman, E. Mixed-state topological
order and the errorfield double formulation of decoherence-
induced transitions 2301.05687 (2023).

50. Hastings, M. B. Topological order at nonzero temperature. Phys.
Rev. Lett. 107, 210501 (2011).

51. Verresen, R., Tantivasadakarn, N. & Vishwanath, A. Efficiently
preparing Schrödinger’s cat, fractons and non-abelian topo-
logical order in quantum devices https://arxiv.org/abs/2112.
03061 (2021).

52. Schuch, N., Poilblanc, D., Cirac, J. I. & Pérez-García, D. Resonating
valence bond states in the PEPS formalism. Phys. Rev. B 86,
115108 (2012).

53. Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Computational
complexity of projected entangled pair states. Phys. Rev. Lett. 98,
140506 (2007).

54. Cirac, J. I., Pérez-García, D., Schuch, N. & Verstraete, F. Matrix pro-
duct states and projected entangled pair states: concepts, sym-
metries, theorems. Rev. Mod. Phys. 93, 045003 (2021).

55. Napp, J. C., La Placa, R. L., Dalzell, A. M., Brandão, F. G. S. L. &
Harrow, A. W. Efficient classical simulation of random shallow 2d
quantum circuits. Phys. Rev. X 12, 021021 (2022).

56. Vidal, G. Class of quantummany-body states that can be efficiently
simulated. Phys. Rev. Lett. 101, 110501 (2008).

57. Duclos-Cianci, G. & Poulin, D. Fault-tolerant renormalization group
decoder for abelian topological codes https://arxiv.org/abs/1304.
6100 (2013).

58. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface
codes: towards practical large-scale quantum computation. Phys.
Rev. A 86, 032324 (2012).

59. Zhu, G., Lavasani, A. & Barkeshli, M. Universal logical gates on
topologically encoded qubits via constant-depth unitary circuits.
Phys. Rev. Lett. 125, 050502 (2020).

60. McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven,
H. Barren plateaus in quantum neural network training landscapes.
Nat. Commun. 9, 1–6 (2018).

61. Pesah, A. et al. Absence of barren plateaus in quantum convolu-
tional neural networks. Phys. Rev. X 11, 041011 (2021).

62. Lu, T.-C. & Vijay, S. Characterizing long-range entanglement in a
mixed state through an emergent order on the entangling surface
https://arxiv.org/abs/2201.07792 (2022).

63. Fan, R., Bao, Y., Altman, E. & Vishwanath, A. Diagnostics of mixed-
state topological order and breakdown of quantum memory
2301.05689 (2023).

Acknowledgements
We thank E. Altman, Y. Bao, D. Bluvstein, Z.-P. Cian, S. Ebadi, G.
Giudici, M. Hafezi, H.-Y. Huang, A. Kitaev, H. Levine, J. Preskill, S. Sach-
dev, R. Sahay, N. Tantivasadakarn, R. Verresen, A. Vishwanath, T. T.
Wang, and X.-G.Wen for insightful discussions, and we especially thank
D. Aasen and Z. Wang for providing helpful information and conversa-
tions on applying LED to non-abelian topological phases. This work
was supported by the US Department of Energy [DE-SC0021013 and
DOE Quantum Systems Accelerator Center (contract no. 7568717)],
the Defense Advanced Research Projects Agency (grant no.

W911NF2010021), the National Science Foundation, the Department of
DefenseMultidisciplinaryUniversity Research Initiative (AROMURI, grant
no. W911NF2010082), and the Harvard-MIT Center for Ultracold Atoms.
I.C. acknowledges support from the Alfred Spector and Rhonda Kost
Fellowship of theHertz Foundation, the Paul andDaisy Soros Fellowship,
and the Department of Defense through the National Defense Science
and Engineering Graduate Fellowship Program. N.M. acknowledges
support from the Department of Energy Computational Science Grad-
uate Fellowship under Award Number DE-SC0021110. H.P. acknowl-
edges support from the ERC Starting grant no. 101041435 and the Erwin
Schrödinger Center for Quantum Science and Technology.

Author contributions
All authors contributed to the conception of the LED approach, dis-
cussed the results, andhelped toprepare themanuscript. I.C., N.M.,M.T.
and H.P. developed simulation techniques and performed theoretical
and numerical analysis. I.C., N.M. and G.S. applied the techniques to
experimental data. All work was supervised by S.F.Y., S.C. and M.D.L.

Competing interests
M.D.L. is a co-founder and shareholder of QuEra Computing. The
remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-45584-6.

Correspondence and requests for materials should be addressed to
Mikhail D. Lukin.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-45584-6

Nature Communications | (2024)15:1527 14

https://arxiv.org/abs/2112.03061
https://arxiv.org/abs/2112.03061
https://arxiv.org/abs/1304.6100
https://arxiv.org/abs/1304.6100
https://arxiv.org/abs/2201.07792
https://doi.org/10.1038/s41467-024-45584-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Enhancing detection of topological order by local error correction
	Results
	LED approach
	Numerical detection of topological order with coherent perturbations
	Effect of incoherent�errors
	Experimental realization in Rydberg atom�arrays
	Circuit-based LED and generic topological�phases

	Discussion
	Methods
	Numerical simulations for the toric�code
	Details on error-correction and coarse-graining procedures
	Patch-based decoder
	Decoder details for the ruby lattice spin�liquid
	Quantum circuit formulation�of LED
	Topological order witness
	Connection to topological entanglement negativity

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




