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pplications of artificial intelligence (AI) and machine learning (ML) in the Earth sciences
have grown exponentially over the past few years. We refer to AI[/ML more generally as
Al throughout the rest of the paper. It is critically important that Al developers create
methods in an ethical and responsible manner lest Al be developed and deployed in a manner
that could cause harm. In this work, we build on our earlier research (McGovern et al. 2022),
which demonstrated multiple ways where Al could go wrong for environmental sciences and
Earth science applications. Here we focus specifically on the issue of bias as it is one of the key
threads throughout much of the recent work on ethical Al (e.g., Peng et al. 2021; McGovern
et al. 2022; Balagopalan et al. 2022; Almuzaini et al. 2022; Buolamwini 2023).
Bias is recognized as a key issue that must be addressed in developing ethical and respon-
sible AI for Al in general. It is one of the key issues discussed by the National Institutes of
Standards and Technology (NIST) as part of their focus on creat-

ing standards for trustworthy AI (Schwartz et al. 2022) and is | ' https://www.whitehouse.gov/briefing-room/
addressed in the new Executive Order on AlL! For Earth sciences :  Presidential-actions/2023/10/30/executive-order-

.. .. . . . : on-the-safe-secure-and-trustworthy-development-and-
applications, it is relatively new to consider bias [see the recent { use-of-artificial-intelligence/

American Geophysical Union Al guidelines (Stall et al. 2023)].

Biased Al models can cause harm in a variety of ways, including affecting people’s abili-
ties to obtain a job, have stable housing, and more. For examples of such effects, see O’Neil
(2016), Eubanks (2018), Benjamin (2019), and Kantayya (2020). When negatively biased
models are deployed and then make the news, they can erode public trust in Al overall. Such
models have already been deployed by both private industry and government. Creating and
understanding trustworthy Al is a key focus of everyone involved in this work, as all are
members of the NSF Al Institute for Research on Trustworthy Al in Weather, Climate, and
Coastal Oceanography (AI2ES). Our overall goal with this work is tightly intertwined with
our goals of ensuring that Al for the Earth sciences is trustworthy: ensuring that the models
being developed and deployed now are as free of harmful bias as possible.

At first glance, bias may not seem to be an issue with Al for the Earth sciences, as com-
pared to Al applications more broadly. Recent work has shown that Al can be success-
ful at applications ranging from meteorology, climate, hydrology, seismology, and more
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(e.g., McGovern et al. 2017; Schneider et al. 2017; Reichstein et al. 2019; Bauer et al. 2021;
Labe and Barnes 2021; Chantry et al. 2021; Tsai et al. 2021; Zhang et al. 2022; Bi et al. 2023;
Lam et al. 2023). Such success stories combined with a false impression that meteorological
data are “objective” could lead AI developers to believe that bias is not an issue with Earth
science applications. Unfortunately, as we will demonstrate, bias exists in most Earth science
data and must be addressed.

As Al is being developed for a wide range of Earth science applications, underlying biases
in the data can affect the Al models’ performance. Deploying such models could unintention-
ally exacerbate environmental and climate injustices. For example, consider developing a
highly accurate tornado prediction system that relies on the United States national network
of weather radars. We demonstrated in McGovern et al. (2022) that many of the counties in
the southeastern United States lack good low-level radar coverage. If such an algorithm was
developed and deployed without knowledge of the underlying bias in the data, it may unin-
tentionally and incorrectly miss tornadoes in these critical areas.

The main contribution of this work is a new categorization of Al bias focused on the entire
life cycle of Al development and application in the Earth sciences. While our categorization
is inspired by the one presented by NIST (Schwartz et al. 2022) our focus is on Al for the
Earth sciences and how identifying bias can guide developers in Al for Earth science applica-
tions. To ensure that the categorizations are useful for Al developers in that area, we provide
examples from the Earth sciences domains.

It is not possible for Al developers to mitigate bias until they can identify it. By providing
a classification system for Al for the Earth sciences, we enable developers to systematically
recognize what the possibilities for bias are in their problem domains. This is a first step
toward measuring and mitigating such biases. Stating what makes an AI model “good” and
free of bias is a difficult task, similar to stating what is a “good” forecast (Murphy 1993).
While some measures of goodness are easy to measure, others are more challenging. This is
also true of biases. Some of the categories we provide here will be relatively easy to measure
and some are harder. In many cases, mitigating the biases is not straightforward. Due to the
in-depth approaches needed to address many of the biases, we will address the mitigation
in a future paper.

Bias categories

Our full bias categorization builds on Fig. 2 in Schwartz et al. (2022). We restructure this
through a lens focused on human judgment and decision-making, while recognizing the
bounded nature of human rationality (Fischhoff and Broomell 2020; Kahneman et al. 1982;
Simon 1990). We restructure the NIST categorization into four main categories of bias and
focus our framework on the full development and deployment life cycle of Al for the Earth
sciences. Our bias categorization is shown in Fig. 1. The four main categories are ordered by
the AI development life cycle:

¢ systemic and structural bias (shown in blue),
human bias (green),

data bias (orange), and

statistical and computational bias (pink).

In the development of an Al model, each type of bias may interact across the categories. Thus,
it is critical to understand each in order to develop and deploy Al models in an ethical and
responsible manner. We discuss each of the categories and subcategories in Fig. 1 in more
detail in the following sections. The colors around the subcategories indicate strong interac-
tions across categories. It is also possible for the types of bias to cascade along the chain of
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Fig. 1. Full bias categorization for Al for the Earth sciences. Each of the categories interact (shown by
the main cycle arrow in the center). Single colors on the subcategories indicate one category, and a
second color outlining the circle indicates significant interaction to the category matching that color.

bias, creating a multiplying effect. For example, systemic and structural bias and human
bias strongly interact and may cause choices made in the data bias category to thus affect
the performance of the model and create additional statistical and computational biases. The
gray cycle under the four main categories represents this interaction.

Systemic and structural bias

Systemic and structural biases are biases that are present in the background structure of
society or the institution where data may be measured. We put these at the top of Fig. 1
because they are the overarching fabric of the society in which we live and they affect all of
our other categories. For in-depth discussions on such biases in society in general (and why
we chose the names), see March and Olsen (1984), Friedman and Nissenbaum (1996), Henry
(2010), Suresh and Guttag (2021), and Schwartz et al. (2022). Critically for Al, data that are
not measured cannot be used to train an Al model. In D’Ignazio and Klein (2020), the authors
point out in many ways that “what gets counted counts.” Although none of their examples
are in weather and climate, their points are still valid for this domain. For example, in places
where there are unreliable historical records of temperature, it is challenging to train and
validate a climate model on past data. Likewise, if forecasts (human or machine generated)
are not archived, there are no data to measure how forecasts have changed over time and
there are no data for an Al model to train with or to compare to.

We define three specific subcategories of systemic and structural bias: historical, social,
and institutional. We acknowledge that, although we have broken them into three distinct
subcategories, biases that fall into systemic and structural bias strongly interact with each
other. There are likely additional subcategories that we could have chosen here but we focus
on the effects of bias from those three as they relate to Earth science.

Historical bias. As sensors are changing and improving over time, there exist biases in the
historical records of such data. Because training Al models requires a large historical record
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of data, historical bias could skew the AI model predictions to not match current reality
across a wide variety of Earth science prediction tasks. The need for large training datasets
is especially true for deep learning models.

Some historical biases are already well known. For example, for Al researchers working
on climate-related tasks, records such as historical temperature may have existing biases
(e.g., Peterson and Vose 1997; Menne et al. 2010). Such biases include spatial and temporal
gaps in data or biases due to older measuring instruments that may have been less accurate.
Biases are also known to exist in reconstructed paleoclimate data (e.g., Coats et al. 2020) and
recent work proposed a framework to assess the quality of such data (Pacchetti et al. 2021).
As the climate warms, the statistical distribution is also shifting from historical records,
which provides an additional bias. Any of these biases could skew an Al model unless ac-
counted for in the model training. Even the climate change distributional shift can prove
problematic given that Al models may be predicting something completely out of scope from
their training data.

Although many of the shifts in distributions from climate change are well known, there
are less obvious historical biases that can exist in Earth science as well. For example, the
uncertainty of historical tropical cyclone (TC) counts differs significantly between the
presatellite and postsatellite eras (Vecchi and Knutson 2011). Furthermore, intensity esti-
mates of tropical cyclones are prone to historical biases related to increases in the spatial
resolution of satellites and improvements made to aircraft reconnaissance instrumentation
(Emanuel 2008).

Often AI developers seeking to train on large datasets will obtain historical data through
reanalysis datasets, with ERA-5 (Hersbach et al. 2020) being one of the most popular. While
ERA-5 is clearly an outstanding dataset for training AI models
(and the authors have used it for much of their work), it is known
to have biases (e.g., Yilmaz 2023). The ERA-5 documentation * hitps:/jconfluence.ecmw int/display/CKB/ERAS%3A+

data+documentation#ERA5:datadocumentation-
lists some of the limitations.? We have observed that Al devel- |  knownissues
opers who obtain such data but who are not codeveloping with 5
domain scientists often are unaware of the limitations of the data and will instead assume
it provides a singular source of truth, potentially leading to overly confident assessment of
Al model performance.

Social bias. This type of bias can be due to reliance on stereotypes or other broadly shared
cultural assumptions or practices. At first glance, one might assume that social biases do
not apply to Earth sciences applications. Unfortunately, that is not the case. For example,
Anbarci et al. (2011) demonstrated that forecast accuracy is improved in locations with higher
average household incomes than in locations with lower household incomes. Another ex-
ample of social bias relevant to Al for the Earth sciences includes gender bias in open-source
community tools, which tend to not to support problem solving strategies commonly used
by women [for specific examples, see Mendez et al. (2018)]. This can affect the diversity of
the Al developers, thus impacting long-term solutions.

Another example of social bias is the use of stereotypes and cultural assumptions made
by developers about potential users. This could affect the data that are collected, but it can
strongly influence the model that is chosen. For example, probabilistic information is not
shared by many weather forecasting organizations partially because they do not believe the
general public is sophisticated enough to make use of that information (e.g., Pappenberger
et al. 2013), but in practice many people can and do use such information to make sophis-
ticated decisions (Morss et al. 2010; Ripberger et al. 2022). For example, people hedge their
risk by changing their daily routine to account for potential weather threats. If developers
just assume that end-users do not want or need probabilistic information, they may choose
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an inferior deterministic model. Social science research with diverse user groups is critical
to address this bias.

Historical and social biases can overlap. For example, there has been relatively little historical
investment in ground-based sensors such as radar or precipitation measurements in the global
south (Saltikoff et al. 2019). Such sensors are used in data assimilation and global weather
prediction and the lack of sensors leads to a disparity in forecasting between the Northern
and Southern hemispheres. This can be seen in the ECMWF .
performance charts;? for example, the “Lead time of anomaly 3 https://charts.ecmwfint/
correlation coefficient (ACC) reaching multiple thresholds” shows :

a significant difference between the hemispheres historically, with the gap narrowing only
relatively recently [this is explored in many works, see, for example, Haiden et al. (2021) and
Brands et al. (2023)]. This lack of data can lead to an inability to develop accurate models, leading
to additional lives lost [for examples, see World Weather Attribution (2023) and Harvey (2023)].

Institutional bias. The final subcategory of systemic and structural bias that we identify is
institutional bias. This type of bias stems from the norms within an institution, such as aca-
demia, or the weather enterprise, or within an agency or organization. Such norms may come
from written rules or unwritten norms and expectations. For example, written rules may
specify that certain types of data are not collected or archived. Such rules were likely created
well before the advent of Al and the need for large datasets. Many of these rules are histori-
cal in that they were created when storage was more expensive. For example, many forecasts
were deemed to be of low value after the forecast time had ex- :
pired and there was not enough storage, so they were simply : *hitps//mesonetagron.iastate.edu/archive/
removed, unless someone saved them into a private repository ’
(e.g., see the JTowa Environmental Mesonet archive*). Such data repositories can be very valu-
able for AI but their lack of availability could lead to biases in training and verification.
Institutional bias also exists within specific groups of people with particular cultures.
For example, in the National Weather Service (NWS), which is part of the National Oceanic
and Atmospheric Administration (NOAA), tropical cyclone formation declarations have
historically been initiated more often during daylight hours (Fig. 2c). One possible reason
for this observed trend is that visible satellite imagery, which plays an important role in
identifying the existence of a closed low-level circulation (as illustrated in Figs. 2a,b), is
not available at night. To the best of our knowledge there is no official rule that states TC
formation declarations should wait until daylight hours. However, given the importance
of daylight-dependent data sources in the forecasters’ process, there appears to be an un-
official “culture” within the National Hurricane Center of declaring TC formation during
daylight hours. Since systems can become tropical cyclones at any time of the day or night,
this institutional bias should be accounted for or it could impact TC formation research and
disaster preparations.
Institutional bias could be especially challenging for people to identify if they are work-
ing inside the specific institution or culture. Because the expectations are inherent in that
culture, they may not think about the implications when collecting data or building a model,
potentially leading to continued bias in the model. This is one of many places where diverse
teams can help to address bias issues.

Human bias

Human bias is the second category of bias in our diagram (Fig. 1) because it also directly
affects the later two categories yet it is itself influenced by the systemic and structural
biases. We show this interaction with the blue circle around the entire human bias category
(see Fig. 1).
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In a complex world, it is proce-
durally rational to seek satisfac-
tory solutions (i.e., satisfice) rather
than optimize (Simon 1990). Yet
satisficing processes like pat-
tern recognition and heuristic
search can introduce bias. Our
categorization of human biases
relies on prior efforts to under-
stand the ways in which mental
shortcuts (heuristics) and mental
models can result in biased judg-
ments and decisions (Fischhoff

and Broomell 2020; Kahneman e A
@ 06 - 12 LST}

00 06 LST

et al. 1982), and efforts to cata-

log known biases (Arkes 1991; 32.0%
: 12-18LST

Benson and Manoogian 2016;
Benson 2017).

We highlight four categories
of human bias that represent
ways in which information pro-
cessing can lead to bias. There
are many additional categories
and ways of categorizing of hu-
man bias as presented in the ref-
erences above; we chose these
four overarching categories as
most representative of biases

likely to cause issues for Al de- . Lo >
velopers for the Earth systems. Fig. 2. CIRA Geocolor (Micke 2018) images of the formation of
Hurricane Martin (2022). (a) Martin prior to tropical storm des-
ignation (1030 UTC 1 Nov 2022). (b) Martin after local sunrise
(1130 UTC 1 Nov 2022). (c) Numbers of tropical cyclone forma-
and end-users of Al models both  ions declared by the National Hurricane Center at various local
face an exponentially increas- times from 2000 to 2022, as reported in the HURDAT2 dataset

ing complexity of data, which (Landsea and Franklin 2013).
can lead to information overload.
Al developers have an increasing amount of data to choose from in training the model.
Identifying the best data source is a challenging task, even aside from all of the biases re-
lated to these choices that are discussed below (e.g., see selection and processing biases in
the next section). Examples of such data sources include new sensors being launched and
the increasing amount of data being shared online by government meteorological agencies.
Information overload can also come from increasing professional and societal
pressures, such as expectations to keep up with the increasing volume of research
(Bornmann et al. 2021) and data governance issues (Nelson and Office of Science and
Technology Policy 2022). Institutions are also creating increasingly complex rules and
expectations around Al, especially as Al is becoming more visible for weather and climate
applications.
As with all of our subcategories, this one can also interact with other subcategories.
Specifically, stress from sources other than information overload can also further constrain
and bias a human developer’s information processing abilities. When the human’s ability to

Information overload. Developers
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process information is constrained, it promotes quick decision strategies (Arkes 1991), which
may not be the best choices for creating an unbiased Al model.

Attention. Attention determines what information goes into working memory and what in-
formation is filtered out. This directly interacts with information overload, as overload can
affect the ability to attend to different pieces of information. For example, confirmation bias
may result from the combined effects of information overload, sense-making processes, and
selective attention.

Attention can be driven by exposure to information, physical format or context (e.g., motion
and/or color; see Wolfe 2021), prior beliefs or mental models, personal motivations, and social
norms. Attention can affect all parts of Al model development and deployment, including the
interpretation and use of Al models by end-users. An example of this is attending to a single
aspect of data quality, such as the time period the data cover, and paying less attention to
spatial extent, representativeness of places experienced by specific population groups, or
other aspects of data quality.

Working memory. Working memory has limited capacity and affects decisions by constrain-
ing what is considered and how it is considered at a given time (Baddeley et al. 2020). This
can affect the development of the Al models as well as the deployment and use of them. For
example, weather forecasters work with multiple sources of guidance in preparing forecasts,
which they evaluate critically in their work. Increasing update frequencies and incorporat-
ing uncertainties in Al guidance may, at least initially, tax working memory, making it a
challenge to track, synthesize, and critically evaluate the guidance. This could bias use of Al
guidance toward more familiar or simpler inputs that tax working memory less, even beyond
conscious biases. Demuth et al. (2020) states, “When [forecasters] cannot easily understand
the workings of a probabilistic product or evaluate its accuracy, this reduces their trust in
information and their willingness to use it.”

Sense making. Humans have an inherent need to make sense of data, which can bias our
judgments and choices. An example of this is our tendency to see patterns even in sparse
data (Tversky and Kahneman 1971). As with the other types of human bias, this can affect
the entire life cycle of development from data selection through model validation and inter-
pretation. For example, developers may interpret graphical presentations of model verifica-
tion statistics through preexisting graph schemas, i.e., the types of graphs with which they
are familiar (Bancilhon et al. 2023).

Human biases can emerge in both individual and group judgments and decisions (Jones and
Roelofsma 2000). Groups can enhance biases when there is social projection as in the case of
false consensus (Mullen and Hu 1988; Fischhoff and Johnson 1996), and through discussion,
which can produce groupthink (Tajfel 1982), group polarization, and group escalation of com-
mitment. These sources of bias interact. For example, a developer may face many sources of in-
formation, some of which conflict, and be drawn to examine the information that is more salient
or accessible but potentially less relevant, thereby inadvertently introducing bias into a model.

Both individuals and groups can also mediate biases, for example by considering the
opposite hypothesis of why a judgment or decision might be wrong or by bringing attention to
alternative viewpoints. Changing the decision environment for data selection and interpreta-
tion or for making Al modeling choices can also help reduce biases (Larrick 2004).

Data bias
Data bias is crucial to understand and address, as the data chosen for Al model training and
validation will directly affect the bias of the final Al model. This is chosen as the third category
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in Fig. 1 since the choices of data occur before the model training itself. If the underlying
data are biased from existing historical environmental or climate injustices, it is unlikely that
the Al model will be able to address the injustices, and instead will likely perpetuate them.

We break data bias into four subcategories, arranged mostly in the order in which they
occur in the Al life cycle. Both systemic and structural biases and human biases affect the
data biases and all of the subcategories that we propose. We discuss this in more detail with
the specific biases but it is important to understand that none of our proposed bias categories
exist independently of one another. Understanding the full cycle of bias is critical to ensuring
an Al model is as free of bias as possible.

Selection bias. The first step in training an Al model is to identify the data available and
necessary for training. Selection bias is particularly affected by the systemic and structural
biases that may exist in the environment. If the data do not even exist, it is impossible for
Al developers to choose the data to train a model. Though we chose to color the interactions
in Fig. 1 for selection bias only by systemic and structural biases, human biases can also
strongly influence the choice of data for training, as it involves active choices on the part of
the developer.

Sometimes Al developers want to choose all of the available data and let the Al model
identify what is critically important. While some AI models can handle such large datasets,
it is likely that this choice will create training data with strong correlations across the data,
which can impede AI model learning and performance. Understanding the characteristics
of the data are especially important for applying post-model interpretation techniques (Flora
et al. 2024).

As an example in weather and climate, historical records of temperature are limited
in both space and time and are often reconstructed from data where there could be ad-
ditional biases in place. Figure 3 shows an example of selection bias for the task of rapid

24-Hour Changes in Maximum Wind for TCs
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Fig. 3. Distribution of 24-h changes in maximum wind speed for tropical cyclones from 2005 to 2021, as
identified by the International Best Track Archive for Climate Stewardship (IBTrACS), and separated by
ocean basin. Dashed lines indicate the 95th percentile of maximum wind speed for each basin, which
often serves as the threshold for defining rapid intensification (Kaplan and DeMaria 2003).
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intensification of tropical cyclones. In this case, data differs by basin and a model that fails
to account for this, e.g., by selecting Atlantic basin data for training, would not perform
well globally. As an example in the broader Earth sciences, consider the task of detecting
and predicting landslides. Developing an Al system to improve such predictions could
save countless lives but the data are not available for many places where landslides are
most likely to occur (Casagli et al. 2023).

Interpretation bias. Once the data have been chosen, the next step is to identify what type of
interpretation the Al developer is putting on the data. Data in its raw form is rarely Al ready
and there typically is a human layer of interpretation on the data to help prepare it for Al
training. This interpretation is at the conceptual level and not at the implementation level,
since the actual processing of the data would fit into the next subcategory (processing bias).
However, this conceptual level is important as it influences what is actually implemented
and processed.

To help make this more concrete, we provide several examples drawn from the Earth sci-
ences. One example is processing satellite data. There are usually multiple channels available,
and interpretation bias could lead to the choice of channel that poorly informs the modeling
task. A second example is data available at the census scale. Here the developer must choose
the level of aggregation, such as zip code or even more fine-grained criteria. This choice
can have considerable consequences on the use of the data (e.g., Kenny et al. 2021; Lang
and Pearson-Merkowitz 2022) A third example comes from rain gauge data. If the data are
fine-grained enough, such as the 5-min data provided by mesonets (e.g., McPherson et al.
2007), the choice of how to aggregate that data to match coarser-grained data such as hourly
radar estimated rainfall, could create biases in the training data.

Processing bias. Once the data are selected and the proposed interpretation is ready, they
must be processed before use in Al training. This processing can both introduce or adjust
for known biases. The processing step is often intertwined with the interpretation step, yet
we separate them for clarity. The interpretation step focuses on the conceptual level of how
data will be aggregated or combined while the processing step focuses on the implementa-
tion. It is possible that by choosing one interpretation or one method of processing data over
another, that a bias toward one solution is either introduced or corrected.

For example, if data are subsampled, a skew toward a specific outcome could be intention-
ally or unintentionally produced. Subsampling, upsampling, and data augmentation are com-
monly used strategies in Al for addressing skewed datasets as well as datasets with missing
data. Skewed data often arise in rare-event prediction tasks in weather and climate. Since ML
models typically struggle to learn effective general models with highly skewed data, sampling
approaches are a very common strategy to address such data. Sampling from a 99%/1% split
(example: tornadoes, aircraft turbulence, and many more rare but impactful phenomena) to
a more equitable 50%/50% split may create a model that can predict the rare class but it may
also significantly overpredict the rare class. Sometimes Al developers will also subsample
the testing data, thus reporting nonrepresentative results if the model were to be deployed.

If a dataset has missing data, synthetic data can be created and used to provide more infor-
mation. For tropical cyclones, radar data are only available if the storm is within the coverage
area; synthetic radar can be used to fill in some gaps in coverage. Similarly, microwave sensors
on satellites (critical for observing precipitation and cloud structure in tropical cyclones) have
a low temporal sampling rate. Synthetic microwave data can be generated at a higher temporal
resolution, similar to that of geostationary satellites. Care must be taken when creating such
synthetic data so that bias is not introduced into the dataset. For example, if synthetic radar
data are used to fill in gaps in global coverage but it was trained only in one location such as
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the United States, it will not gen-
eralize well over the full globe.
In other cases, datasets can be
smaller than is needed for train-
ing Al methods. In these cases,
data augmentation strategies
such as rotating or translating
images (Lagerquist et al. 2020) or
adding realistic noise patterns to
synthetic images (Schreck et al.
2022, 2023) can provide useful
synthetic new data. However,
Al developers must be careful
when applying the standard data
augmentations techniques from
computer vision as they could
introduce additional biases by
creating non-physically-realistic
data. For example, a standard
image flip of meteorological data
changes the physical meaning of
the data (flow could be reversed,
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Fig. 4. Classifying tropical cyclone rapid intensification (RI)
events from 2005 to 2021 using different random forest sam-
pling strategies (class weighting, random oversampling, and
SMOTE). The classification task was redone 25 times for each
model using a bootstrapping approach. The stars indicate the

mean values for each model across the 25 samples, and the
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ellipses show the 5th-95th percentile ranges for POD and SR.

what is required for the hemi-
sphere, etc.).

In Earth sciences, rare or extreme events are often of particular interest. Effectively repre-
senting rare and extreme events in training datasets can be difficult. In Fig. 4, we provide an
example of how common choices for addressing missing data (which fall into processing bias)
affect model performance. Here we show how the results for a classification task of identify-
ing arare event (tropical cyclone rapid intensification) differ based on sampling strategy. The
random forest models are otherwise identically constructed, with the only differences being
choice of sampling algorithm (or the use of class weighting). We see in Fig. 4 that while each
model has a similar overall critical success index (CSI), the synthetic minority oversampling
technique (SMOTE) model more effectively reduces the overprediction bias (i.e., the SMOTE
model has fewer false alarms), but at the expense of a lower probability of detection (POD)
compared to the other two models.

Physics bias. Unique to Earth sciences are potential biases introduced by the laws of physics,
which can limit data availability. Typically such limitations do not exist in traditional Al datas-
ets, where one may be training an Al image recognition system from photographs. As a weather
example, Fig. 1 of McGovern et al. (2022) highlighted the regions of the southeastern United
States that had better and poorer areas of radar coverage. This coverage is limited by the laws of
physics, in that radar beams are straight lines and the curvature of the Earth limits how far away
they can sense phenomena near the surface.

We provide a satellite-based example in Fig. 5, which shows an example of Hurricane Dorian.
Although a tropical cyclone is present continuously in time and space, and is constantly evolving,
the data are available at nonregular temporal intervals. This is entirely due to the laws of physics
as data can only be observed when the satellite passes over the tropical cyclone.

Additional examples of biases introduced by the laws of physics include satellite parallax
and radar sampling issues. Parallax stems from the angle and height at which phenomena are
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Fig. 5. Global Precipitation Measurement (GPM) mission Microwave Imager (GMI) observations of
Hurricane Dorian. The images shown are 89-GHz brightness temperatures (horizontal polarization).
Times of observations are annotated on the plot.

observed from a satellite. Although parallax can be corrected, it relies on an accurate cloud
height retrieval which is imperfect. Similarly, radar beam effects (e.g., lower resolution at
further range; height above ground increases with range) results in different radars observ-
ing different portions of potentially the same phenomena. The correction for either of these
effects is challenging and will lead to a bias in most Al applications.

Physics bias can overlap with processing bias discussed above. While synthetic data could
be introduced to address the missing data, one must be careful to introduce synthetic data
that are free of bias itself, or the problem will continue to propagate. This overlaps with the
discussion of data augmentation techniques.

Statistical and computational bias

The final category of bias that we identify in Fig. 1 focuses on the Al model itself. Although
data bias can be the underlying cause of Al model bias, we identify three categories of bias
within the statistical and computational steps of training the Al model. As before, we order
these roughly in the order in which they occur in the Al development life cycle. As with other
subcategories, these can interact with each other.

Al model bias. Al model bias can take two forms. The first is that the AI developer must
choose the model(s) that they are going to apply to the task at hand. This choice can be in-
fluenced by human bias. For example, an Al developer may be biased against deep learning
due to a perceived lack of interpretability, preferring more “traditional” AI models such as
decision trees, when it could be that deep learning would produce better results on the task
(or vice versa).

The second form of Al model bias comes from the AI model itself. One of the key issues
in applying Al to Earth science tasks is that the Al models lack understanding of the laws of
physics. While there is work on developing physics-based AI models (e.g., Lapuschkin et al.
2019; Kashinath et al. 2021), this is still in its infancy and most Al models are unconstrained
by the true physics of a phenomenon, and can learn idiosyncrasies of the data. Al models that
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are purely data driven, such as Bi et al. (2023) and Lam et al. (2023), are successful in many
situations but may struggle especially in situations outside of the training data distributions.
A physics-based model such as a numerical weather prediction model would still be able to
provide realistic answers in situations such as unprecedented heat waves.

Validation bias. Validation bias can also take multiple forms, all of which interact with the
developer’s initial choice of model and with human biases. First, model validation data and
metrics are chosen by Al developers, thus interacting with human biases. An Al developer
may cherry-pick the case studies to highlight some aspect of a model or may choose a met-
ric that looks more favorable in certain situations. For example, a developer could choose
accuracy instead of a more appropriate skill score when predicting a rare event. Choosing
the right metric to measure the goodness of a weather forecast is challenging (Murphy 1993)
and the same approach applies across the Earth sciences.

In addition to choosing the validation scores or case studies, the human researcher
may also choose to validate the Al method using explainable AI (XAI) methods. However,
these approaches have biases that an Al developer must account for (Mamalakis et al. 2023).
Likewise, the results of XAI are often subject to human confirmation bias (Burnett 2020),
where the developer may confirm their existing expectations of what the model learned and
dismiss other parts as “noise” when they in fact can significantly affect the outcome of model
deployment.

Use and interpretation bias. Once an Al model is trained, model developers must choose
how to use, interpret, and potentially deploy the model. These choices intersect strongly
with human biases. For example, the choice of metric and/or case studies for model evalu-
ation may come from recent experience, a form of recency bias that humans are subject to.
The metric may be chosen from a paper the developer most recently read but may not be the
metric that best measures performance for this model’s deployment. Likewise, a case study
may be chosen from a recent high-impact phenomena, while neglecting additional use cases
that should be studied before deployment.

Early deployment of nontrustworthy Al models can lead to significant downstream
consequences. This was highlighted in our earlier paper (McGovern et al. 2022), where we
discussed a model that predicted earthquake risk that was deployed and used too early.
Another financial example comes from the insurance industry, which has lately been
focused on revamping their risk models due to the changing climate. If a model is deployed
without adequate adaptation to our changing risks and climates, risks may be underestimated
and thus people may not be covered in cases of major disasters. Consequences of deploying
and trusting a model that is biased could even include lives lost from overreliance on an
underperforming model. This bias also interacts strongly with the validation bias.

Discussion and future work
Our goal with this paper is to create a categorization system for Al biases in the Earth
sciences that will help Al developers recognize what types of bias they could encounter while
creating new Al models. Creating a systematic approach for Al developers to identify biases
is the first step toward measuring and mitigating biases. While the scope of the paper does
not extend to mitigation strategies, this is a topic of current work by the authors. Such strate-
gies are sufficiently complex that they warrant additional publications to cover the topics in
sufficient details.

Understanding the types of bias that can appear throughout the Al life cycle is also critical
to creating models that will be used to address environmental and climate justice issues as well
as climate mitigation. As the climate is changing and high-impact phenomena change their
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distributions (IPCC 2022), it is important that we recognize the ways in which an Al model

may unintentionally miss high-impact events or perpetuate environmental injustices due to
systemic and structural biases (Fig. 1). In addition, an Al model that is unbiased and makes
reliable and trustworthy predictions can help to address climate mitigation and adaptation.

For example, in the weather domain, Al could be used to create synthetic radar for countries

that do not have a full radar network, thus facilitating improved

predictions of high-impact events such as floods, droughts, 5 _
and severe storms (Veillette et al. 2018; Lagerquist et al. 2020; E:;Zie//;vxgllvgi"%2;212?;??:4 Zfﬁj/lgﬁ/f;iiz
Hilburn et al. 2020). Another example is Al being used at a | field-to-the-dinner-table/

subseasonal scale to guide agricultural and water decisions

(Sun and Scanlon 2019; White et al. 2022) or to address food security issues, which span the

range from crop diversity to intelligent robots to help with sustainable agriculture practices,

to drought prediction and minimizing food waste.’

Trustworthiness is a key focus of research in Al models, even included in the latest Executive
Order on AI (The White House 2023). A key piece of trustworthiness is ensuring that Al models
are as free of bias as possible. When an Al model is deployed, we would like it to be trusted
because it is proving to be useful and is not creating any unexpected biases in the predictions.
If the Al model developers are not sufficiently familiar with the domain they are working in
nor aware of the potential biases of the data and the AI models, they may put unwarranted
trust into the model (Jacovi et al. 2021), which can have significant downstream implications.

Future work on this topic will include focusing on the measurement and mitigation of risk.
Our goal is to adapt the recent NIST Al Risk Management Framework (Tabassi 2023) to focus
on guidance for developers of Al in the Earth sciences. Additional research is needed to help
developers of Al in the Earth sciences identify and debias their work, perhaps in the form of
guidelines complementary to those produced by NIST for Al risk management (Tabassi 2023).
A promising approach is to build on metadata approaches such as RealML (Smith et al. 2022),
datasheets (Pushkarna et al. 2022), and model cards.

Recent work such as Ball (2023) has discussed how Al is approaching a critical threshold
of reproducibility. We want to strongly echo one piece of their advice: interdisciplinary and
diverse teams are key to the eventual success of an Al model. By bringing together diverse
teams with different viewpoints, it is much more likely that Al biases will be identified
quickly and addressed before a model is deployed. The culture of developing Al models for
any discipline needs to shift to one where all aspects of the ML system are documented and
shared with both developers and users, which will help to create stronger, impactful, and
less biased Al models.

Acknowledgments. This material is based upon work supported by the National Science Foundation
under Grant ICER-2019758. This material is also based upon work supported by the National Center
for Atmospheric Research, which is a major facility sponsored by the National Science Foundation
under Cooperative Agreement 1852977.

Data availability statement. Imagery from Fig. 2 is from Cooperative Institute for Research in the
Atmosphere at Colorado State and the National Oceanic and Atmospheric Administration (CSU/
CIRA and NOAA). Specifically, we leveraged the CIRA satellite library at https:/satlib.cira.colostate.edul.
Figures 3 and 4 were both generated using the developmental dataset of the Statistical Hurricane
Intensity Prediction Model (SHIPS) (DeMaria and Kaplan 1994). The dataset we used is publicly avail-
able via CIRA at https://rammb2.cira.colostate.edu/research/tropical-cyclones/ships/. GPM GMI data in Fig. 5
are available at https://doi.org/10.5067/GPM/GMI/GPM/1B/07.

AMERICAN METEOROLOGICAL SOCIETY BAMS Unauthenticatedwﬁ%gv%gooagd%d &5&924 01:59 PM UTC


https://satlib.cira.colostate.edu/
https://rammb2.cira.colostate.edu/research/tropical-cyclones/ships/
https://doi.org/10.5067/GPM/GMI/GPM/1B/07
https://www.weforum.org/agenda/2022/04/ai-can-create-a-resilient-food-system-from-the-lab-to-the-field-to-the-dinner-table/
https://www.weforum.org/agenda/2022/04/ai-can-create-a-resilient-food-system-from-the-lab-to-the-field-to-the-dinner-table/
https://www.weforum.org/agenda/2022/04/ai-can-create-a-resilient-food-system-from-the-lab-to-the-field-to-the-dinner-table/

References

Almuzaini, A. A., C. A. Bhatt, D. M. Pennock, and V. K. Singh, 2022: ABCinML:
Anticipatory bias correction in machine learning applications. FAccT'22: 2022
ACM Conf. on Fairness, Accountability, and Transparency, Seoul, South Korea,
Association for Computing Machinery, 1552-1560, https://doi.org/10.1145/
3531146.3533211.

Anbarci, N., J. Boyd, E. Floehr, J. Lee, and J. J. Song, 2011: Population and income
sensitivity of private and public weather forecasting. Reg. Sci. Urban Econ.,
41, 124-133, https://doi.org/10.1016/j.regsciurbeco.2010.11.001.

Arkes, H., 1991: Costs and benefits of judgment errors: Implications for debiasing.
Psychol. Bull., 110, 486—498, https://doi.org/10.1037/0033-2909.110.3.486.

Baddeley, A., G. Hitch, and R. Allen, 2020: A multicomponent model of work-
ing memory. Working Memory: The State of the Science, Oxford University,
10-43.

Balagopalan, A., H. Zhang, K. Hamidieh, T. Hartvigsen, F. Rudzicz, and
M. Ghassemi, 2022: The road to explainability is paved with bias: Measuring
the fairess of explanations. FAccT'22: 2022 ACM Conf. on Fairness, Account-
ability, and Transparency, Seoul, South Korea, Association for Computing
Machinery, 1194-1206, https://doi.org/10.1145/3531146.3533179.

Ball, P., 2023: Is Al leading to a reproducibility crisis in science? Nature, 624,
22-25, https://doi.org/10.1038/d41586-023-03817-6.

Bancilhon, M., L. Padilla, and A. Ottley, 2023: Improving evaluation using visual-
ization decision-making models: A practical guide. Visualization Psychology,
Springer, 85-107.

Bauer, P, P.D. Dueben, T. Hoefler, T. Quintino, T. C. Schulthess, and N. P. Wedi, 2021:
The digital revolution of Earth-System Science. Nat. Comput. Sci., 1, 104-113,
https://doi.org/10.1038/s43588-021-00023-0.

Benjamin, R., 2019: Race after Technology: Abolitionist Tools for the New Jim
Code. Polity Press, 172 pp.

Benson, B.,2017: Cognitive bias cheat sheet, simplified. Medium, 8 January, https://
medium.com/thinking-is-hard/4-conundrums-of-intelligence-2ab78d90740f.

Benson, B., and J. Manoogian, 2016: Cognitive bias cheat sheet: An organized list
of cognitive biases because thinking is hard. Medium, 1 September, https://
betterhumans.pub/cognitive-bias-cheat-sheet-55a472476b18.

Bi, K., L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, 2023: Accurate medium-range
global weather forecasting with 3D neural networks. Nature, 619, 533-538,
https://doi.org/10.1038/s41586-023-06185-3.

Bornmann, L., R. Haunschild, and R. Mutz, 2021: Growth rates of modern science:
A latent piecewise growth curve approach to model publication numbers
from established and new literature databases. Humanit. Soc. Sci. Commun.,
8, 224, https://doi.org/10.1057/s41599-021-00903-w.

Brands, S., J. A. Fernandez-Granja, J. Bedia, A. Casanueva, and J. Fernandez, 2023:
A global climate model performance atlas for the Southern Hemisphere
extratropics based on regional atmospheric circulation patterns. Geophys.
Res. Lett., 50, €2023GL103531, https://doi.org/10.1029/2023GL103531.

Buolamwini, J., 2023: Unmasking Al: My Mission to Protect What Is Human in a
World of Machines. Random House Publishing Group, 336 pp.

Burnett, M., 2020: Explaining Al: Fairly? Well? Proc. 25th Int. Conf. on Intelligent
User Interfaces, Cagliari, Italy, Association for Computing Machinery, 1-2,
htps://doi.org/10.1145/3377325.3380623.

Casagli, N., E. Intrieri, V. Tofani, G. Gigli, and F. Raspini, 2023: Landslide detection,
monitoring and prediction with remote-sensing techniques. Nat. Rev. Earth
Environ., 4, 51-64, https://doi.org/10.1038/s43017-022-00373-x.

Chantry, M., S. Hatfield, P. Dueben, 1. Polichtchouk, and T. Palmer, 2021: Machine
learning emulation of gravity wave drag in numerical weather forecasting.
J. Adv. Model. Earth Syst., 13, e2021MS002477, https://doi.org/10.1029/
2021MS002477.

Coats, S., J. E. Smerdon, S. Stevenson, J. T. Fasullo, B. Otto-Bliesner, and T. R. Ault,
2020: Paleoclimate constraints on the spatiotemporal character of past and
future droughts. J. Climate, 33, 9883-9903, https://doi.org/10.1175/JCLI-D-
20-0004.1.

AMERICAN METEOROLOGICAL SOCIETY BAMS

DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction
Scheme (ships) for the Atlantic basin. Wea. Forecasting, 9, 209-220, https:/
doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.C0;2.

Demuth, J. L., and Coauthors, 2020: Recommendations for developing use-
ful and usable convection-allowing model ensemble information for NWS
forecasters. Wea. Forecasting, 35, 1381-1406, https://doi.org/10.1175/WAF-
D-19-0108.1.

D'Ignazio, C., and L. F. Klein, 2020: Data Feminism. MIT Press, 328 pp.

Emanuel, K., 2008: The hurricane—climate connection. Bull. Amer. Meteor. Soc.,
89, ES10-ES20, https://doi.org/10.1175/BAMS-89-5-Emanuel.

Eubanks, V., 2018: Automating Inequality: How High-Tech Tools Profile, Police,
and Punish the Poor. St. Martin’s Press, Inc., 260 pp.

Fischhoff, B., and S. Johnson, 1996: Organizational decision making. The Possi-
bility of Distributed Decision Making, Cambridge University Press, 216-237.

——, and S. B. Broomell, 2020: Judgment and decision making. Annu. Rev. Psychol.,
71, 331-355, https://doi.org/10.1146/annurev-psych-010419-050747.

Flora, M. L., C. K. Potvin, A. McGovern, and S. Handler, 2024: A machine learn-
ing explainability tutorial for atmospheric sciences. Artif. Intell. Earth Syst., 3,
€230018, https://doi.org/10.1175/AIES-D-23-0018.1.

Friedman, B., and H. Nissenbaum, 1996: Bias in computer systems. ACM Trans. Inf.
Syst., 14, 330-347, https://doi.org/10.1145/230538.230561.

Haiden, T., M. Janousek, F. Vitart, Z. B. Bouallegue, L. Ferranti, F. Prates, and
D. Richardson, 2021: Evaluation of ECMWF forecasts, including the 2021 up-
grade. ECMWF Tech. Memo. 884, 54 pp., https://doi.org/10.21957/90pgicjk4.

Harvey, C., 2023: Weather warning inequity: Lack of data collection stations
imperils vulnerable people. Scientific American, 5 July, https://lwww.scientific
american.com/article/weather-warning-inequity-lack-of-data-collection-stations-
imperils-vulnerable-people/.

Henry, P. J., 2010: Institutional bias. The Sage Handbook of Prejudice, Stereo-
typing and Discrimination, ). F. Dovidio et al., Eds., SAGE Publications Ltd,
426-440, https://doi.org/10.4135/9781446200919.

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy.
Meteor. Soc., 146, 1999-2049, https://doi.org/10.1002/qj.3803.

Hilburn, K. A., 1. Ebert-Uphoff, and S. D. Miller, 2020: Development and interpreta-
tion of a neural-network-based synthetic radar reflectivity estimator using
GOES-R satellite observations. /. Appl Meteor. Climatol., 60, 3-21, https://doi.
org/10.1175/JAMC-D-20-0084.1.

IPCC, 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. H.-O.
Portner and D. Belling, Eds., Cambridge University Press, 3056 pp.

Jacovi, A, A. Marasovi¢, T. Miller, and Y. Goldberg, 2021: Formalizing trust in artificial
intelligence: Prerequisites, causes and goals of human trust in Al. FAccT'21: Proc.
2021 ACM Conf. on Fairness, Accountability, and Transparency, Online, Association
for Computing Machinery, 624635, https://doi.org/10.1145/3593013.3593986.

Jones, P.E., and P. H. Roelofsma, 2000: The potential for social contextual and group
biases in team decision-making: Biases, conditions and psychological mechanisms.
Ergonomics, 43, 1129-1152, https://doi.org/10.1080/00140130050084914.

Kahneman, D., P. Slovic, and A. Tversky, 1982: Judgment under Uncertainty:
Heuristics and Biases. Cambridge University Press, 55 pp.

Kantayya, S., 2020: Coded Bias. 7th Empire Media, https://www.7thempiremedia.
com/films-codedbias.

Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying
tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093—1108,
https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

Kashinath, K., and Coauthors, 2021: Physics-informed machine learning: Case stud-
ies for weather and climate modelling. Philos. Trans. Roy. Soc., A379, 20200093,
https://doi.org/10.1098/rsta.2020.0093.

Kenny, C. T, S. Kuriwaki, C. McCartan, E. T. R. Rosenman, T. Simko, and K. Imai,
2021: The use of differential privacy for census data and its impact on redis-
tricting: The case of the 2020 U.S. Census. Sci. Adv., 7, eabk3283, https://doi.
org/10.1126/sciadv.abk3283.

Unauthenticatedwﬁ%gv%gooagd%d 0'1:35§71/24 01:59 PM UTC


https://doi.org/10.1145/3531146.3533211
https://doi.org/10.1145/3531146.3533211
https://doi.org/10.1016/j.regsciurbeco.2010.11.001
https://doi.org/10.1037/0033-2909.110.3.486
https://doi.org/10.1145/3531146.3533179
https://doi.org/10.1038/d41586-023-03817-6
https://doi.org/10.1038/s43588-021-00023-0
https://medium.com/thinking-is-hard/4-conundrums-of-intelligence-2ab78d90740f
https://medium.com/thinking-is-hard/4-conundrums-of-intelligence-2ab78d90740f
https://betterhumans.pub/cognitive-bias-cheat-sheet-55a472476b18
https://betterhumans.pub/cognitive-bias-cheat-sheet-55a472476b18
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1057/s41599-021-00903-w
https://doi.org/10.1029/2023GL103531
htps://doi.org/10.1145/3377325.3380623
https://doi.org/10.1038/s43017-022-00373-x
https://doi.org/10.1029/2021MS002477
https://doi.org/10.1029/2021MS002477
https://doi.org/10.1175/JCLI-D-20-0004.1
https://doi.org/10.1175/JCLI-D-20-0004.1
https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2
https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2
https://doi.org/10.1175/WAF-D-19-0108.1
https://doi.org/10.1175/WAF-D-19-0108.1
https://doi.org/10.1175/BAMS-89-5-Emanuel
https://doi.org/10.1146/annurev-psych-010419-050747
https://doi.org/10.1175/AIES-D-23-0018.1
https://doi.org/10.1145/230538.230561
https://doi.org/10.21957/90pgicjk4
https://www.scientificamerican.com/article/weather-warning-inequity-lack-of-data-collection-stations-imperils-vulnerable-people/
https://www.scientificamerican.com/article/weather-warning-inequity-lack-of-data-collection-stations-imperils-vulnerable-people/
https://www.scientificamerican.com/article/weather-warning-inequity-lack-of-data-collection-stations-imperils-vulnerable-people/
https://doi.org/10.4135/9781446200919
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/JAMC-D-20-0084.1
https://doi.org/10.1175/JAMC-D-20-0084.1
https://doi.org/10.1145/3593013.3593986
https://doi.org/10.1080/00140130050084914
https://www.7thempiremedia.com/films-codedbias
https://www.7thempiremedia.com/films-codedbias
https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
https://doi.org/10.1098/rsta.2020.0093
https://doi.org/10.1126/sciadv.abk3283
https://doi.org/10.1126/sciadv.abk3283

Labe, Z. M., and E. A. Barnes, 2021: Detecting climate signals using explain-
able Al with single-forcing large ensembles. J. Adv. Model. Earth Syst., 13,
€2021MS002464, https://doi.org/10.1029/2021MS002464.

Lagerquist, R., A. McGovern, C. Homeyer, D. Gagne, and T. Smith, 2020: Deep learn-
ing on three-dimensional multiscale data for next-hour tornado prediction.
Mon. Wea. Rev., 148, 2837-2861, https://doi.org/10.1175/MWR-D-19-0372.1.

Lam, R., and Coauthors, 2023: Learning skillful medium-range global weather fore-
casting. Science, 382, 1416-1421, https://doi.org/10.1126/science.adi2336.

Landsea, C., and J. Franklin, 2013: Atlantic hurricane database uncertainty and
presentation of a new database format. Mon. Wea. Rev., 141, 3576-3592,
https://doi.org/10.1175/MWR-D-12-00254.1.

Lang, C., and S. Pearson-Merkowitz, 2022: Aggregate data yield biased estimates
of voter preferences. J. Environ. Econ. Manage., 111, 102604, https://doi.org/
10.1016/j.jeem.2021.102604.

Lapuschkin, S., S. Waldchen, A. Binder, G. Montavon, W. Samek, and K.-R. Mdiller,
2019: Unmasking Clever Hans predictors and assessing what machines really
learn. Nat. Commun., 10, 1096, https://doi.org/10.1038/s41467-019-08987-4.

Larrick, R. P., 2004: Debiasing. Blackwell Handbook of Judgment and Decision
Making, John Wiley & Sons, Ltd, 316-338, https://onlinelibrary.wiley.com/doi/
pdf/10.1002/9780470752937.ch16.

Mamalakis, A., E. A. Barnes, and |. Ebert-Uphoff, 2023: Carefully choose the
baseline: Lessons learned from applying XAl attribution methods for regres-
sion tasks in geoscience. Artif. Intell. Earth Syst., 2, e220058, https://doi.org/
10.1175/AIES-D-22-0058.1.

March, J. G., and J. P. Olsen, 1984: The new institutionalism: Organizational
factors in political life. Amer. Political Sci. Rev., 78, 734-749, https://doi.org/
10.2307/1961840.

McGovern, A., K. Elmore, D. Gagne, S. Haupt, C. Karstens, R. Lagerquist, T. Smith, and
J. Williams, 2017: Using artificial intelligence to improve real-time decision-
making for high-impact weather. Bull. Amer. Meteor. Soc., 98, 2073-2090,
https://doi.org/10.1175/BAMS-D-16-0123.1.

, |. Ebert-Uphoff, D. J. Gagne, and A. Bostrom, 2022: Why we need to focus
on developing ethical, responsible, and trustworthy artificial intelligence
approaches for environmental science. Environ. Data Sci., 1, €6, https://doi.
0rg/10.1017/eds.2022.5.

McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale
environment: A technical update on the Oklahoma Mesonet. J. Atmos.
Oceanic Technol., 24, 301-321, https://doi.org/10.1175/JTECH1976.1.

Mendez, C., and Coauthors, 2018: Open source barriers to entry, revisited: A
sociotechnical perspective. ICSE18: Proc. 40th Int. Conf. on Software Engineer-
ing, Gothenburg, Sweden, Association for Computing Machinery, 10041015,
https://doi.org/10.1145/3180155.3180241.

Menne, M. J., C. N. Williams Jr., and M. A. Palecki, 2010: On the reliability of the
U.S. surface temperature record. J. Geophys. Res., 115, D11108, https://doi.
0rg/10.1029/2009JD013094.

Micke, K., 2018: Every pixel of GOES-17 imagery at your fingertips. Bull. Amer.
Meteor. Soc., 99, 2217-2219, https://doi.org/10.1175/BAMS-D-17-0272.1.
Morss, R. E., J. K. Lazo, and J. L. Demuth, 2010: Examining the use of weather
forecasts in decision scenarios: Results from a US survey with implications for
uncertainty communication. Meteor. Appl., 17, 149-162, https://doi.org/10.

1002/met.196.

Mullen, B., and L. Hu, 1988: Social projection as a function of cognitive mecha-
nisms: Two meta-analytic integrations. Br. /. Soc. Psychol., 27, 333-356, https:/
doi.org/10.1111/].2044-8309.1988.tb00836.x.

Murphy, A. H., 1993: What is a good forecast? An essay on the nature of good-
ness in weather forecasting. Wea. Forecasting, 8, 281-293, https://doi.org/10.
1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2.

Nelson, A., and Office of Science and Technology Policy, 2022: Ensuring free,
immediate, and equitable access to federally funded research. Executive
Office of the President of the United States Tech. Rep., 8 pp., https://www.
whitehouse.gov/wp-content/uploads/2022/08/08-2022-0STP-Public-Access-
Memo.pdf.

AMERICAN METEOROLOGICAL SOCIETY BAMS

O'Neil, C., 2016: Weapons of Math Destruction: How Big Data Increases Inequal-
ity and Threatens Democracy. Crown Publishing Group, 272 pp.

Pacchetti, M. B., S. Dessai, S. Bradley, and D. A. Stainforth, 2021: Assessing
the quality of regional climate information. Bull. Amer. Meteor. Soc., 102,
E476-E491, https://doi.org/10.1175/BAMS-D-20-0008.1.

Pappenberger, F, E. Stephens, J. Thielen, P. Salamon, D. Demeritt, S. J. van Andel,
F. Wetterhall, and L. Alfieri, 2013: Visualizing probabilistic flood forecast infor-
mation: Expert preferences and perceptions of best practice in uncertainty com-
munication. Hydrol. Processes, 27, 132146, https://doi.org/10.1002/hyp.9253.

Peng, K., A. Mathur, and A. Narayanan, 2021: Mitigating dataset harms requires
stewardship: Lessons from 1000 papers. arXiv, 2108.02922v2, https://doi.
org/10.48550/arXiv.2108.02922.

Peterson, T. C., and R. S. Vose, 1997: An overview of the Global Historical Clima-
tology Network temperature database. Bull. Amer. Meteor. Soc., 78, 2837—
2850, https://doi.org/10.1175/1520-0477(1997)078<2837:A00TGH>2.0.C0;2.

Pushkarna, M., A. Zaldivar, and O. Kjartansson, 2022: Data cards: Purposeful and
transparent dataset documentation for responsible Al. FAccT22: 2022 ACM Conf.
on Fairness, Accountability, and Transparency, Seoul, South Korea, Association for
Computing Machinery, 1776-1826, https://doi.org/10.1145/3531146.3533231.

Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and
Prabhat, 2019: Deep learning and process understanding for data-driven
Earth system Science. Nature, 566, 195-204, https://doi.org/10.1038/s41586-
019-0912-1.

Ripberger, J., A. Bell, A. Fox, A. Forney, W. Livingston, C. Gaddie, C. Silva, and
H. Jenkins-Smith, 2022: Communicating probability information in weather
forecasts: Findings and recommendations from a living systematic review
of the research literature. Wea. Climate Soc., 14, 481-498, https://doi.org/
10.1175/WCAS-D-21-0034.1.

Saltikoff, E., and Coauthors, 2019: An overview of using weather radar for cli-
matological studies: Successes, challenges, and potential. Bull. Amer. Meteor.
Soc., 100, 1739-1752, https://doi.org/10.1175/BAMS-D-18-0166.1.

Schneider, T, S. Lan, A. Stuart, and J. Teixeira, 2017: Earth system model-
ing 2.0: A blueprint for models that learn from observations and targeted
high-resolution simulations. Geophys. Res. Lett., 44, 12396-12417, https:/
doi.org/10.1002/2017GL076101.

Schreck, J. S., G. Gantos, M. Hayman, A. Bansemer, and D. J. Gagne, 2022:
Neural network processing of holographic images. Atmos. Meas. Tech.,
15, 5793-5819, https://doi.org/10.5194/amt-15-5793-2022.

—— M. Hayman, G. Gantos, A. Bansemer, and D. J. Gagne, 2023: Mimicking
non-ideal instrument behavior for hologram processing using neural style
translation. arXiv, 2301.02757v1, https://doi.org/10.48550/arXiv.2301.02757.

Schwartz, R., A. Vassilev, K. Greene, L. Perine, A. Burt, and P. Hall, 2022: Towards
a standard for identifying and managing bias in artificial intelligence. NIST
Tech. Rep. 1270, 86 pp., https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.1270.pdf.

Simon, H. A., 1990: Invariants of human behavior. Annu. Rev. Psychol., 41 (1),
1-20, https://doi.org/10.1146/annurev.ps.41.020190.000245.

Smith, J. J., S. Amershi, S. Barocas, H. Wallach, and J. Wortman Vaughan, 2022:
REAL ML: Recognizing, exploring, and articulating limitations of machine
learning research. FAccT'22: 2022 ACM Conf. on Fairness, Accountability,
and Transparency, Seoul, South Korea, Association for Computing Machinery,
587-597, https://doi.org/10.1145/3531146.3533122.

Stall, S., and Coauthors, 2023: Ethical and responsible use of AI/ML in the earth,
space, and environmental sciences. £SS Open Archive, https://doi.org/10.22541/
essoar.168132856.66485758/v1.

Sun, A. Y., and B. R. Scanlon, 2019: How can big data and machine learning
benefit environment and water management: A survey of methods, appli-
cations, and future directions. Environ. Res. Lett., 14, 073001, https://doi.
org/10.1088/1748-9326/ab1b7d.

Suresh, H., and J. Guttag, 2021: A framework for understanding sources of harm
throughout the machine learning life cycle. EAAMO21: Proc. First ACM
Conf. on Equity and Access in Algorithms, Mechanisms, and Optimization,

Unauthenticatedwﬁ%gv%gooagd%d 0'1:3552/24 01:59 PM UTC


https://doi.org/10.1029/2021MS002464
https://doi.org/10.1175/MWR-D-19-0372.1
https://doi.org/10.1126/science.adi2336
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1016/j.jeem.2021.102604
https://doi.org/10.1016/j.jeem.2021.102604
https://doi.org/10.1038/s41467-019-08987-4
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470752937.ch16
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470752937.ch16
https://doi.org/10.1175/AIES-D-22-0058.1
https://doi.org/10.1175/AIES-D-22-0058.1
https://doi.org/10.2307/1961840
https://doi.org/10.2307/1961840
https://doi.org/10.1175/BAMS-D-16-0123.1
https://doi.org/10.1017/eds.2022.5
https://doi.org/10.1017/eds.2022.5
https://doi.org/10.1175/JTECH1976.1
https://doi.org/10.1145/3180155.3180241
https://doi.org/10.1029/2009JD013094
https://doi.org/10.1029/2009JD013094
https://doi.org/10.1175/BAMS-D-17-0272.1
https://doi.org/10.1002/met.196
https://doi.org/10.1002/met.196
https://doi.org/10.1111/j.2044-8309.1988.tb00836.x
https://doi.org/10.1111/j.2044-8309.1988.tb00836.x
https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2
https://www.whitehouse.gov/wp-content/uploads/2022/08/08-2022-OSTP-Public-Access-Memo.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/08/08-2022-OSTP-Public-Access-Memo.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/08/08-2022-OSTP-Public-Access-Memo.pdf
https://doi.org/10.1175/BAMS-D-20-0008.1
https://doi.org/10.1002/hyp.9253
https://doi.org/10.48550/arXiv.2108.02922
https://doi.org/10.48550/arXiv.2108.02922
https://doi.org/10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2
https://doi.org/10.1145/3531146.3533231
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1175/WCAS-D-21-0034.1
https://doi.org/10.1175/WCAS-D-21-0034.1
https://doi.org/10.1175/BAMS-D-18-0166.1
https://doi.org/10.1002/2017GL076101
https://doi.org/10.1002/2017GL076101
https://doi.org/10.5194/amt-15-5793-2022
https://doi.org/10.48550/arXiv.2301.02757
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1270.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1270.pdf
https://doi.org/10.1146/annurev.ps.41.020190.000245
https://doi.org/10.1145/3531146.3533122
https://doi.org/10.22541/essoar.168132856.66485758/v1
https://doi.org/10.22541/essoar.168132856.66485758/v1
https://doi.org/10.1088/1748-9326/ab1b7d
https://doi.org/10.1088/1748-9326/ab1b7d

Online, Association for Computing Machinery, 9 pp., https://doi.org/10.1145/
3465416.3483305.

Tabassi, E., 2023: Artificial intelligence risk management framework (Al RMF 1.0).
Tech. Rep. NIST Al 100-1, 48 pp., https://doi.org/10.6028/NIST.AL.100-1.

Tajfel, H., 1982: Social psychology of intergroup relations. Annu. Rev. Psychol.,
33 (1), 1-39, https://doi.org/10.1146/annurev.ps.33.020182.000245.

The White House, 2023: Executive order on the safe, secure, and trustworthy
development and use of artificial intelligence. Tech. Rep. 2023-24283, E.O.
14110 of Oct 30,2023, 88 FR 75191, Executive Office of the President, 36 pp.,
https://www.federalregister.gov/d/2023-24283.

Tsai, W.-P, D. Feng, M. Pan, H. Beck, K. Lawson, Y. Yang, J. Liu, and C. Shen, 2021:
From calibration to parameter learning: Harnessing the scaling effects of
big data in geoscientific modeling. Nat. Commun., 12, 5988, https://doi.org/
10.1038/541467-021-26107-z.

Tversky, A., and D. Kahneman, 1971: Belief in the law of small numbers. Psychol.
Bull., 76, 105-110, https://doi.org/10.1037/h0031322.

Vecchi, G. A., and T. R. Knutson, 2011: Estimating annual numbers of Atlan-
tic hurricanes missing from the HURDAT database (1878-1965) using ship
track density. /. Climate, 24, 1736-1746, https://doi.org/10.1175/2010J
CLI3810.1.

AMERICAN METEOROLOGICAL SOCIETY

BAMS

Veillette, M. S., E. P. Hassey, C. J. Mattioli, H. Iskenderian, and P. M. Lamey,
2018: Creating synthetic radar imagery using convolutional neural networks.
J Atmos. Oceanic Technol,, 35, 2323-2338, https://doi.org/10.1175//TECH-D-18-0010.1.

White, C. J., and Coauthors, 2022: Advances in the application and utility of
subseasonal-to-seasonal predictions. Bull. Amer. Meteor. Soc., 103, E1448—
E1472, https://doi.org/10.1175/BAMS-D-20-0224.1.

Wolfe, J. M., 2021: Guided Search 6.0: An updated model of visual search. Psychon.
Bull. Rev., 28, 1060-1092, https://doi.org/10.3758/s13423-020-01859-9.
World Weather Attribution, 2023: Limited data prevent assessment of role of cli-
mate change in deadly floods affecting highly vulnerable communities around
Lake Kivu. 29 June, https://www.worldweatherattribution.org/limited-data-
prevent-assessment-of-role-of-climate-change-in-deadly-floods-affecting-

highly-vulnerable-communities-around-lake-kivu/.

Yilmaz, M., 2023: Accuracy assessment of temperature trends from ERA5 and
ERA5-Land. Sci. Total Environ., 856, 159182, https://doi.org/10.1016/].
scitotenv.2022.159182.

Zhang, Q., W. Zhang, X. Wu, J. Zhang, W. Kuang, and X. Si, 2022: Deep learn-
ing for efficient microseismic location using source migration-based imaging.
J. Geophys. Res. Solid Earth, 127, €2021JB022649, https://doi.org/10.1029/
2021JB022649.

Unauthenticatedwﬁ%gv%gooagd%d G%5§;/24 01:59 PM UTC


https://doi.org/10.1145/3465416.3483305
https://doi.org/10.1145/3465416.3483305
https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/10.1146/annurev.ps.33.020182.000245
https://www.federalregister.gov/d/2023-24283
https://doi.org/10.1038/s41467-021-26107-z
https://doi.org/10.1038/s41467-021-26107-z
https://doi.org/10.1037/h0031322
https://doi.org/10.1175/2010JCLI3810.1
https://doi.org/10.1175/2010JCLI3810.1
https://doi.org/10.1175/JTECH-D-18-0010.1
https://doi.org/10.1175/BAMS-D-20-0224.1
https://doi.org/10.3758/s13423-020-01859-9
https://www.worldweatherattribution.org/limited-data-prevent-assessment-of-role-of-climate-change-in-deadly-floods-affecting-highly-vulnerable-communities-around-lake-kivu/
https://www.worldweatherattribution.org/limited-data-prevent-assessment-of-role-of-climate-change-in-deadly-floods-affecting-highly-vulnerable-communities-around-lake-kivu/
https://www.worldweatherattribution.org/limited-data-prevent-assessment-of-role-of-climate-change-in-deadly-floods-affecting-highly-vulnerable-communities-around-lake-kivu/
https://doi.org/10.1016/j.scitotenv.2022.159182
https://doi.org/10.1016/j.scitotenv.2022.159182
https://doi.org/10.1029/2021JB022649
https://doi.org/10.1029/2021JB022649

	Identifying and Categorizing Bias in AI/ML 
for Earth Sciences
	KEYWORDS
	Bias categories
	Systemic and structural bias
	Historical bias.
	Social bias.
	Institutional bias.

	Human bias
	Information overload.
	Attention.
	Working memory.
	Sense making.

	Data bias
	Selection bias.
	Interpretation bias.
	Processing bias.
	Physics bias.

	Statistical and computational bias
	AI model bias.
	Validation bias.
	Use and interpretation bias.

	Discussion and future work
	Acknowledgments.
	Data availability statement.
	References


