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Constant-overhead fault-tolerant  
quantum computation with reconfigurable 
atom arrays

Qian Xu    1,6, J. Pablo Bonilla Ataides    2,6, Christopher A. Pattison3, 
Nithin Raveendran    4, Dolev Bluvstein2, Jonathan Wurtz5, Bane Vasić    4, 
Mikhail D. Lukin2, Liang Jiang    1   & Hengyun Zhou    2,5 

Quantum low-density parity-check (qLDPC) codes can achieve high 
encoding rates and good code distance scaling, potentially enabling 
low-overhead fault-tolerant quantum computing. However, implementing 
qLDPC codes involves nonlocal operations that require long-range 
connectivity between qubits. This makes their physical realization 
challenging in comparison to geometrically local codes, such as the surface 
code. Here we propose a hardware-efficient scheme for fault-tolerant 
quantum computation with high-rate qLDPC codes that is compatible with 
the recently demonstrated capabilities of reconfigurable atom arrays. Our 
approach utilizes the product structure inherent in many qLDPC codes 
to implement the nonlocal syndrome extraction circuit through atom 
rearrangement, resulting in an effectively constant overhead. We prove 
the fault tolerance of these protocols, and our simulations show that the 
qLDPC-based architecture starts to outperform the surface code with as few 
as several hundred physical qubits. We further find that quantum algorithms 
involving thousands of logical qubits can be performed using less than 105 
physical qubits. Our work suggests that low-overhead quantum computing 
with qLDPC codes is within reach using current experimental technologies.

Quantum error correction (QEC) is believed to be essential for realizing 
large-scale fault-tolerant quantum information processing. However, 
traditional schemes for achieving QEC, such as the paradigmatic surface 
code, are generally very costly in terms of resource overhead, requiring 
millions of qubits to solve problems of interest1–4.

Recently, a new approach based on high-rate quantum low-density 
parity-check (qLDPC) codes has been proposed as a promising route 
to reduce the resources required. Unlike planar surface codes1,2,5 that 
encode a single logical qubit per block, qLDPC codes can encode many 
logical qubits per block and achieve a much higher, asymptotically 

constant, encoding rate6,7 as well as better distance scaling8–10. However, 
to realize these appealing features, qLDPC codes require long-range 
connectivity between qubits, making their physical realization chal-
lenging11–13. Although several proposals have been made for physical 
implementation of qLDPC codes in superconducting qubit architec-
tures, the required long-range and multi-layer connectivity is consider-
ably beyond both current and medium-term hardware capabilities14–16.

In bringing qLDPC codes into practical use for full-fledged quan-
tum computation, further challenges arise. A rigorous analysis of the 
circuit-level fault tolerance of qLDPC codes is lacking, despite some  
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idling errors, which have only a minor contribution for the finite-size
codes of our interest, we achieve an order of magnitude saving over a
surface code with less than 3,000 physical qubits (including ancillae) at
a physical error rate of 10−3 (Fig. 1 bottom panel and Table 1). We further
extend this analysis to logical gate operation, numerically demonstrat-
ing that the high thresholds and good subthreshold scaling of high-rate
qLDPC codes can be maintained during computation, thus paving the
way to low-overhead fault-tolerant quantum computing.

Overview of the qLDPC-based quantum computer
An overview of our qLDPC-based approach to fault-tolerant quantum
computation is shown in Fig. 1. It consists of a high-rate qLDPC memory
block that reliably and efficiently stores the quantum information, a
processor with computational logical qubits such as surface or colour
codes that perform logical gates, and mediating ancillae that inter-
connect the memory and processor. This allows us to take advantage
of the dense storage capabilities of the qLDPC block while allowing
flexible execution of quantum circuits. Adopting the conventional
n, k, ddd notation for a code with n physical qubits, k logical qubits k

and distanced, the qLDPC block using the HGP codes described below
can provide a dense Θ(k), k, dmemdd  encoding, where the memory dis-
tance . This results in a constant encoding rate k/kk n and 
a logical failure rate (LFR) exponentially decaying with the code
distance. Here the LFR is defined as the probability that any of the
logical qubits fails per code cycle.O andΘ are standard asymptotic
notations denoting less or equal to and equal to (in scaling), respec-
tively. Note that using LP codes with a higher encoding rate and better 
distance scaling (Methods and Fig. 3) further reduces the space over-
head at small sizes. Our processor consists of mcomputational qubits
of code parameters , where the code distance

, with T being the depth of the logical circuit T
to execute, is chosen to produce a sufficiently low error rate. The
mediating ancillae, one for each computational qubit (Fig. 4), have 
code parameters . By performing 
ancilla-assisted lattice surgery, the stored logical information can be
teleported between any given pair of memory and computation qubits.
Within this architecture, logical gates can be applied in parallel to a
subset m of the stored memory qubits in each logical circuit step. Select-
ing m = O(k/kk dcompdd dmemdd ) ensures that the cumulative ancilla block over-
head isO(k), which does not exceed the overhead of the memory block.kk
This choice leads to a constant encoding rate for quantum computation. 
For HGP codes with  and , this
implies , but if a smaller code distance pro-
vides sufficient error suppression, the parallelism can be increased
while maintaining a constant encoding rate.

promising numerical evidence14,15. Also, it is currently unclear whether
finite-size qLDPC codes can outperform surface codes in near- or
medium-term devices with ≲10,000 qubits and realistic physical error
rates above 10−3. Since Gottesman’s seminal results demonstrating
that qLDPC codes can enable fault-tolerant quantum computing
with a constant space overhead17, several practical gate construc-
tions have recently been proposed18–21. However, no studies on the 
circuit-level performance of these protocols have been carried out
to date. In particular, it is not clear whether the performance and low
overhead of the qLDPC codes can be maintained during computation
in a full circuit-level fault-tolerant setting.

In this Article, we propose and analyse a realistic, hardware-
efficient, neutral-atom implementation of fault-tolerant quantum
computation with high-rate qLDPC codes. We provide concrete experi-
mental and theoretical blueprints and demonstrate their advantage
over surface codes starting from as few as several hundred physical
qubits. Our proposal is based on reconfigurable atom arrays, a newly
developed hardware architecture for quantum computation with
long-range, reconfigurable connectivity22,23. We show how the product
structure of many qLDPC codes6,8,24 naturally matches the parallelism
afforded by physical realizations of reconfigurable atom arrays, which
enables their hardware-efficient implementation in a logarithmic
number of steps. Through a combination of threshold proofs under the
single-shot, circuit-level noise model setting, and detailed circuit-level
numerical simulations, we find competitive performance for hyper-
graph product (HGP)6 codes and quasi-cyclic lifted product (LP)8

codes, achieving error thresholds of around 0.6% under a circuit-level,
depolarizing-noise model that neglects idling errors. Accounting for 
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Fig. 1 | Architecture of a qLDPC-based fault-tolerant quantum computer using
reconfigurable atom arrays. The computer consists of a qLDPC memory block, a
processor with computational logical qubits, and mediating ancillae between the
memory and the processor. The lower panel shows a contour plot of the number
of physical qubits (including data and ancilla qubits) required by our architecture,
at a 10−3 physical error rate, given a target number of logical qubits and a target
LFR, compared to the surface code. The qLDPC space overhead is given by the
minimum of that for the LP codes shown in Fig. 3b with less than 1,428 data qubits 
and that for HGP codes using an extrapolation of the numerical results in Fig. 3a.

Table 1 | Total number of data and ancilla qubits required to
reach target numbers of logical qubits and LFRs using HGP
codes and LP codes, compared to using surface codes

Logical qubits 25 80 180 400

Logical failure
rate

10−3 10−4 2 × 10−5 6 × 10−6

HGP code
physical qubits 
(improvement
over surface
code)

1,235 (×1) 4,606 (×2.8) 10,760 (×4.0) 19,600 (×6.9)

LP code 
physical qubits 
(improvement
over surface 
code)

851 (×1.4) 1,367 (×9.4) 2,670 (×16.2)

We use (×β) to indicate a β times qubit saving compared to the surface codes by using the
corresponding qLDPC codes. The physical error rate is set to 10−3. The estimates for the HGP 
and LP codes are based on the numerical data in Fig. 3.
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Implementation in neutral-atom arrays
We now describe the hardware-efficient implementation of this 
qLDPC-based architecture in the atom array platform. Here, qubits 
are encoded in long-lived spin degrees of freedom of an atom, with 
seconds-range coherence times22,25–27, high-fidelity single-qubit 
(>99.9%) and two-qubit (>99.5%) control, and mid-circuit measure-
ments (>99.8%)22,25,26,28–30. By shuttling atoms around in optical twee-
zers, one can reconfigure the processor connectivity during quantum 
evolution with minimal decoherence22,31 and realize parallel two-qubit 
gate operations with qubits across the whole system. The coherent shut-
tling approach features a high degree of parallelism, which is inherent 
to multiplexing with optical tools. A particularly powerful tool is the 
so-called acousto-optic deflector (AOD), which can simultaneously con-
trol the position of rectangular grids composed of thousands of atoms 
simply by using two control waveforms for the X and Y coordinates22. 
These AOD tools are a key enabling technology for qubit transport in 
atom arrays and support an inherent ‘product structure’ that, as we will 
now show, is suited well to the implementation of HGP and LP codes.

We first describe an algorithm to implement good classical LDPC 
codes using efficient one-dimensional (1D) atom rearrangements 
without atom collisions. Recall that a classical (LDPC) code is associated 
with a parity-check matrix H, whose rows (columns) are associated with 
classical checks (bits). The ith check is connected to the jth bit if Hi,j = 1. 
We first lay out the classical LDPC code on a line and group syndrome 

extraction into layers of parallel entangling operations, resulting in 
an ordering of checks and bits such that the connected checks and 
bits in a given layer are neighbouring. To achieve this ordering, we 
employ a divide-and-conquer rearrangement strategy that requires 
a number of steps only logarithmic in the total number of checks and 
bits, as described in detail in Fig. 2a, Extended Data Fig. 2, Methods 
and Supplementary Video 1. This generalizes previous proposals for 
scrambling circuits32 to arbitrary rearrangements. After sorting the 
atoms, a global laser pulse is applied to entangle neighbouring checks 
and bits in parallel, before proceeding to the next layer of atom rear-
rangement, thus allowing the implementation of syndrome extraction 
in classical LDPC codes.

We next demonstrate how the product structure of one of the pro-
totypical qLDPC codes (Fig. 2b and Extended Data Fig. 1a), HGP codes, 
naturally matches the product structure of crossed AOD optical hard-
ware, enabling its hardware-efficient implementation. We start from 
a pair of classical LDPC codes illustrated in the horizontal and vertical 
directions, with checks and bits denoted as blue squares and orange 
circles, respectively. To construct the resulting HGP code, we place a 
data qubit at each intersection of a horizontal check and a vertical check 
or a horizontal bit and a vertical bit, within a two-dimensional grid6 
(Fig. 2b). X stabilizer syndrome qubits and Z stabilizer syndrome qubits 
are then placed at the intersection of a horizontal check and a vertical 
bit or a vertical check and a horizontal bit, respectively. Importantly, 
the qubit connectivities are directly inherited from the underlying clas-
sical code in the horizontal and vertical directions, and thus, the same 
entangling gates are applied across every row or column, matching 
well with the product structure of crossed AODs. Thus, by performing 
parallel row reordering in the vertical direction based on the vertical 
LDPC code interleaved with entangling gates between data and sta-
bilizer qubits (Fig. 2c) and then repeating the same in the horizontal 
direction (Fig. 2d), we can implement the syndrome extraction for 
HGP codes. The concrete syndrome extraction circuits are presented 
in Algorithms 1–3 in Methods.

We now estimate the scaling and quantitative experimental time-
scales of our rearrangement algorithm and demonstrate that the  
proposed hardware implementation is indeed achievable with  
existing experimental parameters. In Methods, we show that the total 
rearrangement time scales as , where L is the length  
of the two-dimensional atom array and is like the scaling for a constant 
acceleration trajectory. We estimate that for a moderately sized HGP 
code with 10,000 qubits, each rearrangement layer between gates 
requires 3 ms, a small fraction of the coherence time >10 s that has been 
demonstrated for neutral-atom arrays25–27. These timescales can be 
substantially improved through innovations in optical technologies 
and compilation. Ancilla measurements can be pipelined, thereby not 
causing any increase in the cycle time. For very large codes, where idling 
errors are no longer negligible, concatenation with another code can 
also be employed to extend the effective coherence time33. Note that 
HGP codes based on expanding classical LDPC codes (also called quan-
tum expander codes) have the single-shot property, and therefore, 
only a single round of syndrome extraction is required to be fault- 
tolerant34–36. Although we have focused on the implementation of  
HGP codes, other families of qLDPC codes, such as LP codes (Extended 
Data Fig. 1b), can also be implemented by adapting similar ideas. See 
Methods for details.

qLDPC memory
We now analyse the fault-tolerant implementation of HGP and LP codes 
as a robust quantum memory. We prove in Supplementary Information 
the existence of a circuit-level single-shot threshold for qLDPC codes 
with the linear confinement property35, under a single-ancilla syn-
drome extraction circuit and a depolarizing-noise model where error 
rates do not scale with instance size. The linear confinement property,  
which requires that for sufficiently small Pauli errors the weight of  
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Fig. 2 | Efficient implementation of quantum LDPC codes with atom arrays.  
a, Illustration of the algorithm used to perform an arbitrary 1D log-depth 
rearrangement. We first move all atoms that need to end in the right half of  
the system to the right side, then compact each half into adjacent sites, so  
that there is sufficient workspace for subsequent steps. Atoms are displaced 
perpendicularly during their movement to avoid collisions with static atoms in 
the same row (Supplementary Video 1). The same procedure can then be repeated 
on each half of the system recursively for depth , where L is the length of  
the atom array to be rearranged, resulting in the desired ordering. The algorithm 
uses 50% more static traps than the number of atoms as workspace. b, Illustration 
of the HGP code, obtained as a product of two classical codes. Lines indicate  
that the parity check at the syndrome node involves the corresponding data 
node. c,d, The required connectivity can be implemented with parallel row 
permutations (c) followed by parallel column permutations (d). Although we 
illustrate this for one pair of interacting rows or columns, the same permutations 
and CZs can be applied on several rows or columns in parallel.
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the syndrome increases linearly with the (reduced) weight of the errors,  
holds for various qLDPC codes decodable by the small-set-flip- 
type decoders, including HGP codes with sufficiently expanding  
classical codes.

We next supplement this theoretical understanding with numeri-
cal simulations of HGP and LP codes at practically relevant instance 
sizes37, and we find competitive thresholds and LFRs for both codes. The 
details of the code constructions are shown in Fig. 2 and Methods. We 
use the product coloration circuit (Algorithm 2) for syndrome extrac-
tion, a variation of the coloration circuit14 that is more compatible with 
the product structure of the codes and hardware. The circuit uses a 
single ancilla for each stabilizer generator and has an entangling-gate 
depth of 16 and 20 for the HGP and LP codes we consider. Note that the 
entangling depth can be further reduced by using a pipelined version 
of the product coloration circuit, as presented in Extended Data Fig. 3 
and Methods.

We construct a space–time circuit-level decoder based on the belief 
propagation and ordered statistics decoding (BP+OSD) algorithm7,38–40. 
Specifically, for a QEC circuit with several cycles, we construct a bipartite 
decoding graph39,41,42 over a certain number of cycles, where the check 
nodes and variable nodes are associated with parities of stabilizer 
measurement outcomes and circuit faults, respectively. We apply BP 
decoding on this decoding graph to infer the circuit fault locations in 
all noisy code cycles and apply the BP+OSD decoder in the final round 
to project back into the code space. For all memory simulations, we use 
space–time decoding graphs over three cycles, irrespective of the code 
size. Note that we observe improved logical error rates by increasing the 
number of cycles for decoding, which indicates that there is a trade-off 
between the accuracy and the speed of our decoder. We also remark that 
the BP decoder has similar performance as the BP+OSD decoder for 
decoding the noisy cycles while being much faster. Crucially, compared 
to earlier phenomenological decoders that used a simpler decoding 
graph involving only independent data and measurement errors as bits 
and decoded over only one code cycle15,43, our space–time circuit-level 
decoder takes the full circuit details into account and can perform joint 
decoding on several QEC cycles, thus improving the threshold (Sup-
plementary Information). Moreover, the space–time decoding is also 
crucial for our simulations of logical operations in the next section, 
where repetitions of syndrome measurements are required for fault 
tolerance. See Supplementary Information for details of the decoder.

Supplementary Information shows that the HGP and LP codes have 
a threshold of 0.63% and 0.62%, respectively, under a depolarizing error 

model without idling errors. In the subthreshold regime, assuming the 
absence of a decoding error floor, the LFRs of the two codes are well 
approximated by

indicating that finite-sized LP codes have better subthreshold scaling 
than HGP codes. When also considering idling errors pi(n) associated 
with the atom-rearrangement time overhead, which grow as O(n1/4)  
for HGP codes and O(n1/2) for LP codes (see Methods for details of the 
idling error model and the expression for pi(n) in equation (8)), there is 
no asymptotic code threshold15. However, we numerically observe that 
the effect of adding the idling errors can be approximated by rescal-
ing the gate error pg → pg + 3pi(n) using the product coloration circuit 
(Supplementary Information). The idling errors have a negligible con-
tribution when 3pi(n) ≪ pg, which is the case for current experimental 
parameters and practically relevant code sizes (Extended Data Fig. 4 
and Methods). Therefore, although there is no asymptotic threshold, 
constant overhead and fault tolerance can still be achieved at physi-
cally relevant sizes by utilizing the quasi-nonlocal connectivity in atom 
arrays. Figure 3a,b shows the simulated LFR versus the bare two-qubit 
gate error rate pg (which we refer to as the physical error rate for sim-
plicity) for the HGP and LP codes, with the idling errors included and 
rescaled together with pg. We find that good LFRs and subthreshold 
scaling are maintained for both codes in the presence of idling errors. 
The smallest instances of these codes that we simulate, involving hun-
dreds of physical qubits, are readily within reach with experimentally 
demonstrated system sizes44 and control capabilities22,23, and larger 
instances can be realized with improvements in trap power.

We now use equation (1) to estimate the total number of data  
and ancilla qubits N needed to reach a target number of logical  
qubits k and a target LFR, demonstrating substantial advantages  
of HGP and LP codes over the surface code. We rescale the gate  
error pg to approximate the presence of idling errors and compare  
the results with the surface-code subthreshold scaling formula  

, where , from  

refs. 1,45. Table 1 presents such estimates for finite-sized HGP and  
LP codes that we directly simulated (Fig. 3) at a realistic physical error 
rate of 10−3. Both HGP and LP codes outperform surface codes with as 
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Fig. 3 | qLDPC memory performance. a,b, LFRs as a function of physical error 
rate for the qLDPC memory using HGP codes (a) and LP codes (b), for a 
depolarizing error model that includes idling errors that increase with the code 
size. For the HGP codes, we take the HGP of classical codes associated with 
random (3,4)-regular bipartite graphs that have good expanding properties, 
which have an encoding rate lower-bounded by 1/25. For the LP codes, we choose 
3 by 5 base matrices over a quotient polynomial ring and obtain a family of codes 
with sizes up to 1,428 by increasing the lift size and optimizing the matrix entries. 
These LP codes have an encoding rate lower-bounded by 2/17 and maintain a 
higher encoding rate as well as better distances than HGP codes of the same size. 
See Methods for details of the code construction. We use a product coloration 

circuit for syndrome extraction (Algorithm 2) and a space–time circuit-level 
decoder based on BP+OSD that decodes over every three code cycles, regardless 
of the code size. The LFRs were calculated using , where pL 
is the total logical failure probability over mc code cycles. We choose mc = 42  
for physical error rates below 4 × 10−3 and mc = 12 for physical error rates above 
4 × 10−3. pL was obtained from Monte Carlo simulations with a standard deviation 

, where M denotes the number of samples. We also compare the 
largest HGP or LP code to surface codes of similar sizes and encoding rates 
(dashed lines), as discussed in ‘Main’. Data are presented as mean values plus  
or minus standard deviations.
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few as 25 logical qubits. At a moderate scale of less than 200 logical 
qubits, LP codes with less than 3,000 physical qubits already achieve 
a qubit saving of over an order of magnitude. In the lower panel of Fig. 1, 
we estimate the space overhead of the HGP codes at a larger scale by 
extrapolation. We find that HGP codes can also achieve a qubit saving 
of over an order of magnitude at a scale of 1,000 logical qubits and  
105 physical qubits.

Logical operations
We now present a scheme inspired by ref. 18 for performing fault-tolerant 
logical operations and perform the first numerical simulation of logi-
cal gate performance on qLDPC codes using the space–time decoder 
developed above. We find that the threshold and logical performance 
remain almost unchanged when performing gates, indicating that the 
high threshold and low overhead can be maintained for fault-tolerant 
quantum computation.

Our scheme is illustrated in Fig. 4a. We teleport the logical informa-
tion between the qLDPC memory and ancillary topological codes using 
a measurement-based circuit (Fig. 4b), where the prescribed logical 
measurements are implemented using lattice surgery18,46–48. Universal 
logical operations can then be performed in the topological codes 
using standard techniques. Our approach is applicable to any CSS 
qLDPC code, as proven in Supplementary Information. The choice  
of qLDPC code, whether an HGP or an LP code, does not impact the 
feasibility of our ancilla encoding for logical operations. Since each 
topological code patch and teleportation ancilla patch is much smaller 
than the qLDPC patch, as long as the number of such patches used is 

, the space overhead from ancilla patches will be 
sub-leading. Note that the scheme in ref. 18 can also be used for telepor-
tation between a qLDPC block and topological codes. In comparison, 
our scheme reduces the ancilla patch size by half and, thus, has a smaller 
space overhead.

As an example, we consider the teleportation from a surface code 
patch to a HGP patch. As illustrated in Fig. 4a, this is mediated by an 
additional ancilla logical qubit that is formed by a HGP of two classical 
codes associated with the logical operators of the two code patches. 
This enables joint logical measurements by merging code blocks.  
We perform  rounds of syndrome extraction to  
ensure tolerance against measurement errors. We describe the scheme 
in more detail in Methods and prove the fault tolerance of the scheme 
under data errors in Supplementary Information.

To validate this method, we perform circuit-level simulations of 
the above teleportation, enabled by the space–time decoder described 
in the previous section. In our simulations, we use the teleportation 
circuit depicted in Fig. 4b with an initial state of . We focus  
on errors during the merge and split operations in the XX measure-
ment to evaluate the performance of lattice-surgery building blocks. 
As shown in Fig. 4c, we observe similar LFRs and threshold crossings 
for the teleportation as for the memory. Note that each logical qubit 
will fail at a rate much lower than the LFR of the entire block shown in 
Fig. 4c, and the system is far below break-even at 10−3 physical error 
rate, even for the smallest code of size 225. This demonstrates that the 
high-threshold and low-resource overhead of the qLDPC code can be 
maintained at the computation level.

Discussion and outlook
By demonstrating large space-overhead savings in practical  
regimes and the good performance of logical gate operations and by 
providing a blueprint for their implementation with existing hard-
ware capabilities, our work brings the use of high-rate qLDPC codes 
for fault-tolerant quantum computation into the practical regime.

Although our scheme shows a notable reduction in space over-
head, it still carries a substantial time overhead. This is because fault 
tolerance during gate operation requires Θ(d) QEC cycles, and the low 
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Fig. 4 | Fault-tolerant teleportation from surface to qLDPC code. a, Illustration 
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We associate these two logical operators with classical codes C1 and C2 by 
mapping the qubits supporting the logical operators to bits and the 
corresponding incident stabilizer generators to classical checks. We then 
construct an ancilla patch as the HGP of C1 and C2. Direct lattice surgery between 
this ancilla patch and each of the surface and HGP codes is conducted by 
matching similar boundaries associated with the chosen logical operators.  
In between similar boundaries, an extra array of ancillary qubits and checks 
associated with the transpose of the classical code is inserted to mediate  
the surgery. The product of the stabilizers associated with the checks of the 
transposed code gives the required joint logical measurement. We elaborate on 
the lattice-surgery procedure in Methods. b, Measurement-based teleportation 

circuit47. Logical state  is teleported from the surface code to one of the 
qLDPC’s logical qubits. The joint Clifford measurements are conducted through 
lattice surgery as illustrated in a. c, Simulated LFRs (per code cycle) of the 
teleportation. Noise is added during the merge and split steps of the XX lattice 
surgery. We decode with the same space–time circuit-level BP+OSD decoder used 
in the memory simulations. The corresponding surface codes paired with the 
three HGP codes have distances 3, 5 and 7. We record a logical failure if there is an 
error in any of the logical qubits of the qLDPC code after the teleportation 
scheme is complete. Denoting the total logical failure probability as pL, we 
calculate the LFR (per code cycle) as , where there are 2d 
cycles during the noisy XX lattice surgery, and d denotes the minimal code 
distance. The plotted physical error rates are rescaled to account for idling 
errors, as explained in Methods. Data are presented as mean values plus or minus 
standard deviations.
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encoding rate of the ancilla and computational code patches limits 
the logical parallelism when maintaining the low space overhead. We 
expect certain compilations of quantum algorithms that have limited 
parallelism to be natural candidates for our architecture4. However, 
it would be interesting to carry out an end-to-end algorithmic com-
pilation with qLDPC codes to evaluate the full space–time cost and 
understand which algorithms and compilations are most suited to 
our architecture. Another exciting avenue of research is to improve 
upon the QEC constructions used here, including alternative qLDPC 
code constructions with better properties49–52, single-shot logical gate 
constructions20,21, as well as the use of other types of computational 
logical qubits that may support transversal non-Clifford gates53 or have 
a lower overhead. Moreover, just as topological codes have interpreta-
tions as topological phases of matter, it will be interesting to explore 
the connection between qLDPC codes and highly entangled states of 
matter54. The techniques described here may be useful for exploring 
novel exotic states of matter.
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Methods
Code construction
We primarily focus on two families of qLDPC codes, outlined here  
with additional information available in Supplementary Information. 
We leave the extension of these results to other families, such as asymp-
totically good codes8–10,55–58, to future work.

The first family of codes are HGP codes6, which are formed from 
the product of two classical LDPC codes. Algebraically, if we denote 
the parity-check matrix (where rows describe bits that should sum to 
an even number in the absence of errors) of the two underlying classical 
codes as H1 ∈ 𝔽𝔽r1×n1

2  and H2 ∈ 𝔽𝔽r2×n2
2 , then the X and Z stabilizer check 

matrices for the HGP code can be written as

Hx = (HT
1
⊗ Ir2 In1

⊗ H2) , (2)

Hz = (Ir1 ⊗ HT
2
H1 ⊗ In2

) . (3)

For classical [ni, ki, di] linear codes defined by ri = ni − ki linearly 
independent checks (i = 1, 2), the resulting quantum code has para
meters ⟦n1n2 + r1r2, k1k2,min{d1,d2}⟧. By choosing classical codes with 
good vertex expansion, where ki = Θ(ni) and di = Θ(ni), the resulting 
quantum code (known as a quantum expander code) encodes a  
linear number of logical qubits k = Θ(n) and has distance d = ϴ(√n)   
(ref. 34). Such classical expander codes can be obtained asymptoti
cally, for example, from random biregular Tanner graphs, and will have  
sufficient vertex expansion with high probability59.

In this work, we follow the procedure of ref. 43 and construct 
HGP codes by taking the HGP of classical LDPC codes defined by 
(3,4)-regular Tanner graphs, that is, bipartite graphs with degree-3 
bit nodes and degree-4 check nodes. By increasing the size of the 
graph, we obtain a family of HGP codes with a constant encoding 
rate k/n ≥ 0.04. For each code size, we pick the classical code with the 
largest distance, Tanner graph girth at least 6 (length of the short-
est cycle in the Tanner graph, obtained through rejection sampling 
without performing edge swaps) and the largest spectral gap (the  
gap between the largest two singular values of the classical check 
matrices) from randomly generated instances. It is known that  
the HGP of vertex-expanding classical codes gives HGP codes that 
satisfy the confinement property and support single-shot QEC  
(refs. 34,35,60).

The second family of codes we consider are quasi-cyclic LP 
codes7,9,61, which can be viewed as a HGP code followed by a symmetry 
reduction to reduce the number of qubits required24. Algebraically,  
a quasi-cyclic LP code is obtained from two base protographs  
(analogues of the classical codes in the HGP construction) associated 
with two base matrices B1 and B2 over the quotient polynomial  
ring ℝ[x]/(xl − 1)  (ref. 8). Suppose the two base matrices are of size  
mB1

× nB1
 and mB2

× nB2
, respectively. We obtain two matrices (over  

the same polynomial ring) Bx and Bz by taking the HGP:

Bx = (B⊤1 ⊗ ImB2
InB1

⊗ B2) ,

Bz = (ImB1
⊗ B⊤

2
B1 ⊗ InB2

) .
(4)

The X (Z) check matrix Hx (Hz) is then obtained by replacing each  
entry of Bx (Bz) with its matrix representation as l by l circulant matrices, 
a process known as a lift. Specifically, we replace x with a l by l square 
matrix P, where Pij = δi,j+1, and replace each polynomial in x with  
the same polynomial in P. The code size is N = l(nB1

nB2
+mB1

mB2
)  and  

the numbers of X and Z checks are Mx = lnB1
mB2

 and Mz = lmB1
nB2

,  
respectively. The encoding rate is lower-bounded by

(N −Mx −Mz)/N = (nB1
nB2

+mB1
mB2

−mB1
nB2

− nB1
mB2

) /(nB1
nB2

+mB1
mB2

).

We can also describe the above construction using graphs. As  
an example, Extended Data Fig. 1b shows a LP code using a 3 by 5  
protograph associated with a base matrix B ∈ {ℝ[x]/ (x2 − 1)}3×5 . An 
important feature of the LP codes is that they still have some remaining  
product structure, even after the lift. As shown in Extended Data Fig. 1b, 
when flattening the inner nodes vertically (horizontally), the vertical 
(horizontal) connectivity between the qubits and the checks for  
each column (row) is the same as the left (top) lifted classical code.

For the LP codes constructed in this work, we choose a base matrix 
of dimension 3 by 5, where all entries are monomials, and obtain a family 
of codes with sizes up to 1,428 by increasing the lift size l from 16 to 42. 
The classical parity checks are optimized by choosing the base matrix 
entries over the quotient polynomial ring to obtain the best classical 
distance for the particular lift size l. The choice of the base matrix 
entries is also such that the girth is at least 8 and the distance of the 
lifted qLDPC codes matches the designed classical distances with a 
high probability. Here, we explicitly provide the classical base matrices 
used to construct the four LP codes used in this work. Denoting Bl

d   
as a base matrix with a lift size l and a classical code distance d after  
the lift, the base matrices are

B16
12
=
⎡
⎢
⎢
⎢
⎣

1 1 1 1 1

1 x2 x4 x7 x11

1 x3 x10 x14 x15

⎤
⎥
⎥
⎥
⎦

, B21
16
=
⎡
⎢
⎢
⎢
⎣

1 1 1 1 1

1 x4 x5 x7 x17

1 x14 x18 x12 x11

⎤
⎥
⎥
⎥
⎦

, (5)

B30
20
=
⎡
⎢
⎢
⎢
⎣

1 1 1 1 1

1 x2 x14 x24 x25

1 x16 x11 x14 x13

⎤
⎥
⎥
⎥
⎦

, B42
24
=
⎡
⎢
⎢
⎢
⎣

1 1 1 1 1

1 x6 x7 x9 x30

1 x40 x15 x31 x35

⎤
⎥
⎥
⎥
⎦

. (6)

These codes have an encoding rate lower-bounded by 2/17 by counting 
the number of qubits minus the number of checks. For all the resource 
estimates involving these LP codes, we use k ≈ 0.38n0.85, as it fits well 
for the above four codes.

Atom-rearrangement algorithm
The reconfigurable atom array platform features efficient, parallel 
control and allows the rearrangement of large numbers of qubits, thus 
enabling the implementation of quantum processors with long-range 
connectivity. As discussed in ‘Main’, optical tools such as crossed AODs 
can generate a rectangular grid of optical tweezers that can be recon-
figured on the fly22,31,62, which allows the control of large code blocks 
consisting of thousands of physical qubits with only a handful of clas-
sical controls.

However, the use of AODs for a dynamic rearrangement comes 
with two key constraints. First, as the X and Y direction optical spots are 
controlled by separate AODs, the same operation needs to be applied 
across several rows or columns. Second, different rows of atoms  
cannot cross each other due to beating between RF tones and atom 
collisions, although they can be temporarily transferred and stored 
in static traps, such as those based on spatial light modulators. Thus, 
the implementation of qLDPC codes with improved code parameters 
(number of encoded qubits and code distance), which often relies on 
pseudorandom expander graphs with complex connectivity graphs, 
requires the development of efficient atom-rearrangement algorithms.

We provide a sketch of our atom-rearrangement algorithm in 
‘Main’ and a more detailed description in Algorithms 1–3. We also 
illustrate the algorithm in Supplementary Video 1.

The first component, arbitrary 1D atom rearrangements with a 
number of steps that scales logarithmically, is described in detail in 
Algorithm 1, illustrated in Fig. 2 and explicitly worked out for a small 
example in Extended Data Fig. 2. As successive layers each reduce the 
system size by half, the total number of layers required to achieve the 
desired rearrangement is ⌈log2L⌉. Thus, arbitrary rearrangements in 
very large systems can be achieved in a small number of layers.

http://www.nature.com/naturephysics
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Algorithm 1. Arbitrary 1D atom rearrangement in a logarithmic 
number of steps

The second component is the observation that the product struc-
ture of crossed AODs matches well with the product structure present 
in many qLDPC codes. In addition to the discussion in ‘Main’, we provide 
the details of the syndrome extraction circuit for HGP codes based 
on this observation in Algorithm 2, which we refer to as the ‘product 
coloration circuit’, as it makes use of coloration circuits for each of 
the component classical codes14. Note that the use of our product 
coloration circuit, as opposed to the coloration or cardinal circuits in 
ref. 14, is necessary to fully exploit the parallel rearrangement capabili-
ties across rows and columns. Here, the native entangling-gate set of 
current atom array systems are diagonal28,63, so we use CZ gates and 
appropriate Hadamard rotations to perform syndrome extraction. To 
compare our results against the literature, we use CNOT gates as the 
entangling gates in our simulations. This can be physically justified if 
the CZ gates are much noisier than the Hadamard gates.

The product coloration circuit separately extracts the X and Z  
syndromes, each requiring both a horizontal and vertical step. Thus, if 
the coloration of each of the classical codes involves ΔC colours (for the 
codes constructed from (3,4)-biregular graphs that we considered, ΔC = 4; 
ref. 15), the product coloration circuit will have 4ΔC entangling layers.

The product coloration circuit can also be applied to the LP codes 
we use in this work. As shown in Extended Data Fig. 1b, a LP code has 
the same product vertical (horizontal) connectivity as a HGP code 
when flattening the inner nodes vertically (horizontally). Thus, the 
same product coloration circuit can be applied to the LP codes with 
an extra step of flattening the inner codes in between establishing the 
horizontal and vertical connections.

To further reduce the depth of the syndrome extraction circuit, 
we also propose a modification of the above circuit in Algorithm 3 and 
Extended Data Fig. 3, which we refer to as the pipelined product colora-
tion circuit. Here, the main challenge is to choose a gate ordering such 
that the desired X and Z syndromes are correctly extracted. By performing 
pipelining and extracting the X syndrome of the second round simultane-
ously with the Z syndrome of the first round, we can ensure that the gate 
ordering is always valid while reducing the number of entangling layers  
required to perform d rounds of syndrome measurement to (2d + 2)ΔC. 
This could be particularly relevant in further suppressing the effect of 
idling errors as well as improving the performance of logical gates, which 
in our scheme require d rounds of repetition. However, our numerical 
simulations all make use of the product coloration circuit, and we leave 
the exploration of other syndrome extraction circuits to future work.

Algorithm 2. Product coloration circuit for HGP syndrome 
extraction

http://www.nature.com/naturephysics
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Algorithm 3. Pipelined product coloration circuit for multi-round 
HGP syndrome extraction

Estimating the rearrangement time and the effect of idling 
errors
For the schemes described above, we can estimate the amount of time 
required to implement one round of stabilizer measurements using 
the technology that has been demonstrated in ref. 22. We assume a 
transfer time τt between a static spatial light modulator trap and a 
dynamic AOD trap, a peak atom moving acceleration rate of ap with  
a cubic spline trajectory, and a uniform grid spacing d. For simplicity, 
we assume that the number of atoms on a line to be rearranged  

is a power of 2, L = 2k. The algorithm will, therefore, have a depth of 
k = log2 L  layers. To provide enough workspace for shuttling, the  
total number of traps is 3L/2.

The compactification step at scale s requires a move of distance 
at most sd/2. Moving all target atoms to the right requires a move of 
distance at most sd. We can combine the two steps such that we pick 
up atoms for the next move and drop off atoms from the previous move 
at the same time; thus, each step requires on average one trap transfer 
between static and dynamic traps. As described in ref. 22, using a cubic 
spline movement trajectory, a move of distance l requires time √6l/ap.

The total time required for one layer of full rearrangement  
before each layer of entangling gates in a syndrome extraction circuit 
is thus

trearrange = 2kτt +
k
∑
i=0

(
√

6 × 2id
ap

+
√

3 × 2id
ap

)

< 2τt log L + (3 + 2√2)
√

6Ld
ap

.

(7)

Recent experiments have demonstrated parameters of the order of 
τt = 50 μs, ap = 0.02 μm μs−2 and d = 5 μm. For a moderately sized code 
consisting of 10,000 qubits (including both data and ancilla qubits), we 
have L ≈ 100. The total trap transfer time is 0.7 ms, and the atom move-
ment time is 2.3 ms, for each gate layer. Assuming a (3,4)-biregular graph 
for the underlying classical expander code, we need eight rounds of 
rearrangement to measure one full round of stabilizers for Algorithm 3,  
resulting in a total time overhead of 3 ms per rearrangement layer and 
24 ms for a full round of syndrome extraction, a small fraction of the 
coherence time Tc > 10 s that has been demonstrated in neutral-atom 
arrays25–27. This timescale is somewhat longer than the typical readout 
timescales, and thus, the code cycle time will be dominated by the rear-
rangement time. The ancilla measurements can be pipelined to happen 
simultaneously with the atom rearrangements of the following round 
and, therefore, will not increase the run time. Supplementary Informa-
tion describes how to perform parallel rearrangement with the LP codes.

The rearrangement time in equation (7) determines the idling 
errors between sequences of entangling gates in a syndrome extrac-
tion circuit. In general, trearrange(n) in equation (7) is a function of the 
code size n, as L is a function of n. Setting the gate error rate pg as  
the characteristic physical error rate of our noise model, we rescale  
the idling error rate pi(n) together with pg:

pi(n) = trearrange(n)/Tc × pg/0.005, (8)

where Tc is the atom coherence time and 0.005 is the current CZ gate 
infidelity demonstrated in ref. 28. Note that the rescaling of pi(n) with 
pg in equation (8) can be justified because idling errors can improve 
together with the gate errors as hardware improves. For example, 
further improvements in coherence time can be achieved by detuning 
trapping light further and better magnetic field shielding. Even with-
out further improvements, coherence times as long as 50 s have been 
demonstrated in neutral-atom systems27, sufficient for our analysis 
at pg = 0.1%. For all the numerical estimations in this work, we use the 
upper bound for trearrange(n) in equation (7) and use the experimental 
parameters listed below equation (7), with Tc = 10 s.

We numerically verify in Supplementary Information that the 
effect of the idling errors can be approximated by rescaling the  
gate errors pg → pg + 3pi(n) using the product coloration circuit. By 
replacing the rescaled pg in the subthreshold scaling for HGP codes in 
equation (1), we can examine the effect of the idling errors on achiev-
able LFRs. As shown in Extended Data Fig. 4, the LFRs were exponen-
tially suppressed by the code size n when n is small and 3pi(n) ≪ pg. 
For 3pi(n) > pg, they are gradually saturated, then increase and finally 
approach the gate error threshold. Using the relevant experimental 
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parameters, the idling errors are negligible for n up to ~107 and the  
LFRs can go below 10−24 (green curve), which already suffices for imple-
menting practical quantum algorithms.

Thus, due to the inclusion of idling errors, the LFR cannot be  
arbitrarily suppressed asymptotically according to the no-go theorems 
in refs. 15,64. However, constant overhead and fault tolerance can still 
be achieved at physically relevant sizes by utilizing the quasi-nonlocal 
connectivity in atom arrays.

Details of teleportation
Here, we describe our teleportation scheme between the qLDPC code 
and the surface code. We select a logical X̄1 operator for the qLDPC code 
of minimum weight. This ensures that it contains no sublogicals, which 
are inequivalent logical operators contained in its support, so that  
the scheme is fault-tolerant under data errors (see Supplementary 
Information for a proof). We then associate the qubit support of X̄1 of 
the qLDPC code ( Z̄2 of the surface code) to the bits of a classical code 
C1 (C2) and associate the Z (X) stabilizers of the qLDPC (surface) code 
with the support on X̄1 ( Z̄2) to the checks of C1 (C2). Denoting H1 (H2)  
as the check matrix for C1 (C2), H1

ij(H
2
ij) = 1  if the ith Z (X) stabilizer  

checks the jth qubit of X̄1 ( Z̄2). We construct an ancilla code patch  
as a HGP code by taking the HGP of C1 and C2. The HGP code encodes  
a single logical qubit with a logical X and Z representative associated 
with the bits of C1 and C2, respectively.

Lattice surgery between the ancilla patch and the qLDPC (surface) 
code is realized by merging and splitting along C1 (C2), assisted by an 
extra array of ancillary qubits (Fig. 4a). For a classical linear code C  
with check matrix H, we denote by CT its transposed code defined by 
the check matrix HT. Taking the qLDPC-ancilla surgery as an example, 
we insert an extra array of X stabilizers (initialized in |+⟩) and qubits 
(initialized in |0⟩) in the middle, associated with the checks and the bits 
of C⊤

1
, respectively. During the code merging, the Z stabilizers of  

the qLDPC and the ancilla patch associated with the ith check of C1 are 
each modified to include the middle qubit associated with the ith bit 
of C⊤

1
. The middle X stabilizer associated with the jth check of C⊤

1
 checks 

the two qubits of the qLDPC and surface codes associated with the jth 
bit of C1 as well as some middle qubits given by the incident relation of 
C⊤
1

. It is easy to verify that all the new stabilizers commute as the added 
and modified qubits and checks across the merged boundary form an 
HGP code with C1 and a length-2 repetition code locally. The product 
of the middle X stabilizers gives the joint logical operator to measure. 
See Supplementary Information for more algebraic details of the  
above lattice-surgery scheme and a proof of its fault tolerance under 
data errors, as well as further details of the numerical simulation.

Note that the lattice-surgery approach in ref. 18 can also be used for 
teleportation between a qLDPC code and a surface code. Their approach 
essentially uses an ancilla patch formed by the HGP of a length-d repeti-
tion code and a ‘union’ of C1 and C2 associated with the logical operators of 
the qLDPC code and the surface code, respectively, and directly performs 
a joint logical measurement on the qLDPC and surface code. The ancilla 
patch has size 2d2 (if using minimum-weight logical operators), which is 
twice as larger as our ancilla. Compared to their approach, our scheme 
has a lower space overhead but a larger temporal overhead overall.

Data availability
The data collected and analysed in this article are available at https://
doi.org/10.5281/zenodo.8278063 (ref. 65). Source data are provided 
with this paper.

Code availability
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Extended Data Fig. 1 | Product structure of HGP codes and LP codes. (a) The 
HGP code is constructed from two classical LDPC codes. The classical codes 
are illustrated on the left and top, where circles indicate classical bits and 
squares indicate classical checks. A data qubit is placed at each intersection of 
two classical bits (filled orange circles) and of two classical checks (filled blue 
circles). Z stabilizer generators are placed at the intersection of horizontal bits 
and vertical checks, while X stabilizer generators are placed at the intersection 
of horizontal checks and vertical bits. Each stabilizer is connected to data qubits 
along the same row or column, with the same connectivity as the classical codes, 

as illustrated for the top left Z stabilizer. We have omitted other connections 
for ease of visualization. (b) The LP code is constructed by taking a lift over the 
hypergraph product of two classical protographs. The protographs and their 
hypergraph product are indicated by the dashed nodes and the lift is illustrated 
by the multiple inner nodes within each dashed node. The inner connectivity 
between two dashed nodes is given by the circulant-matrix representation of the 
ring elements in Eq. (4). When flattening the inner nodes vertically (horizontally), 
the vertical (horizontal) connectivity between the qubits and the checks for each 
column (row) is the same as the left (top) lifted classical code.
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Extended Data Fig. 2 | Efficient non-intersecting rearrangement in 
log-depth. By using a divide and conquer algorithm, we can perform an 
arbitrary 1D rearrangement in depth logarithmic in the number of qubits. 
Repeating this across the array yields an efficient implementation of the desired 
rearrangements, without requiring intersecting atom trajectories that may lead 
to additional loss and decoherence. Here, we illustrate the full set of movements 
required in a small example. Similar to the earlier figures, blue squares indicate 
classical checks and orange circles indicate classical bits. When a blue square 

and orange circle are moved to be neighboring at the end of the rearrangement, 
they execute an entangling gate. The top panel indicates the desired change of 
configuration, where the ordering of neighboring atoms in the top row needs to 
be modified to that in the bottom row via parallel rearrangement, as illustrated 
by the crossing gray lines. The bottom figure illustrates how we decompose the 
arbitrary rearrangement into a non-crossing rearrangement, where the gray lines 
no longer intersect.
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Extended Data Fig. 3 | Illustration of ordering of operations in pipelined 
syndrome extraction. (a) Successive steps of entangling gates for the pipelined 
product coloration circuit described in Alg. 3, with d = 3 rounds of syndrome 
extraction. Numbers at the corners of the X and Z ancilla qubits denote the round 
of syndrome extraction they correspond to. (b) Illustration of a local circuit that 

data qubits and ancilla qubits see, with dashed lines indicating different circuit 
moments. As the X stabilizer interacts with both qubits before the Z stabilizer, 
the syndrome extraction order is valid. Similar analysis can be performed for the 
commutation relations with the next round of ancilla qubits.
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Extended Data Fig. 4 | Achievable logical failure rates of the HGP codes with different idling error strengths. We characterize the idling error strengths as the 
relative ratio between the idling error rate pi(n) at n = 4 and the gate error rate pg. This idling error strength can potentially be reduced by, for example, increasing the 
coherence time and accelerating the atom shuttling.
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