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Quantum low-density parity-check (QLDPC) codes can achieve high

encoding rates and good code distance scaling, potentially enabling
low-overhead fault-tolerant quantum computing. However, implementing
gLDPC codesinvolves nonlocal operations that require long-range
connectivity between qubits. This makes their physical realization
challenging in comparison to geometrically local codes, such as the surface
code. Here we propose a hardware-efficient scheme for fault-tolerant
quantum computation with high-rate qLDPC codes that is compatible with
therecently demonstrated capabilities of reconfigurable atom arrays. Our
approach utilizes the product structure inherent in many qLDPC codes
toimplement the nonlocal syndrome extraction circuit through atom
rearrangement, resulting in an effectively constant overhead. We prove
the fault tolerance of these protocols, and our simulations show that the

gqLDPC-based architecture starts to outperform the surface code with as few
as several hundred physical qubits. We further find that quantum algorithms
involving thousands of logical qubits can be performed using less than 10°
physical qubits. Our work suggests that low-overhead quantum computing
with qLDPC codes is within reach using current experimental technologies.

Quantumerror correction (QEC) is believed to be essential for realizing
large-scale fault-tolerant quantum information processing. However,
traditional schemes for achieving QEC, such as the paradigmatic surface
code, are generally very costly in terms of resource overhead, requiring
millions of qubits to solve problems of interest'™.

Recently, anew approach based on high-rate quantum low-density
parity-check (QLDPC) codes has been proposed as a promising route
toreduce the resources required. Unlike planar surface codes"*’ that
encode asingle logical qubit per block, qLDPC codes can encode many
logical qubits per block and achieve a much higher, asymptotically

constant, encoding rate®” as well asbetter distance scaling®'°. However,
to realize these appealing features, qLDPC codes require long-range
connectivity between qubits, making their physical realization chal-
lenging" . Although several proposals have been made for physical
implementation of qLDPC codes in superconducting qubit architec-
tures, the required long-range and multi-layer connectivity is consider-
ably beyond both current and medium-term hardware capabilities* .

Inbringing qLDPC codes into practical use for full-fledged quan-
tum computation, further challenges arise. A rigorous analysis of the
circuit-level fault tolerance of qLDPC codes is lacking, despite some
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Fig.1| Architecture of aqLDPC-based fault-tolerant quantum computer using
reconfigurable atom arrays. The computer consists of aqLDPC memory block, a
processor with computational logical qubits, and mediating ancillae between the
memory and the processor. The lower panel shows a contour plot of the number
of physical qubits (including data and ancilla qubits) required by our architecture,
atal0~ physical error rate, given a target number of logical qubits and a target
LFR, compared to the surface code. The qLDPC space overhead is given by the
minimum of that for the LP codes shown in Fig. 3b with less than 1,428 data qubits
and that for HGP codes using an extrapolation of the numerical results in Fig. 3a.

promising numerical evidence”. Also, itis currently unclear whether
finite-size qLDPC codes can outperform surface codes in near- or
medium-termdevices with $10,000 qubits and realistic physical error
rates above 107, Since Gottesman’s seminal results demonstrating
that qLDPC codes can enable fault-tolerant quantum computing
with a constant space overhead”, several practical gate construc-
tions have recently been proposed' . However, no studies on the
circuit-level performance of these protocols have been carried out
to date. In particular, it is not clear whether the performance and low
overhead ofthe qLDPC codes can be maintained during computation
inafull circuit-level fault-tolerant setting.

In this Article, we propose and analyse a realistic, hardware-
efficient, neutral-atom implementation of fault-tolerant quantum
computation with high-rate qLDPC codes. We provide concrete experi-
mental and theoretical blueprints and demonstrate their advantage
over surface codes starting from as few as several hundred physical
qubits. Our proposal is based on reconfigurable atom arrays, a newly
developed hardware architecture for quantum computation with
long-range, reconfigurable connectivity?>*. We show how the product
structure of many qLDPC codes®®** naturally matches the parallelism
afforded by physicalrealizations of reconfigurable atom arrays, which
enables their hardware-efficient implementation in a logarithmic
number of steps. Through acombination of threshold proofs under the
single-shot, circuit-level noise model setting, and detailed circuit-level
numerical simulations, we find competitive performance for hyper-
graph product (HGP)® codes and quasi-cyclic lifted product (LP)®
codes, achievingerror thresholds of around 0.6% under acircuit-level,
depolarizing-noise model that neglects idling errors. Accounting for

Table 1] Total number of data and ancilla qubits required to
reach target numbers of logical qubits and LFRs using HGP
codes and LP codes, compared to using surface codes

Logical qubits 25 80 180 400

Logical failure 10 10 2x10°° 6x10°

rate

HGP code 1,235 (x1) 4,606 (x2.8) 10,760 (x4.0) 19,600 (x6.9)
physical qubits

(improvement

over surface

code)

LP code 851 (x1.4) 1,367 (x9.4) 2,670 (x16.2)

physical qubits
(improvement
over surface
code)

We use (xB) to indicate a 8 times qubit saving compared to the surface codes by using the
corresponding qLDPC codes. The physical error rate is set to 107°. The estimates for the HGP
and LP codes are based on the numerical data in Fig. 3.

idling errors, which have only a minor contribution for the finite-size
codes of our interest, we achieve an order of magnitude saving over a
surface codewithlessthan 3,000 physical qubits (including ancillae) at
aphysical error rate of 10 (Fig. 1bottom panel and Table 1). We further
extend this analysis tological gate operation, numerically demonstrat-
ingthat the high thresholds and good subthreshold scaling of high-rate
qLDPC codes can be maintained during computation, thus paving the
way to low-overhead fault-tolerant quantum computing.

Overview of the qLDPC-based quantum computer
Anoverview of our qLDPC-based approach to fault-tolerant quantum
computationisshowninFig. 1. It consists of a high-rate qLDPC memory
block that reliably and efficiently stores the quantum information, a
processor with computational logical qubits such as surface or colour
codes that perform logical gates, and mediating ancillae that inter-
connect the memory and processor. This allows us to take advantage
of the dense storage capabilities of the qLDPC block while allowing
flexible execution of quantum circuits. Adopting the conventional
[n, k, d] notation for a code with n physical qubits, k logical qubits
anddistanced, the qLDPC block using the HGP codes described below
can provide a dense [O(k), k, d.....,] encoding, where the memory dis-
tance dpem = 0(\/1). This results in a constant encoding rate k/n and
a logical failure rate (LFR) exponentially decaying with the code
distance. Here the LFR is defined as the probability that any of the
logical qubits fails per code cycle. O and O are standard asymptotic
notations denoting less or equal to and equal to (in scaling), respec-
tively. Note that using LP codes with ahigher encoding rate and better
distance scaling (Methods and Fig. 3) further reduces the space over-
head atsmallsizes. Our processor consists of m computational qubits
of code parameters [[e(déomp), L, dcompll, where the code distance
dcomp = O(polylog(kT)), with T being the depth of the logical circuit
to execute, is chosen to produce a sufficiently low error rate. The
mediating ancillae, one for each computational qubit (Fig. 4), have
code parameters [O(dcompdmem)s 1, Min(dcomp, @mem)]- By performing
ancilla-assisted lattice surgery, the stored logical information can be
teleported between any given pair of memory and computation qubits.
Within this architecture, logical gates can be applied in parallel to a
subset mofthe stored memory qubitsin eachlogical circuit step. Select-
ing m = O(k/d ompmem) €Nsures that the cumulative ancillablock over-
headis O(k), which does not exceed the overhead of the memory block.
This choiceleadsto a constant encodingrate for quantum computation.
For HGP codes with d,em = 6(\/7() and d.omp, = ©(polylog(kT)), this
implies m = O(\/T(/polylog(kT)), but if asmaller code distance pro-
vides sufficient error suppression, the parallelism can be increased
while maintaining a constant encoding rate.
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Fig. 2| Efficientimplementation of quantum LDPC codes with atom arrays.

a, lllustration of the algorithm used to perform an arbitrary 1D log-depth
rearrangement. We first move all atoms that need to end in the right half of

the system to theright side, then compact each halfinto adjacentsites, so

that there is sufficient workspace for subsequent steps. Atoms are displaced
perpendicularly during their movement to avoid collisions with staticatoms in
the same row (Supplementary Video1). The same procedure can then be repeated
on each half of the system recursively for depth log(L), where L is the length of
the atomarray to be rearranged, resulting in the desired ordering. The algorithm
uses 50% more static traps than the number of atoms as workspace. b, lllustration
ofthe HGP code, obtained as a product of two classical codes. Lines indicate

that the parity check at the syndrome node involves the corresponding data
node. c,d, Therequired connectivity can beimplemented with parallel row
permutations (c) followed by parallel column permutations (d). Although we
illustrate this for one pair of interacting rows or columns, the same permutations
and CZs canbe applied on several rows or columns in parallel.

Implementationin neutral-atom arrays
We now describe the hardware-efficient implementation of this
qLDPC-based architecture in the atom array platform. Here, qubits
are encoded in long-lived spin degrees of freedom of an atom, with
seconds-range coherence times?>* %, high-fidelity single-qubit
(>99.9%) and two-qubit (>99.5%) control, and mid-circuit measure-
ments (>99.8%)?%*%¢2830 By shuttling atoms around in optical twee-
zers, one canreconfigure the processor connectivity during quantum
evolution withminimal decoherence** and realize parallel two-qubit
gate operations with qubits across the whole system. The coherent shut-
tlingapproach features a high degree of parallelism, whichisinherent
to multiplexing with optical tools. A particularly powerful tool is the
so-called acousto-optic deflector (AOD), which can simultaneously con-
trolthe position of rectangular grids composed of thousands of atoms
simply by using two control waveforms for the X and Y coordinates®.
These AOD tools are a key enabling technology for qubit transportin
atomarraysand supportaninherent ‘product structure’ that, as we will
now show, is suited well to the implementation of HGP and LP codes.
We first describe analgorithmtoimplement good classical LDPC
codes using efficient one-dimensional (1D) atom rearrangements
withoutatomcollisions. Recall thata classical (LDPC) codeis associated
withaparity-check matrix H, whose rows (columns) are associated with
classical checks (bits). Theith checkis connected to thejthbitif H;;=1.
We first lay out the classical LDPC code on aline and group syndrome

extraction into layers of parallel entangling operations, resulting in
an ordering of checks and bits such that the connected checks and
bits in a given layer are neighbouring. To achieve this ordering, we
employ a divide-and-conquer rearrangement strategy that requires
anumber of steps only logarithmic in the total number of checks and
bits, as described in detail in Fig. 2a, Extended Data Fig. 2, Methods
and Supplementary Video 1. This generalizes previous proposals for
scrambling circuits® to arbitrary rearrangements. After sorting the
atoms, agloballaser pulseis applied to entangle neighbouring checks
and bits in parallel, before proceeding to the next layer of atom rear-
rangement, thus allowing theimplementation of syndrome extraction
in classical LDPC codes.

We next demonstrate how the productstructure of one of the pro-
totypical qLDPC codes (Fig.2b and Extended DataFig.1a), HGP codes,
naturally matches the product structure of crossed AOD optical hard-
ware, enabling its hardware-efficient implementation. We start from
apairofclassical LDPC codesillustrated in the horizontal and vertical
directions, with checks and bits denoted as blue squares and orange
circles, respectively. To construct the resulting HGP code, we place a
dataqubitateachintersectionof a horizontal check and a vertical check
or a horizontal bit and a vertical bit, within a two-dimensional grid®
(Fig.2b). X stabilizer syndrome qubits and Zstabilizer syndrome qubits
arethenplaced at the intersection of ahorizontal check and a vertical
bit or a vertical check and a horizontal bit, respectively. Importantly,
the qubit connectivities are directly inherited from the underlying clas-
sical codein the horizontal and vertical directions, and thus, the same
entangling gates are applied across every row or column, matching
wellwiththe productstructure of crossed AODs. Thus, by performing
parallel row reordering in the vertical direction based on the vertical
LDPC code interleaved with entangling gates between data and sta-
bilizer qubits (Fig. 2c) and then repeating the same in the horizontal
direction (Fig. 2d), we can implement the syndrome extraction for
HGP codes. The concrete syndrome extraction circuits are presented
in Algorithms 1-3 in Methods.

We now estimate the scaling and quantitative experimental time-
scales of our rearrangement algorithm and demonstrate that the
proposed hardware implementation is indeed achievable with
existing experimental parameters. In Methods, we show that the total
rearrangement time scales as O(\/Z) = 0({/n), where L is the length
ofthe two-dimensional atomarray and is like the scaling for a constant
acceleration trajectory. We estimate that for a moderately sized HGP
code with 10,000 qubits, each rearrangement layer between gates
requires 3 ms, asmallfraction of the coherence time >10 sthat has been
demonstrated for neutral-atom arrays®%. These timescales can be
substantially improved through innovations in optical technologies
and compilation. Ancillameasurements can be pipelined, thereby not
causinganyincreaseinthecycle time. For very large codes, whereidling
errors are no longer negligible, concatenation with another code can
also be employed to extend the effective coherence time*. Note that
HGP codes based on expanding classical LDPC codes (also called quan-
tum expander codes) have the single-shot property, and therefore,
only a single round of syndrome extraction is required to be fault-
tolerant® %, Although we have focused on the implementation of
HGP codes, other families of qLDPC codes, such as LP codes (Extended
Data Fig. 1b), can also be implemented by adapting similar ideas. See
Methods for details.

qLDPC memory

We now analyse the fault-tolerantimplementation of HGP and LP codes
asarobust quantum memory. We prove in Supplementary Information
the existence of a circuit-level single-shot threshold for qLDPC codes
with the linear confinement property®, under a single-ancilla syn-
drome extraction circuit and a depolarizing-noise model where error
rates donot scale withinstance size. The linear confinement property,
which requires that for sufficiently small Pauli errors the weight of
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circuit for syndrome extraction (Algorithm 2) and a space-time circuit-level
decoder based on BP+OSD that decodes over every three code cycles, regardless
ofthe code size. The LFRs were calculated using LFR =1 — (1 — pL)I/mc, where p,
is the total logical failure probability over m.code cycles. We choose m. = 42
for physical error rates below 4 x 10~ and m. = 12 for physical error rates above
4 x1073, p, was obtained from Monte Carlo simulations with a standard deviation
VpL(1 = p)/M,where M denotes the number of samples. We also compare the
largest HGP or LP code to surface codes of similar sizes and encoding rates
(dashed lines), as discussed in ‘Main’. Data are presented as mean values plus
or minus standard deviations.

thesyndromeincreases linearly withthe (reduced) weight of the errors,
holds for various qLDPC codes decodable by the small-set-flip-
type decoders, including HGP codes with sufficiently expanding
classical codes.

We next supplement this theoretical understanding with numeri-
cal simulations of HGP and LP codes at practically relevant instance
sizes”, and we find competitive thresholds and LFRs for both codes. The
details of the code constructions are shown in Fig. 2 and Methods. We
use the product coloration circuit (Algorithm 2) for syndrome extrac-
tion, avariation of the coloration circuit™ that is more compatible with
the product structure of the codes and hardware. The circuit uses a
single ancillafor each stabilizer generator and has an entangling-gate
depthof16and 20 forthe HGP and LP codes we consider. Note that the
entangling depth canbe further reduced by using a pipelined version
of'the product coloration circuit, as presented in Extended Data Fig. 3
and Methods.

We construct aspace-time circuit-level decoder based on the belief
propagation and ordered statistics decoding (BP+0SD) algorithm”$ 0,
Specifically, fora QEC circuit with several cycles, we construct abipartite
decoding graph**** over a certain number of cycles, where the check
nodes and variable nodes are associated with parities of stabilizer
measurement outcomes and circuit faults, respectively. We apply BP
decoding on this decoding graph to infer the circuit fault locations in
allnoisy code cycles and apply the BP+OSD decoder in the final round
to projectbackinto the code space. For allmemory simulations, we use
space-time decoding graphs over three cycles, irrespective of the code
size.Note that we observeimproved logical error rates by increasing the
number of cycles for decoding, which indicates that thereisatrade-off
betweentheaccuracy and the speed of our decoder. We also remark that
the BP decoder has similar performance as the BP+OSD decoder for
decoding the noisy cycles while being much faster. Crucially, compared
to earlier phenomenological decoders that used a simpler decoding
graphinvolving onlyindependent dataand measurement errors as bits
and decoded over only one code cycle™*, our space-time circuit-level
decoder takes the full circuit details into account and can performjoint
decoding on several QEC cycles, thus improving the threshold (Sup-
plementary Information). Moreover, the space-time decoding is also
crucial for our simulations of logical operations in the next section,
where repetitions of syndrome measurements are required for fault
tolerance. See Supplementary Information for details of the decoder.

Supplementary Information shows that the HGP and LP codes have
athreshold of 0.63% and 0.62%, respectively, under adepolarizingerror

modelwithoutidlingerrors. Inthe subthreshold regime, assuming the
absence of a decoding error floor, the LFRs of the two codes are well
approximated by
LFR(HGP) = 0.07(p4/0.006)*4""
)]

0.1110-60

LFR(LP) = 2.3(p4/0.0066) ,

indicating that finite-sized LP codes have better subthreshold scaling
than HGP codes. When also consideringidling errors p,(n) associated
with the atom-rearrangement time overhead, which grow as O(n"*)
for HGP codes and O(n*?) for LP codes (see Methods for details of the
idlingerror model and the expression for p(n) in equation (8)), thereis
no asymptotic code threshold”. However, we numerically observe that
the effect of adding the idling errors can be approximated by rescal-
ing the gate error p, > p, + 3p,(n) using the product coloration circuit
(Supplementary Information). Theidling errors have anegligible con-
tribution when 3p(n) < p,, whichis the case for current experimental
parameters and practically relevant code sizes (Extended Data Fig. 4
and Methods). Therefore, although there is no asymptotic threshold,
constant overhead and fault tolerance can still be achieved at physi-
cally relevant sizes by utilizing the quasi-nonlocal connectivity inatom
arrays. Figure 3a,b shows the simulated LFR versus the bare two-qubit
gate error rate p, (which we refer to as the physical error rate for sim-
plicity) for the HGP and LP codes, with the idling errors included and
rescaled together with p,. We find that good LFRs and subthreshold
scaling are maintained for both codesin the presence of idling errors.
The smallestinstances of these codes that we simulate, involving hun-
dreds of physical qubits, are readily within reach with experimentally
demonstrated system sizes** and control capabilities?>*, and larger
instances can be realized withimprovements in trap power.

We now use equation (1) to estimate the total number of data
and ancilla qubits N needed to reach a target number of logical
qubits k and a target LFR, demonstrating substantial advantages
of HGP and LP codes over the surface code. We rescale the gate
error p, to approximate the presence of idling errors and compare
the results with the surface-code subthreshold scaling formula

LFR(surface) = 1 — (1 — Py)*, where P, = 0.03(pg/0.011)“m1/ 2 from

refs. 1,45. Table 1 presents such estimates for finite-sized HGP and
LP codesthat we directly simulated (Fig.3) at arealistic physical error
rate of 10, Both HGP and LP codes outperform surface codes with as
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of the teleportation scheme. We identify the logical Zoperator of the surface
code Z, and the logical X operator of one of the gLDPC code’s logical qubits X;.
We associate these two logical operators with classical codes C,and C, by
mapping the qubits supporting the logical operators to bits and the
corresponding incident stabilizer generators to classical checks. We then
constructan ancilla patch as the HGP of C, and C,. Direct lattice surgery between
thisancilla patch and each of the surface and HGP codes is conducted by
matching similar boundaries associated with the chosen logical operators.
Inbetween similar boundaries, an extra array of ancillary qubits and checks
associated with the transpose of the classical code is inserted to mediate
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transposed code gives the required joint logical measurement. We elaborate on
thelattice-surgery procedure in Methods. b, Measurement-based teleportation
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circuit”. Logical state ’5) isteleported from the surface code to one of the
qLDPC’s logical qubits. The joint Clifford measurements are conducted through
lattice surgery asillustrated ina. ¢, Simulated LFRs (per code cycle) of the
teleportation. Noise is added during the merge and split steps of the XX lattice
surgery. We decode with the same space-time circuit-level BP+OSD decoder used
in the memory simulations. The corresponding surface codes paired with the
three HGP codes have distances 3, 5and 7. We record a logical failure if there is an
errorinany of the logical qubits of the qLDPC code after the teleportation
scheme is complete. Denoting the total logical failure probability as p,, we
calculate the LFR (percodecycle)asLFR =1— (1 — pL)Zd, where there are 2d
cycles during the noisy XX lattice surgery, and d denotes the minimal code
distance. The plotted physical error rates are rescaled to account for idling
errors, as explained in Methods. Data are presented as mean values plus or minus
standard deviations.

few as 25 logical qubits. At a moderate scale of less than 200 logical
qubits, LP codes with less than 3,000 physical qubits already achieve
aqubitsaving of over an order of magnitude. In the lower panel of Fig. 1,
we estimate the space overhead of the HGP codes at a larger scale by
extrapolation. We find that HGP codes can also achieve a qubit saving
of over an order of magnitude at a scale of 1,000 logical qubits and
10° physical qubits.

Logical operations

Wenow presentaschemeinspired by ref. 18 for performing fault-tolerant
logical operations and perform the first numerical simulation of logi-
cal gate performance on qLDPC codes using the space-time decoder
developed above. We find that the threshold and logical performance
remainalmostunchanged when performing gates, indicating that the
high threshold and low overhead can be maintained for fault-tolerant
quantum computation.

Ourschemeisillustratedin Fig.4a. We teleport thelogical informa-
tionbetween the qLDPC memory and ancillary topological codes using
ameasurement-based circuit (Fig. 4b), where the prescribed logical
measurements areimplemented using lattice surgery'*¢*3, Universal
logical operations can then be performed in the topological codes
using standard techniques. Our approach is applicable to any CSS
qLDPC code, as proven in Supplementary Information. The choice
of qLDPC code, whether an HGP or an LP code, does not impact the
feasibility of our ancilla encoding for logical operations. Since each
topological code patchand teleportation ancilla patch is much smaller
than the qLDPC patch, as long as the number of such patches used is
0(\/Z/poly log(kT)), the space overhead from ancilla patches will be
sub-leading. Note that the scheme inref. 18 canalso be used for telepor-
tation between a qLDPCblock and topological codes. In comparison,
ourschemereducestheancilla patchsize by halfand, thus, hasasmaller
space overhead.

Asanexample, we consider the teleportation fromasurface code
patch to a HGP patch. As illustrated in Fig. 4a, this is mediated by an
additional ancillalogical qubit thatis formed by aHGP of two classical
codes associated with the logical operators of the two code patches.
This enables joint logical measurements by merging code blocks.
We perform min{dcomp, dmem} rounds of syndrome extraction to
ensure tolerance against measurementerrors. We describe the scheme
inmore detailin Methods and prove the fault tolerance of the scheme
under dataerrors in Supplementary Information.

To validate this method, we perform circuit-level simulations of
the above teleportation, enabled by the space-time decoder described
in the previous section. In our simulations, we use the teleportation
circuit depicted in Fig. 4b with an initial state of |¢) = |0). We focus
on errors during the merge and split operations in the XX measure-
ment to evaluate the performance of lattice-surgery building blocks.
As shown in Fig. 4c, we observe similar LFRs and threshold crossings
for the teleportation as for the memory. Note that each logical qubit
will fail at a rate much lower than the LFR of the entire block shown in
Fig. 4c, and the system is far below break-even at 107 physical error
rate, even for the smallest code of size 225. This demonstrates that the
high-threshold and low-resource overhead of the qLDPC code can be
maintained at the computation level.

Discussion and outlook
By demonstrating large space-overhead savings in practical
regimes and the good performance of logical gate operations and by
providing a blueprint for their implementation with existing hard-
ware capabilities, our work brings the use of high-rate qLDPC codes
for fault-tolerant quantum computation into the practical regime.
Although our scheme shows a notable reduction in space over-
head, it still carries a substantial time overhead. This is because fault
tolerance during gate operationrequires ©(d) QEC cycles, and the low
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encoding rate of the ancilla and computational code patches limits
the logical parallelism when maintaining the low space overhead. We
expect certain compilations of quantum algorithms that have limited
parallelism to be natural candidates for our architecture*. However,
it would be interesting to carry out an end-to-end algorithmic com-
pilation with qLDPC codes to evaluate the full space-time cost and
understand which algorithms and compilations are most suited to
our architecture. Another exciting avenue of research is to improve
upon the QEC constructions used here, including alternative qLDPC
code constructions with better properties* 2, single-shot logical gate
constructions®®?, as well as the use of other types of computational
logical qubits that may support transversal non-Clifford gates® or have
alower overhead. Moreover, just as topological codes have interpreta-
tions as topological phases of matter, it will be interesting to explore
the connection between qLDPC codes and highly entangled states of
matter>*. The techniques described here may be useful for exploring
novel exotic states of matter.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
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Methods

Code construction

We primarily focus on two families of qLDPC codes, outlined here
with additionalinformation available in Supplementary Information.
Weleave the extension of these results to other families, such as asymp-
totically good codes®'****%, to future work.

The first family of codes are HGP codes®, which are formed from
the product of two classical LDPC codes. Algebraically, if we denote
the parity-check matrix (where rows describe bits that should sum to
anevennumberintheabsence of errors) of the two underlying classical
codes as H; € F;*™ and H, € F7*™, then the X and Z stabilizer check
matrices for the HGP code can be written as

Hy=(H] ®1;, I, ® H2), 2

Hy=(l, H) Hi®1y,). 3)

For classical [n; k;, d;] linear codes defined by r;= n; - k; linearly
independent checks (i =1, 2), the resulting quantum code has para-
meters [nyn, + rry, kik,, min{d;, d,}]. By choosing classical codes with
good vertex expansion, where k;= O(n;) and d;= 0(n;), the resulting
quantum code (known as a quantum expander code) encodes a
linear number of logical qubits k= @(n) and has distance d = 6(y/n)
(ref. 34). Such classical expander codes can be obtained asymptoti-
cally, forexample, fromrandombiregular Tanner graphs, and will have
sufficient vertex expansion with high probability*’.

In this work, we follow the procedure of ref. 43 and construct
HGP codes by taking the HGP of classical LDPC codes defined by
(3,4)-regular Tanner graphs, that is, bipartite graphs with degree-3
bit nodes and degree-4 check nodes. By increasing the size of the
graph, we obtain a family of HGP codes with a constant encoding
rate k/n > 0.04.For each code size, we pick the classical code with the
largest distance, Tanner graph girth at least 6 (length of the short-
est cyclein the Tanner graph, obtained through rejection sampling
without performing edge swaps) and the largest spectral gap (the
gap between the largest two singular values of the classical check
matrices) from randomly generated instances. It is known that
the HGP of vertex-expanding classical codes gives HGP codes that
satisfy the confinement property and support single-shot QEC
(refs.34,35,60).

The second family of codes we consider are quasi-cyclic LP
codes™®!, which canbe viewed as a HGP code followed by asymmetry
reduction to reduce the number of qubits required*. Algebraically,
a quasi-cyclic LP code is obtained from two base protographs
(analogues of the classical codes inthe HGP construction) associated
with two base matrices B; and B, over the quotient polynomial
ring R[x]/(x' —1) (ref. 8). Suppose the two base matrices are of size
mg, x ng and mg, x ng,, respectively. We obtain two matrices (over
the same polynomial ring) B, and B, by taking the HGP:

B, = (Bf ®1ln, In, ®B;),
“)
B, = (lmB1 ®B] B ® In,, )

The X (2) check matrix H, (H,) is then obtained by replacing each
entry of B, (B,) with its matrix representation as /by [ circulant matrices,
a process known as a lift. Specifically, we replace x with a [ by [ square
matrix P, where P;=6,;,,, and replace each polynomial in x with
the same polynomial in P. The code size is N = I(ng ng, + my mp,) and
the numbers of X and Z checks are M, = Ing mp, and M, = Img ng, ,
respectively. The encoding rate is lower-bounded by

(N—=M, —M,)/N = (nglnBZ + Mmp Mg,

—mg ng, —ng mg,) /(g Ng, + Mg mp).

We can also describe the above construction using graphs. As
an example, Extended Data Fig. 1b shows a LP code using a 3 by 5
protograph associated with a base matrix B € {R[x]/ (x? - 1)}3X5 .An
important feature of the LP codesis that they still have some remaining
productstructure, even after thelift. Asshownin Extended DataFig. 1b,
when flattening the inner nodes vertically (horizontally), the vertical
(horizontal) connectivity between the qubits and the checks for
each column (row) is the same as the left (top) lifted classical code.

For the LP codes constructed in this work, we choose a base matrix
of dimension3 by 5, where all entries are monomials, and obtain a family
of codes with sizes up to1,428 by increasing thelift size /from 16 to 42.
The classical parity checks are optimized by choosing the base matrix
entries over the quotient polynomial ring to obtain the best classical
distance for the particular lift size [. The choice of the base matrix
entries is also such that the girth is at least 8 and the distance of the
lifted qLDPC codes matches the designed classical distances with a
high probability. Here, we explicitly provide the classical base matrices
used to construct the four LP codes used in this work. Denoting sz
as a base matrix with a lift size [ and a classical code distance d after
thelift, the base matrices are

11 1 1 17 111 11
B=11xx* X x|, Bl=[1x*x° ¥ x|, )
1x3 XIO Xl4 xlS ] 1Xl4 xlS XIZ xll
11 1 1 17 11 1 1 1
BY =11 x> xt x** x® BiZ=[1x0 x7 x* x| 6)
1 x16 xll X14 X13 ] 1 )AO xlS x31 x35

These codes have an encoding rate lower-bounded by 2/17 by counting
the number of qubits minus the number of checks. For all the resource
estimates involving these LP codes, we use k= 0.38n°%, as it fits well
for the above four codes.

Atom-rearrangement algorithm

The reconfigurable atom array platform features efficient, parallel
control and allows the rearrangement of large numbers of qubits, thus
enabling theimplementation of quantum processors with long-range
connectivity. As discussed in ‘Main’, optical tools such as crossed AODs
can generate arectangular grid of optical tweezers that can be recon-
figured on the fly*>*"%?, which allows the control of large code blocks
consisting of thousands of physical qubits with only a handful of clas-
sical controls.

However, the use of AODs for a dynamic rearrangement comes
withtwo key constraints. First, as the Xand Ydirection optical spots are
controlled by separate AODs, the same operation needs to be applied
across several rows or columns. Second, different rows of atoms
cannot cross each other due to beating between RF tones and atom
collisions, although they can be temporarily transferred and stored
in static traps, such as those based on spatial light modulators. Thus,
the implementation of qLDPC codes with improved code parameters
(number of encoded qubits and code distance), which often relies on
pseudorandom expander graphs with complex connectivity graphs,
requires the development of efficient atom-rearrangement algorithms.

We provide a sketch of our atom-rearrangement algorithm in
‘Main’ and a more detailed description in Algorithms 1-3. We also
illustrate the algorithmin Supplementary Video 1.

The first component, arbitrary 1D atom rearrangements with a
number of steps that scales logarithmically, is described in detail in
Algorithm 1, illustrated in Fig. 2 and explicitly worked out for a small
examplein Extended Data Fig. 2. As successive layers each reduce the
system size by half, the total number of layers required to achieve the
desired rearrangement is [log,.]. Thus, arbitrary rearrangements in
very large systems can be achieved in a small number of layers.
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Algorithm 1. Arbitrary 1D atom rearrangement in a logarithmic
number of steps

Input :Final ordering O = [0;] (i = 1...N) of all N atoms,
where o; is the final position of the atom that was
initially at position %.

Input : Initial positions A = [a;] (i = 1...N)of all N
atoms, with the positions ordered as
a1 <az<...<an.

Input : Positions P = [p,] (j = 1...M) of all M possible

qubit locations, where M > 3N /2.

Output : Positions C' = [¢s ;] for the ith atom in the sth
rearrangement step, for all NV atoms and all
rearrangement steps.

1 Function Rearrange (O, A, P):
2 if N =1 then

3 C1,1 < P1

4 return [cs ;]

5 s« 1// Layer counter
6 if aN > PN then

// Compactify atoms to the left to
make space for subsequent moves

7 for i < 1to N do
| Csi =i
9 _s<—s+1

// Determine whether each atom ends in
the left or right half

10 L,R <]

// Workspace separator for recursion

11 X =|[3N/2]

12 for i < 1to N do

13 if O; <|N /2| then

14 L.append(z)

15 Cs,i < PN+len(L) // Move to right
16 | cs+1,0 < X +len(L) // Compactify
17 else

18 R.append(7)

19 ¢si<a; // Stay in place

20 | Cor1,i < len(R) // Compactify

21 S+« 8+2

// Recursive call on each half

22 Cy < Rearrange (O[L],C[s-1,L], P[1..X])

23 C, < Rearrange (O[R],C[s-1,R],P[X +1.M])
24 Cls..,L] < Cy

25 C[s..,R] < C»r

26 return C'

// Main function
27 Rearrange (O, A, P)

Thesecond component is the observationthat the product struc-
ture of crossed AODs matches well with the product structure present
inmany qLDPC codes. Inaddition to the discussionin ‘Main’, we provide
the details of the syndrome extraction circuit for HGP codes based
on this observation in Algorithm 2, which we refer to as the ‘product
coloration circuit’, as it makes use of coloration circuits for each of
the component classical codes™. Note that the use of our product
coloration circuit, as opposed to the coloration or cardinal circuitsin
ref. 14, is necessary to fully exploit the parallel rearrangement capabili-
ties across rows and columns. Here, the native entangling-gate set of
current atom array systems are diagonal®*®, so we use CZ gates and
appropriate Hadamard rotations to perform syndrome extraction. To
compare our results against the literature, we use CNOT gates as the
entangling gates in our simulations. This can be physically justified if
the CZ gates are much noisier than the Hadamard gates.

The product coloration circuit separately extracts the Xand Z
syndromes, each requiring both a horizontal and vertical step. Thus, if
the coloration of each of the classical codes involves A. colours (for the
codes constructed from (3,4)-biregular graphs that we considered, 4. = 4;
ref.15), the product coloration circuit will have 44. entangling layers.

The product coloration circuit can also be applied to the LP codes
we use in this work. As shown in Extended Data Fig. 1b, a LP code has
the same product vertical (horizontal) connectivity as a HGP code
when flattening the inner nodes vertically (horizontally). Thus, the
same product coloration circuit can be applied to the LP codes with
anextrastep of flattening the inner codes in between establishing the
horizontal and vertical connections.

To further reduce the depth of the syndrome extraction circuit,
we also propose a modification of the above circuit in Algorithm 3 and
Extended Data Fig. 3, which we refer to as the pipelined product colora-
tion circuit. Here, the main challenge is to choose a gate ordering such
thatthedesired Xand Zsyndromesare correctly extracted. By performing
pipeliningand extracting the X syndrome of the second round simultane-
ously withthe Zsyndrome of the first round, we can ensure that the gate
orderingis always valid while reducing the number of entangling layers
required to perform d rounds of syndrome measurement to (2d +2)A.
This could be particularly relevant in further suppressing the effect of
idlingerrorsas well asimproving the performance of logical gates, which
in our scheme require d rounds of repetition. However, our numerical
simulations all make use of the product coloration circuit,and we leave
the exploration of other syndrome extraction circuits to future work.

Algorithm 2. Product coloration circuit for HGP syndrome
extraction

Input : Edge colorations Cy, C,, of Tanner graphs
associated with horizontal and vertical classical
codes C},, C,, that form the hypergraph product
code.

Output : Measurement outcomes of all X and Z stabilizer

generators.

// X stabilizers

Apply a Hadamard on all data qubits.

Prepare an ancilla in |+) for each X stabilizer and move all X
ancilla qubits (red) into the LDPC grid region shown in
Fig. Extended Data Figure 1. Do not include any Z ancilla
qubits (green).

for direction f € {horizontal, vertical} do

4 for color c € Cy do

Apply algorithm 1 in direction f, across the whole
grid, to bring each pair of qubits connected by an
edge of color c in direction f together.

6 Apply a CZ gate on each pair of neighboring qubits.

[SIE

w

n

=

Apply a Hadamard on all data qubits.
Move X ancilla qubits out of the grid region and measure
them in the X basis.
// Z stabilizers
Prepare an ancilla in |+) for each Z stabilizer and move all Z
ancilla qubits (green) into the LDPC grid region shown in
Fig. Extended Data Figure 1. Do not include any X ancilla
qubits (red).
for direction f € {horizontal, vertical} do
11 for color c € Cy do
12 Apply algorithm 1 in direction f, across the whole
grid, to bring each pair of qubits connected by an
edge of color c in direction f together.
13 Apply a CZ gate on each pair of neighboring qubits.

®

-

=
=)

14 Move Z ancilla qubits out of the grid region and measure
them in the X basis.
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Algorithm 3. Pipelined product coloration circuit for multi-round
HGP syndrome extraction

Input : Edge colorations Cp, C, of Tanner graphs
associated with horizontal and vertical classical
codes C},, C,, that form the hypergraph product
code.

Input : Number of syndrome repetition rounds d.

Output : Measurement outcomes of all X and Z stabilizer

generators.

// X stabilizers of the first round

Apply a Hadamard on data qubits in the bottom left block

(orange) of Fig. Extended Data Figure 1.

2 Prepare an ancilla in |+) for each X stabilizer and move all X
ancilla qubits (red) into the LDPC grid region shown in
Fig. Extended Data Figure 1. Do not include any Z ancilla
qubits (green).

3 for color c € C, do

Apply algorithm 1 in the horizontal direction, across all

rows, to bring each pair of qubits connected by an edge
of color c in the horizontal direction together.

Apply a CZ gate on each pair of neighboring qubits.

[

wn

// Parallel syndrome extraction for d-1
rounds

fori < 1tod-1do

for direction f € {vertical, horizontal} do

Apply a Hadamard on all data qubits.

if f == vertical then

10 L Measure any old Z ancillas in the X basis and

e o N

prepare a fresh ancilla in |+) for each Z

stabilizer.
1 else
12 Measure any old X ancillas in the X basis and
L prepare a fresh ancilla in |+) for each X
stabilizer.
13 Move all X and Z ancilla qubits into their

appropriate positions in Fig. Extended Data Figure
1

14 for color c € Cy do

15 Apply algorithm 1 in direction f, across all
columns, to bring each pair of qubits connected
by an edge of color c in direction f together.

16 Apply a CZ gate on each pair of neighboring
qubits.

// Z stabilizers of the final round
17 Move X ancilla qubits out of the grid region and measure
them in the X basis.

18 for color c € C, do

19 Apply algorithm 1 in vertical direction, across the whole
grid, to bring each pair of qubits connected by an edge
of color c in vertical direction together.

20 Apply a CZ gate on each pair of neighboring qubits.

21 Move Z ancilla qubits out of the grid region and measure
them in the X basis.

Estimating the rearrangement time and the effect of idling
errors

For the schemes described above, we can estimate the amount of time
required to implement one round of stabilizer measurements using
the technology that has been demonstrated in ref. 22. We assume a
transfer time 7, between a static spatial light modulator trap and a
dynamic AOD trap, a peak atom moving acceleration rate of a, with
acubicspline trajectory, and a uniform grid spacing d. For simplicity,
we assume that the number of atoms on a line to be rearranged

is a power of 2, L = 2% The algorithm will, therefore, have a depth of
k =log, L layers. To provide enough workspace for shuttling, the
total number of trapsis 3L/2.

The compactification step at scale s requires a move of distance
at most sd/2. Moving all target atoms to the right requires a move of
distance at most sd. We can combine the two steps such that we pick
up atoms for the next move and drop off atoms from the previous move
atthe sametime; thus, each step requires onaverage one trap transfer
between static and dynamic traps. As describedinref. 22, usinga cubic
spline movement trajectory, amove of distance /requirestime , / 6//ay,.

The total time required for one layer of full rearrangement
before each layer of entangling gates in asyndrome extraction circuit

isthus
k i N
[6x2id /3 x2id
trearrange = Zth + Z ( a— + a_>
i=0 P p
<2t logl + (3 + 2\/5), / %1.
p

Recent experiments have demonstrated parameters of the order of
7,=50 ps, a, = 0.02 pm psand d = 5 pm. For a moderately sized code
consisting 0of 10,000 qubits (including both dataand ancilla qubits), we
haveL =100. Thetotal trap transfer timeis 0.7 ms, and the atom move-
menttimeis2.3 ms, for eachgate layer. Assuminga (3,4)-biregular graph
for the underlying classical expander code, we need eight rounds of
rearrangement to measure one full round of stabilizers for Algorithm 3,
resultingin a total time overhead of 3 ms per rearrangement layer and
24 ms for a full round of syndrome extraction, a small fraction of the
coherence time 7T, >10 s that has been demonstrated in neutral-atom
arrays® . This timescale is somewhat longer than the typical readout
timescales, and thus, the code cycle time will be dominated by the rear-
rangement time. The ancillameasurements canbe pipelined to happen
simultaneously with the atom rearrangements of the following round
and, therefore, will notincrease the run time. Supplementary Informa-
tion describes howto perform parallel rearrangement with the LP codes.

The rearrangement time in equation (7) determines the idling
errors between sequences of entangling gates in a syndrome extrac-
tion circuit. In general, ¢,,rrange (1) in equation (7) is a function of the
code size n, as L is a function of n. Setting the gate error rate p, as
the characteristic physical error rate of our noise model, we rescale
theidling error rate p/(n) together with p,:

@

pi(n) = trearrange(n)/Tc X pg/0.00S, ®

where T_is the atom coherence time and 0.005 is the current CZ gate
infidelity demonstrated in ref. 28. Note that the rescaling of p,(n) with
p,in equation (8) can be justified because idling errors can improve
together with the gate errors as hardware improves. For example,
furtherimprovementsin coherence time canbe achieved by detuning
trapping light further and better magnetic field shielding. Even with-
out furtherimprovements, coherence times as long as 50 s have been
demonstrated in neutral-atom systems?, sufficient for our analysis
at p, = 0.1%. For all the numerical estimations in this work, we use the
upper bound for £,.;rang(17) in equation (7) and use the experimental
parameters listed below equation (7), with 7,=10s.

We numerically verify in Supplementary Information that the
effect of the idling errors can be approximated by rescaling the
gate errors p, > p, +3p,(n) using the product coloration circuit. By
replacing therescaled p, in the subthreshold scaling for HGP codes in
equation (1), we can examine the effect of the idling errors on achiev-
able LFRs. As shown in Extended Data Fig. 4, the LFRs were exponen-
tially suppressed by the code size n when nis small and 3p(n) < p,.
For 3p,(n) > p,, they are gradually saturated, then increase and finally
approach the gate error threshold. Using the relevant experimental
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parameters, the idling errors are negligible for n up to -10” and the
LFRs cango below 10 (green curve), which already suffices forimple-
menting practical quantum algorithms.

Thus, due to the inclusion of idling errors, the LFR cannot be
arbitrarily suppressed asymptotically according to the no-go theorems
inrefs.15,64. However, constant overhead and fault tolerance can still
be achieved at physically relevant sizes by utilizing the quasi-nonlocal
connectivity inatom arrays.

Details of teleportation

Here, we describe our teleportation scheme between the qLDPC code
andthesurface code. We select alogical X, operator for the qLDPC code
of minimum weight. This ensures that it contains no sublogicals, which
are inequivalent logical operators contained in its support, so that
the scheme is fault-tolerant under data errors (see Supplementary
Information for a proof). We then associate the qubit support of X; of
the qLDPC code (Z, of the surface code) to the bits of a classical code
C, (G)) and associate the Z (X) stabilizers of the qLDPC (surface) code
with the support on X; (2,) to the checks of C, (G,). Denoting H' (H*)
as the check matrix for C, (G,), H}.j(H;.) =1 if the ith Z (X) stabilizer
checks thejth qubit of X; (Z,). We construct an ancilla code patch
as a HGP code by taking the HGP of C; and C,. The HGP code encodes
asingle logical qubit with a logical X and Z representative associated
with the bits of C; and C,, respectively.

Lattice surgery between the ancilla patch and the qLDPC (surface)
code is realized by merging and splitting along C, (C,), assisted by an
extra array of ancillary qubits (Fig. 4a). For a classical linear code C
with check matrix H, we denote by C" its transposed code defined by
the check matrix H". Taking the qLDPC-ancilla surgery as an example,
we insert an extra array of X stabilizers (initialized in |+)) and qubits
(initialized in|0)) inthe middle, associated with the checks and the bits
of €T, respectively. During the code merging, the Z stabilizers of
the qLDPC and the ancilla patch associated with the ith check of C are
each modified to include the middle qubit associated with the ith bit
of CT. The middle X stabilizer associated with the jth check of CT checks
the two qubits of the qLDPC and surface codes associated with the jth
bit of C;as well as some middle qubits given by the incident relation of
C[.lItis easy to verify that all the new stabilizers commute as the added
and modified qubits and checks across the merged boundary forman
HGP code with C, and alength-2 repetition code locally. The product
of the middle X stabilizers gives the joint logical operator to measure.
See Supplementary Information for more algebraic details of the
above lattice-surgery scheme and a proof of its fault tolerance under
dataerrors, as well as further details of the numerical simulation.

Note that the lattice-surgery approachinref.18 canalso be used for
teleportation betweenaqLDPC code and asurface code. Theirapproach
essentially usesanancilla patchformed by the HGP of alength-drepeti-
tioncodeanda‘union’of C;and C, associated with thelogical operators of
the qLDPC code and the surface code, respectively, and directly performs
ajointlogical measurement onthe qLDPC and surface code. The ancilla
patch has size 2d? (if using minimum-weight logical operators), whichis
twice as larger as our ancilla. Compared to their approach, our scheme
hasalower space overhead but alarger temporal overhead overall.

Data availability

The data collected and analysed in this article are available at https://
doi.org/10.5281/zenod0.8278063 (ref. 65). Source data are provided
with this paper.

Code availability

All codes used to generate the figures are available upon request.
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Extended Data Fig.1| Product structure of HGP codes and LP codes. (a) The
HGP code is constructed from two classical LDPC codes. The classical codes
areillustrated on the left and top, where circles indicate classical bits and
squares indicate classical checks. A data qubit is placed at eachintersection of
two classical bits (filled orange circles) and of two classical checks (filled blue
circles). Zstabilizer generators are placed at the intersection of horizontal bits
and vertical checks, while X stabilizer generators are placed at the intersection
of horizontal checks and vertical bits. Each stabilizer is connected to data qubits
along the same row or column, with the same connectivity as the classical codes,
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asillustrated for the top left Zstabilizer. We have omitted other connections

for ease of visualization. (b) The LP code is constructed by taking a lift over the
hypergraph product of two classical protographs. The protographs and their
hypergraph product are indicated by the dashed nodes and the lift is illustrated
by the multiple inner nodes within each dashed node. The inner connectivity
between two dashed nodes is given by the circulant-matrix representation of the
ring elements in Eq. (4). When flattening the inner nodes vertically (horizontally),
the vertical (horizontal) connectivity between the qubits and the checks for each
column (row) is the same as the left (top) lifted classical code.

Nature Physics


http://www.nature.com/naturephysics

Article https://doi.org/10.1038/s41567-024-02479-z

i}
|
a}
jaj
a}
a

ui]
0]
ul]
]
]
=]

Prepare locations I @ @ @ @ d
in workspace

Bipartition atoms into {

left and right subsets = [ 0 @ L1 oED ]
. @ @ @ @
1
O@ma®»ion il
1
1
Recursive sorting 4 (0 [0 | ol i O
of subsets L ! N .
o | O ! 0! 0 [
! | i
m o im ! | @
lom @' o w'a m! g

Move to final {
positions M|

N @@ @@ @ @

Extended Data Fig. 2| Efficient non-intersecting rearrangement in
log-depth. By using a divide and conquer algorithm, we can perform an
arbitrary 1D rearrangement in depth logarithmic in the number of qubits.
Repeating this across the array yields an efficient implementation of the desired
rearrangements, without requiring intersecting atom trajectories that may lead
toadditional loss and decoherence. Here, we illustrate the full set of movements
required in asmall example. Similar to the earlier figures, blue squares indicate
classical checks and orange circles indicate classical bits. When a blue square

and orange circle are moved to be neighboring at the end of the rearrangement,
they execute an entangling gate. The top panel indicates the desired change of
configuration, where the ordering of neighboring atoms in the top row needs to
be modified to thatin the bottom row via parallel rearrangement, asillustrated
by the crossing gray lines. The bottom figure illustrates how we decompose the
arbitrary rearrangement into a non-crossing rearrangement, where the gray lines
no longer intersect.
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Extended Data Fig. 3 | Illustration of ordering of operations in pipelined data qubits and ancilla qubits see, with dashed lines indicating different circuit
syndrome extraction. (a) Successive steps of entangling gates for the pipelined moments. As the X stabilizer interacts with both qubits before the Zstabilizer,
product coloration circuit described in Alg. 3, with d = 3 rounds of syndrome the syndrome extraction order is valid. Similar analysis can be performed for the

extraction. Numbers at the corners of the Xand Zancilla qubits denote the round commutation relations with the next round of ancilla qubits.
of syndrome extraction they correspond to. (b) lllustration of a local circuit that
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Extended Data Fig. 4 | Achievable logical failure rates of the HGP codes with different idling error strengths. We characterize the idling error strengths as the
relativeratio between theidling error rate p,(n) at n = 4 and the gate error rate p,. This idling error strength can potentially be reduced by, for example, increasing the

coherence time and accelerating the atom shuttling.
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