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a b s t r a c t 

Coastal observations along the Texas coast are valuable for 

many stakeholders in diverse domains. However, the man- 

agement of the collected data has been limited, creating 

gaps in hydrological and atmospheric datasets. Among these, 

water and air temperature measurements are particularly 

crucial for water temperature predictions, especially during 

freeze events. These events can pose a serious threat to en- 

dangered sea turtles and economically valuable fish, which 

can succumb to hypothermic stunning, making them vulner- 

able to cold-related illness or death. Reliable and complete 

water and air temperature measurements are needed to pro- 

vide accurate predictions of when cold-stunning events oc- 

cur. To address these concerns, the focus of this paper is 

to describe the method used to create a complete 10-year 

dataset that is representative of the upper Laguna Madre, TX 

using multiple stations and various gap-filling methods. The 
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raw datasets consist of a decade’s worth of air and water 

temperature measurements within the Upper Laguna Madre 

from 2012 to 2022 extracted from the archives of the Texas 

Coastal Ocean Observation Network and the National Park 

Service. Large portions of data from the multiple stations 

were missing from the raw datasets, therefore a systematic 

gap-filling approach was designed and applied to create a 

near-continuous dataset. The proposed imputation method 

consists of three steps, starting with a short gap interpo- 

lation method, followed by a long gap-filling process using 

nearby stations, and finalized by a second short gap interpo- 

lation method. This systematic data imputation approach was 

evaluated by creating random artificial gaps within the origi- 

nal datasets, filling them using the proposed data imputation 

method, and assessing the viability of the proposed methods 

using various performance metrics. The evaluation results 

help to ensure the reliability of the newly imputed dataset 

and the effectiveness of the data imputation method. The 

newly created dataset is a valuable resource that transcends 

the local cold-stunning issue, offering viable utility for ana- 

lyzing temporal variability of air and water temperatures, ex- 

ploring temperature interdependencies, reducing forecasting 

uncertainties, and refining natural resource and weather ad- 

visory decision-making processes. The cleaned dataset with 

minimal gaps ( < 2%) is ready and convenient for artificial in- 

telligence and machine learning applications. 

© 2023 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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pecifications Table 

Subject Earth and Planetary Science 

Specific subject area Coastal Oceanography and Applied Machine Learning 

Data format Raw and Filtered 

Type of data Table 

Data collection Air and water temperature data were acquired from the records of the Texas 

Coastal Ocean Observation Network (TCOON) and the National Park Service 

(NPS). All data collected by TCOON follow the National Ocean Service 

standards including instrumentation, data collection procedures, periodic 

inspections and maintenance, and metadata collection. 

Data source location The data was collected through TCOON and NPS sources. Air temperature 

measurements utilized TCOON stations of Packery Channel (27 ° 38 ′ 4 ′′ N, 97 °
14 ′ 13 ′′ W), Baffin Bay (27 ° 17 ′ 49 ′′ N, 97 ° 24 ′ 17 ′′ W), while water 

temperatures utilized TCOON South Bird Island station (27 ° 29 ′ 4 ′′ N, 97 ° 19 ′ 
5 ′′ W) and NPS South Bird Island station (same location as TCOON station). 

The data was stored in the lighthouse database of the Conrad Blucher Institute 

at Texas A&M University-Corpus Christi (TAMU-CC). 

Data accessibility Repository Name: LagunaMadreWaterAirTempCleaner [ 4 ] 

Data Identification Number: 10.5281/zenodo.10064703 

GitHub Repository URL: 

conrad- blucher- institute/LagunaMadreWaterAirTempDataCleaner (github.com) 

. Value of the Data 

• The data described in this article can be used to (1) analyze daily, seasonal, and inter-
annual variability of air and water temperature in Laguna Madre, TX, (2) study the re-

http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/records/10064703
https://github.com/conrad-blucher-institute/LagunaMadreWaterAirTempDataCleaner
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lationship between air and water temperatures, (3) forecast or analyze trends in air and

water temperatures, (4) reduce uncertainty in air and water temperature forecasts, and

(5) enhance water and natural resource and risk management decisions during freeze or

drought events. 

• The most significant contribution of this paper is the creation of a complete 10-year time-

series dataset. A minimal gap ( < 2%) dataset is highly valuable for the calibration of Arti-

ficial Intelligence (AI) models. 

• This dataset can be valuable to data scientists, natural and water resource managers, cli-

mate scientists, forecasters, and others who are in need of reliable air and water temper-

ature data. 

• The imputed dataset provides reliable air and water temperature information in one of

the most important development areas for juvenile endangered green sea turtles in the

western Gulf of Mexico. 

2. Data Description 

The dataset presented in this article is representative of hydrological and atmospheric condi-

tions within the Laguna Madre TX, a shallow estuarine system located in southern Texas. Water

temperatures can change very rapidly in the Laguna Madre because of the cooling air temper-

atures brought in by cold fronts but also because of the hydrodynamics of the Laguna Madre

itself (e.g., wind-driven and well-mixed, shallow, restricted flow from the Gulf of Mexico [GoM]).

Given the climatic conditions of the area, the lagoon system is sometimes susceptible to freez-

ing air temperatures when cold fronts travel toward the coast during the cold season, impacting

water temperatures [ 9 ]. Climatic and oceanic factors such as air temperature, sea surface tem-

perature, barometric pressure, wind direction, and wind speed influence cold-stunning events

along the Texas coast[ 9 ]. However, Tissot et al. showed that air temperature was by far the main

forcing on water temperatures in the Laguna Madre (with the exception of waters by deep draft

ship channels, e.g., Brownsville ship channel) [ 10 ][ 10 ]. Cold fronts can substantially lower air

temperatures by more than 10 °C in less than 24 hours[ 9 ], significantly decreasing water tem-

perature in the Laguna Madre [ 10 ]. These conditions can cause threatened green sea turtles and

other marine life to become “cold-stunned,” no longer capable of moving or protecting them-

selves. 

The dataset described in this article consists of 10 years of air and water temperature mea-

surements from 2012 to 2022 extracted from the Texas Coastal Ocean Observation Network

(TCOON) [ 7 ], initially used to forecast water temperatures in the area of interest. TCOON has

been noted as a valuable hydrological/environmental data retrieval tool since 1991 for the state

of Texas, collecting water level, wind speed, barometric pressure, salinity, water quality, and

other environmental data along several locations along the Texas coast [ 8 ]. TCOON has been

utilized by the National Ocean and Atmospheric Administration (NOAA), US Army Corps of En-

gineers (USACE), and the Conrad Blucher Institute (CBI) for many applications, resulting in many

benefits to the agencies (e.g., Texas General Land Office, Texas Water Development Board) and

communities that each TCOON station serves. However, the maintenance of TCOON was tem-

porarily halted starting in 2014 for one or more years, depending on location, before resuming

data collection. However, the 2014 halt, occasional extreme events, data transmission problems

and harshness of the coastal environment led to the reduction of data quality, leading to large

gaps of missing data and at times erroneous data. The reduction in the data quality along the

Texas coast has limited the usability and reliability of the data for a diverse set of users. This

paper focuses on enhancing the usability of air temperature (ATP) and water temperature (WTP)

data acquired from TCOON by combining statistical processing and utilizing highly correlated lo-

cations (depending on the variable and location; Table 1 ). The goal is to improve its applicabil-
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Table 1 

Pearson correlation coefficients (%) of (A) air and (B) water temperature measurements ( °C) of various stations located 
in the Upper Laguna Madre, including South Bird Island (SBI), Packery Channel, Baffin Bay (BB), and National Park 

Service (NPS)-SBI stations. 

(A) Air Temperature (B) Water Temperature 

SBI Packery BB SBI NPS-SBI 

SBI 100% 99.39% 99.30% NPS-SBI 100% 99.37% 

Packery 99.39% 100% 99.20% SBI 99.37% 100% 

BB 99.30% 99.20% 100% 
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ty for diverse analysis and forecasting models, aiming to restore its value in scientific research,

nalysis, and various management decision-making processes. 

. Experimental Design, Materials, and Methods 

.1. Study location - Laguna Madre estuarine system 

The Laguna Madre is characterized as a shallow ( � 1.2 m [1] ) estuarine system that is di-

ided into two sections: the upper and lower Laguna Madre. Both sections cover approximately

133 km 
2 [ 5 ], separated by an extensive area of wind tidal flats and hydrologically connected by

he Gulf Intracoastal Waterway (GIWW) also known as the “Land Cut”. The estuarine system has

ighly restricted flows in and out of the GoM with only three outlets that allow for water trans-

er from the bay to the Gulf: Brazos Santiago Pass, Mansfield Channel, and Packery Channel [ 9 ].

oth sections of Laguna Madre also have minimal freshwater inflow, historically often expressing

 negative freshwater inflow balance [ 12 ]. Because of this, the system is known to be one of the

ix most hypersaline lagoons in the world, with salinity levels ranging from 26 to 50 g/kg de-

ending on local rainfall [ 9,12 ]. During the passage of cold fronts, water temperatures in Laguna

adre are driven by generally homogeneous air temperatures brought in by cold fronts and can

e considered homogeneous as well [ 9 ]. Despite these harsh saline conditions and occasional

xtreme cold events, the Laguna Madre is an extremely productive bay system, home to numer-

us commercially and ecologically valuable marine species. There are approximately 9 present

nd historical TCOON and National Park Service (NPS) stations placed within the Laguna Madre

ystem ( Fig. 1 ). 

.2. Data acquisition 

Hourly air and water temperature time-series data from TCOON and NPS stations within the

pper Laguna Madre were acquired (lighthouse.tamucc.edu). The selected locations are South

ird Island, Packery Channel, Baffin Bay, and NPS-South Bird Island [NPS-SBI] stations. The data

cquired from the multiple stations were analyzed to assess the variability and heterogeneity of

ater and air temperatures between each station in order to understand the range of suitability

f the nearby stations for potential data imputation. 

.3. Percentage of missing data 

The unprocessed 2010–2022 air and water temperature dataset from all stations contained

ubstantial proportions of missing data ( Table 2 ). Within the initial acquired data, data prior to

012 had more than 90% missing data and therefore was excluded. 
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Fig. 1. Map of water stations located in Laguna Madre, TX. Stations that were used for the imputation process are 

labeled in red, while the remaining stations that are not used for the newly gap-filled dataset are labeled in purple. 

Table 2 

Percentages (%) of missing values for the original datasets of the South Bird Island (SBI), Packery Channel, Baffin Bay 

(BB), and National Park Service-South Bird Island (NPS-SBI) stations per year. 

Year ATP WTP 

SBI (%) Packery (%) BB (%) SBI (%) NPS-SBI (%) 

2012 0.17 0.02 12.9 0.17 5.05 

2013 0.09 0.74 0.06 1.26 9.92 

2014 3.93 0.01 0.08 3.93 7.72 

2015 30.1 0.05 0.30 30.1 0.73 

2016 25.9 0.03 0.48 3.01 0.09 

2017 26.4 0.31 0.96 26.3 0.67 

2018 2.23 4.50 3.00 2.17 9.10 

2019 19.6 1.26 1.96 28.4 0.08 

2020 64.1 10.4 4.02 73.6 0.24 

2021 5.76 18.6 20.2 5.76 0.11 

2022 3.36 0.48 0.49 3.34 1.00 

 

 

 

3.4. Experimental design 

The primary objective is to create a dataset that is representative of the upper Laguna Madre

with minimal gaps ( < 2%) for each year within the time-series dataset. Therefore, each station

used for experimentation for the data imputation method was analyzed using Pearson correla-
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ions between each combination. It was observed that each station combination for both air and

ater temperatures had correlation values higher than 99% ( Table 1 ). This justifies the use of

he selected stations for use in our proposed data imputation methods. After data imputation

ethods were applied and the final missing percentages were computed for each combination,

he imputed dataset that contained the lowest percentage of missing data was selected for each

f the two variables. All imputation and evaluation methods were implemented with the Python

rogramming language. 

.5. Gap-filling methods 

Two different processes were used to gap-fill missing data within the 2012–2022 air and

ater temperature dataset, dependent on the length of the gap of missing data. With this in

ind, the gaps were classified as short and long gaps. Short and long gaps for missing air and

ater temperatures were defined by the dynamics of the local physical conditions of the Laguna

adre system. Short gaps were characterized as gaps that were less than or equal to 3 hours for

ir temperature and 5 hours for water temperature. Any remaining gaps that were larger than

he defined short gaps were defined as long gaps. 

Short-Gap Interpolation Method: Gap-filling methods utilized for short gaps involved linear in-

erpolation methods. To interpolate the small gaps, the averages of the last three measurements

efore and after the gap were computed. The two computed averages were used as the first and

he last interpolated values within the gap. Rather than using the gap’s first and last measure-

ents, the average of the previous and next three values added robustness to the interpolation

pproach ( Fig. 2 ). 

Although this approach is viable for a majority of the dataset, this gap-filling method was

ot found to be suitable for extreme cold events, where water and air temperatures drop signif-

cantly very rapidly [ 9 ]. Studies show that air temperatures in the area can drop by more than

0 °C in less than 24 hours [ 2,9 ]. To ensure that the proposed approach would not fail in these

cenarios, the approach was applied when the following conditions were met: (1) the range of

he three values before the beginning of the gap and the range of the value after the end of the

ap is smaller than 1.5 °C; (2) the absolute difference between the mean values before and the

fter the gaps is smaller than 1.5 °C. If these conditions were not met, then the short gaps were

ot filled with our proposed method. 

Long-Gap Imputation Method: Once short-gap interpolation methods were applied to all se-

ected stations, long-gap imputation methods were implemented based on all combinations

bove ( Table 2 ). The stations where gap-filling was applied are referenced as the main stations,

nd the stations that were used to gap-fill are referenced as the nearby stations. When analyz-

ng the data, it was observed that some of the long gaps in the dataset extended over multiple

ays, making linear interpolation approaches unreliable for addressing these cases. Long gaps of

issing data within the main datasets were thus filled with the measurements of the selected

earby stations after linear adjustments of bias of the start and end of the gaps were accounted

or. 

To apply the linear adjustment used for the long gap-filling process, the averages of the last

hree measurements before the start of the gap and the first three measurements after the end

f the gap were computed for both the main and nearby stations. The difference between the

verage measurement of the main station and that of the nearby station was then calculated

nd extracted. The corrected value was obtained by averaging the differences between station

easurements before and after the gap. This corrected value was added to the nearby station

easurement to obtain the value used to fill the missing measurement. Similar to what was

bserved when using the proposed short-gap interpolation approach, the long-gap imputation

pproach worked for most cases, however it was observed that the method failed when sudden

hanges in temperatures occurred. To ensure that the proposed approach would not fail in these

cenarios, the approach was applied when the following conditions were met: the difference
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Fig. 2. (A) Normal interpolation method versus (B) interpolation method using short gap method with linear adjustment. 
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Table 3 

Percentage of missing values before and after the long gap-filling method has been applied for all station combinations. 

The main stations are listed first, and the nearby station used for gap-filling is labeled by and succeeds the dash (-). 

Year ATP WTP 

SBI- 

Packery 

SBI- BB Packery- 

SBI 

Packery- 

BB 

BB- SBI BB- 

Packery 

SBI- NPS-SBI NPS-SBI- 

SBI 

2012 0.01 0.05 0.00 0.00 12.3 12.3 0.01 1.12 

2013 0.05 0.05 0.05 0.05 0.05 0.05 1.18 0.19 

2014 2.69 2.71 0.00 0.00 0.30 0.03 2.71 1.30 

2015 5.73 26.4 0.02 0.00 0.10 0.02 5.67 0.49 

2016 2.11 1.98 0.01 0.01 0.33 0.20 1.20 0.00 

2017 18.2 18.2 0.15 0.05 0.74 0.73 18.3 0.39 

2018 1.79 1.79 0.66 0.92 1.82 0.95 1.79 0.63 

2019 16.9 15.2 0.19 0.19 1.83 0.19 22.6 0.08 

2020 27.6 21.7 10.2 0.05 3.92 3.89 27.6 0.07 

2021 2.57 2.01 16.5 15.5 18.3 19.9 2.59 0.01 

2022 0.84 0.82 0.31 0.29 0.30 0.30 0.84 0.40 

Table 4 

Percentage (%) of missing values for (1) the original datasets before imputation methods were employed and (2) the 

final datasets after imputation methods were employed. 

Year Packery ATP NPS-SBI WTP 

Original Final Original Final 

2012 0.02 0.00 5.05 1.12 

2013 0.74 0.05 9.92 0.19 

2014 0.01 0.00 7.72 1.30 

2015 0.05 0.00 0.73 0.49 

2016 0.03 0.01 0.09 0.00 

2017 0.31 0.05 0.67 0.39 

2018 4.50 0.92 9.10 0.63 

2019 1.26 0.19 0.08 0.08 

2020 10.4 0.05 0.24 0.07 

2021 18.6 15.5 0.11 0.01 

2022 0.48 0.29 1.00 0.40 
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o  
etween the average of the three values for both the original and nearby station before the

eginning and after the end of the gap was smaller than 1.5 °C. 
Linear interpolation methods that were utilized for short gaps were then facilitated again af-

er long gaps were filled to account for new short gaps that formed after data substitution pro-

esses were completed. Final missing data percentages after data imputation methods: Once data

mputation methods were complete, final percentages of missing air temperature data showed

hat the utilization of the Packery Channel dataset as the main station in combination with Baf-

n Bay resulted in the lowest percentage of missing air temperature data ( Table 3 ). It was also

etermined that the utilization of the NPS-SBI dataset as the main station in combination with

he South Bird Island station resulted in the lowest percentage of missing water temperature

ata ( Table 3 ). Thus, the final dataset is comprised of air and water temperature measurements

rom Packery and NPS-SBI stations, respectively. In the case of the Packery measurements, the

ataset was filled using Baffin Bay, whereas the NPS-SBI measurements were filled using the SBI

tation. The dataset included only the years that contained less than 2% of missing data after

ompletion of the gap-filling process. All years from 2012 to 2022 contained less than 1.2% of

issing data with the exception of 2021 (15.5% of missing data; Table 3 ), therefore was excluded

rom the final dataset ( Table 3 ). 

Table 4 shows the significant effect that the gap-filling approach had on the original datasets.

n the original datasets, only 5 years had both water and air temperature data with less than 2%

f missing values. However, after the use of the imputation methods, all years except for 2021
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accomplished this goal, resulting in 10 years of data with less than 2% missing data ( Table 4 ).

This is a significant improvement for water and air temperature data within the Laguna Madre

and extremely valuable for the application of artificial intelligence (AI) and machine learning

(ML) modeling particularly when continuous time-series inputs are necessary such as for long

short-term memory model [3] , recurrent neural networks [ 6 ], and transformer architectures [ 11 ].

3.6. Evaluation of gap-filling method 

In order to evaluate the proposed data imputation method, both NPS-SBI and Packery Chan-

nel datasets were used to assess the reliability of the methods. Random artificial gaps were

created, representing up to 10% of the dataset size for each year. These gaps were then filled

utilizing the proposed methods and evaluated using various metrics (e.g. mean absolute error

[MAE] ( Eq. 4 ), root mean squared error [RMSE] ( Eq. 3 ), maximum 10% error [ME10] ( Eq. 6 )) to

determine the reliability and validity of the method. The short and long-gap imputation methods

were evaluated separately. For the short gap interpolation evaluation, 3-hour gaps were created

for ATP measurements and 5-hour gaps were created for = WTPmeasurements. Random place-

ment of these gaps was conducted for each year and variable. This assessment created gaps of

maximum length of the short gaps for both ATP and WTP. This means that in the case of the

use or observation of smaller gaps than the defined maximum length within the small-gap in-

terpolation method, the interpolation evaluation results would be slightly better. For the long

gap imputation evaluation, gaps ranging from 6 to 168 hours were randomly created, both in

length and placement, within the WTP and ATP time series. This range is representative of 95%

of the long gaps observed within the original dataset and was used to ensure a broad repre-

sentation of the potential missing value scenarios. Both evaluation methods were applied thirty

times in order to capture the variability of the observed errors (e.g., mean ± standard deviation)

that were computed using the metrics noted and defined below: 

ME = 

1 

n 

n ∑ 

i =1 

( x i − x ) (1) 

MSE = 

1 

n 

n ∑ 

i =1 

( x i − x ) 2 (2) 

RMSE = 

√ ∑ n 
i =1 ( x i − x ) 2 

n 
(3) 

MAE = 

1 

n 

n ∑ 

i =1 

| x i − x | (4) 

Max | E | = max 
(∣∣x i 1 − x 1 

∣∣, ∣∣x i 1 − x 1 
∣∣, . . . , ∣∣x i n − x n 

∣∣) (5) 

M ax 10% ( M AE ) = 

n ∑ 

i =1 

max 10% ( M AE sorted residuals ) (6) 

Where x i is the observed values, x is the interpolated values, and n is the number of data points.

Results for the short gap interpolation method for the 30 trials show that ATP MAE values

( Eq. 4 ) for all years were below 0.50 °C, while the maximum 10% mean error (Max10%(MAE))

( Eq. 6 ) averaged 1.12 ± 0.03 °C ( Table 5 ) for all years. WTP results for the short gap interpolation

evaluation show similar results for MAE, displaying MAE values below 0.50 °C and Max10%(MAE)

values no higher than 1.40 °C ( Table 6 ) for the full WTP dataset. 

Results for the long gap imputation method for the 30 trial runs show that ATP MAE val-

ues averaged 0.87 ± 0.14 °C for the full ATP dataset ( Table 7 ). Max10%(MAE) values averaged
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Table 5 

Evaluation metrics for the short gap-filling approach for Packery Channel ATP measurements (i.e., mean ± standard 

deviation of 30 trial runs). 

Year ME ( °C) MSE ( °C) RMSE ( °C) MAE ( °C) Max|E| ( °C) Max10%(MAE) ( °C) 

2012 0.02 ± 0.04 0.24 ± 0.03 0.49 ± 0.03 0.35 ± 0.02 2.53 ± 0.91 1.11 ± 0.09 

2013 0.01 ± 0.03 0.23 ± 0.04 0.48 ± 0.05 0.33 ± 0.02 2.79 ± 0.79 1.10 ± 0.12 

2014 0.01 ± 0.03 0.25 ± 0.04 0.50 ± 0.04 0.36 ± 0.03 2.40 ± 0.57 1.15 ± 0.11 

2015 0.01 ± 0.03 0.25 ± 0.04 0.50 ± 0.04 0.35 ± 0.02 2.87 ± 0.85 1.15 ± 0.11 

2016 0.00 ± 0.03 0.24 ± 0.04 0.49 ± 0.04 0.34 ± 0.02 2.48 ± 0.72 1.14 ± 0.09 

2017 0.02 ± 0.04 0.25 ± 0.05 0.50 ± 0.05 0.34 ± 0.02 2.69 ± 0.90 1.14 ± 0.12 

2018 0.00 ± 0.03 0.23 ± 0.04 0.47 ± 0.04 0.33 ± 0.02 2.56 ± 0.79 1.09 ± 0.10 

2019 0.00 ± 0.03 0.25 ± 0.04 0.50 ± 0.04 0.35 ± 0.02 2.93 ± 0.84 1.15 ± 0.11 

2020 0.01 ± 0.03 0.24 ± 0.04 0.49 ± 0.04 0.34 ± 0.02 2.35 ± 0.47 1.13 ± 0.11 

2021 0.00 ± 0.04 0.23 ± 0.04 0.48 ± 0.04 0.34 ± 0.02 2.41 ± 0.63 1.09 ± 0.11 

2022 0.01 ± 0.03 0.22 ± 0.04 0.47 ± 0.04 0.33 ± 0.02 2.63 ± 1.12 1.07 ± 0.10 

Table 6 

Evaluation metrics for the short gap-filling approach for NPS-SBI WTP measurements (i.e., mean ± standard deviation of 

30 trial runs). 

Year ME ( °C) MSE ( °C) RMSE ( °C) MAE ( °C) Max|E| ( °C) Max10%(MAE) ( °C) 

2012 0.04 ± 0.06 0.38 ± 0.04 0.62 ± 0.03 0.47 ± 0.03 2.03 ± 0.23 1.33 ± 0.07 

2013 0.04 ± 0.03 0.30 ± 0.03 0.55 ± 0.03 0.41 ± 0.02 1.93 ± 0.42 1.19 ± 0.06 

2014 0.04 ± 0.03 0.32 ± 0.03 0.57 ± 0.03 0.42 ± 0.02 2.15 ± 0.41 1.25 ± 0.07 

2015 0.05 ± 0.03 0.28 ± 0.03 0.53 ± 0.03 0.38 ± 0.02 1.92 ± 0.13 1.22 ± 0.07 

2016 0.05 ± 0.03 0.29 ± 0.03 0.53 ± 0.03 0.40 ± 0.03 1.94 ± 0.35 1.16 ± 0.06 

2017 0.06 ± 0.04 0.33 ± 0.03 0.57 ± 0.03 0.43 ± 0.02 2.07 ± 0.30 1.25 ± 0.06 

2018 0.04 ± 0.03 0.31 ± 0.04 0.55 ± 0.03 0.41 ± 0.03 1.82 ± 0.26 1.23 ± 0.08 

2019 0.02 ± 0.03 0.27 ± 0.03 0.52 ± 0.03 0.39 ± 0.03 1.97 ± 0.37 1.14 ± 0.06 

2020 0.03 ± 0.02 0.27 ± 0.03 0.52 ± 0.02 0.39 ± 0.02 1.79 ± 0.20 1.14 ± 0.05 

2021 0.04 ± 0.04 0.28 ± 0.02 0.53 ± 0.02 0.40 ± 0.02 1.90 ± 0.30 1.14 ± 0.05 

2022 0.03 ± 0.04 0.32 ± 0.04 0.57 ± 0.03 0.42 ± 0.02 2.08 ± 0.35 1.25 ± 0.07 

Table 7 

Evaluation metrics for the long gap-filling approach for Packery Channel ATP measurements when using Packery Channel 

as the main station and Baffin Bay as the adjacent station (i.e., mean ± standard deviation of 30 trial runs). 

Year ME ( °C) MSE ( °C) RMSE ( °C) MAE ( °C) Max|E| ( °C) Max10%(MAE) ( °C) 

2012 0.39 ± 0.08 1.16 ± 0.90 1.03 ± 0.32 0.69 ± 0.10 7.99 ± 2.59 2.30 ± 0.78 

2013 0.23 ± 0.07 1.00 ± 0.63 0.98 ± 0.22 0.70 ± 0.06 7.81 ± 2.29 2.23 ± 0.52 

2014 0.48 ± 0.08 1.13 ± 0.36 1.05 ± 0.14 0.78 ± 0.06 7.71 ± 2.26 2.33 ± 0.33 

2015 0.44 ± 0.08 1.28 ± 0.54 1.11 ± 0.22 0.77 ± 0.08 8.16 ± 2.99 2.50 ± 0.53 

2016 0.48 ± 0.08 1.25 ± 0.46 1.11 ± 0.18 0.78 ± 0.07 7.82 ± 2.97 2.49 ± 0.50 

2017 0.51 ± 0.10 1.25 ± 0.21 1.11 ± 0.09 0.82 ± 0.07 6.21 ± 0.99 2.53 ± 0.24 

2018 0.61 ± 0.08 1.37 ± 0.53 1.15 ± 0.19 0.85 ± 0.07 8.57 ± 3.54 2.53 ± 0.38 

2019 0.77 ± 0.08 1.87 ± 0.88 1.34 ± 0.26 1.00 ± 0.09 10.75 ± 2.88 2.86 ± 0.65 

2020 0.75 ± 0.10 1.74 ± 0.34 1.31 ± 0.13 0.99 ± 0.08 7.71 ± 0.95 2.95 ± 0.36 

2021 0.73 ± 0.14 2.35 ± 0.75 1.51 ± 0.25 1.07 ± 0.10 10.59 ± 4.01 3.37 ± 0.68 

2022 0.91 ± 0.12 1.89 ± 0.77 1.36 ± 0.22 1.07 ± 0.08 7.98 ± 3.13 2.83 ± 0.53 

2  

fl  

a  

p

.63 ± 0.34 °C for all years = ( Table 8 ). WTP results for the long gap interpolation method re-

ected MAE values that averaged 0.88 ± 0.69 °C for the full WTP dataset ( Table 8 ). Max10%(MAE)

veraged to 2.99 ± 1.51 °C for all years ( Table 8 ). These results justify the application of the pro-
osed data imputation approach. 
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Table 8 

Evaluation metrics for the long gap-filling approach for WTP measurements when using NPS-SBI as the main station and 

SBI as the adjacent station (i.e., mean ± standard deviation of 30 trial runs). 

Year ME ( °C) MSE ( °C) RMSE ( °C) MAE ( °C) Max|E| ( °C) Max10%(MAE) ( °C) 

2012 −2.30 ± 0.05 5.68 ± 0.23 2.38 ± 0.05 2.30 ± 0.05 4.48 ± 0.26 3.42 ± 0.13 

2013 −1.82 ± 0.09 4.31 ± 0.70 2.07 ± 0.16 1.87 ± 0.07 7.40 ± 3.58 3.30 ± 0.44 

2014 −0.04 ± 0.05 0.28 ± 0.11 0.53 ± 0.09 0.36 ± 0.03 3.58 ± 1.68 1.21 ± 0.21 

2015 −0.50 ± 0.16 2.26 ± 0.77 1.48 ± 0.25 0.84 ± 0.11 8.46 ± 2.13 3.58 ± 0.68 

2016 −0.08 ± 0.05 0.45 ± 0.44 0.61 ± 0.29 0.26 ± 0.05 7.68 ± 3.50 1.16 ± 0.48 

2017 0.12 ± 0.25 3.39 ± 2.36 1.74 ± 0.62 0.78 ± 0.23 10.10 ± 3.23 4.71 ± 1.72 

2018 −0.08 ± 0.07 0.46 ± 0.32 0.65 ± 0.21 0.31 ± 0.06 5.81 ± 2.80 1.55 ± 0.50 

2019 −0.08 ± 0.10 0.80 ± 0.78 0.81 ± 0.39 0.41 ± 0.11 6.14 ± 3.13 1.89 ± 0.93 

2020 −0.09 ± 0.32 1.83 ± 2.47 1.08 ± 0.83 0.52 ± 0.37 5.51 ± 3.53 2.74 ± 2.32 

2021 −0.94 ± 0.22 7.26 ± 2.67 2.66 ± 0.47 1.49 ± 0.21 11.90 ± 4.20 6.09 ± 1.28 

2022 0.01 ± 0.17 1.91 ± 1.15 1.32 ± 0.42 0.62 ± 0.15 10.14 ± 3.51 3.28 ± 1.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Limitations 

One limitation of the proposed imputation method is the need for highly correlated nearby

stations to apply the long gap-filling approach. If the nearby stations did not exist or the nearby

station data was not of good quality during the main station gaps, then the long gap-filling ap-

proach could not be applied. Another limitation is that the proposed gap-filling approach cannot

be applied when the missing data corresponds to extreme events. 
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