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Coastal observations along the Texas coast are valuable for
many stakeholders in diverse domains. However, the man-
agement of the collected data has been limited, creating
gaps in hydrological and atmospheric datasets. Among these,
water and air temperature measurements are particularly
crucial for water temperature predictions, especially during
freeze events. These events can pose a serious threat to en-
dangered sea turtles and economically valuable fish, which
can succumb to hypothermic stunning, making them vulner-
able to cold-related illness or death. Reliable and complete
water and air temperature measurements are needed to pro-
vide accurate predictions of when cold-stunning events oc-
cur. To address these concerns, the focus of this paper is
to describe the method used to create a complete 10-year
dataset that is representative of the upper Laguna Madre, TX
using multiple stations and various gap-filling methods. The
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raw datasets consist of a decade’s worth of air and water
temperature measurements within the Upper Laguna Madre
from 2012 to 2022 extracted from the archives of the Texas
Coastal Ocean Observation Network and the National Park
Service. Large portions of data from the multiple stations
were missing from the raw datasets, therefore a systematic
gap-filling approach was designed and applied to create a
near-continuous dataset. The proposed imputation method
consists of three steps, starting with a short gap interpo-
lation method, followed by a long gap-filling process using
nearby stations, and finalized by a second short gap interpo-
lation method. This systematic data imputation approach was
evaluated by creating random artificial gaps within the origi-
nal datasets, filling them using the proposed data imputation
method, and assessing the viability of the proposed methods
using various performance metrics. The evaluation results
help to ensure the reliability of the newly imputed dataset
and the effectiveness of the data imputation method. The
newly created dataset is a valuable resource that transcends
the local cold-stunning issue, offering viable utility for ana-
lyzing temporal variability of air and water temperatures, ex-
ploring temperature interdependencies, reducing forecasting
uncertainties, and refining natural resource and weather ad-
visory decision-making processes. The cleaned dataset with
minimal gaps (<2%) is ready and convenient for artificial in-
telligence and machine learning applications.
© 2023 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject

Specific subject area
Data format

Type of data

Data collection

Data source location

Data accessibility

Earth and Planetary Science

Coastal Oceanography and Applied Machine Learning

Raw and Filtered

Table

Air and water temperature data were acquired from the records of the Texas
Coastal Ocean Observation Network (TCOON) and the National Park Service
(NPS). All data collected by TCOON follow the National Ocean Service
standards including instrumentation, data collection procedures, periodic
inspections and maintenance, and metadata collection.

The data was collected through TCOON and NPS sources. Air temperature
measurements utilized TCOON stations of Packery Channel (27° 38’ 4” N, 97°
14’ 13” W), Baffin Bay (27° 17" 49” N, 97° 24’ 17" W), while water
temperatures utilized TCOON South Bird Island station (27° 29’ 4” N, 97° 19’
5” W) and NPS South Bird Island station (same location as TCOON station).
The data was stored in the lighthouse database of the Conrad Blucher Institute
at Texas A&M University-Corpus Christi (TAMU-CC).

Repository Name: LagunaMadreWaterAirTempCleaner [4]

Data Identification Number: 10.5281/zenodo.10064703

GitHub Repository URL:
conrad-blucher-institute/LagunaMadreWaterAirTempDataCleaner (github.com)

1. Value of the Data

+ The data described in this article can be used to (1) analyze daily, seasonal, and inter-
annual variability of air and water temperature in Laguna Madre, TX, (2) study the re-
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lationship between air and water temperatures, (3) forecast or analyze trends in air and
water temperatures, (4) reduce uncertainty in air and water temperature forecasts, and
(5) enhance water and natural resource and risk management decisions during freeze or
drought events.

The most significant contribution of this paper is the creation of a complete 10-year time-
series dataset. A minimal gap (<2%) dataset is highly valuable for the calibration of Arti-
ficial Intelligence (Al) models.

This dataset can be valuable to data scientists, natural and water resource managers, cli-
mate scientists, forecasters, and others who are in need of reliable air and water temper-
ature data.

The imputed dataset provides reliable air and water temperature information in one of
the most important development areas for juvenile endangered green sea turtles in the
western Gulf of Mexico.

2. Data Description

The dataset presented in this article is representative of hydrological and atmospheric condi-
tions within the Laguna Madre TX, a shallow estuarine system located in southern Texas. Water
temperatures can change very rapidly in the Laguna Madre because of the cooling air temper-
atures brought in by cold fronts but also because of the hydrodynamics of the Laguna Madre
itself (e.g., wind-driven and well-mixed, shallow, restricted flow from the Gulf of Mexico [GoM]).
Given the climatic conditions of the area, the lagoon system is sometimes susceptible to freez-
ing air temperatures when cold fronts travel toward the coast during the cold season, impacting
water temperatures [9]. Climatic and oceanic factors such as air temperature, sea surface tem-
perature, barometric pressure, wind direction, and wind speed influence cold-stunning events
along the Texas coast[9]. However, Tissot et al. showed that air temperature was by far the main
forcing on water temperatures in the Laguna Madre (with the exception of waters by deep draft
ship channels, e.g., Brownsville ship channel) [10][10]. Cold fronts can substantially lower air
temperatures by more than 10°C in less than 24 hours[9], significantly decreasing water tem-
perature in the Laguna Madre [10]. These conditions can cause threatened green sea turtles and
other marine life to become “cold-stunned,” no longer capable of moving or protecting them-
selves.

The dataset described in this article consists of 10 years of air and water temperature mea-
surements from 2012 to 2022 extracted from the Texas Coastal Ocean Observation Network
(TCOON) [7], initially used to forecast water temperatures in the area of interest. TCOON has
been noted as a valuable hydrological/environmental data retrieval tool since 1991 for the state
of Texas, collecting water level, wind speed, barometric pressure, salinity, water quality, and
other environmental data along several locations along the Texas coast [8]. TCOON has been
utilized by the National Ocean and Atmospheric Administration (NOAA), US Army Corps of En-
gineers (USACE), and the Conrad Blucher Institute (CBI) for many applications, resulting in many
benefits to the agencies (e.g., Texas General Land Office, Texas Water Development Board) and
communities that each TCOON station serves. However, the maintenance of TCOON was tem-
porarily halted starting in 2014 for one or more years, depending on location, before resuming
data collection. However, the 2014 halt, occasional extreme events, data transmission problems
and harshness of the coastal environment led to the reduction of data quality, leading to large
gaps of missing data and at times erroneous data. The reduction in the data quality along the
Texas coast has limited the usability and reliability of the data for a diverse set of users. This
paper focuses on enhancing the usability of air temperature (ATP) and water temperature (WTP)
data acquired from TCOON by combining statistical processing and utilizing highly correlated lo-
cations (depending on the variable and location; Table 1). The goal is to improve its applicabil-



4 M.C. White, M. Vicens-Miquel and P. Tissot et al./Data in Brief 52 (2024) 109828

Table 1

Pearson correlation coefficients (%) of (A) air and (B) water temperature measurements (°C) of various stations located
in the Upper Laguna Madre, including South Bird Island (SBI), Packery Channel, Baffin Bay (BB), and National Park
Service (NPS)-SBI stations.

(A) Air Temperature (B) Water Temperature
SBI Packery BB SBI NPS-SBI
SBI 100% 99.39% 99.30% NPS-SBI 100% 99.37%
Packery 99.39% 100% 99.20% SBI 99.37% 100%
BB 99.30% 99.20% 100%

ity for diverse analysis and forecasting models, aiming to restore its value in scientific research,
analysis, and various management decision-making processes.

3. Experimental Design, Materials, and Methods
3.1. Study location - Laguna Madre estuarine system

The Laguna Madre is characterized as a shallow (~12 m [1]) estuarine system that is di-
vided into two sections: the upper and lower Laguna Madre. Both sections cover approximately
1133 km? [5], separated by an extensive area of wind tidal flats and hydrologically connected by
the Gulf Intracoastal Waterway (GIWW) also known as the “Land Cut”. The estuarine system has
highly restricted flows in and out of the GoM with only three outlets that allow for water trans-
fer from the bay to the Gulf: Brazos Santiago Pass, Mansfield Channel, and Packery Channel [9].
Both sections of Laguna Madre also have minimal freshwater inflow, historically often expressing
a negative freshwater inflow balance [12]. Because of this, the system is known to be one of the
six most hypersaline lagoons in the world, with salinity levels ranging from 26 to 50 g/kg de-
pending on local rainfall [9,12]. During the passage of cold fronts, water temperatures in Laguna
Madre are driven by generally homogeneous air temperatures brought in by cold fronts and can
be considered homogeneous as well [9]. Despite these harsh saline conditions and occasional
extreme cold events, the Laguna Madre is an extremely productive bay system, home to numer-
ous commercially and ecologically valuable marine species. There are approximately 9 present
and historical TCOON and National Park Service (NPS) stations placed within the Laguna Madre
system (Fig. 1).

3.2. Data acquisition

Hourly air and water temperature time-series data from TCOON and NPS stations within the
upper Laguna Madre were acquired (lighthouse.tamucc.edu). The selected locations are South
Bird Island, Packery Channel, Baffin Bay, and NPS-South Bird Island [NPS-SBI] stations. The data
acquired from the multiple stations were analyzed to assess the variability and heterogeneity of
water and air temperatures between each station in order to understand the range of suitability
of the nearby stations for potential data imputation.

3.3. Percentage of missing data
The unprocessed 2010-2022 air and water temperature dataset from all stations contained

substantial proportions of missing data (Table 2). Within the initial acquired data, data prior to
2012 had more than 90% missing data and therefore was excluded.
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Fig. 1. Map of water stations located in Laguna Madre, TX. Stations that were used for the imputation process are
labeled in red, while the remaining stations that are not used for the newly gap-filled dataset are labeled in purple.

Table 2

Percentages (%) of missing values for the original datasets of the South Bird Island (SBI), Packery Channel, Baffin Bay

(BB), and National Park Service-South Bird Island (NPS-SBI) stations per year.

Year ATP WTP
SBI (%) Packery (%) BB (%) SBI (%) NPS-SBI (%)

2012 0.17 0.02 129 0.17 5.05
2013 0.09 0.74 0.06 1.26 9.92
2014 3.93 0.01 0.08 3.93 7.72
2015 30.1 0.05 0.30 30.1 0.73
2016 259 0.03 0.48 3.01 0.09
2017 264 0.31 0.96 26.3 0.67
2018 223 4.50 3.00 217 9.10
2019 19.6 126 1.96 284 0.08
2020 64.1 104 4.02 73.6 0.24
2021 5.76 18.6 20.2 5.76 0.11
2022 3.36 0.48 0.49 3.34 1.00

3.4. Experimental design

The primary objective is to create a dataset that is representative of the upper Laguna Madre
with minimal gaps (<2%) for each year within the time-series dataset. Therefore, each station
used for experimentation for the data imputation method was analyzed using Pearson correla-
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tions between each combination. It was observed that each station combination for both air and
water temperatures had correlation values higher than 99% (Table 1). This justifies the use of
the selected stations for use in our proposed data imputation methods. After data imputation
methods were applied and the final missing percentages were computed for each combination,
the imputed dataset that contained the lowest percentage of missing data was selected for each
of the two variables. All imputation and evaluation methods were implemented with the Python
programming language.

3.5. Gap-filling methods

Two different processes were used to gap-fill missing data within the 2012-2022 air and
water temperature dataset, dependent on the length of the gap of missing data. With this in
mind, the gaps were classified as short and long gaps. Short and long gaps for missing air and
water temperatures were defined by the dynamics of the local physical conditions of the Laguna
Madre system. Short gaps were characterized as gaps that were less than or equal to 3 hours for
air temperature and 5 hours for water temperature. Any remaining gaps that were larger than
the defined short gaps were defined as long gaps.

Short-Gap Interpolation Method: Gap-filling methods utilized for short gaps involved linear in-
terpolation methods. To interpolate the small gaps, the averages of the last three measurements
before and after the gap were computed. The two computed averages were used as the first and
the last interpolated values within the gap. Rather than using the gap’s first and last measure-
ments, the average of the previous and next three values added robustness to the interpolation
approach (Fig. 2).

Although this approach is viable for a majority of the dataset, this gap-filling method was
not found to be suitable for extreme cold events, where water and air temperatures drop signif-
icantly very rapidly [9]. Studies show that air temperatures in the area can drop by more than
10°C in less than 24 hours [2,9]. To ensure that the proposed approach would not fail in these
scenarios, the approach was applied when the following conditions were met: (1) the range of
the three values before the beginning of the gap and the range of the value after the end of the
gap is smaller than 1.5°C; (2) the absolute difference between the mean values before and the
after the gaps is smaller than 1.5°C. If these conditions were not met, then the short gaps were
not filled with our proposed method.

Long-Gap Imputation Method: Once short-gap interpolation methods were applied to all se-
lected stations, long-gap imputation methods were implemented based on all combinations
above (Table 2). The stations where gap-filling was applied are referenced as the main stations,
and the stations that were used to gap-fill are referenced as the nearby stations. When analyz-
ing the data, it was observed that some of the long gaps in the dataset extended over multiple
days, making linear interpolation approaches unreliable for addressing these cases. Long gaps of
missing data within the main datasets were thus filled with the measurements of the selected
nearby stations after linear adjustments of bias of the start and end of the gaps were accounted
for.

To apply the linear adjustment used for the long gap-filling process, the averages of the last
three measurements before the start of the gap and the first three measurements after the end
of the gap were computed for both the main and nearby stations. The difference between the
average measurement of the main station and that of the nearby station was then calculated
and extracted. The corrected value was obtained by averaging the differences between station
measurements before and after the gap. This corrected value was added to the nearby station
measurement to obtain the value used to fill the missing measurement. Similar to what was
observed when using the proposed short-gap interpolation approach, the long-gap imputation
approach worked for most cases, however it was observed that the method failed when sudden
changes in temperatures occurred. To ensure that the proposed approach would not fail in these
scenarios, the approach was applied when the following conditions were met: the difference
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Table 3
Percentage of missing values before and after the long gap-filling method has been applied for all station combinations.
The main stations are listed first, and the nearby station used for gap-filling is labeled by and succeeds the dash (-).

Year ATP WTP
SBI- SBI- BB Packery- Packery- BB- SBI BB- SBI- NPS-SBI  NPS-SBI-
Packery SBI BB Packery SBI
2012 0.01 0.05 0.00 0.00 123 123 0.01 112
2013 0.05 0.05 0.05 0.05 0.05 0.05 118 0.19
2014 2.69 2.71 0.00 0.00 0.30 0.03 2.71 1.30
2015 5.73 264 0.02 0.00 0.10 0.02 5.67 0.49
2016 211 1.98 0.01 0.01 0.33 0.20 1.20 0.00
2017 18.2 18.2 0.15 0.05 0.74 0.73 18.3 0.39
2018 1.79 1.79 0.66 0.92 1.82 0.95 1.79 0.63
2019 16.9 15.2 0.19 0.19 1.83 0.19 226 0.08
2020 276 217 10.2 0.05 3.92 3.89 276 0.07
2021 2.57 2.01 16.5 15.5 18.3 19.9 2.59 0.01
2022 0.84 0.82 0.31 0.29 0.30 0.30 0.84 0.40
Table 4

Percentage (%) of missing values for (1) the original datasets before imputation methods were employed and (2) the
final datasets after imputation methods were employed.

Year Packery ATP NPS-SBI WTP
Original Final Original Final
2012 0.02 0.00 5.05 112
2013 0.74 0.05 9.92 0.19
2014 0.01 0.00 772 130
2015 0.05 0.00 0.73 0.49
2016 0.03 0.01 0.09 0.00
2017 0.31 0.05 0.67 0.39
2018 4.50 0.92 9.10 0.63
2019 1.26 0.19 0.08 0.08
2020 10.4 0.05 0.24 0.07
2021 18.6 15.5 0.11 0.01
2022 0.48 0.29 1.00 0.40

between the average of the three values for both the original and nearby station before the
beginning and after the end of the gap was smaller than 1.5°C.

Linear interpolation methods that were utilized for short gaps were then facilitated again af-
ter long gaps were filled to account for new short gaps that formed after data substitution pro-
cesses were completed. Final missing data percentages after data imputation methods: Once data
imputation methods were complete, final percentages of missing air temperature data showed
that the utilization of the Packery Channel dataset as the main station in combination with Baf-
fin Bay resulted in the lowest percentage of missing air temperature data (Table 3). It was also
determined that the utilization of the NPS-SBI dataset as the main station in combination with
the South Bird Island station resulted in the lowest percentage of missing water temperature
data (Table 3). Thus, the final dataset is comprised of air and water temperature measurements
from Packery and NPS-SBI stations, respectively. In the case of the Packery measurements, the
dataset was filled using Baffin Bay, whereas the NPS-SBI measurements were filled using the SBI
station. The dataset included only the years that contained less than 2% of missing data after
completion of the gap-filling process. All years from 2012 to 2022 contained less than 1.2% of
missing data with the exception of 2021 (15.5% of missing data; Table 3), therefore was excluded
from the final dataset (Table 3).

Table 4 shows the significant effect that the gap-filling approach had on the original datasets.
In the original datasets, only 5 years had both water and air temperature data with less than 2%
of missing values. However, after the use of the imputation methods, all years except for 2021
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accomplished this goal, resulting in 10 years of data with less than 2% missing data (Table 4).
This is a significant improvement for water and air temperature data within the Laguna Madre
and extremely valuable for the application of artificial intelligence (Al) and machine learning
(ML) modeling particularly when continuous time-series inputs are necessary such as for long
short-term memory model [3], recurrent neural networks [6], and transformer architectures [11].

3.6. Evaluation of gap-filling method

In order to evaluate the proposed data imputation method, both NPS-SBI and Packery Chan-
nel datasets were used to assess the reliability of the methods. Random artificial gaps were
created, representing up to 10% of the dataset size for each year. These gaps were then filled
utilizing the proposed methods and evaluated using various metrics (e.g. mean absolute error
[MAE] (Eq. 4), root mean squared error [RMSE] (Eq. 3), maximum 10% error [ME10] (Eq. 6)) to
determine the reliability and validity of the method. The short and long-gap imputation methods
were evaluated separately. For the short gap interpolation evaluation, 3-hour gaps were created
for ATP measurements and 5-hour gaps were created for =WTPmeasurements. Random place-
ment of these gaps was conducted for each year and variable. This assessment created gaps of
maximum length of the short gaps for both ATP and WTP. This means that in the case of the
use or observation of smaller gaps than the defined maximum length within the small-gap in-
terpolation method, the interpolation evaluation results would be slightly better. For the long
gap imputation evaluation, gaps ranging from 6 to 168 hours were randomly created, both in
length and placement, within the WTP and ATP time series. This range is representative of 95%
of the long gaps observed within the original dataset and was used to ensure a broad repre-
sentation of the potential missing value scenarios. Both evaluation methods were applied thirty
times in order to capture the variability of the observed errors (e.g., mean + standard deviation)
that were computed using the metrics noted and defined below:

.l n
ME = EZ(Xi_X) (1)
i=1
MSE = 1 Xn: (x; — x)? (2)
n < !
i=
Yy i—%°
RMSE = Mf (3)
] n
MAE = Z] % — x| (4)
i=
Max|E| = max(|x;, —xq|. [xi, —=x1]. ... |xi, — xa) (5)
n
Max10%(MAE) = ZmaxlO%(MAE sorted residuals) (6)

i=1

Where x; is the observed values, x is the interpolated values, and n is the number of data points.

Results for the short gap interpolation method for the 30 trials show that ATP MAE values
(Eq. 4) for all years were below 0.50°C, while the maximum 10% mean error (Max10%(MAE))
(Eq. 6) averaged 1.12 4 0.03°C (Table 5) for all years. WTP results for the short gap interpolation
evaluation show similar results for MAE, displaying MAE values below 0.50 °C and Max10%(MAE)
values no higher than 1.40°C (Table 6) for the full WTP dataset.

Results for the long gap imputation method for the 30 trial runs show that ATP MAE val-
ues averaged 0.87 + 0.14°C for the full ATP dataset (Table 7). Max10%(MAE) values averaged
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Table 5
Evaluation metrics for the short gap-filling approach for Packery Channel ATP measurements (i.e., mean + standard
deviation of 30 trial runs).

Year ME (°C) MSE (°C) RMSE (°C) MAE (°C) Max|E| (°C) Max10%(MAE) (°C)
2012 0.02 + 0.04 0.24 + 0.03 0.49 + 0.03 0.35 + 0.02 2.53 + 091 111 + 0.09
2013 0.01 + 0.03 0.23 + 0.04 0.48 + 0.05 0.33 + 0.02 2.79 £ 0.79 110 £+ 0.12
2014 0.01 &+ 0.03 0.25 + 0.04 0.50 + 0.04 0.36 + 0.03 2.40 £ 0.57 115 £ 0.11
2015 0.01 £+ 0.03 0.25 + 0.04 0.50 + 0.04 0.35 + 0.02 2.87 + 0.85 115 £ 0.11
2016 0.00 + 0.03 0.24 + 0.04 0.49 + 0.04 0.34 + 0.02 2.48 + 0.72 114 + 0.09
2017 0.02 + 0.04 0.25 + 0.05 0.50 + 0.05 0.34 + 0.02 2.69 + 0.90 114 £ 0.12
2018 0.00 + 0.03 0.23 + 0.04 0.47 + 0.04 0.33 + 0.02 2.56 + 0.79 1.09 + 0.10
2019 0.00 + 0.03 0.25 + 0.04 0.50 + 0.04 0.35 + 0.02 293 + 0.84 115 £ 0.11
2020 0.01 + 0.03 0.24 + 0.04 0.49 + 0.04 034 £ 0.02 2.35 + 0.47 113 £ 0.11
2021 0.00 £ 0.04 0.23 + 0.04 0.48 + 0.04 0.34 + 0.02 2.41 £+ 0.63 1.09 + 0.11
2022 0.01 &+ 0.03 0.22 + 0.04 0.47 + 0.04 0.33 + 0.02 2.63 + 112 1.07 £ 0.10
Table 6

Evaluation metrics for the short gap-filling approach for NPS-SBI WTP measurements (i.e., mean =+ standard deviation of
30 trial runs).

Year ME (°C) MSE (°C) RMSE (°C) MAE (°C) Max|E| (°C) Max10%(MAE) (°C)
2012 0.04 £ 0.06 0.38 + 0.04 0.62 + 0.03 0.47 + 0.03 2.03 £+ 0.23 1.33 + 0.07
2013 0.04 + 0.03 0.30 + 0.03 0.55 + 0.03 0.41 + 0.02 1.93 + 042 1.19 + 0.06
2014 0.04 + 0.03 0.32 + 0.03 0.57 + 0.03 042 £ 0.02 215 + 041 1.25 + 0.07
2015 0.05 + 0.03 0.28 + 0.03 0.53 + 0.03 0.38 + 0.02 192 + 0.13 1.22 + 0.07
2016 0.05 + 0.03 0.29 + 0.03 0.53 + 0.03 0.40 =+ 0.03 1.94 £+ 0.35 1.16 + 0.06
2017 0.06 + 0.04 0.33 £ 0.03 0.57 + 0.03 0.43 + 0.02 2.07 £ 0.30 1.25 + 0.06
2018 0.04 + 0.03 0.31 + 0.04 0.55 + 0.03 0.41 £+ 0.03 1.82 + 0.26 1.23 + 0.08
2019 0.02 + 0.03 0.27 + 0.03 0.52 + 0.03 0.39 + 0.03 197 + 037 1.14 + 0.06
2020 0.03 + 0.02 0.27 + 0.03 0.52 + 0.02 0.39 + 0.02 1.79 £ 0.20 114 + 0.05
2021 0.04 + 0.04 0.28 + 0.02 0.53 + 0.02 0.40 + 0.02 1.90 + 0.30 114 + 0.05
2022 0.03 + 0.04 032 + 0.04 0.57 + 0.03 0.42 + 0.02 2.08 £ 035 1.25 + 0.07
Table 7

Evaluation metrics for the long gap-filling approach for Packery Channel ATP measurements when using Packery Channel
as the main station and Baffin Bay as the adjacent station (i.e., mean =+ standard deviation of 30 trial runs).

Year ME (°C) MSE (°C) RMSE (°C) MAE (°C) Max|E| (°C) Max10%(MAE) (°C)
2012 0.39 + 0.08 116 + 0.90 1.03 + 0.32 0.69 + 0.10 7.99 + 2.59 230 + 0.78
2013 0.23 + 0.07 1.00 + 0.63 098 + 022  0.70 + 0.06 7.81 + 229 223 + 052
2014 048 + 0.08 113 £ 0.36 1.05 + 0.14 0.78 + 0.06 771 + 2.26 233 + 033
2015 0.44 + 0.08 128 + 0.54 111 + 022 0.77 + 0.08 816 + 2.99 2.50 + 0.53
2016  0.48 + 0.08 125 + 0.46 111 £ 018 0.78 + 0.07 7.82 + 2.97 249 + 050
2017 0.51 + 0.10 125 £ 0.21 111 + 0.09 0.82 + 0.07 6.21 + 0.99 2.53 + 0.24
2018 0.61 £ 0.08 137 £ 0.53 115 + 019 0.85 + 0.07 8.57 + 3.54 253 + 038
2019 0.77 + 0.08 1.87 + 0.88 134 + 026 1,00 + 0.09 10.75 + 2.88 2.86 + 0.65
2020 0.75 + 0.10 174 + 0.34 131 + 013 0.99 + 0.08 771 + 0.95 2.95 + 0.36
2021 073 £ 014 235 + 0.75 151 + 0.25 1.07 £ 0.10 10.59 + 4.01 3.37 + 0.68
2022 091 + 0.12 1.89 + 0.77 136 + 0.22 1.07 £ 0.08 7.98 + 313 2.83 + 0.53

2.63 £ 0.34°C for all years=(Table 8). WTP results for the long gap interpolation method re-
flected MAE values that averaged 0.88 + 0.69°C for the full WTP dataset (Table 8). Max10%(MAE)
averaged to 2.99 + 1.51°C for all years (Table 8). These results justify the application of the pro-
posed data imputation approach.
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Table 8
Evaluation metrics for the long gap-filling approach for WTP measurements when using NPS-SBI as the main station and
SBI as the adjacent station (i.e., mean + standard deviation of 30 trial runs).

Year ME (°C) MSE (°C) RMSE (°C) MAE (°C) Max|E| (°C) Max10%(MAE) (°C)
2012 —2.30 + 0.05 5.68 + 0.23 238 + 0.05 230 + 0.05 448 + 0.26 342 + 013
2013 —~1.82 + 0.09 431 + 0.70 2.07 + 016 1.87 + 0.07 7.40 + 3.58 3.30 + 0.44
2014 —0.04 + 0.05 0.28 + 0.11 0.53 + 0.09 0.36 + 0.03 3.58 + 1.68 121 + 0.21
2015 ~0.50 + 0.16 2.26 + 0.77 148 + 025 0.84 + 0.11 8.46 + 2.13 3.58 + 0.68
2016 —0.08 + 0.05 0.45 + 0.44 0.61 + 0.29 0.26 + 0.05 7.68 + 3.50 116 + 0.48
2017 012 + 0.25 339 + 236 1.74 + 0.62 0.78 + 0.23 10.10 + 3.23 471 + 1.72
2018 —0.08 + 0.07 0.46 + 0.32 0.65 + 0.21 0.31 + 0.06 5.81 + 2.80 1.55 + 0.50
2019 —0.08 + 0.10 0.80 = 0.78 0.81 + 039 0.41 + 0.11 6.14 + 313 1.89 + 0.93
2020 —0.09 + 0.32 1.83 + 2.47 1.08 + 0.83 0.52 + 0.37 5.51 + 3.53 274 + 2.32
2021 —0.94 + 022 7.26 + 2.67 2.66 + 047 149 + 0.21 11.90 + 4.20 6.09 + 1.28
2022 0.01 £ 0.17 191 + 115 132 + 042 0.62 + 0.15 10.14 + 3,51 3.28 + 110
Limitations

One limitation of the proposed imputation method is the need for highly correlated nearby
stations to apply the long gap-filling approach. If the nearby stations did not exist or the nearby
station data was not of good quality during the main station gaps, then the long gap-filling ap-
proach could not be applied. Another limitation is that the proposed gap-filling approach cannot
be applied when the missing data corresponds to extreme events.
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