

# Photooxidation Driven Formation of Fe-Au Linked Ferrocene-Based Single-Molecule Junctions

Woojung Lee<sup>1</sup>, Liang Li<sup>1</sup>, María Camarasa-Gómez,<sup>2</sup> Daniel Hernangómez-Pérez,<sup>2</sup> Xavier Roy<sup>1</sup>, Ferdinand Evers\*,<sup>2</sup> Michael S. Inkpen,<sup>3\*</sup> Latha Venkataraman<sup>1,4\*</sup>

<sup>1</sup>*Department of Chemistry, Columbia University, New York, New York, 10027, United States*

<sup>2</sup>*Institute of Theoretical Physics, University of Regensburg, 93040, Regensburg, Germany*

<sup>3</sup>Department of Chemistry, University of Southern California, Los Angeles, California, 90089, United States

*States*

10 Email: lv2117@columbia.edu; inkpen@usc.edu, ferdinand.evers@physik.uni-regensburg.de

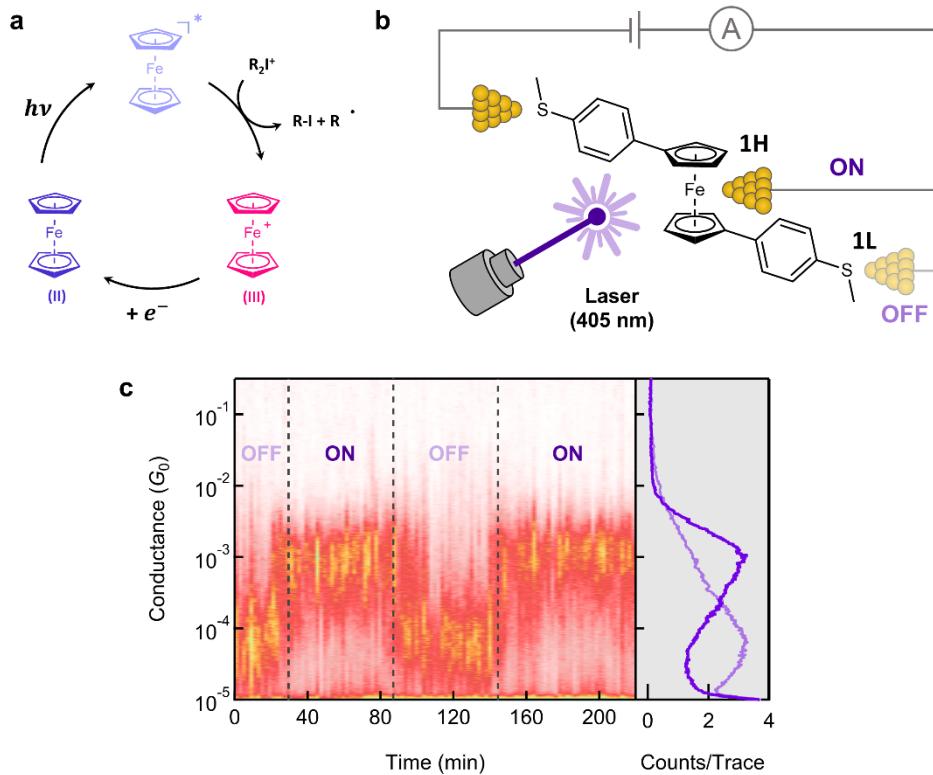
## Abstract

12 Metal-metal contacts, though not yet widely realized, may provide exciting opportunities  
13 to serve as tunable and functional interfaces in single-molecule devices. One of the simplest  
14 components which might facilitate such binding interactions is the ferrocene group. Notably, direct  
15 bonds between the ferrocene iron center and metals such as Pd or Co have been demonstrated in  
16 molecular complexes comprising coordinating ligands attached to the cyclopentadienyl rings. Here,  
17 we demonstrate that ferrocene-based single-molecule devices with Fe-Au interfacial contact  
18 geometries form at room temperature in the absence of supporting coordinating ligands. Applying  
19 a photoredox reaction, we propose that ferrocene only functions effectively as a contact group  
20 when oxidized, binding to gold through a formal  $\text{Fe}^{3+}$  center. This observation is further supported  
21 by a series of control measurements and density functional theory calculations. Our findings  
22 extend the scope of junction contact chemistries beyond those involving main group elements, lay  
23 the foundation for light switchable ferrocene-based single-molecule devices, and highlight new  
24 potential mechanistic function(s) of unsubstituted ferrocenium groups in synthetic processes.

25 **Introduction**

26 Ferrocene is a prototypical organometallic compound that comprises a single iron atom  
27 sandwiched between two cyclopentadienyl rings ( $\text{FeCp}_2$ ). Since its discovery in the mid-20th  
28 century,<sup>1,2</sup> ferrocene and its derivatives have enjoyed extensive utilization due to their stability  
29 under ambient conditions, facile synthetic modification, and well-defined reversible  
30 electrochemistry.<sup>3-7</sup> These properties have been exploited in seminal works related to electron  
31 transfer and transport, for example in mixed-valence complexes,<sup>8</sup> thin organic films,<sup>9</sup> or multi-  
32 molecular devices with rectification ratios on the order of  $10^5$ .<sup>10</sup> Ferrocene derivatives have also  
33 been used as molecular wires where the ferrocene is implicated as a contact for nanoscale Au  
34 electrodes.<sup>11-15</sup> These reports are primarily at low temperatures where ferrocene can act as a linker  
35 through the Cp ring due to van der Waals interactions with the Au electrode.<sup>12,15</sup> Direct bond  
36 formation between a ferrocene iron center and other metals has been achieved in complexes with  
37 ancillary metal-binding ligands attached to the Cp ring, where a dative bond, denoted as  $\text{Fe} \rightarrow \text{M}$ ,  
38 is formed.<sup>16-19</sup> Due to the filled frontier orbital of ferrocene,<sup>20,21</sup> the  $\text{Fe} \rightarrow \text{M}$  bond has been observed  
39 primarily with closed-shell metals having no unpaired electrons such as Ru(II), Pd(II), and  
40 Pt(II)<sup>22,23</sup> although there are a few exceptions.<sup>24</sup>

41 Here, we leverage the electrochemical advantages of ferrocene derivatives as demonstrated  
42 in recent research exploring their application as photocatalysts<sup>25-29</sup> to create a light-controlled  
43 ferrocene-based single-molecule device using the scanning tunneling microscope-based break  
44 junction (STM-BJ) technique, as depicted in Fig. 1a. We apply photo-induced ferrocene  
45 oxidation<sup>25</sup> to form Fe-M bonded junctions between a ferrocene iron center and an open-shell  
46 metal,  $\text{Au}^0$  (an undercoordinated Au atom on the electrode) without ligand-support. A series of  
47 control measurements and ab initio-based quantum transport calculations corroborate the observed


48 results and confirm the feasibility of our proposed ferrocene-coordinated structural motif. Our  
49 work thus supports an Fe-Au bond can be formed by manipulating the oxidation state of ferrocene  
50 using light, creating single-molecule devices linked through a metal-metal interface at room  
51 temperature.

## 52 **Results and discussion**

### 53 **Photoredox measurements**

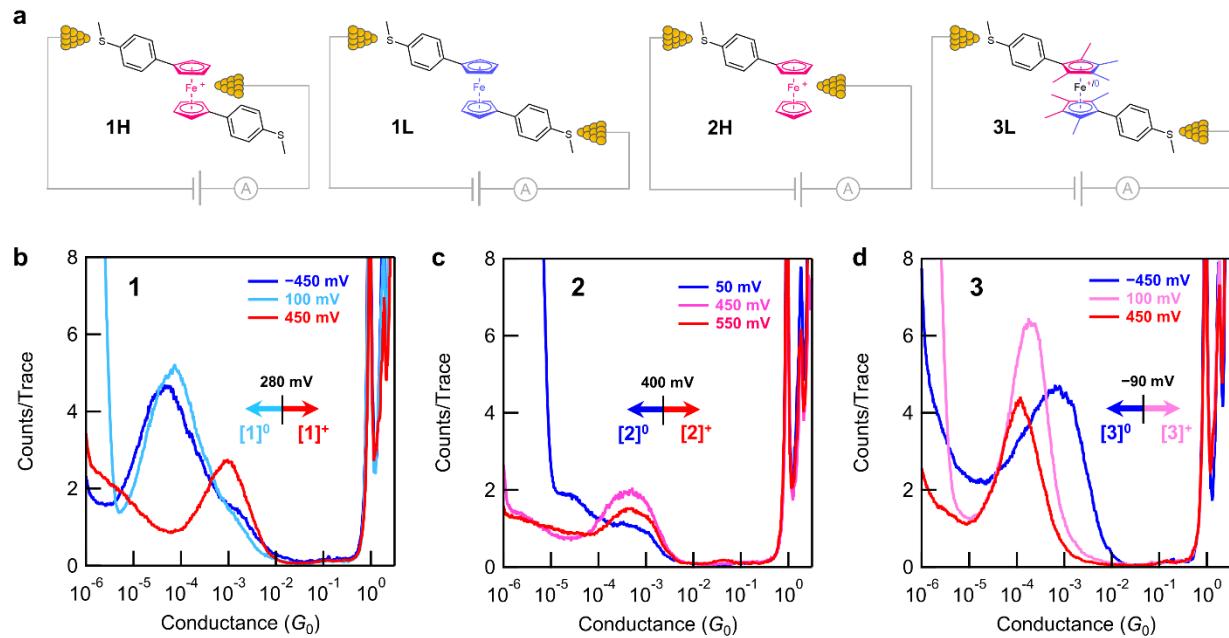
54 We perform single molecule conductance measurements using a STM-BJ technique (see  
55 methods for details) in the presence of a 405 nm laser. We form single-molecule junction of **1**, a  
56 ferrocene derivative with two thioanisole groups in the presence of a photoredox agent as  
57 illustrated in Fig. 1. Synthetic details are provided in Supplementary Method. A solution containing  
58 **1** and bis(4-tert-butylphenyl)iodonium hexafluorophosphate ( $[R_2I]^+[PF_6]^-$ ) in a 9:1 mole ratio was  
59 prepared in propylene carbonate (PC) at a concentration of 1 mM. Under irradiation by a 405 nm-  
60 laser at an intensity of around 100 mW cm<sup>-2</sup>, **1** undergoes oxidation in solution. As illustrated in  
61 Fig. 1c, STM-BJ measurements at a tip bias of 100 mV with the laser irradiation results in the  
62 formation of a molecular junctions with a conductance of  $\sim 1 \times 10^{-3} G_0$ . Since the applied tip bias is  
63 lower than the redox potential of **1** (280 mV, see Supplementary Note 1 and Supplementary Fig.  
64 1), the oxidized ferrocene complex in solution is reduced back to its neutral form when the laser  
65 is turned off, leading to the formation of molecular junctions exhibiting a distinct conductance of  
66  $\sim 6 \times 10^{-5} G_0$ . The formation of molecular junctions is not inhibited by any interaction between  $[1]^+$   
67 and  $[PF_6]^-$  under the photoredox conditions. (Supplementary Fig. 2) We propose that the molecular  
68 junctions of **1** have distinct geometries **1H** and **1L** depending on whether the laser is on or off as  
69 illustrated in Fig. 1b, with the **1L** junction linked solely through the terminal thioanisole groups  
70 and the **1H** junction linked through an Fe-Au bond. Through the photoredox reactions, we can

71 manipulate the charge states of ferrocene-based single-molecule devices, enabling control over the  
 72 geometries of interfacial contact and, consequently, the resulting junction conductance.



73

74 **Fig. 1. Schematic of photoredox reaction studied, the scanning tunneling microscope-based break junction**  
 75 **(STM-BJ) measurement, and conductance results.** (a) Mechanism of photoredox reaction for ferrocene derivatives.  
 76  $R_2I^+$  is an iodonium salt (R: 4-tert-butylphenyl; counterion:  $[PF_6^-]$ ). (b) Schematic representation of two distinct single-  
 77 molecule junction geometries formed with **1** between two Au electrodes during scanning tunneling microscope-based  
 78 break junction (STM-BJ) measurements. **1H** and **1L** denote two distinct junction geometries. (c) *Left*: Time-resolved  
 79 conductance histograms of **1** measured at a 100 mV bias with the laser turned on or off (as indicated in the figure).  
 80 Histograms are created by compiling consecutive sets of 100 conductance-distance traces. *Right*: Total one-  
 81 dimensional (1D) conductance histogram of **1** showing conductance changes when with the 405 nm-laser on (dark  
 82 purple) or off (light purple).


### 83 **Electrochemical redox measurements**

84 We next performed single-molecule conductance measurements of **1** using a 50  $\mu$ M  
 85 solution in PC without the photochemical oxidants. In Fig. 2b, we plot one-dimensional (1D)  
 86 conductance histograms for **1** obtained at three tip biases: -450 mV, 100 mV, and 450 mV, two  
 87 below the oxidation potential (280 mV) and one above (see Supplementary Note 1 and

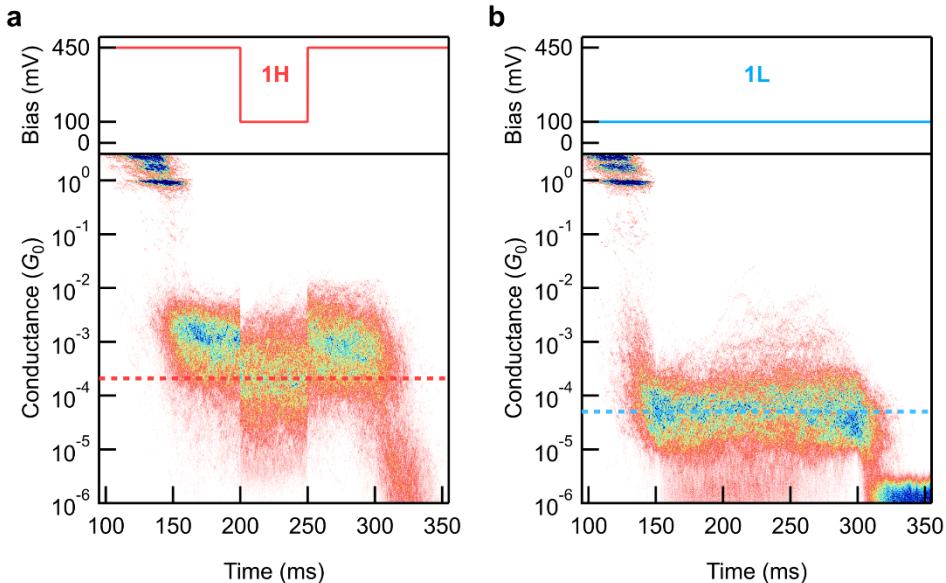
88      Supplementary Fig. 1). At these biases, we observe a clear conductance peak at  $\sim 6 \times 10^{-5} G_0$ .  
89      However, at a bias of 450 mV, when **1** is in an oxidized state, junctions exhibit a much higher  
90      conductance ( $\sim 1 \times 10^{-3} G_0$ ), which aligns with the findings from our photoredox experiments. To  
91      confirm that these peaks arise from conductance plateaus formed when a single-molecule is held  
92      between the tip and the substrate, we create two-dimensional (2D) conductance displacement  
93      histograms and show these in Supplementary Fig. 3. We obtain a plateau length for **1L** of  $\sim 5 \text{ \AA}$  in  
94      its neutral state (100 mV and  $-450 \text{ mV}$ ), while the oxidized state of **1H** (450 mV) exhibits a much  
95      shorter plateau length of  $\sim 2 \text{ \AA}$ . We note that Au electrodes undergo relaxation and reorganization  
96      upon rupture of the Au-Au contact, resulting in a difference between the plateau length and actual  
97      molecular junction length, known as the snapback distance.<sup>30-32</sup> The reported snapback distances  
98      for various molecular structures and solvents are around 5-8  $\text{\AA}$ .<sup>33-36</sup> After taking into account this  
99      snapback distance, the shorter plateau length for the oxidized molecule is consistent with the  
100     distance between sulfur and iron in **1**,  $\sim 7.4 \text{ \AA}$ .

101        In polar solvents, we can alter the charge state of the molecule by changing the junction  
102      bias, however, in non-polar solvents without electrolytes, it is not possible to tune the charge state  
103      of the molecule by altering the tip bias. To test how the solvent impacts conductance data, we  
104      measure **1** in tetradecane (TD), a non-polar solvent, and find that we do not observe the **1H** junction  
105      geometry even at a bias as high as 700 mV. We do however observe the **1L** junctions as shown in  
106      Supplementary Fig. 4. As a third control experiment, we add a chemical oxidant to a measurement  
107      of **1** at 100 mV in PC and observe high-conducting junctions analogous to those observed in  
108      experiments using light and the photoredox agent, and those obtained at a positive bias higher than  
109      the redox potential threshold of 280 mV (Supplementary Fig. 5). Moreover, employing an extra  
110     gate electrode to control the oxidation state of **1**, while keeping the tip-substrate bias below the

111 redox potential, leads to the formation of two distinct junction geometries. (Supplementary Fig. 6)  
 112 These observations confirm that **1** forms distinct junction geometries **1H** and **1L** in its oxidized  
 113 and neutral states, respectively.



114  
 115 **Fig. 2. Geometries of ferrocene derivative-based molecular junctions and conductance histograms at different**  
 116 **bias voltages.** (a) Chemical structures of **1**, **2**, and **3**, and their experimentally accessible junction geometries; **H** and  
 117 **L** denote ‘high-conducting’ and ‘low-conducting’ junction geometries of each derivative, respectively. The red color  
 118 and blue color represent the oxidized ( $1^+$ ) and reduced (neutral) states of the ferrocene complexes, comprising formal  
 119  $\text{Fe}^{3+}$  and  $\text{Fe}^{2+}$  centers, respectively. **2** forms a junction (**2H**) only in its oxidized state. **3** forms only the low-conducting  
 120 junction geometries in either oxidized or neutral states. (b) Overlaid one-dimensional (1D) conductance histograms  
 121 of **1** measured at  $-450$  mV (dark blue),  $100$  mV (light blue), and  $450$  mV (red) in propylene carbonate (PC). The redox  
 122 potential of **1** is determined as  $280$  mV (Supplementary Fig. 1). This indicates that the analyte population close to the  
 123 junction is predominantly composed of the oxidized state ( $[1]^+$ ) above  $280$  mV and the neutral form ( $[1]^0$ ) below  $280$   
 124 mV. (c) Overlaid 1D conductance histograms of **2** measured using a tip bias of  $50$  mV (dark blue),  $450$  mV (pink) and  
 125  $550$  mV (red) in PC. The redox potential of **2** determined from in situ CV is  $400$  mV. (d) Overlaid 1D conductance  
 126 histograms of **3** measured at  $-450$  mV (dark blue),  $100$  mV (pink), and  $450$  mV (red) in PC. The redox potential of **3**  
 127 determined from in situ CV is  $-90$  mV. The red and blue color schemes denote oxidized and neutral states, respectively.  
 128 Each histogram is compiled of over 3,000 traces measured consecutively. Two-dimensional (2D) conductance-  
 129 displacement histograms for these data are shown in Supplementary Fig. 3.


130  
 131 Next, we perform STM-BJ measurements of **2** from PC solutions. **2** is analogous to **1** but  
 132 has only one thioanisole group and thus can form junctions only if the Fc group binds to the  
 133 electrode. We work at an applied tip biases below ( $50$  mV) and above ( $450$  mV,  $550$  mV) the redox

134 threshold determined from in situ CV measurements (Supplementary Fig. 1). Fig. 2c shows 1D  
135 conductance histograms of all the measured traces where we see a clear conductance peak (at  $\sim$ 5  
136  $\times 10^{-4}G_0$ ) only for the measurements at 450 mV and 550 mV, i.e., when the molecule is oxidized.  
137 The molecular junction length of **2** is similar to that of **1H**, around 2 Å. At 50 mV bias, no peak is  
138 obtained and the 1D and 2D conductance histograms and the data match those of measurements in  
139 solvent alone (Supplementary Fig. 3b). As a control, we note that measurements of ferrocene  
140 without any thioanisole do not show any conductance feature at applied tip biases below or above  
141 its redox potential (Supplementary Fig. 7). These observations indicate that **2** forms a molecular  
142 junction in only its oxidized state, forming the **2H** junction geometry, and that the oxidized  
143 ferrocene unit can only serve as a contact group for one gold electrode. We therefore conclude that  
144 the oxidized states of **1** and **2** form junctions with high conductance (**1H** and **2H**) via an Fe-Au  
145 bond, while the neutral state of **1** forms the low conductance geometry (**1L**) bound by the two SMe  
146 linkers.

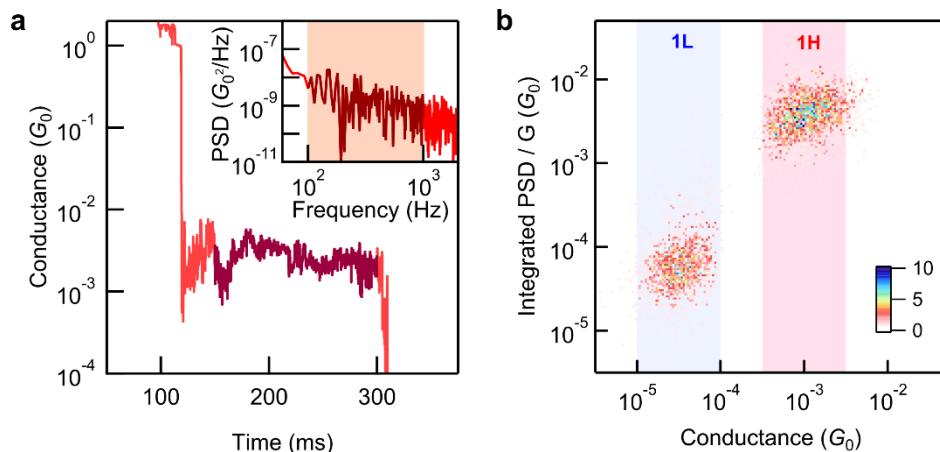
147 To verify our hypothesis, we control the formation of the Fe-Au bond through chemical  
148 design with derivative **3**, which has four methyl groups in addition to the thioanisole linker on each  
149 Cp ring. As shown in Fig. 2d and Supplementary Fig. 3, **3** does not form high conducting junctions,  
150 but we clearly see longer and lower conductance plateaus indicating that **3L** junctions are the only  
151 ones formed. We conclude that the Fe atom is not accessible to the Au electrode due to the steric  
152 bulk of methyl groups on the Cp ring (Supplementary Fig. 10). Note that the oxidation potential  
153 of **3** ( $-90$  mV) is much lower than that of **1** (280 mV) thus we need to work at a large negative  
154 bias to measure the neutral form, while we observe the oxidized molecule at both 100 mV and 450  
155 mV biases. These experimental results lead us to infer that the interfacial contact in **1H** differs  
156 from that in **1L**, which solely involves Au-SMe donor-acceptor bonds. Furthermore, the

157 introduction of steric hindrance, primarily restricting access to the Fe atom, suggests that the  
158 formation of **1H** and **2H** junctions is attributed to the Fe-Au bond, rather than other bonds like Au-  
159 Cp. We note that the molecular junction conductance of **3** is higher in its neutral state ( $-450$  mV)  
160 than in the oxidized state, as confirmed by transmission calculations detailed below.

161 We next validate again the formation of the Fe-Au bond using a modified measurement  
162 method where we first pull the Au-Au contact apart at a bias of  $450$  mV or  $100$  mV at a rate of  $20$   
163  $\text{nm}\cdot\text{s}^{-1}$  for  $150$  ms, then hold the junction for  $150$  ms, and then pull the junction apart for an  
164 additional  $200$  ms to fully break the contact before restarting the measurement. When holding the  
165 junction, we drop the bias to  $100$  mV in the central  $50$  ms portion. As discussed above, we can trap  
166 either **1H** or **1L** by choosing the initial bias to be either  $450$  mV or  $100$  mV, respectively. When  
167 using an initial bias of  $450$  mV, we hold the **1H** junction and can determine its conductance at  $100$   
168 mV. We compile all traces that start and end with a molecular junction during the hold into 2D  
169 conductance-time histograms and show these in Fig. 3. The most probable conductance of **1H** and  
170 **1L** junctions at  $100$  mV differ by a factor of  $\sim 3$ . The conductance of each junction geometry at  
171  $450$  mV is also shown in Supplementary Fig. 8. By contrast, an analogous measurement with **3**  
172 shows no difference based on the initial bias during the hold segment (Supplementary Fig. 9). This  
173 confirms that the different conductance and plateau lengths we observe for junctions formed from  
174 **1** at oxidizing or reducing tip biases correspond to distinct electrode-molecule contacts. We are not  
175 simply forming and measuring junctions of the same geometry in different oxidation states.



176


177 **Fig. 3. STM-BJ measurements while holding the junction fixed and changing the bias.** *Top:* The switching bias  
 178 ramp applied across molecular junctions as a function of time. *Bottom:* 2D conductance-time histograms obtained for  
 179 **1** using different bias ramps. Two different junction geometries are formed by controlling the oxidation state of **1** with  
 180 the applied voltage: (a) **1H** at 450 mV and (b) **1L** at 100 mV. The most probable measured conductance of both  
 181 geometries at 100 mV is indicated with the dashed line.

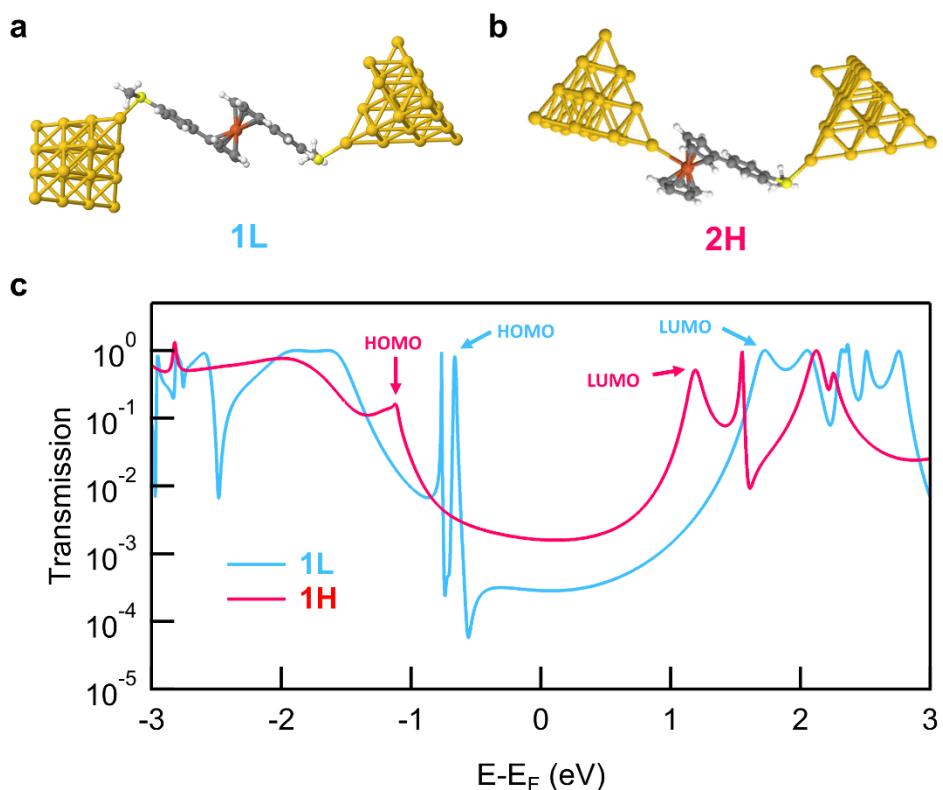
182

### 183 Flicker noise measurements

184 To corroborate the formation of the Fe-Au bond, we conducted STM-BJ based flicker noise  
 185 measurements.<sup>40</sup> During these measurement, we hold the molecular junctions of **1** for 150 ms at  
 186 biases of 150 mV and 450 mV to form **1L** and **1H** junctions, respectively. We obtain a discrete  
 187 Fourier transform of the measured conductance during the hold period, and square it to determine  
 188 the conductance noise power spectral density (PSD) for each junction as shown in Fig. 4a (see  
 189 Methods for details). Since flicker noise in single molecule junctions depends on the molecule-  
 190 electrode coupling, the relation between flicker noise power and molecular conductance ( $G$ ) can  
 191 indicate the type of coupling.<sup>40</sup> Specifically, flicker noise shows a power-law dependence on  
 192 conductance: noise power is proportional to  $G^n$ . Through-bond coupled junctions have a  
 193 characteristic  $n$  around 1 while through-space coupled junctions have an  $n$  close to 2.<sup>40</sup> The 2D  
 194 histograms of normalized flicker noise power integrated over a frequency ranging from 100-1000

195 Hz *versus* average junction conductance for **1L** and **1H** are shown in Fig. 4b. The exponent  $n$   
 196 determined from the noise spectra for the **1L** and **1H** geometries were determined to be the same,  
 197 i.e. 1.28 and 1.30. We ascribe the deviation from  $n = 1$  to quantum interference arising from the  
 198 rotation of Cp rings which can lead to changes in junction conductance.<sup>14</sup> Importantly, the exponent  
 199 close to  $n = 1$  indicates strongly that the coupling in **1H** is a through-bond coupling and not a  
 200 through-space coupling that involves van der Waals interactions between the Cp ring and the Au  
 201 electrode. Therefore, we conclude that the coupling to the Au electrodes is through an Fe-Au bond  
 202 when the junction conductance is high. We will discuss this further in the following calculation  
 203 section.




204  
 205 **Fig. 4. Flicker noise measurements.** (a) Single conductance *versus* time trace for a flicker noise measurement of **1**  
 206 at 450 mV. During the measurement, the molecular junction is held for 150 ms (dark red region). Inset: The noise  
 207 power spectral density (PSD) obtained by taking the modulus square of the discrete Fourier transform of the hold  
 208 segment. (b) 2D histogram of integrated normalized flicker noise power *versus* average junction conductance for **1L**  
 209 (at 150 mV) and **1H** (at 450 mV). Conductance regions corresponding to **1L** and **1H** are indicated with blue and red  
 210 sections respectively. The exponents describing the relationship between integrated flicker noise and conductance are  
 211 as follows; 1.28 for **1L** and 1.30 for **1H**.

212

### 213 First-principles calculations

214 We computationally rationalize that oxidized ferrocene derivatives form a ferrocene-gold  
 215 (Fc-Au) contacts through the Fe-Au bond based on density functional theory (DFT) calculations  
 216 using the FHI-aims software (see Methods for details).<sup>41-43</sup> First, we study the electronic

217 interactions of the Fc-Au contact. To simulate the STM-BJ measurement, we relax the geometry  
 218 of a ferrocene molecule near a fixed Au electrode (Au<sub>22</sub> cluster) and determine the binding energy  
 219 including van der Waals (vdW) interactions (see Supplementary Note 3 and Supplementary Fig.  
 220 11).<sup>44</sup> For the molecule bound through an Fe-Au bond, we obtain a binding energy of around 0.80  
 221 eV (vdW contribution is 0.38 eV) while for Fc that has an  $\pi$  orbital-Au interaction between the Cp  
 222 ring and the Au cluster, the binding energy is 0.29 eV (vdW contribution is 0.22 eV). This indicates  
 223 that the Fc is unlikely to form a junction at room temperature unless an Fe-Au bond is formed.  
 224 Note that experiments that find that Fc adsorbed on Au surfaces through vdW interactions desorbs  
 225 at temperatures above 250 K.<sup>15,45</sup>



226  
 227 **Fig. 5. Relaxed junction geometries and calculated transmission functions of 1L and 2H junctions.** The relaxed  
 228 junction geometries for (a) 1L and (b) 2H. Dark grey, light grey, red, yellow, and gold spheres represent C, H, Fe, S,  
 229 Au atoms, respectively. (c) Calculated transmission functions for 1L and 2H. Frontier orbitals resonance positions are  
 230 indicated by the arrows.

231

232 In order to relate the measured conductance to the **H** and **L** molecular junction geometries,  
233 we carried out electron transmission calculations of the junctions with the neutral and oxidized  
234 ferrocene derivatives using the non-equilibrium Green's function formalism (NEGF). We employ  
235 DFT as implemented in FHI-aims and the AITRANSS transport package for the NEGF  
236 calculations (see Methods for details).<sup>41-43</sup> Simplifying our analysis, we focus on comparing **1L**  
237 and **2H**, assuming the electron tunneling properties of the **2H** junction to be analogous to the **1H**  
238 junction, due to their same electron transmission pathway. To calculate the transmission across the  
239 **2H** junction, we first relax the isolated molecule with one Au atom attached to the SMe linker and  
240 one attached to the Fe atom. Next, we add two Au electrodes by attaching Au clusters to the Au  
241 atoms at both ends (Fig. 5b). Since each Au atom has an unpaired electron, we add an even-number  
242 Au<sub>22</sub> cluster at the Fe-Au side to provide net antiparallel spin configuration and an odd-number  
243 Au<sub>21</sub> cluster at the S-Au side. The resulting net charge on **2** within the junction is +0.773, indicating  
244 that the **2H** junction is in an oxidized state. Similarly, for the **1L** junction, we first relax the  
245 molecule with two Au atoms appended at each thioanisole group and then add an Au<sub>21</sub> cluster at  
246 each end to model the **1L** junction (Fig. 5a). After the junction geometries of **1L** and **2H** are relaxed,  
247 we calculate the transmission functions for both junctions. These are shown in Fig. 5c.

248 The transmission of **1L** reaches 1 at the resonances corresponding to the highest occupied  
249 molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) as seen in Fig. 5c.  
250 This is because the frontier orbitals of **1L** are symmetrically coupled through the S-Au bonds  
251 (Supplementary Fig. 12). However, for **2H**, these resonances do not reach unit transmission. The  
252 frontier orbitals of **2H** have more weight on the Fe-Au bond rather than S-Au (Supplementary Fig.  
253 13) and thus these orbitals are not symmetrically coupled to both electrodes.<sup>46</sup> Additionally, we  
254 note that the resonances in the transmission of **1L** are narrower than those of **2H**, consistent with

255 the fact that the HOMO of ferrocene is poorly electronically coupled to the Cp rings in the long  
256 geometries.<sup>14</sup> Finally, we find the frontier orbitals of **2H** have opposite phase relations and thus  
257 interfere constructively leading to an increase in conductance around  $E_F$  (Supplementary Fig. 13),  
258 whereas for **1L** the HOMO and HOMO-1 resonance interfere destructively as do the HOMO and  
259 LUMO resonances.<sup>47</sup> This decreases the conductance of **1L** at  $E_F$  significantly when compared  
260 with **2H** (Fig. 5c). We note that the presence of an additional thioanisole group in **1** alters the  
261 direction of the electrode linked to Fe, resulting in a conductance difference between **1H** and **2H**,  
262 as shown in Fig. 2b. This observation is consistent with our previous findings<sup>14</sup> and further  
263 supported by the calculated transmission of **1H** in Supplementary Fig. 15. Taken together, the  
264 transmission calculations support the conductance trends of ferrocene derivatives determined  
265 experimentally in this work. We also show the results from transmission calculations of **3L** in  
266 Supplementary Fig. 16. These transmission calculations provide conductance trends that are  
267 consistent with our experimental data, supporting the hypothesis that the Fe-Au bond formation  
268 within ferrocene derivatives is available only in the oxidized state. Lastly, the spin density  
269 distribution of the Fe-Au contact indicates that the ferrocene iron center is more favorable for  
270 binding to the gold electrode than the Cp rings in its oxidized state (Supplementary Fig. 17).

271 In conclusion, we have introduced a photoredox reaction to create ferrocene-based single-  
272 molecule devices. We have demonstrated that ferrocene junctions are formed with a direct bond  
273 between a ferrocene Fe center and a Au electrode through a series of STM-BJ measurements and  
274 DFT based calculations. The light-induced formation of such devices not only offers a systematic  
275 control method for manipulating single-molecule devices but also opens up avenues for the  
276 development of versatile and higher-conducting single-molecule junctions that were previously  
277 inaccessible with organic linkers. Although bond characteristics could not be studied using

278 methods such as X-ray photoelectron spectroscopy, we hope that such studies will be carried out  
279 in subsequent studies.

## 280 **Methods**

### 281 **Synthesis**

282 **1** and **2** were prepared in a one-pot, multi-step process by extension of a previously reported  
283 approach.<sup>14</sup> First, a mixture of mono and 1,1'-dilithioferrocene was prepared by reaction of  
284 ferrocene with *n*-butyl lithium in the presence of N,N,N',N'-tetramethylethylenediamine (a  
285 chelating diamine). These species were then subjected to transmetallation with zinc chloride to  
286 provide the corresponding organozinc compound. Subsequent Negishi cross-coupling with 4-  
287 bromothioanisole provided a mixture of **1** and **2** that could be separated using conventional  
288 chromatographic and crystallization techniques. **3** was prepared by a salt metathesis reaction  
289 between the thioanisole-appended lithium tetramethylcyclopentadienide ligand and FeCl<sub>2</sub>.  
290 Complete synthetic and characterization details are provided in the Supplementary Information  
291 (SI).

### 292 **STM break-junction measurements**

293 Conductance measurements for ferrocene-based molecular junctions were done using a  
294 customized STM-BJ setup that is described in detail before.<sup>48</sup> A piezo actuator, used to drive a Au  
295 tip, is pushed to a Au substrate, forming a Au-Au contact with a conductance greater than 1  $G_0$  (=  
296  $2e^2/h$ , the quantum of conductance). Subsequently, the Au tip is retracted rupturing the contact,  
297 allowing a molecule to bridge the gap between two Au electrodes, forming a single-molecule  
298 junction at a rate of 20 nm s<sup>-1</sup>. A bias voltage is applied and the resulting current is measured to  
299 yield a conductance (= current/voltage) trace as a function of relative tip-substrate displacement at  
300 an acquisition rate of 40 kHz. This process is repeated thousands of times to obtain statistically

301 reproducible data that is presented as conductance histograms. For the measurements reported here,  
302 we use solutions of the molecules in propylene carbonate (polar) and tetradecane (non-polar)  
303 solvents under ambient conditions at room temperatures. In polar solvents, the measurements  
304 generate capacitive and Faradaic background currents. The STM tip is therefore coated with wax  
305 to reduce the exposed surface area to under  $\sim 10 \mu\text{m}^2$ .<sup>49</sup> Additionally, due to the large difference  
306 between the exposed surface areas of the coated tip and bare Au substrate, the voltage drop across  
307 the molecular junction is asymmetric, allowing *in situ* control of the redox state of the ferrocene  
308 derivatives.<sup>50</sup> The standard deviation calculated from the histogram peak positions generated from  
309 sets of 100 traces is 2-6%.

310 **Flicker noise measurement**

311 Flicker noise measurements were conducted as described in detail before.<sup>40,51</sup> We first  
312 formed **1L** and **1H** junctions at 150 mV and 450 mV respectively, held the junction for 150 ms (as  
313 detailed above for the hold measurement), and measured the conductance with a 100 kHz sampling  
314 rate. At least 2,000 traces that sustain a molecular junction were selected for the analysis. We  
315 obtained the average molecular conductance ( $G$ ) and the normalized noise power (power spectral  
316 density (PSD)/ $G$ ) from the hold period. The PSD was calculated from the square of the integral of  
317 a discrete Fourier transform of the measured conductance between 100 Hz and 1,000 Hz. These  
318 frequency limits are constrained by the mechanical stability of STM-BJ setup (100 Hz) and the  
319 input noise of the current amplifier (1,000 Hz). Using the calculated parameters, we create 2D  
320 histograms of the normalized integrated noise power *versus* the average conductance. The  
321 relationship between noise power and molecular conductance is derived by determining the scaling  
322 exponent ( $n$ ) for which  $\text{PSD}/G^n$  and  $G$  are not correlated.

323 **DFT calculations**

324 The DFT calculations in this work were carried out using both closed-shell and open-shell  
325 Kohn-Sham formulation of DFT implemented in the FHI-aims software.<sup>42</sup> A non-empirical  
326 generalized gradient-corrected approximation (PBE) for the exchange-correlation functional was  
327 used.<sup>52</sup> Scalar relativistic corrections to the kinetic energy were considered at the atomic zeroth-  
328 order regular approximation level.<sup>53</sup> The Kohn-Sham states were represented using an all-electron  
329 basis set with tight computational settings (roughly equivalent to double zeta plus polarization  
330 quality for the molecular atoms and double zeta quality for the gold atom). For the open shell  
331 calculations, the orientations of spins in Fe and Au are set to be collinear. The calculation results  
332 were obtained using standard convergence criteria in the self-consistent field cycle for the  
333 difference in the spin density ( $10^{-5}$  spins  $\text{\AA}^{-3}$ ) for both spin-up and spin-down, total energy ( $10^{-6}$   
334 eV), sum of Kohn-Sham eigenvalues ( $10^{-4}$  eV) and forces ( $10^{-4}$  eV  $\text{\AA}^{-1}$ ). The binding energies were  
335 obtained by the calculated energy difference between the bound geometry and the sum of the  
336 energies of the isolated ferrocene molecules and gold. The energy-dependent transmission  
337 functions were calculated using the non-equilibrium Green's function formalism with the transport  
338 package AITRANSS.<sup>54</sup> Additionally, the gold electrodes were modeled by tetrahedral clusters of  
339 Au atoms each with interatomic distance of 2.88  $\text{\AA}$ . The self-energy of the Au reservoirs is a local  
340 and energy independent (Markovian) function modeled by the matrix  $\Sigma(\mathbf{r}, \mathbf{r}') = i\eta(\mathbf{r})\delta(\mathbf{r}-\mathbf{r}')$ , where  
341  $\delta(\mathbf{r}-\mathbf{r}')$  is the spatial delta function and  $\eta(\mathbf{r})$  is the local absorption rate, with non-zero values only  
342 on the subspace of the most external electrode layers.

343 **Data availability**

344 All data that support the findings of this study are available within the article and the  
345 Supplementary Information or are available from the corresponding author upon request. Source  
346 data are provided with this paper.

347 **References**

348 1 Kealy, T. & Pauson, P. A new type of organo-iron compound. *Nature* **168**, 1039-1040  
349 (1951).

350 2 Miller, S. A., Tebboth, J. A. & Tremaine, J. F. 114. Di cyclo pentadienyliron. *J. Chem. Soc.*, 632-635 (1952).

352 3 Long, N. *Metallocenes : an introduction to sandwich complexes*. (Wiley-Blackwell,  
353 1988).

354 4 Daniel, M.-C., Ruiz, J., Nlate, S., Blais, J.-C. & Astruc, D. Nanoscopic assemblies  
355 between supramolecular redox active metallocendrons and gold nanoparticles: synthesis,  
356 characterization, and selective recognition of  $\text{H}_2\text{PO}_4^-$ ,  $\text{HSO}_4^-$ , and adenosine-5'-  
357 triphosphate ( $\text{ATP}^{2-}$ ) anions. *J. Am. Chem. Soc.* **125**, 2617-2628 (2003).

358 5 Van Staveren, D. R. & Metzler-Nolte, N. Bioorganometallic chemistry of ferrocene.  
359 *Chemical reviews* **104**, 5931-5986 (2004).

360 6 Ornelas, C., Ruiz Aranzaes, J., Cloutet, E., Alves, S. & Astruc, D. Click assembly of 1, 2,  
361 3-triazole-linked dendrimers, including ferrocenyl dendrimers, which sense both oxo  
362 anions and metal cations. *Angew. Chem. Int. Ed.* **119**, 890-895 (2007).

363 7 Astruc, D. Why is ferrocene so exceptional? *European Journal of Inorganic Chemistry*  
364 **2017**, 6-29 (2017).

365 8 Cowan, D. O. & Kaufman, F. Organic solid state. Electron transfer in a mixed valence  
366 salt of biferrocene. *J. Am. Chem. Soc.* **92**, 219-220 (1970).

367 9 Chidsey, C. E. Free energy and temperature dependence of electron transfer at the metal-  
368 electrolyte interface. *Science* **251**, 919-922 (1991).

369 10 Chen, X. *et al.* Molecular diodes with rectification ratios exceeding driven by  
370 electrostatic interactions. *Nature nanotechnology* **12**, 797-803 (2017).

371 11 Kanthasamy, K. *et al.* Charge Transport through Ferrocene 1, 1'-Diamine Single-  
372 Molecule Junctions. *Small* **12**, 4849-4856 (2016).

373 12 Aragonès, A. C. *et al.* Control over near-ballistic electron transport through formation of  
374 parallel pathways in a single-molecule wire. *J. Am. Chem. Soc.* **141**, 240-250 (2018).

375 13 Zhao, X. & Stadler, R. Dft-based study of electron transport through ferrocene  
376 compounds with different anchor groups in different adsorption configurations of an stm  
377 setup. *Physical Review B* **99**, 045431 (2019).

378 14 Camarasa-Gómez, M. *et al.* Mechanically Tunable Quantum Interference in Ferrocene-  
379 Based Single-Molecule Junctions. *Nano Letters* **20**, 6381-6386 (2020).

380 15 Lawson, B., Zahl, P., Hybertsen, M. S. & Kamenetska, M. Formation and evolution of  
381 metallocene single-molecule circuits with direct gold- $\pi$  links. *J. Am. Chem. Soc.* **144**,  
382 6504-6515 (2022).

383 16 Malischewski, M. *et al.* Protonation of ferrocene: a low-temperature x-ray diffraction  
384 study of  $[\text{Cp}_2\text{FeH}](\text{PF}_6)$  reveals an iron-bound hydrido ligand. *Angew. Chem. Int. Ed.* **56**,  
385 13372-13376 (2017).

386 17 Klapp, L. R., Bruhn, C., Leibold, M. & Siemeling, U. Ferrocene-based bis (guanidines):  
387 superbases for tridentate N, Fe, N-coordination. *Organometallics* **32**, 5862-5872 (2013).

388 18 Duhovic, S. *et al.* Investigation of the electronic structure of mono (1, 1'-  
389 diamidoferrocene) uranium (IV) complexes. *Organometallics* **32**, 6012-6021 (2013).

390 19 Bárta, O., Gyepes, R., Císařová, I., Alemayehu, A. & Štěpnička, P. Synthesis and study of  
391 Fe→ Pd interactions in unsymmetric Pd (ii) complexes with phosphinoferrocene  
392 guanidine ligands. *Dalton Trans.* **49**, 4225-4229 (2020).

393 20 Atkins, A. J., Bauer, M. & Jacob, C. R. The chemical sensitivity of X-ray spectroscopy:  
394 high energy resolution XANES versus X-ray emission spectroscopy of substituted  
395 ferrocenes. *Phys. Chem. Chem. Phys.* **15**, 8095-8105 (2013).

396 21 Yamaguchi, Y. *et al.* Electronic structure, spectroscopy, and photochemistry of group 8  
397 metallocenes. *Coordination chemistry reviews* **251**, 515-524 (2007).

398 22 Green, A. G. *et al.* Characterization of an Iron–Ruthenium Interaction in a Ferrocene  
399 Diamide Complex. *Inorganic Chemistry* **52**, 5603-5610 (2013).

400 23 Gramigna, K. M. *et al.* Palladium (II) and Platinum (II) Compounds of 1, 1'-Bis  
401 (phosphino) metallocene (M= Fe, Ru) Ligands with Metal–Metal Interactions.  
402 *Organometallics* **32**, 5966-5979 (2013).

403 24 Pick, F. S., Thompson, J. R., Savard, D. S., Leznoff, D. B. & Fryzuk, M. D. Synthesis of  
404 Iron and Cobalt Complexes of a Ferrocene-Linked Diphosphinoamide Ligand and  
405 Characterization of a Weak Iron–Cobalt Interaction. *Inorganic Chemistry* **55**, 4059-4067  
406 (2016).

407 25 Garra, P. *et al.* Ferrocene-based (photo) redox polymerization under long wavelengths.  
408 *Polym. Chem.* **10**, 1431-1441 (2019).

409 26 Liu, J.-J. *et al.* Ferrocene-functionalized polyoxo-titanium cluster for CO<sub>2</sub>  
410 photoreduction. *ACS Catal.* **11**, 4510-4519 (2021).

411 27 Ma, L. *et al.* Ferrocene-linkage-facilitated charge separation in conjugated microporous  
412 polymers. *Angew. Chem. Int. Ed.* **58**, 4221-4226 (2019).

413 28 Ye, X., Cui, Y. & Wang, X. Ferrocene-Modified Carbon Nitride for Direct Oxidation of  
414 Benzene to Phenol with Visible Light. *ChemSusChem* **7**, 738-742 (2014).

415 29 Zhang, L. *et al.* The marriage of ferrocene and silicotungstate: an ingenious  
416 heterogeneous Fenton-like synergistic photocatalyst. *Appl. Catal. B: Environ.* **193**, 47-57  
417 (2016).

418 30 Yanson, A., Bollinger, G. R., Van den Brom, H., Agraït, N. & Van Ruitenbeek, J.  
419 Formation and manipulation of a metallic wire of single gold atoms. *Nature* **395**, 783-785  
420 (1998).

421 31 Quek, S. Y. *et al.* Mechanically controlled binary conductance switching of a single-  
422 molecule junction. *Nature nanotechnology* **4**, 230-234 (2009).

423 32 Meisner, J. S. *et al.* Importance of direct metal–π coupling in electronic transport  
424 through conjugated single-molecule junctions. *Journal of the American Chemical Society*  
425 **134**, 20440-20445 (2012).

426 33 Hong, W. *et al.* Single molecular conductance of tolanes: experimental and theoretical  
427 study on the junction evolution dependent on the anchoring group. *Journal of the*  
428 *American Chemical Society* **134**, 2292-2304 (2012).

429 34 Kaliginedi, V. *et al.* Promising anchoring groups for single-molecule conductance  
430 measurements. *Physical Chemistry Chemical Physics* **16**, 23529-23539 (2014).

431 35 Fu, T., Frommer, K., Nuckolls, C. & Venkataraman, L. Single-Molecule Junction  
432 Formation in Break-Junction Measurements. *The Journal of Physical Chemistry Letters*  
433 **12**, 10802-10807 (2021).

434 36 Zhang, M. *et al.* Iminyl-Radical-Mediated Formation of Covalent Au–N Bonds for  
435 Molecular Junctions. *Journal of the American Chemical Society* **145**, 6480-6485 (2023).

436 37 Kaliginedi, V. *et al.* Promising anchoring groups for single-molecule conductance  
437 measurements. *Phys. Chem. Chem. Phys.* **16**, 23529-23539 (2014).

438 38 Hong, W. *et al.* Single molecular conductance of tolanes: experimental and theoretical  
439 study on the junction evolution dependent on the anchoring group. *J. Am. Chem. Soc.*  
440 **134**, 2292-2304 (2012).

441 39 Fu, T., Frommer, K., Nuckolls, C. & Venkataraman, L. Single-molecule junction  
442 formation in break-junction measurements. *J. Phys. Chem. Lett.* **12**, 10802-10807 (2021).

443 40 Adak, O. *et al.* Flicker noise as a probe of electronic interaction at metal–single molecule  
444 interfaces. *Nano letters* **15**, 4143-4149 (2015).

445 41 Bagrets, A. Spin-polarized electron transport across metal–organic molecules: a density  
446 functional theory approach. *J. Chem. Theory Comput.* **9**, 2801-2815 (2013).

447 42 Blum, V. *et al.* Ab initio molecular simulations with numeric atom-centered orbitals.  
448 *Computer Physics Communications* **180**, 2175-2196 (2009).

449 43 Arnold, A., Weigend, F. & Evers, F. Quantum chemistry calculations for molecules  
450 coupled to reservoirs: Formalism, implementation, and application to benzenedithiol. *J.*  
451 *Chem. Phys.* **126**, 174101 (2007).

452 44 Grimme, S. Semiempirical GGA-type density functional constructed with a long-range  
453 dispersion correction. *Journal of computational chemistry* **27**, 1787-1799 (2006).

454 45 Braun, K.-F., Iancu, V., Pertaya, N., Rieder, K.-H. & Hla, S.-W. Decompositional  
455 incommensurate growth of ferrocene molecules on a Au (111) surface. *Physical review*  
456 *letters* **96**, 246102 (2006).

457 46 Liu, Z.-F. & Neaton, J. B. Voltage dependence of molecule–electrode coupling in biased  
458 molecular junctions. *J. Phys. Chem. C* **121**, 21136-21144 (2017).

459 47 Gunasekaran, S., Greenwald, J. E. & Venkataraman, L. Visualizing quantum interference  
460 in molecular junctions. *Nano letters* **20**, 2843-2848 (2020).

461 48 Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L.  
462 Dependence of single-molecule junction conductance on molecular conformation. *Nature*  
463 **442**, 904-907 (2006).

464 49 Nagahara, L., Thundat, T. & Lindsay, S. Preparation and characterization of STM tips for  
465 electrochemical studies. *Rev. Sci. Instrum.* **60**, 3128-3130 (1989).

466 50 Capozzi, B. *et al.* Single-molecule diodes with high rectification ratios through  
467 environmental control. *Nat. Nanotechnol.* **10**, 522-527 (2015).

468 51 Magyarkuti, A., Adak, O., Halbritter, A. & Venkataraman, L. Electronic and mechanical  
469 characteristics of stacked dimer molecular junctions. *Nanoscale* **10**, 3362-3368 (2018).

470 52 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made  
471 simple. *Phys. Rev. Lett* **77**, 3865-3868 (1996).

472 53 Lenthe, E. v., Baerends, E.-J. & Snijders, J. G. Relativistic regular two-component  
473 Hamiltonians. *J. Chem. Phys.* **99**, 4597-4610 (1993).

474 54 Wilhelm, J., Walz, M., Stendel, M., Bagrets, A. & Evers, F. Ab initio simulations of  
475 scanning-tunneling-microscope images with embedding techniques and application to  
476 C<sub>58</sub>-dimers on Au (111). *Phys. Chem. Chem. Phys.* **15**, 6684-6690 (2013).

477 **Acknowledgements**

478 This work was supported in part by the National Science Foundation MRSEC grant on Precision-  
479 Assembled Quantum Materials (DMR-2011738) and the National Science Foundation under grant  
480 DMR-2241180. M.S.I. was supported by a Marie Skłodowska Curie Global Fellowship  
481 (MOLCLICK: 657247) within the Horizon 2020 Programme and University of Southern  
482 California (USC) startup funds. We thank the NSF (DBI-0821671, CHE-0840366, CHE-1048807)  
483 and the NIH (S10 RR25432) for USC-based analytical instrumentation. M.C.-G., D.H.-P. and F.E.  
484 acknowledge financial support from the German Research Foundation (DFG) through Research  
485 Training Group (GRK) 1570 and Collaborative Research Center (SFB) 1277 - Project ID  
486 314695032 (subprojects A03, B01). We thank Brandon Fowler and Nils Rotthowe for help with  
487 Mass-Spectroscopy, Giacomo Lovat for help with STM-BJ data acquisition and Rachel Austin for  
488 discussions.

489 **Author contributions**

490 W.L., M.S.I., and L.V. conceived the idea and designed this work. W.L. carried out all  
491 experimental measurements and analyzed the data. M.S.I. synthesized and characterized the  
492 molecules **1**, **2**, and **3**. L.L. performed the DFT calculations with help from M.C.-G., D.H.-P. and  
493 F.E. L.V., M.S.I., F.E., and X.R. supervised the research. The manuscript was written by W.L. and  
494 L.V. with contributions from all other authors.

495 **Corresponding Authors**

496 Correspondence: [Ferdinand Evers](#), [Michael S. Inkpen](#), [Latha Venkataraman](#)

497 **Competing interests**

498 Authors declare no competing financial or non-financial interests.