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Interpretation and Attribution of Coastal Land
Subsidence: An InSAR and Machine

Learning Perspective
Xiaojun Qiao , Tianxing Chu , Evan Krell , Philippe Tissot , Seneca Holland, Mohamed Ahmed ,

and Danielle Smilovsky

Abstract—Subsidence, the downward vertical land motion
(VLM), plays a pivotal role in contributing to the risk of coastal
flooding. Accurately estimating VLM and identifying its potential
features related to subsidence can provide crucial information for
stakeholders to make better-informed decisions. This study aimed
to estimate large-scale subsidence at the Texas Gulf Coast and
identify potential subsidence features using explainable models.
Nine potential features were considered for modeling the VLM,
ranging fromnatural terrain variations to anthropogenic activities.
These features were used to train a random forest (RF) machine
learningmodel. Explainable artificial intelligence (XAI) techniques
including SHapley Additive exPlanations (SHAP) and impurity-
and permutation-based feature importance were used to identify
the contributions to subsidence. The results demonstrated favor-
able performance of the RF model, achieving an R2 value of 0.56
during validation. XAI results underscored the significance of the
digital elevationmodel in explaining subsidence at the Texas Coast.
Additionally, XAI analysis highlighted the overall contribution of
subsidence from anthropogenic activities, such as hydrocarbon
extractionandgroundwaterwithdrawal. Furthermore, the sample-
level SHAP map provided detailed and reasonable subsidence-
attribution results across the study area, showing potential for
automatic and data-driven explanations of the VLM.
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NOMENCLATURE

API American Petroleum Institute.
APS Atmospheric phase screen.
BBL One barrel of crude oil.
cGNSS Continuous global navigation satellite systems.
CNN Convolutional neural networks.
DEM Digital elevation model.
DTF Distance to fault.
GEE Google Earth Engine.
GIA Glacial isostatic adjustment.
GNSS Global navigation satellite system.
GWWD Groundwater withdrawal.
HPRD Hydrocarbon production.
HWD Hydrocarbon well density.
IFI Impurity feature importance.
IMPV Imperviousness.
InSAR Interferometric synthetic aperture radar.
LOS Line of sight.
MCF Thousand cubic feet of natural gas.
ML Machine learning.
NDVI Normalized difference vegetation index.
PFI Permutation feature importance.
PPP Precise point positioning.
PS Persistent scatterer.
RF Random forest.
RRC Railroad Commission of Texas.
SAR Synthetic aperture radar.
SHAP SHapley Additive exPlanations.
SRTM Shuttle Radar Topography Mission.
TWI Topographical wetness index.
USGS United States Geological Survey.
VIIRS Visible Infrared Imaging Radiometer Suite.
VLM Vertical land motion.
VNL VIIRS nighttime lights.

I. INTRODUCTION

SUBSIDENCE refers to the sinking, settling, and downward
VLMof the Earth’s surface [1], usually occurring as a result

of natural geological processes or human activities such as the
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extraction of underground resources like water, oil, and gas, or
due to the compactionof soil and sediment [2]. TheVLMprocess
can trigger a cascade of consequences including the loss of
surface areas, damage to infrastructures, and challenges in urban
planning [3], [4]. Apart from these well-documented impacts,
subsidence in densely populated coastal regions can compound a
host of additional critical issues including flooding and seawater
intrusion [5]. These challenges are primarily associated with
complex land–water interactions, especially in the context of the
rising trend of the global sea level [6], [7]. Consequently, land
subsidence emerges as a pivotal factor in shaping the future of
coastal regions [8].
Over the past decades, there has been growing attention to

quantifying land subsidence. For example, traditional leveling
surveys offer precision but demand substantial time and labor,
even for a relatively small area [2]. Extensometers and the
GNSS provide accurate measurements for land movement, and
cGNSS stations have been widely distributed across vast geo-
graphic areas in theworld for long-termgeodetic positioning [2],
[9]. Nonetheless, these approaches rely on localized measure-
ments [10], potentially overlooking the detailed and varying
spatial characteristics of subsidence patterns.
InSAR emerges as an accurate and effective spaceborne

geodetic technique for generating expansive subsidence maps,
leveraging the dense scatterer distribution within the SAR im-
agery. The effectiveness of InSAR is underpinned by themodern
SAR sensors, as exemplified by those aboard Sentinel-1 satel-
lites, which enable the acquisition of substantial imagery across
both spatial and temporal dimensions. Meanwhile, advanced
multitemporal InSAR data processing strategies, such as PS
and small baseline subset (SBAS) methods [11], streamline the
handling of extensive image datasets. For instance, the inte-
grated spaceborne approach of InSAR and GNSS has yielded
comprehensive national land subsidence maps in Japan [12]
and Italy [13] based on Sentinel-1 SAR imagery. In contrast
to PS, SBAS typically enhances phase coherence through its
multilooking filtering and utilizing redundant interferograms,
resulting in fewer pixels being masked induced by coherence
outages [14]. On the other hand, PS methods exhibit efficiency
in data processing and are capable of yielding large-scale defor-
mation results with full resolution [14].
Comprehending and identifying drivers of land subsidence

has long been considered difficult. First, complexity arises from
the need to consider various anthropogenic and natural factors
thatmay contribute to landmotion. For example, awidely recog-
nized anthropogenic driver is the extraction of fluids, such as oil,
gas, and groundwater, which leads to underground compaction
and subsequent land surface subsidence [1]. Similarly, activities
such asmining and construction can induce land subsidencewith
increased structure loading or weakened mining support [15],
[16], [17]. Also, natural processes can instigate land motion
including phenomena such as thawing permafrost [18], shrink-
age and swelling of clay soils [19], and GIA [20]. Addition-
ally, the spatial patterns of subsidence velocity can be influ-
enced or controlled by growth faults [21], further complicating
the practical analysis of subsidence drivers. Finally, inferring
subsurface processes and accurately attributing subsidence to

specific drivers may require subsurface observations as well as
related geological and geophysical analysis, such as changes in
pore pressure resulting from fluid extraction [22].

Due to these challenges, prior investigations in identifying
subsidence drivers havemostly concentrated on qualitative anal-
yses of the VLM. Spatial coincidence between the presence of
oil/gas wells and observed subsidence hotspots in the vicinity
of the Houston-Galveston Area, Texas, was studied [23]. Prior
studies also analyzed the quantitative association between subsi-
dence and HPRD. However, the data of hydrocarbon extraction
were aggregated at the county level [24], [25], posing challenges
in attribution due to the spatial variability inherent in processes
related to both land subsidence and anthropogenic activities.
Furthermore, even when accounting for various potential fea-
tures such as HPRD, GWWD, and geological faults, these
features were typically examined in isolation [23], [24], [26],
[27].
Integrating various potential features into an ML model may

provide valuable insights into the processes driving land subsi-
dence. For example, a range of features encompassing geologi-
cal, land cover, topographical, and climatic aspects have proven
effective in enhancing the accuracy of subsidence detection in
deltaic metropolitan areas located in southern China [28]. Fur-
thermore, explainable artificial intelligence (XAI) holds promise
in enhancing the understanding of VLMmodeling through ML.
XAI techniques can be distinguished by interpretable ML and
post-hoc methods [29]. Interpretable ML refers to the develop-
ment of architectures that are designed to expose some informa-
tion aboutwhat themodel learned to aid understanding. Post-hoc
methods are XAI algorithms that consider the model itself to be
a black box and analyze the characteristics of the model based
only on the inputs and outputs [30], [31]. Post-hoc methods can
be applied to interpretable models and provide information that
the interpretable model itself does not.
Leveraging large-scale subsidence estimates derived across

the Texas Gulf Coast using the PS InSAR technique [27], this
study aimed to interpret land subsidence by identifying potential
contributors or correlates of the observed VLM within a quan-
titative model framework. To achieve this, the study applied
ML-based regression to establish relations between observed
land subsidence and a range of potential features. It is crucial to
highlight that this study did not focus on predicting subsidence
at unobserved locations or dates using the MLmodel. Instead, it
aimed to unveil underlying drivers and correlates of subsidence
through XAI analysis of a diversely-featured ML model. Key
acronyms throughout the article can be found in the Nomencla-
ture.

II. STUDY AREA

Fig. 1 illustrates the extent of Sentinel-1 data coverage,
which intersects with a total of 47 counties lining the Texas
coastline. The study area is defined by the overlapping region
between the spatial reach of Sentinel-1 data and the geograph-
ical boundaries of these counties. It encompasses an area of
approximately 89 000 km2. Over geological time, from the
Miocene to the Pleistocene periods, sediments were gradually
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Fig. 1. Study area including a total of 47 coastal counties in Texas, which overlaps the coverage of acquired Sentinel-1 imagery.

deposited along the Texas Gulf Coast. This deposition occurred
within a diverse range of environments, including fluvial-deltaic
and shallow-marine settings. Within the Coastal Plain, these
sediments accumulated on a homoclinal slope gently toward
the Gulf of Mexico [32]. Across the Texas Gulf Coast, dis-
tinct sedimentary wedges, representing substantial layers of
sediment, have been identified. Some of these formations con-
tain deep sandstone reservoirs that have been of benefit for
hydrocarbon formation [33]. Additionally, it is worth noting
that salt domes are primarily concentrated in the northern
region of the Texas Gulf Coast. Additionally, curved faults
were formed in parallel with the coastline during the deposi-
tion process [32]. The utilization of groundwater resources in
this region has been substantial, especially near the Houston-
GalvestonArea [23] for uses including irrigation, drinkingwater
supply, and industrial needs [1], [32]. Land subsidence is a
widespread issue affecting the entire Texas Gulf Coast, primar-
ily attributed to activities related to GWWD and hydrocarbon
extraction [34].

III. DATA

A collection of four swaths of Sentinel-1 SAR images
was acquired and utilized for the generation of a large-scale

subsidence map. Within the footprint of each swath, the study
utilized two or three subswath imagery subsets that overlap the
Texas coastlines. A total of 10 subswaths of SAR data were
processed independently, and the spatial coverage of these SAR
images can be found in Fig. 1. InSAR results were subsequently
validated using ground-truth land-motion observations from
115 cGNSS stations (see Fig. 1). Additional details regarding
Sentinel-1 SAR and cGNSS data are shown in Table I.
Also, a range of features related to natural and anthro-

pogenic activities was utilized for modeling the VLM in-
cluding HPRD, HWD, DEM, TWI, GWWD, NDVI, IMPV,
VNL, and DTF. The selection of these nine features stemmed
from their data accessibility, fine-grained spatial resolution,
availability in a numerical format, and their ability to ex-
plain or predict subsidence, either as potential drivers or
correlative indicators. The detailed relevance of these se-
lected features with land subsidence is summarized as
follows.
1) HPRD, HWD, and GWWD: Extraction of hydrocarbons

(e.g., oil and gas) and groundwater is widely considered
to be one of the primary drivers of land subsidence glob-
ally [1], [23].

2) DEM, TWI, VNL, and DTF: Prior studies utilized these
features for mapping subsidence susceptibility, with some
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TABLE I
DATA USED FOR ESTIMATING THE VLM AND ANALYZING ITS POTENTIALLY ASSOCIATED FEATURES

being contributing factors to the model prediction [35],
[36].

3) IMPV and VNL: Subsidence in Texas may also be influ-
enced by some other natural factors such as fluctuations
in soil moisture during dry periods [37], [38] and human
activities such as uncontrolled gas flaring and operations
related to hydrocarbon extraction, particularly at night
in unpopulated areas [27]. IMPV and VNL may provide
insights into explaining subsidence.

It should be noted that the 250 m × 250 m spatial grids were
utilized to facilitate the calculation and analysis of feature values
of both the nine features and the VLM. Besides, the inclusion
of around 30-year data of both HPRD and GWWD was a con-
sideration for their enduring influence on land subsidence [39],
[40], [41]. Extensive details concerning these nine features are
listed in Table I. Additional information regarding obtaining the
HPRD/HWD and TWI features is discussed in Sections III-A
and III-B, respectively.

A. Hydrocarbon Data

To obtain well-level HPRD, the following three datasets were
accessed from the RRC [45].
1) For the 47 counties, well layers were accessed to retrieve

the geographical coordinates for each unique American
PetroleumInstitute (API) number. TheAPI-based “bottom
well” layers were then spatially combined across the 47
counties to establish the subsurface well locations from
which hydrocarbon fluids were extracted.

2) For the 47 counties, the API database was obtained that
contains the RRC-issued lease number, which is unique to
each Oil and Gas Division district.

3) In this study, monthly HPRD data for individual leases
in districts with codes 01, 02, 03, and 04, which collec-
tively cover the entire study area, were obtained from the
RRC [45]. HPRD is measured in barrels (BBL) for oil
and thousand cubic feet (MCF) for gas. It should be noted
that HPRD provided by RRC contains the production of
oil (BBL) and casinghead (MCF) for oil leases, and gas
(MCF) and condensate (BBL) for gas leases.

In summary, these three datasets were used together for cal-
culating HPRD for spatially distributed wells (i.e., API num-
ber) through lease-based production data released by the RRC.
Specifically, the following equation is used for calculating the
HPRD variable on a per API basis:

HPRD(t, api) =
M∑

j=1

1

wj

[Pcas(t,mj)

6
+ Poil(t,mj)

]

+
L∑

i=1

[Pgas(t, li)

6
+ Pcon (t, li)

]
. (1)

The variables Pcas, Poil, Pgas, and Pcon represent HPRD cat-
egories, namely casinghead, oil, gas, and condensate, respec-
tively. The variable li is drawn from the gas lease set [l1, . . ., lL],
which is linked to a specific API number. Similarly,mj belongs
to the oil lease set [m1, . . .,mM ], associated with a particular
API number. Time is denoted by the variable t, measured at
monthly intervals from January 1993 to December 2022. It is
important to note that an oil lease may have been connected
to multiple API numbers. To address this, we incorporated a
weighting factor 1

wj
when allocating the production from oil

leases tied to a specific API location, wherewj signifies the total
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Fig. 2. Features used in the ML methods for analyzing land subsidence attribution at the study area, including (a) HPRD, (b) HWD, (c) DEM, (d) GWWD,
(e) TWI, (f) NDVI, (g) IMPV, (h) VNL, and (i) DTF.

count of API numbers linked to a given oil lease in the district.
In (1), the coefficient 6 was used to convert MCF units into a
BBL equivalent measure, according to the work in [53]. Finally,
the monthly time series of HPRD at a specific API number was
calculated through (1).
In this study, theHWDandHPRDproductionwere calculated

within a 2-km circular buffer zone centered at the 250m× 250m
grids to account for potential local influences of hydrocarbon
extraction activities. The cumulative HPRD from 1993 to 2022
was calculated for theHPRDvariable at eachAPI.As a result, the
HPRD and HWD across the 47 counties were spatially cropped
to the study area as shown in Fig. 2(a) and (b), corresponding to
a total of 108 988 API locations.

B. Topographical Wetness Index

In hydrologic analysis, TWI is an index used to indicate
the ability to accumulate water related to local topographical

conditions. This hydrologic feature was included in this study to
examine its potential influence on subsidence. TWI is calculated
through [54]

TWI = ln
(

α

tanβ

)
(2)

where α is the drained area per unit contour length, and β is
the local slope angle. Specifically, TWI was computed using
the DEM data in this study by abiding by the method proposed
in [55].

IV. METHOD

As depicted in Fig. 3, the study approach comprised the
following three key stages:
1) estimating a land subsidencemap utilizing InSAR through

the integration of SAR and GNSS data;
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Fig. 3. Research workflow.

2) establishing a model that correlates observed land subsi-
dence with potentially contributing features using the ML
model;

3) performing attribution analysis of subsidence based on
feature-importance and feature-effect XAI methods.

A. InSAR Processing

For each subswath dataset within the four sets of Sentinel-1
SAR images, PS InSAR analysis was applied to derive land
deformation results along the LOS direction. The essential steps
of the PS InSAR processing are detailed in Fig. 3. The PS In-
SAR processing routines were performed using the SARPROZ
software [56]. The processing workflow involved several pre-
processing steps including image coregistration, data coverage
subsetting, and the selection of a master image. Subsequently,
amplitude stability was computed for each pixel. Amplitude
stability serves as an indicator of the potential phase-stable
targets over time and is defined as 1− σA

mA
, where σA and

mA represent the standard deviation and mean statistics of the
amplitude time series at a specific pixel [56]. Pixels exhibiting
high-amplitude stability were initially identified as the PS candi-
dates. These selected PS candidates were then used to establish
a spatial network aimed at isolating the phase contributions
associated with atmospheric effects, referred to as the APS.
APS manifests as an overlay on interferograms due to its high
temporal variability and low spatial variability characteristics
in atmospheric effects [14]. Following APS estimation, land
deformation was computed on a per-pixel basis by removing

unrelated phase components, primarily stemming from viewing
geometry, topography, and the estimated APS [57], [58]. Phase
components induced by viewing geometry and topography were
corrected using the SAR orbit data and external DEM data [57].

In each subswath dataset, the estimated LOS InSAR velocity,
denoted as vLOS, was converted into the vertical direction,
represented as vVLM. This conversion is achieved using the
formula vVLM = vLOS · (cos θ)−1 [59], with the contributions
in both the North–South and East–West directions neglected
because of Sentinel-1’s near-polar orbit motion and the utiliza-
tion of SAR data from only ascending orbit. The parameter
θ represents the average-looking angle of the Sentinel-1 SAR
sensor and its values were determined to be 33.9◦, 39.3◦, and
43.9◦ for subswath datasets 1, 2, and 3, respectively. This study
introduced an additional parameter, denoted as b, to calibrate
self-consistent InSAR results obtained from individual subswath
datasets. This parameter was determined by comparing the dif-
ferences between converted InSAR vertical velocities and those
derived from two carefully selected cGNSS stations within each
subswath coverage of Fig. 3 [27]. Detailed information about
PS-InSAR data processing, including the selection of reference
points and cGNSS stations for calibration, can be found in [27].

B. ML Modeling

The feature values for HPRD, HWD, and DTF were cal-
culated using 250 m × 250 m grid cells, as explained in
Section III. Additionally, the average values were computed
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for the 250-m-resolution grids regarding the remaining fea-
tures and the VLM. The grid-level VLM values are denoted
as y = [y1, y2, . . ., yi, . . ., ym]T , where m is the sample size of
grid cells. For each individual grid as indexed by i, values of
nine variables for subsidence attribution analysis were extracted
and combined into a vector xi = [x1, x2, . . ., xj , . . ., x9]. This
process resulted in the creation of the feature matrix X =
[x1,x2, . . .,xi, . . .,xm]T . Subsequently, the ML approach was
employed to conduct regression between y andX, by satisfying
y = f(X), where f(·) represents the regression function.
The ML modeling was performed using the RF algorithm.

This is an ensemble technique consisting of decision trees,which
allows for the aggregation of decisions frommultiple tree predic-
tors [60]. During the training phase, randomly selecting subsets
from both samples and features enhances model diversity. RF
has been used to achieve high-performance models in many
practical applications [61]. Another advantage of using RF is
that it demands minimal data preparation. For example, there
is no need for data scaling due to its inheritance from decision
trees [61]. Additionally, RF offers the advantage of providing
feature importance scores, which indicates the extent to which
a specific feature influences the output of the RF model, on
average.

C. ML Model Performance

The R-square metric, denoted as R2, was utilized for eval-
uating the RF model during both parameter tuning and result
validation. Its definition is provided in [62]

R2 = 1−

m∑
i=1

[yi − f(xi)]
2

m∑
i=1

(yi − y)2
(3)

where y is the mean value of y.

D. Explainable Artificial Intelligence

In this study, two feature importance methods and one feature
effect method were used. Feature importance methods include
PFI [60] and IFI [60], [63]. For feature effect, on the other
hand, SHAP were used to explain the model’s decisions for
each sample [30], [64]. The IFI is the interpretable XAI method
while both PFI and SHAP are the post-hoc XAI methods. Fig. 4
illustrates the relation of the XAI methods adopted in the study.
1) Feature Importance Estimated With RF: The IFI method

exploits the interpretable nature of RFs to rank features, as a
byproduct of the trained RF model, using the importance scores
of the accumulated impurity decrease across all nodes of the
trees [60], [61], [63]. The PFI is defined as the decrease of
a model score when a single feature value is randomly shuf-
fled [60]. The impurity is usually the variance in the case of
regression trees, and the R2 score is adopted for estimating the
PFI. Both the IFI and PFI were utilized in the study to estimate
the global feature importance.
2) Feature Effect Estimated With Kernel SHAP: Drawing

inspiration from game theory to quantify the fair contribution
of each feature to a prediction, SHAP measures the impact of

Fig. 4. Relations amongdifferentmethods related toXAI adopted in this study.
For example, the PFI is a post-hoc XAI method to estimate feature importance.

a specific feature value by comparing it to a scenario where
the feature value is replaced with baseline values [64]. Under
properties of local accuracy, missingness, and consistency, (4)
shows the Shapley values, φi(f, x), in the cooperative game
theory to calculate the feature effects after removing feature i
[65], [66]

φi(f, x) =
∑

z′⊆x′

|z′|!(M − |z′|− 1)!

M !

[
fx(z

′)− fx(z
′ \ i)

]

(4)
where x′ is the simplified input of x to approximate the original
model f(·). The vector z′ ∈ {0, 1}M of lengthM controlswhich
features are present in the data using 1 s for present features and
0 s for missing features. z′ \ i means the feature subset with
feature i removed and |z′| is the number of the nonzero entries
in z′.
The Kernel SHAP method was utilized to compute Shapley

values. This involved optimizing a squared loss function spec-
ified in (5), akin to the approach used in the local interpretable
model-agnostic explanations algorithm [66], [67]. Algorithm 1
presents a method for determining the impact of individual
features on the predicted value for an instance x [68]

L(f) =
∑

z′∈Z

{
f(hx(z

′))−
[
φ0 +

M∑

i=1

φiz
′
i

]}

· M − 1(M
|z′|
)
|z′|(M − |z′|)

. (5)

Further details on the kernel SHAP method can be explored
in [66], [68], and [69]. The kernel SHAP analysis was performed
utilizing the SHAP Python software suite [69]. And the baseline
values utilized in the hx(z′i) function were the medians of
training samples.
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Algorithm 1: Kernel SHAP to Estimate Shapley Values.

1: Sample a series of z′ ∈ {0, 1}M .
2: Map z′ to the original feature space using hx(z′i):

hx(z
′
i) =

{
feature values of x, if z′i = 1

baseline values, otherwise.

3: Predict for f(hx(z′)).
4: Compute weight for z′ with the SHAP kernel

πx′(z′) =
M − 1(M

|z′|
)
|z′|(M − |z′|)

.

5: Fit weighted linear model of g(z′) by optimizing the
loss function in (5)

g(z′) = φ0 +
M∑

i=1

φiz
′
i.

6: Return Shapley values φi.

V. RESULTS

A. VLM Estimate and Validation

Land deformation results were acquired for each subswath
using thePS InSARprocessing steps, as depicted in the left block
of Fig. 3. The LOS subswath results were then converted to the
vertical direction andmerged into one subsidencemap across the
entire study area. The subsidence results of the PS points were
then aggregated within 250 m × 250 m grid cells. As shown in
Fig. 5, the mean subsidence velocities were calculated along the
Texas Coast in the form of a network of 173 064 grid cells. For
validation, InSAR-derived subsidence velocitieswere compared
with that obtained from 115 cGNSS stations. Only the InSAR
grid cells within which the cGNSS stations fell were used for
the validation. The resulting R2 value of 0.54 was documented
between InSAR grid cells and cGNSS stations regarding their
subsidence velocities.
A distribution plot, illustrated in Fig. 5, displays the velocity

differences between using GNSS and InSAR techniques. It is
worth emphasizing that this distribution was constructed based
on velocity difference values that were rounded to the nearest
whole numbers. The distribution plot demonstrates an overall
favorable agreement between InSAR and GNSS measurements.
According to the distribution histogram in Fig. 5, at a total
of 75 out of 115 cGNSS stations (approximately 65%), the
differences in subsidence rates between cGNSS and InSAR
lie within the range of ±1.5 mm/yr, which corroborated In-
SARs reported accuracy of submillimeter to millimeter per
year [14]. Larger differences may arise when comparing InSAR
and cGNSS velocities due to several factors, including the dis-
tance between their observation locations and differences in their
observation directions (i.e., vertical versus LOS). These factors
could explain the differences between cGNSS and InSAR at
additional 24 cGNSS stations (approximately 21%), where the
differences range between ±1.5 mm/yr and ±2.5 mm/yr. Two

conspicuous outliers can be observed from the histogram plot in
Fig. 5, corresponding to the cGNSS stations of TXAI (27.73◦N,
-98.07◦W) and TXRF (28.30◦N, -97.27◦W). These two out-
liers are attributed to unreliable trend estimates at these two
cGNSS stations, stemming from a short temporal observation
window, nonlinear processes, and a high level of observational
uncertainty [27]. To sum up, these statistics, along with the
histogram distribution depicted in Fig. 5, accord well with the
expected InSAR accuracy from prior studies [70], [71], [72] and
demonstrate the validity of the InSAR results obtained in this
study.

B. RF Modeling

Fig. 6 showcases scatter plots, each visualizing the correlation
between an individual feature and theVLMacross the study area.
Besides, Fig. 6 suggests that none of these features exhibit strong
individual correlations with land deformation, highlighting the
intricate challenge of identifying true drivers and/or correlates
of subsidence. This reinforces our study’smotivation to leverage
ML techniques to address the complex relationships between the
VLM and different features.
A total of 143 787 grid cells, where theVLMratewas less than

zero, were used for analyzing the relationships between subsi-
dence and potential features. The retained 143 787 grid cells
were treated as independent samples for training and validating
the RF model, under the regression scenario as mentioned in
Section IV-B. A grid search scheme was used to optimize the
RF model hyperparameters. The parameter sets included in the
search are 1) tree_size ∈ {50, 100, 300, 500}, and 2) the size of
training samples, referred to as training_size∈{10%,20%,30%,
40%, 50%, 60%, 70%, 80%, 90%}. Bootstrapping was used for
sampling the training dataset in both the sample and feature
dimensions. The remaining samples were used to estimate the
RF model performance and the R2 across different parameter
combinations is illustrated in Fig. 7(a). It can be observed that
the parameter of training size plays a more important role than
the tree size in improving R2.
Based on the results of the grid search between “training_size”

and “tree_size,” 80%datawere sampled for trainingMLmodels.
Then further grid search tests were conducted by focusing
on parameters such as “max_depth” and “max_features” to
introduce more randomness but insignificant improvements of
R2 were documented. Therefore, for both interpretability and
computational efficiency purposes, a simpler RF model with
“n_estimators” set to 300 and all other parameters left at their
defaults [73] was trained using 80% data. In Fig. 7(b), a compar-
ison is presented between the VLM values of 28 758 validation
samples and their corresponding predictions generated by theRF
model. The scatter plot visually demonstrates a good correlation,
with R2 equal to 0.56, indicating a robust model performance.
It is notable that this study heavily prioritized comprehending
feature interactions and contributions while employing the ML
model. Predicting subsidence velocity at unobserved locations
and times exceeds the scope of this study due to challenges such
as considerable spatiotemporal subsidence variability.
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Fig. 5. Land subsidence map represented in 250 m× 250 m grid cells. The lower right subplot visually portrays the distribution of subsidence velocity differences
between results obtained using InSAR versus cGNSS, which have been rounded to the nearest whole numbers.

C. Feature Importance and Attribution Analysis

Feature importance results of IFI and PFI, computed using the
training set, are displayed in Fig. 8(a) and (b) while the SHAP
values derived from the validation set are presented in Fig. 8(c).
For a given output, the SHAP value of each feature represents
the magnitude to which that feature pushed the model’s decision
away from a given baseline value. Positive SHAPvalues indicate
that the feature increased the output relative to the baseline, and
negative SHAP values indicate a decrease. In this work, the
baseline values were the median values for the VLM predictor
dataset. Therefore, the SHAP values represent how the features
move a specific decision away from the model’s mean decision.
Overall, theXAImethods agreed on the ranking of global feature
importance, as shown in Fig. 8. However, some differences were
documented among certain features between the IFI, PFI, and
SHAP methods due to different underlying algorithms. Based
on the results obtained from individual feature scatter plots (see
Fig. 6) and XAI (see Fig. 8), a detailed analysis delved into
the following aspects to comprehend the connections between
subsidence and individual features.

1) First, XAI results of both feature importance and effect
consistently identified DEM and HPRD as the primary
features influencing the modeling of VLM. The signifi-
cance of DEMcan be rationalized by the observations [see
Fig. 6(c)] that the reddish cluster tends to exhibit higher
subsidence velocity as elevation values increase. This
trend could potentially be attributed to the subsidence due
to heightened levels of anthropogenic activities occurring
farther away from the coastlines [27], where elevations are
approximately at or below sea level. Also, the importance
of the HPRD as revealed by feature importance and SHAP
methods can also be observed from the spatial coincidence
between the HPRD and the VLM at some oil fields, e.g.,
the HPRD and VLM hotspot near San Antonio, TX, as
observed from Figs. 2(a) and 5, respectively.

2) The feature of HWD ranked differently in IFI results
comparedwith that in PFI and SHAP. The potential reason
for this phenomenon is the cardinal nature of the well
density, ranging from 0 to 45. The IFI method can be sen-
sitive to features with high cardinality with many unique
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Fig. 6. Scatter plots depicting the relationship between VLM and individual features of (a) HPRD, (b) HWD, (c) DEM, (d) GWWD, (e) TWI, (f) NDVI,
(g) IMPV, (h) VNL, and (i) DTF. Reddish hues in each subplot represent high sample density estimated with Gaussian kernel density estimation.

values [74], which might lead to misleading results when
including theHWD feature. However, both PFI and SHAP
suggest that the HWDwas the important feature following
the HPRD.

3) Results of both feature importance and feature effectmeth-
ods indicated that VNL tended to be another influential
feature affecting the VLM. This may be explained by
the overlap between VLM and nighttime light emissions
originating from activities such as hydrocarbon extraction
(e.g., gas flares and drilling operations), urban areas with
a high likelihood of groundwater demand, or less evapo-
transpiration during dry seasons [27], [37], [38].

4) The contribution of GWWD tended to be less impor-
tant than hydrocarbon extraction activities in the global
feature importance of both IFI and PFI. The reasons

may be twofold: 1) While a significant amount of
GWWD occurred, particularly in areas outside the Hous-
ton metropolitan, no apparent subsidence was docu-
mented, which may obscure the contribution assessment
performed by feature importance analysis, and 2) land
subsidence was attributed to GWWD locally near the
Houston-Galveston area. Thus, the sample-level attribu-
tion using SHAP maps may be more beneficial for attri-
bution purposes at localized areas.

5) The remaining features generally exhibited amore limited
impact on VLM, as indicated by both feature impor-
tance/effect assessments. For instance, high-VLM grids
tended to cluster in proximity to faults [see Fig. 6(i)],
and their NDVI values likely hovered around 0.5 [see
Fig. 6(f)]. Nevertheless, the relationships observed were
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Fig. 7. ML model training and performance validation. (a) Parameter tuning of the RF model. (b) Scatter plot for RF model validation.

Fig. 8. Feature importance estimated with RF and SHAP. (a) RF feature importance based on impurity decrease. (b) RF feature importance based on feature
permutation using score R2. (c) SHAP values using the validation set in the RF model.

neither consistent nor definitive in terms of their contri-
bution to VLM. Besides, the limited contribution of TWI
may be a result of the overall flat nature of the study area
with inconspicuous DEM relief, except for the western
region of the study area.

In addition to assessing subsidence drivers or correlates on
an individual feature basis as aforementioned, a more auto-
mated approach is to identify the features that correspond to
the high-extent SHAP values for each grid cell. This can result
in a map indicating the top contributor associated with land
subsidence. In this study, the features with the highest absolute
SHAP value were considered to have a significant impact on
the VLM. Fig. 9(a) and (b) depicts the primary and secondary
contributing features to subsidence for each grid cell.
To facilitate quantitative analysis by delving deeper into the

SHAP map findings, five key subsidence zones were visually
identified [see Fig. 9(c)] with cyan polygons. Previous inves-
tigations have linked localized subsidence near Polygons 1, 2,

and 4 to hydrocarbon extraction activities [23], [24], [27], [34]
(see Fig. 10). Polygon 3 was chosen as a prime candidate due to
documented subsidence in the vicinity of Katy, TX, which was
potentially attributed toGWWD[23], [26], [34], [75]. Polygon 5
serves as an example that showcases the valuable insightswe can
glean from SHAP results about the contributing features. The
individual-feature effect was calculated as mean SHAP values
across samples within each polygon (see Fig. 10). Findings in
each of the five polygons are summarized as follows.
1) Figs. 9(a) and (b) and 10(a) reveal that HPRD and HWD

had a significant influence on the model’s predictions
within Polygon 1. This aligned with the drivers attributed
in previous studies [27], [34].

2) Polygon 2 reveals a compelling interplay among features,
with both DEM and HPRD significantly influencing the
model’s predictions [see Fig. 10(b)]. HPRDs role as a key
driver in Polygon 2 aligns well with its proximity to the
Eagle Ford Shale [see Fig. 10(c)]. DEMs contribution [see
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Fig. 9. SHAP maps and comparison with the VLM. (a) Attribution map illustrating the primary SHAP values. (b) Attribution map displaying secondary SHAP
values. (c) InSAR-derived VLM map with the cyan-colored dashed polygons highlighting selected VLM hotspots. (d) Legend with the table showing details
associated with each polygon.

Fig. 10. AverageSHAPvalues representing feature contribution to themodel’s
prediction, across samples within each of five selected polygons as depicted in
Fig. 9, visualized in subplots (a)–(e).

Fig. 10(b)], possibly related to the high elevation gradient
in this region, warrants further investigation.

3) Polygon 3, an area including part of the Houston
metropolitan region, has emerged as a documented epi-
center of subsidence linked to GWWD, as supported by
previous studies [1], [23], [75]. While GWWD emerges
as the dominant driver at certain locations [see Fig. 9(a)
and (b)], the SHAP values in Fig. 10(c) reveal a different
story, with DEM and VNL taking center stage as key
contributors. The discrepancy could be attributed, at least
in part, to the potential limitations of interpolated GWWD
data in capturing localized changes. Expanding the study
area to include the entire local subsidence hotspot may
enhance our ability to analyze the importance of GWWD.
However, this falls outside the scope of our study, which
was focused on interpreting subsidence near the Texas
coastlines.

4) Polygon 4, encompassingMontBelvieu andChannelview,
TX, exhibits intriguing “bowel-shaped” subsidence pat-
terns, a spatial signature consistent with the documented
linkage between subsidence and hydrocarbon extraction
activities in the region [23], [27]. This pattern aligns with
SHAP attribution results in Fig. 10(d).
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5) Fig. 10(e) leans toward hydrocarbon extraction as the
dominant driver of subsidence across Polygon 5, echo-
ing similar findings in prior studies [27]. However, the
frequent spatial variations in subsidence within this area
necessitate further investigation to refine this attribution
and potentially uncover additional contributing factors.

It should be noted that Fig. 10 only shows the statistics
of average SHAP values over the entire individual polygons.
Looking into sample-level SHAP explanations is also important
as detailed in SHAP maps [see Fig. 9(a) and (b)]. Overall,
SHAP values and maps provided reasonable attributions among
selected polygons in this study, providing a valuable tool for
identifying potential causes and features related to land subsi-
dence.

VI. DISCUSSION

The study assumed that the observed subsidence could be
explained and modeled using certain potential features within a
data-driven modeling framework. However, it is important to
note that the actual causes of subsidence are more intricate.
First, several natural processes can contribute to subsidence,
such as drought, tectonic movements, and GIA [76], [77]. For
example, prior research has shown a strong correlation between
peatland subsidence and drought conditions driven by climate
factors [37], and the exceptional drought between 2011 and 2016
has caused widespread impacts in Texas [38], [78]. Moreover,
the occurrence and magnitude of subsidence are contingent
on subsurface geological settings, including factors like the
compressibility of stratification layers. These complexities may
help explain the challenges encountered in achieving a perfect
model fit for VLM using RF in this study, as evidenced by the
outliers distributed away from the 1:1 line in Fig. 7(b).

It should be noted that the ML model may be affected, to
some extent, by the utilized data and parameter settings. First,
while this study investigated the long-term impacts of under-
ground fluid extraction (i.e., GWWD, HPRD, and HWD) on
land subsidence, the temporal difference in availability between
these datasets and the SAR data may introduce variations in
the results. Second, the adopted RF model with mostly default
parameters achieved an R2 value close to that of the optimally
tuned model. However, such a parameter choice may introduce
slight variations in the results. Furthermore, the XAI results
in this study necessitate further investigation and validation to
fully understand their implications. One specific example is
the hypothesis that the importance of DEM in the RF model
arises from increased anthropogenic activities away from the
shoreline (i.e., higher elevation values) [27]. This hypothesis
requires further exploration through the integration of additional
data sources. Additionally, the SHAPmap results need practical
validation at the sample level or in localized areas to confirm
their findings and assess their applicability to specific scenarios.
Although this study demonstrates the potential of utilizing

ML and XAI for interpreting and attributing land subsidence, it
is considered essential to combine refined InSAR data, cutting-
edge ML techniques, and additional informative features. This
is crucial for mapping a high-resolution subsidence map and

deepening our understanding in the attribution analysis. Further
development is necessary in several key aspects, which are as
follows.
1) Integrating data from both ascending and descending

tracks of SAR data from multiple missions can lead to
more accurateVLMestimateswith better spatial coverage.

2) Advanced InSAR processing methods that consider the
low coherence nature near the Texas coastlines, influenced
by factors like vegetation coverage and land–water inter-
action dynamics, should be studied [79]. It is supposed to
enhance InSAR results by expanding spatial coverage and
mitigating phase unwrapping errors, which may result in
the striping effect between subswath images, particularly
over densely vegetated areas [27].

3) It is believed that it is necessary to introduce additional
features to enhance themodel’s performance. In particular,
prioritizing efforts to collect subsurface observations is of
vital importance, including data related to compressibility,
clay thickness, and pressure changes associated with fluid
extraction [22].

4) It would be advantageous to leverage the capabilities
of other ML models, such as neural networks (NNs) to
explore the complex relationships between subsidence and
potential attributes and to effectively integrate categorical
data like geological maps and land use types. This would
enable the inclusion of a broader range of features in the
model, potentially leading to improved performance.

5) More complex ML approaches such as CNN may yield
additional advantages in regard to providing attribution
results by analyzing patterns existing in both the feature
andVLM layers from an image perspective, rather than in-
dividual samplewise attribution as conducted in this study.
To facilitate image analysis using CNN, it is essential to
utilize SBAS InSAR results and employ necessary spatial
interpolation to ensure the continuity of subsidence results
across spatial areas.

6) Creating a more detailed and large-scale groundwater
change map is believed to be helpful for comprehending
the causes of subsidence. This may involve the separation
of GWWDs related to hydrocarbon extraction from those
associated with irrigation and municipal water demands.
Moreover, obtaining spatially detailedGWWDor ground-
water level data is crucial for building reliable MLmodels
and identifying accurate contributors.

VII. CONCLUSION

This study estimated land subsidence across 47 coastal coun-
ties in Texas using the PS InSAR technique, and the VLM
results were calibrated and validated with cGNSS stations over
the study area. The differences in VLM rates between ground-
truth cGNSS and co-located InSAR results were found to be
within ±1.5 mm/yr and ±2.5 mm/yr across 65% and 86% of
all validation data used, respectively. This firmly confirmed
the validity of the obtained InSAR results. Geospatial data of
nine different features potentially contributing to subsidence
were accessed, ranging from natural terrain variations (i.e.,
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DEM, NDVI, TWI, and DTF) to anthropogenic activities (i.e.,
HPRD, HWD, GWWD, VNL, and IMPV). The estimated VLM
was modeled with the nine features under a data-driven RF
framework, and the R2 value of the optimal RF model reached
0.56, demonstrating the strong performance of the RF model.
The subsidence attribution was further analyzed based on XAI
provided by RF-based feature importance and SHAP-based
feature effect results. Both the RF-based and SHAP-related
feature importance results indicated the significance of DEM in
explainingVLMvariations, as well as the overall contribution of
subsidence from anthropogenic activities, such as hydrocarbon
extraction and GWWD. Additionally, the subsidence attribution
map, based on individual sample-level SHAPanalysis, identified
reasonable features at various VLM hotspots within the study
area. Overall, this study showcased the feasibility of identifying
features related to subsidence using ML and XAI approaches.
Future work will involve improving the performance of InSAR
estimates, incorporating additional potential features in attri-
bution analysis, and employing advanced ML models, such as
CNN.
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