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ABSTRACT: Radiative transfer (RT) is a crucial but computationally expensive process in numerical weather/climate
prediction. We develop neural networks (NN) to emulate a common RT parameterization called the Rapid Radiative
Transfer Model (RRTM), with the goal of creating a faster parameterization for the Global Forecast System (GFS) v16. In
previous work we emulated a highly simplified version of the shortwave RRTM only}excluding many predictor variables,
driven by Rapid Refresh forecasts interpolated to a consistent height grid, using only 30 sites in the Northern Hemisphere.
In this work we emulate the full shortwave and longwave RRTM}with all predictor variables, driven by GFSv16 forecasts
on the native pressure–sigma grid, using data from around the globe. We experiment with NNs of widely varying complex-
ity, including the U-net11 and U-net31 architectures and deeply supervised training, designed to ensure realistic and ac-
curate structure in gridded predictions. We evaluate the optimal shortwave NN and optimal longwave NN in great
detail}as a function of geographic location, cloud regime, and other weather types. Both NNs produce extremely reliable
heating rates and fluxes. The shortwave NN has an overall RMSE/MAE/bias of 0.14/0.08/20.002 K day21 for heating rate
and 6.3/4.3/20.1 W m22 for net flux. Analogous numbers for the longwave NN are 0.22/0.12/20.0006 K day21 and
1.07/0.76/10.01 W m22. Both NNs perform well in nearly all situations, and the shortwave (longwave) NN is 7510 (90)
times faster than the RRTM. Both will soon be tested online in the GFSv16.

SIGNIFICANCE STATEMENT: Radiative transfer is an important process for weather and climate. Accurate radia-
tive transfer models exist, such as the RRTM, but these models are computationally slow. We develop neural networks
(NNs), a type of machine learning model that is often computationally fast after training, to mimic the RRTM. We
wish to accelerate the RRTM by orders of magnitude without sacrificing much accuracy. We drive both the NNs and
RRTM with data from the GFSv16, an operational weather model, using locations around the globe during all seasons.
We show that the NNs are highly accurate and much faster than the RRTM, which suggests that the NNs could be used
to solve radiative transfer inside the GFSv16.

KEYWORDS: Longwave radiation; Radiative transfer; Shortwave radiation; Deep learning; Machine learning;
Neural networks

1. Introduction

Radiative heating is a main driver of Earth’s climate and
the only process by which Earth can exchange energy with
the rest of the universe; radiative transfer (RT) is the govern-
ing theory. In RT studies the electromagnetic spectrum is of-
ten separated into the shortwave part (wavelength � 4 mm),
which is mostly emitted by the sun, and the longwave part
(� 4 mm), which is mostly emitted by Earth}both its surface
and atmosphere.1 The global distribution of top-of-atmosphere

(TOA) incoming shortwave radiation is controlled largely by
geographic variations in the solar zenith angle and surface al-
bedo, with low (high) zenith angle and albedo at the low
(high) latitudes.2 This sets up a strong meridional gradient in
TOA incoming shortwave radiation, with higher values at
lower latitudes. The global distribution of TOA outgoing long-
wave radiation is somewhat similar, because warmer surfaces
(at lower latitudes) emit more longwave radiation than colder
surfaces. However, the longwave distribution is more compli-
cated, because longwave radiation interacts more strongly
with atmospheric gases. Overall, the low latitudes have a sur-
plus of net radiation (TOA incoming shortwave minus TOA
outgoing longwave), while the high latitudes have a deficit.
This imbalance maintains the meridional temperature gradient
we observe, as well as driving the global atmospheric circula-
tion, including a strong poleward heat flux produced by baro-
clinic waves (Wallace and Hobbs 2006).Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/JTECH-D-23-
0012.s1.

Corresponding author: Ryan Lagerquist, ralager@colostate.edu

1 The 4-mm threshold is not an exact constant; sometimes other
values are used.

2 Clouds (both liquid and ice; Tang et al. 2020) and aerosols
(Myhre et al. 2013) also play a major, though highly uncertain,
role in Earth’s shortwave radiation budget.
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RT is also crucially important for day-to-day weather pre-
diction, because it causes differential diabatic heating. In nu-
merical weather prediction (NWP), this diabatic heating is a
subgrid-scale process and is therefore parameterized by a sep-
arate RT model. The most accurate RT models are line-
by-line models (Turner et al. 2004; Mlawer and Turner 2016),
but these are far too slow for NWP. A popular compromise is
the Rapid Radiative Transfer Model (RRTM; Mlawer et al.
1997), a hybrid physical–statistical model that is nearly as ac-
curate as line-by-line models but millions of times faster. The
RRTM, like most RT models, performs one-dimensional
RT, assuming that RT occurs only in the vertical. Faster
variants}such as the RRTM for global climate models
(RRTMG; Pincus and Stevens 2013), RRTMG Parallel
(RRTMGP; Pincus et al. 2019), and RRTMG-K (Baek
2017)}are often used in NWP as well. However, the
RRTM and its variants are still computationally expen-
sive, accounting for 20%–50% of the total computing of
the host NWP model (e.g., Cotronei and Slawig 2020).
We have elected to emulate the RRTM3 because, by us-
ing more quadrature points, it is more accurate than the
RRTMG.

This has motivated a body of work on using neural net-
works (NN; Part II of Goodfellow et al. 2016), an algorithm
from machine learning (ML), to emulate RT models, dating
back to Chevallier et al. (1998). ML-based emulation of RT
and other subgrid-scale processes almost always uses NNs, so
we omit other ML algorithms from this review. The main ad-
vantage of NNs is that they can accurately model complex re-
lationships (hence “universal function approximators”; see,
e.g., Sonoda and Murata 2017) and are much faster than the
RRTM and its variants at inference time, i.e., when applying a
trained NN to predict on new data. The main disadvantage is
that they are purely statistical models and, without physical
constraints, may not generalize well to conditions outside the
range of their training data, such as future climates. Also, add-
ing predictor variables to an NN requires complete retraining.
An overall disadvantage of replacing parameterizations such
as the RRTM is that the host NWP models are very sensitive
to changes in parameterizations (Boukabara et al. 2019; Rasp
2020; Muñoz-Esparza et al. 2022). Thus, even if the RT emu-
lator has very small errors in offline testing (outside the NWP
model), during online testing (inside the NWP model) these
errors may accumulate or cause undesired feedbacks to other
components of the NWP model, degrading the quality of the
overall weather forecast. However, if successfully integrated
into an NWP model, an NN-based RT emulator can decrease
computing requirements by orders of magnitude.

The current article expands on work presented in Lagerquist
et al. (2021, henceforth L21). Differences between this work and
L21 are listed at the end of the introduction. The following re-
view focuses on recent work in RT emulation, especially work
published after L21. We divide recent work into four categories:

emulating RT in climate models, emulating RT in weather mod-
els, emulating only part of an RT model such as gas optics, and
miscellaneous.

In climate modeling, Pal et al. (2019) developed an RT em-
ulator for the superparameterized Energy Exascale Earth Sys-
tem Model (SP-E3SM) and found in online testing that the
emulator produces a similar climate to the original RT model.
Beucler et al. (2021) used climate-invariant NNs to emulate
both RT and other subgrid-scale processes in climate models.
They ensured climate invariance by rescaling three predictor
variables for the NN}temperature, humidity, and latent heat
flux}to forms that are not projected to increase with global
warming. Without rescaling, applying the trained NN to fu-
ture climates involved extrapolating (e.g., applying the NN to
temperatures higher than any seen in the training data), which
degraded performance. Beucler et al. found that rescaling al-
lows their NN to predict subgrid-scale processes well, includ-
ing RT, in a climate 8 K warmer than the climate used for
training. Belochitski and Krasnopolsky (2021) used an emula-
tor developed in 2011 for the Climate Forecast System (CFS)
and integrated it into version 16 of the Global Forecast Sys-
tem (GFSv16). They found that the emulator generalized well
between the host models without retraining}i.e., the GFSv16
with the emulator produced a similar climate to the GFSv16
with the original RRTMG parameterization. However, this suc-
cess was achieved only after changing the number of heights
and prognostic variables in the GFSv16 to match the CFS.

In weather modeling, much recent work has been done at
the Korea Meteorological Administration (KMA). Roh and
Song (2020) became the first to emulate RT at cloud-resolving
resolution, developing NNs for a 250-m version of the Weather
Research and Forecasting (WRF) Model. However, this work
was limited by focusing on a single idealized squall-line simula-
tion. Song and Roh (2021, hereafter SR21) developed a more
general RT emulator for use in the Korea Local Analysis and
Prediction System (KLAPS), an operational version of the
WRF used by the KMA. When tested online in KLAPS, the
NN produced similar instantaneous temperature and precipita-
tion fields to the original RRTMG-K parameterization, suggest-
ing that the NN may be suitable for operational use. Kim and
Song (2022, hereafter KS22) used automatic hyperparameter
tuning4 to find the best learning rate and training-batch size for
the same KLAPS application, improving the performance
of the NN further. Last, researchers at the ECMWF are cur-
rently working to integrate NN-based RT emulators into an
operational model, namely, the Integrated Forecasting Sys-
tem (Chantry et al. 2022, 2023).

Some groups have used NNs to emulate only the gas-optics
step of an RT model. Gas optics maps the physical/chemical
state of the atmosphere to a profile of spectral optical
depths, and the solver}the second and last step of an RT
model}maps the optical depths to heating rates and fluxes

3 Specifically, version 2.7.1 of the shortwave model, covering the
0.2–12.2-mm band, and version 3.3 of the longwave model, cover-
ing the 3.07–1000-mm band.

4 A hyperparameter is an NN parameter that, unlike the weights
and biases, cannot be adjusted during training. A hyperparameter
must be tuned by trial and error, i.e., training many NNs with dif-
ferent values.

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 401408

Authenticated amcgovern@ou.edu | Downloaded 06/07/24 03:25 PM UTC



(Veerman et al. 2020). Specifically, gas optics converts tem-
perature, pressure, and chemical concentrations into quanti-
ties that directly determine how much radiation is emitted,
absorbed, and scattered in different directions (Veerman
et al. 2020). Gas optics is an empirical algorithm in many RT
models, relying on observations stored in large lookup tables,
whereas the RT solver is a physical algorithm, relying on well-
known equations. Because large lookup tables are computation-
ally slow, gas optics is ripe for acceleration by NNs; because gas
optics is already empirical, acceleration by NNs does not re-
move physical knowledge from the RT model. Ukkonen et al.
(2020) emulated the gas-optics scheme in the RRTMGP and
found that at most locations on Earth, the emulator introduces
an RMSE of,0.5 Wm22 in fluxes and,0.1 K day21 in heating
rates for both the shortwave and longwave. Veerman et al.
(2020) also emulated gas optics in the RRTMGP, obtaining
similar results. Stegmann et al. (2022) emulated gas absorption
in the Community Radiative Transfer Model, which is used in
the observation operator for satellite data assimilation. Last,
Ukkonen (2022) tested the use of NNs for three different emu-
lation tasks: only the gas-optics scheme, only the reflectance-
transmission calculations in the RT solver, and the full RT
model. They found that replacing only the gas-optics scheme
leads to the most accurate emulation, followed by replacing
the full RT model. However, this study is limited by focusing
only on shortwave RT for cloudy profiles. Geiss et al. (2022)
emulated the aerosol-optics scheme of an RT model, using
NNs with novel architectures, and found that connections be-
tween nonadjacent NN layers}which are uncommon in the
literature}yielded the best performance.

NNs have additionally been used to simulate three-dimensional
RT (Meyer et al. 2022; Yang et al. 2022) and hyperspectral RT
(Le et al. 2020). Also, one study (Liu et al. 2020) has explored the
effect of NN architectural complexity on RT accuracy. They com-
pared fully connected and convolutional NNs,5 finding that con-
volutional NNs achieve slightly better performance but not
enough to justify the added computational cost. However, they
focused only on longwave RT in clear-sky conditions, and their
errors were quite large (e.g., heating-rate errors often ..1 K
day21 near the surface). L21 explored U-net (Ronneberger et al.
2015) and U-net11 models (Zhou et al. 2020), convolutional
NNs designed for image-to-image translation. In offline evalua-
tion, they found that U-net11 models outperform fully con-
nected NNs in general and outperform traditional U-nets for
profiles with multilayer cloud, where RT is the most complex. See
their supplemental section Cd for this architectural comparison.

In this work we use NNs}specifically, the U-net11 and
U-net31 architectures}to emulate the full RRTM. “Full”
means that we emulate everything: both gas optics and the
RT solver, for both the shortwave and longwave, including all

predictor variables. This contrasts with L21, where we emu-
lated a simplified shortwave RRTM without aerosols, trace
gases, or information on the particle size distribution (PSD)
of hydrometeors. Our eventual aim is to integrate the NN-
based emulators into the GFSv16, a global model with hybrid
pressure–sigma coordinates in the vertical. Thus, we train the
NNs with GFSv16 data from locations around the globe on
the native pressure–sigma grid}in contrast to L21, we trained
with data from 30 sites in the Northern Hemisphere on a stan-
dard height grid.

2. Data

This section discusses predictor (input) variables and target
(output) variables. The RRTM and the NNs we use to emu-
late the RRTM have the same target variables and mostly the
same predictor variables; the NNs have two extra predictor
variables, as discussed in section 2a. Most predictor variables
come from the GFSv16, but some are synthetic, because they
are difficult to observe and not available in the GFSv16 out-
put files. Because the NNs are built to emulate the RRTM,
target variables produced by the RRTM are considered
ground truth}“labels” in ML terminology.

a. GFSv16-based predictors

The GFSv16 is a global, nonhydrostatic, operational model
with 0.258 horizontal spacing and 127 vertical levels in hybrid
pressure–sigma coordinates, extending to the mesopause at
;80 km above mean sea level.6 We have obtained 0000 UTC
model runs from the National Environmental Security Com-
puting Center’s (NESCC) High-Performance Storage Sys-
tem (HPSS). The HPSS archive contains most days from
1 September 2018 to 23 December 2020 and forecast lead
times of {0, 6, 12, 18, 24, 30, 36} h. We extract 6-, 12-, 18-,
24-, 30-, and 36-h forecast profiles (columns) from locations
around the globe. Specifically, for each model solution (i.e.,
each combination of initialization time and valid time), we
randomly select 4000 grid points from the global grid. We
extract all predictor variables used by the RRTM that are in
GFSv16 output files, listed in Table 1. We also extract two
extra variables}the height thickness and pressure thickness
of each layer}for use by the NNs but not the RRTM. For
the work in L21, where all profiles have the same physical
height grid (i.e., the kth pixel always corresponds to the
same height in meters), the thickness variables were not
necessary. But for the current work, where all profiles have
a different physical height grid due to the hybrid coordi-
nates, we found that the thickness variables improve RT es-
timation by the NNs. These variables are important because
they tell the NNs how much “stuff” is in each layer}i.e.,
how much air there is to heat and how many other mole-
cules there are to interact with radiation, which cannot be
determined from molecular concentrations alone.

5 Fully connected (or “dense”) NNs treat the predictor variables
as independent scalars, while convolutional NNs treat the predic-
tors as images. Thus, convolutional NNs can leverage spatial struc-
tures in gridded data, while fully connected NNs cannot. While
convolutional NNs are typically applied to 2D or 3D images, they
can be applied just as easily to 1D “images”}such as the vertical
profiles in this study}and leverage spatial structures therein.

6 See 2021 update here: https://www.emc.ncep.noaa.gov/emc/
pages/numerical_forecast_systems/gfs/documentation.php.
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b. Synthetic predictors

Predictors not in GFSv16 output files are listed in Table 2.
We create synthetic data for these predictors, which fall into
three categories: particle sizes, trace gases, and aerosols.

1) PARTICLE SIZES

The two relevant variables are ice effective radius (riceeff) and
liquid effective radius (rliqeff), both summaries of the PSD
(Mitchell et al. 2011). To create a synthetic profile of riceeff , we
apply the following equation from Mishra et al. (2014, their
Fig. 6b) independently to each height in the profile:

riceeff 5 86:73 mm 1 (1:07 mm 8C21)T, (1)

where T is the temperature (8C) and each height has a differ-
ent temperature (Fig. 1a). After Eq. (1), we apply two types
of noise to the profile: bulk noise, which shifts the whole

profile to higher or lower values, and structure noise, which
changes the structure of the profile (Fig. 1b). For bulk noise, we
multiply the whole riceeff profile by 11 eb, where eb is a random var-
iable drawn from a normal distribution with mean 5 0 and stan-
dard deviation 5 0.5, denoted as N (0, 0:5). In other words, the
standard deviation of bulk noise is 50% of the value generated by
Eq. (1). For structure noise, we multiply the riceeff value at every
height by 1 1 es, where es is drawn anew at every height from
N (0, 0:05). After adding noise, we bound riceeff values to the range
[17.18, 65.33] mm, which is the same as bounding temperature to
[265,220]8C, the range of validity for Eq. (1). See Fig. 1c.

To create a synthetic profile of rliqeff, we start with the distri-
bution discovered by Miles et al. (2000). They found that rliqeff
roughly follows the distribution N (6, 1)mm over land and
N (9:5, 1:2)mm over ocean. See Fig. 1d. However, using this
information alone would lead to constant rliqeff profiles, which
are unrealistic. Thus, we add structure noise to each profile,
using the same method as for riceeff . See Fig. 1e.

TABLE 1. Description of GFSv16-based predictor variables. “Vector?” asks whether the variable is a profile or a scalar, and
“AGL” 5 above ground level. Downward LWP at height z is LWC integrated from the top of the profile down to z, and upward
LWP at height z is LWC integrated from the bottom of the profile up to z. The definitions of downward IWP, upward IWP,
downward WVP, and upward WVP are analogous.

Variable Units
Predictor for

shortwave RT?
Predictor for
longwave RT? Vector?

Solar zenith angle 8 �

Surface albedo } �

Surface temperature K �

Surface emissivity } �

Temperature K � � �

Pressure Pa � � �

Specific humidity kg kg 21 � � �

Relative humidity } � � �

Liquid water content (LWC) kg m23 � � �

Ice water content (LWC) kg m23 � � �

Downward liquid water path (LWP) kg m22 � � �

Downward ice water path (IWP) kg m22 � � �

Downward water vapor path (WVP) kg m22 � � �

Upward LWP kg m22 � � �

Upward IWP kg m22 � � �

Upward WVP kg m22 � � �

O3 mixing ratio kg kg21 � � �

Height m AGL � � �

Height thickness m � � �

Pressure thickness Pa � � �

TABLE 2. Description of synthetic predictor variables.

Variable Units
Predictor for

shortwave RT?
Predictor for
longwave RT? Vector?

Aerosol single-scattering albedo } �

Aerosol asymmetry parameter } �

Aerosol extinction coefficient m21 � �

Liquid effective radius m � � �

Ice effective radius m � � �

N2O concentration ppmv � � �

CH4 concentration ppmv � � �

CO2 concentration ppmv � � �
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2) TRACE GASES

For trace gases not in the GFSv16 output files}N2O, CH4,

and CO2}we use canonical profiles provided by Anderson
et al. (1986). There is one canonical profile for each gas and
each standard atmosphere, the latter defined in Table 3. For
example, the five canonical N2O profiles are shown in Fig. 2a.
As for riceeff , we add both bulk and structure noise to each pro-
file of trace gas concentrations. We use the same noise distri-
butions as for riceeff . See Fig. 2b.

Note that the values provided in Anderson et al. (1986) are
outdated, corresponding to a past climate. However, by

adding noise we sample a wide range of atmospheric condi-
tions, corresponding to both present-day and hypothetical fu-
ture climates. For example, online supplemental Fig. S3
shows that our dataset includes many CO2 concentrations
well above the present-day value of;412 ppm.

3) AEROSOLS

Due to its complexity, we have relegated our method for
creating synthetic aerosol variables}single-scattering albedo
(SSA), asymmetry parameter, and extinction coefficient}to
supplemental section 1.

c. Target variables

We run the shortwave and longwave RRTM separately for
each profile. The target variables are those needed by an NWP
model from its embedded RT model: a profile of heating rates
(HR), surface downwelling flux (Fsfc

down), top-of-atmosphere up-
welling flux (FTOA

up ), and net flux (Fnet). All four of these varia-
bles have both a shortwave and a longwave version. In machine
learning the goal is often to improve accuracy, but our goal is to
improve efficiency}i.e., to accelerate the RRTM}while emu-
lating it as faithfully as possible. This means that we treat the
RRTM as a perfect model, considering its HRs and fluxes to be
the correct answers. Although the RRTM is imperfect, its errors
are quite small, at less than 0.1 K day21 for HRs and less than
1 Wm22 for fluxes (Iacono et al. 2008).

FIG. 1. Procedure for creating synthetic profiles of (a)–(c) ice effective radius and (d),(e) liquid effective radius.

TABLE 3. Definition of standard atmospheres. The categorization
is mutually exclusive and collectively exhaustive, i.e., every profile is
assigned to exactly one of the five standard atmospheres.

Standard atmosphere Months Latitudes

Midlatitude summer May–October [20, 65]8N
Midlatitude summer November–April [20, 65]8S
Midlatitude winter November–April [20, 65]8N
Midlatitude winter May–October [20, 65]8S
Polar summer May–October [65, 90]8N
Polar summer November–April [65, 90]8S
Polar winter November–April [65, 90]8N
Polar winter May–October [65, 90]8S
Tropical All [220, 20]8N
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d. Preprocessing

We apply two types of preprocessing to the data: splitting
and normalization. As in L21, we use isotonic regression (IR)
to bias correct the NNs, which requires a separate training
set. Thus, we split the data into four temporally independent
subsets: NN training, IR training, validation, and testing
(Table 4). Each subset covers locations around the globe dur-
ing all seasons. For normalization, we use the same methods
described in section 3b of L21, except that we do not normal-
ize any target variables. In L21 we normalized the flux varia-
bles, but we have since found that this has a deleterious effect
on the quality of NN predictions.

3. Deep learning methods

This section provides a minimal background on the NN ar-
chitectures used in L21, followed by a more extensive back-
ground on the architectures new to the current work, and
finally information on the loss functions used to train NNs.

a. U-net and U-net11 without deep supervision

L21 considered two NN architectures, namely, the U-net and
U-net11, for shortwave RT. They found that the U-net11

outperforms the U-net in situations with multilayer cloud
(their supplemental section Cd), which are the most com-
plex situations for RT and also vitally important for
weather/climate prediction. In this article we consider the
U-net11 architecture and a new architecture called U-net31.
L21 contains a detailed background on the U-net and U-net11

(their section 2), and we attempt to reproduce as little of this
background as possible}only that which is necessary for under-
standing the current article.

The U-net (Ronneberger et al. 2015) is a type of NN de-
signed for making predictions on a spatial grid, often called
“image-to-image translation” in the ML literature. U-nets are
typically applied to images with two or three spatial dimen-
sions, but in our case the “images” are vertical profiles, con-
taining only one spatial dimension. The task is to translate a
127 3 M image of predictors (M, the number of variables, is

FIG. 2. Procedure for creating synthetic profiles of trace gas concentration}in this example, N2O concentration.

TABLE 4. Partitioning of data into temporally independent subsets. “SW” 5 shortwave; “LW” 5 longwave; and “sample size” 5 number
of profiles. SW and LW sample sizes are different because the SW radiation scheme (RRTM or NN-based emulator) is not run when the sun
is below the horizon, i.e., when solar zenith angle . 908. Also, “number of days” Þ length of “time period,” because some days are missing
from the archive.

Data subset Time period
No. of
days

SW sample
size

LW sample
size

NN training 1 Sep 2018–21 Dec 2019 237 873 086 3 503 226
IR training 24–30 Dec 2019, 3–9 Feb 2020, 15–21 Mar 2020, 26 Apr–2 May 2020, 7–13

Jun 2020, 18–24 Jul 2020, 28 Aug–3 Sep 2020, 10–16 Oct 2020, 21–27
Nov 2020

63 213 275 939 181

Validation 2–15 Jan 2020, 12–25 Feb 2020, 24 Mar–6 Apr 2020, 5–18 May 2020,
16–29 Jun 2020, 27 Jul–9 Aug 2020, 6–19 Sep 2020, 19 Oct–2 Nov 2020,
30 Nov–13 Dec 2020

126 479 806 1 934 460

Testing 18–31 Jan 2020, 28 Feb–12 Mar 2020, 9–22 Apr 2020, 22 May–4 Jun 2020,
2–15 Jul 2020, 12–25 Aug 2020, 22 Sep–7 Oct 2020, 5–18 Nov 2020,
16–23 Dec 2020

120 474 726 1 929 078
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different for longwave versus shortwave RT) into a 127 3 1
image of HRs.7

U-nets contain four key components (Fig. 3a): convolu-
tional layers, pooling (downsampling) layers, upsampling
layers, and skip connections. The role of the convolutional
layers is to detect spatial and multivariate features}i.e., fea-
tures including many pixels and predictor variables}using
convolutional filters with weights optimized during training to
detect the most useful features for prediction. The role of the
pooling and upsampling layers is to change the resolution of
the feature maps}a “feature map” being either the original
or a transformed version of the predictors}so that convolu-
tional layers at different depths in the network can detect
features at different spatial scales. The role of the skip con-
nections is to preserve high-resolution information}i.e., to
carry through the network high-resolution information that

has not been degraded by downsampling, a lossy operation
that cannot be fully reversed by upsampling. The left side of
the U-shaped network (Fig. 3a) is the encoder side, where the
predictors are converted to feature maps with decreasing spa-
tial resolution (fewer height levels) and increasing spectral
resolution (more channels). The right side is the decoder side,
where feature maps are upsampled and converted to the final
prediction}an image of HRs. To make our networks also
predict the three flux variables, which are scalars and not im-
ages, we attach fully connected layers to the deepest encoder
layer, as shown in Fig. 3a. These are the layers used in fully
connected NNs (chapter 6 of Goodfellow et al. 2016), which
are still a popular choice for scalar data.

The U-net11 (Zhou et al. 2020) contains more skip con-
nections than the U-net, which more effectively preserve
small-scale features such as cloud boundaries, leading to bet-
ter predictions for multilayer cloud in L21. The U-net31
(Huang et al. 2020) contains even more skip connections than
the U-net11, so we hypothesize that the U-net31 will per-
form even better in situations with multilayer cloud and

FIG. 3. Sample architectures for (a) U-net and (b) U-net11. Labels F , G, and H are referred to in the main text.
Actual models used in this study differ in the number of channels and depth (number of encoder/decoder layers, i.e.,
number of horizontal rows in this figure). For each set of feature maps (green box), the two dimensions are number of
heights and channels, respectively. When the U-net11 is trained without deep supervision, all feature maps labeled
“pseudo-HRs” go away, along with the arrows pointing to them. In the remaining discussion, letK be the number of con-
volutional layers per block, a user-chosen hyperparameter. Each orange “convolution” arrow corresponds to K convolu-
tional layers with three-pixel filters; each “downsampling” arrow corresponds to K convolutional layers with three-pixel
filters, followed by a maximum-pooling layer with a two-pixel window; each “upsampling” arrow corresponds to an up-
sampling layer with a two-pixel window, followed by a convolutional layer with three-pixel filters; each “skip connection”
arrow includes K convolutional layers with three-pixel filters; each black “convolution” arrow corresponds to one convo-
lutional layer with one-pixel filters; and last, each “fully connected layer” arrow corresponds to one fully connected layer.

7 There is a second learning task, which involves image-to-scalar
translation}namely, to translate the same 127 3 M image of pre-
dictors into three flux components.
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perhaps overall. Also, the U-net11 and U-net31 may be
trained with deep supervision, which was not used in L21.

b. U-net11 with deep supervision

When an NN is trained without deep supervision, the loss
function optimized by the NN compares the ground truth
(here, a length-127 profile of HRs) only to the final prediction,
i.e., output from the last NN layer. With deep supervision, the
ground truth is also compared to intermediate representa-
tions, i.e., layer outputs that are ultimately transformed to the
final prediction. Zhou et al. (2020) found that deep supervi-
sion improves image segmentation for phenomena that occur
at different scales, such as lung nodules. We hypothesize
that deep supervision will also improve RT estimation, since
relevant features for RT estimation also occur at different
scales}e.g., cloud depths range from O(10)m to O(10) km.

Figure 3b shows a sample U-net11 architecture with and
without deep supervision. The only difference is that deep su-
pervision requires extra convolutional layers}those producing
pseudo-HRs}to transform the intermediate representations
from many channels to one channel. With deep supervision, all
four outputs (the three pseudo-HR profiles and the actual-HR
profile) are produced; without deep supervision, only one out-
put (the actual-HR profile) is produced. For details on the loss
function, which compares both pseudo-HRs and actual HRs to

the ground truth, see section 3d. Note that deep supervision is
applied only to the spatial outputs (HRs) and not the scalar out-
puts (fluxes). Deep supervision was invented for spatial data,
and there is no clear analog for scalars.

c. U-net31 with and without deep supervision

The U-net31 has one property that distinguishes it from
the U-net11, namely, full-scale skip connections. Full-scale
skip connections pass information from all scales to each de-
coder layer, whereas skip connections in the U-net11 pass
information from only two scales to each decoder layer. For
example, in the U-net11 shown in Fig. 3b, the feature maps
labeled F combine information from the same scale (other
feature maps with 31 heights) and the next-largest scale (fea-
ture maps with 15 heights). But in the U-net31 shown in Fig. 4a,
the feature maps labeled F combine information from equal and
smaller scales (feature maps with $31 heights) on the encoder
side, as well as information from larger scales (feature maps with
,31 heights) on the decoder side.

Stated differently, full-scale skip connections more effec-
tively carry high-resolution information through the network.
For example, the feature maps labeled G (in both Figs. 3b and
4a) contain information at the smallest scale that has not been
degraded by downsampling. In the U-net11 (Fig. 3b), skip
connections carry this information to only one level on the

FIG. 4. Sample architectures for U-net31 (a) without and (b) with deep supervision. Labels F and G are referred to
in the main text. Actual models used in this study differ in the number of channels and depth. Formatting is explained
in the caption of Fig. 3, except that the solid black arrows are slightly different in this figure. The solid black arrow
pointing to actual HRs (top right) corresponds to one convolutional layer with one-pixel filters, while a solid black ar-
row pointing to pseudo-HRs corresponds to an upsampling layer followed by a convolutional layer with one-pixel
filters.
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decoder side, namely, the feature maps labeled H. Other lev-
els on the decoder side cannot access the undegraded high-
resolution information in G. But in the U-net31 (Fig. 4a),
full-scale skip connections carry the information in G to all
levels on the decoder side, allowing this information to be
used in decoded feature maps at all resolutions.

Figures 4a and 4b show how to add deep supervision to the
U-net31 architecture. For the U-net31, deep supervision re-
quires two architecture changes. The first is extra convolutional
layers to reduce the number of channels to one (pseudo-HR),
as in the U-net11. The second is extra upsampling layers to in-
crease the number of heights to 127.

d. Loss function

In machine learning, the standard loss function for regression
tasks}where the model predicts a continuous value instead of a
category}is the mean squared error (MSE). However, in L21
we found that using the MSE causes two problems. First, the
MSE does not adequately emphasize large HRs, which are rare
but important for weather/climate prediction, causing the NN to
dramatically underpredict large HRs. Second, the MSE does not
ensure that the following conservation law is respected:

F(b)
net 5 Fsfc(b)

down 2 FTOA
up

(b), (2)

where the superscript (b) denotes that all three variables
must come from the same band, either shortwave or long-
wave. To remedy the first problem, we used the dual-
weighted MSE (DWMSE) for HRs, which emphasizes cases
with a large actual or predicted HR, “nudging” the NN to
predict these cases correctly. See section 3c(2) of L21. To
remedy the second problem, we used the basic MSE for
flux variables but enforced the law of Eq. (2) inside the NN.
See section 3c(1) of L21.

Because L21 is concerned with shortwave RT only, the pre-
sent work requires two updates to the loss function. First, the
weight in the DWMSE becomes the maximum of the absolute
actual and predicted HRs, because although shortwave HR is
always $0, longwave HR may be negative (i.e., longwave
cooling). Second, the flux law must be applied to both short-
wave and longwave RT. The total loss function becomes the
following:

L(b) 5
1

NH
∑
N

i51
∑
H

j51
max{|r(b)ij |, |r̂(b)ij |}[r(b)ij 2 r̂(b)ij ]2

1
1

NM
∑
N

i51
∑
M

k51
[F(b)

ik 2 F̂
(b)
ik ]2, (3)

where N is the number of examples,H5 127 is the number of
heights per example, r(b)ij is the actual HR for the jth height in
the ith example, r̂(b)ij is the corresponding prediction, M 5 3 is
the number of flux components, F(b)

ik is the actual value of the
kth flux component in the ith example, and F̂

(b)
ik is the corre-

sponding prediction. There is one version of Eq. (3) for the
shortwave, where the superscript (b) is SW, and one version
for the longwave.

For NNs without deep supervision, Eq. (3) is the whole
story. However, for NNs with deep supervision, the loss func-
tion includes extra terms for the pseudo-HRs. Specifically, the
loss function becomes

L(b)
deep-sup 5 L(b) 1

1
PNH

∑
P

p51
∑
N

i51
∑
H

j51
max{|r(b)ij |, |r̂(b)pij |}[r(b)ij 2 r̂(b)pij ]2,

(4)

where P is the number of layers with deep supervision and
thus the number of pseudo-HR profiles, and r̂(b)pij is the pseudo-
HR produced by the pth layer with deep supervision for the
jth height in the ith example.

4. Experiment with neural networks of
varying complexity

This section describes a hyperparameter-tuning experiment
used to find the optimal level of NN complexity for estimating
RT. We tune four hyperparameters: the NN type (U-net11

or U-net31 with or without deep supervision), NN depth, NN
width, and spectral complexity. NN depth is the number of
encoder/decoder levels (e.g., all architectures shown in Figs. 3
and 4 have a depth of 4), NN width is the number of convolu-
tional layers per set (K in the caption of Fig. 3), and spectral
complexity is the number of feature maps produced by the
first set of convolutional layers (e.g., all architectures shown
in Figs. 3 and 4 have a spectral complexity of 64). Following
common practice, we always double the number of feature
maps with each downsampling operation. For example, Fig. 3
shows that with a depth of 4 and spectral complexity of 64,
the deepest set of feature maps (i.e., that with the coarsest
spatial resolution, designed to capture the largest-scale fea-
tures) has 1024 feature maps. We chose to experiment with
NN type so that we could try new methods (deep supervision
and U-net31) from the ML literature. We chose to experi-
ment with the other three hyperparameters because they
strongly control overall NN complexity, i.e., the number of
trainable weights. As shown in supplemental Figs. S10 and
S18, the number of trainable weights varies from O(105) to
O(108:5).

Table 5 lists the exact values attempted for each hyperpara-
meter. We perform a grid search (section 11.4.3 of Goodfellow
et al. 2016), training one NN for every combination of values,
which leads to 4 3 3 3 4 3 6 5 288 NNs for each band (short-
wave and longwave). Most constant hyperparameters (those

TABLE 5. Experimental hyperparameters.

Hyperparameter Values attempted

NN type U-net11 without deep supervision,
U-net11 with deep supervision,
U-net31 without deep supervision,
U-net31 with deep supervision,

NN depth 3, 4, 5
NN width 1, 2, 3, 4
Spectral complexity 4, 8, 16, 32, 64, 128
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not varied during the experiment) are illustrated in Figs. 3 and
4. Constants not included in these figures are documented in
supplemental Table S3.

a. Evaluation methods used for model selection

Model evaluation is a multifaceted problem, and there are
many possible ways to choose the best model. Most hyper-
parameter experiments optimize one evaluation metric, often
the loss function used for training. However, we care about sev-
eral aspects of model performance. In previous work we have
noticed that even when overall performance is acceptable, the
following regime-based errors are unacceptably high:

• HR errors near the surface, especially in the longwave;
• flux and HR errors in profiles with multilayer liquid-only
cloud, in both the shortwave and longwave;

• longwave HR errors near the surface in profiles with fog,
i.e., cloud reaching the lowest grid level.

Thus, we use the metrics listed in Table 6, computed on val-
idation data only, for model selection. Our choice of the best
model is based on a subjective combination of these metrics.

b. Evaluation methods used for best models

As in L21, we evaluate the best models (shortwave and long-
wave) on the testing dataset as a whole and on meaningful sub-
sets of the testing data. We split the testing data in four ways.

First, we split by cloud regime, because clouds add immense
complexity to RT, making the process difficult to emulate,
and can result in extreme HRs (large absolute values in both
the shortwave and longwave), which are important for weather
and climate. For a more detailed explanation of these effects,
see section 5a of L21. We focus on liquid-only cloud, which we
have found to have a greater effect on RT than ice-only, mixed-
phase, or any-phase cloud. We define a liquid-only cloud layer
as a contiguous set of model heights with liquid water content
(LWC). 0 g m23, total liquid water path$ 25 g m22, and total
ice water path 5 0 g m22. As in L21, we define three cloud re-
gimes, which are mutually exclusive and collectively exhaustive
(MECE): no cloud, single-layer cloud, and multilayer cloud.
For the longwave we add a fourth cloud regime}fog}defined
as a cloud reaching the surface (i.e., LWC. 0 g m23 at the low-
est model height). Thus, cloud regimes for the longwave are not
MECE, as every profile with fog is also a profile with single- or
multilayer cloud. We include fog because it causes large long-
wave errors near the surface.

Second, we split the testing data by geographic location,
specifically, on a global latitude–longitude grid with 58 spac-
ing. This spacing highlights large RT errors due to features
such as high terrain and persistent stratocumulus cloud. Third,
for the shortwave model only, we split the testing data by
aerosol optical depth (AOD) and solar zenith angle (SZA).
In earlier work we found that shortwave errors increase with
higher AOD, which adds complexity to RT, and lower SZA,8

which increases HRs and the frequency of extreme HRs.
Fourth, for the longwave model only, we split the testing data
by near-surface thermodynamics, specifically, temperature
lapse rate (Gsfc

T ) and humidity lapse rate (Gsfc
q ). These are de-

fined as

Gsfc
T 5

T1 2 T2

z2 2 z1
,

Gsfc
q 5

q1 2 q2
z2 2 z1

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where T1 and T2 are temperature (K) at the lowest and
second-lowest model heights (sigma levels), respectively; q1
and q2 are specific humidity (kg kg21) at the same heights;
and z1 and z2 are the corresponding physical heights (m
AGL). Longwave RT near the surface is highly sensitive to
the near-surface temperature and moisture profiles (Schmetz
1989). We also experimented with splitting by surface temper-
ature and humidity, instead of their near-surface lapse rates,
but found that lapse rates have a greater impact on longwave-
RT errors.

We use several evaluation metrics and plotting tools, most
of which are familiar to atmospheric scientists, such as the
mean absolute error and bias (mean signed error). We also
use the attributes diagram, which is a reliability curve with
added reference lines (Hsu and Murphy 1986). However, we
have adapted this plot for regression (predicting a continuous
value, like flux in watts per square meter) instead of their
typical use, which is binary classification (predicting the
probability of an event). For readers interested in the de-
tails, see section 5a of L21. You can interpret the regression-
and classification-based version of the attributes diagram
in roughly the same way: the curve should be close to the

TABLE 6. Metrics used for model selection. “Column-averaged” 5 averaged over all 127 heights; “near-surface” 5 at the lowest
grid level, which averages 21 m AGL; and “all-flux RMSE” is the square root of the MSE averaged over all three flux variables.
Metrics computed on fog profiles are used only to evaluate longwave models, not shortwave models.

Set of profiles Metrics used

All Column-averaged HR DWMSE, column-averaged HR bias, near-surface HR
DWMSE, near-surface HR bias, all-flux RMSE, net-flux RMSE, net-flux bias

Profiles with multilayer liquid-only cloud Column-averaged HR DWMSE, column-averaged HR bias, near-surface HR
DWMSE, near-surface HR bias, all-flux RMSE, net-flux RMSE, net-flux bias

Profiles with fog (longwave only) Near-surface HR DWMSE, near-surface HR bias, all-flux RMSE, net-flux
RMSE, net-flux bias

8 Lower SZA means that the sun is higher above the horizon.
Specifically, SZA is 08 when the sun is directly overhead, and 908
when the sun is on the horizon.
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diagonal reference line, indicating perfect reliability, and in-
side the shaded area, indicating a positive skill score. For
the regression-based attributes diagram, this is the MSE
skill score. A positive MSE skill score means that the NN
model has a better MSE than the climatological model. The
climatological model is a simple model that always predicts
the climatological mean, estimated as the average in the
training data. For example, if the mean net flux in the train-
ing data is 100 W m22, the climatological model will predict
a net flux of 100 W m22 for every case.

5. Results and discussion

We start with a brief discussion of the hyperparameter ex-
periment (used to determine the best models), followed by a
comparison of computing time between the RRTM and our
NN-based emulators, then an in-depth discussion of the best
shortwave model and best longwave model.

a. Hyperparameter experiment

Results are discussed briefly here and at length in supple-
mental section 3. For both shortwave and longwave RT, the
most important hyperparameter is spectral complexity, while
NN depth and width are of secondary importance. The better
NNs have large spectral complexity, large depth, and small
width. In other words, the better NNs are deep and narrow
with many feature maps. For the other hyperparameter}NN
type}we hypothesized that the U-net31 architecture would
outperform U-net11 (section 3a) and that NNs trained with
deep supervision would outperform those with no deep super-
vision (section 3b). We are unable to confirm either hypothe-
sis}deep supervision leads to worse performance, and
architecture has little effect on performance. The best short-
wave model}based on our subjective assessment of the met-
rics listed in Table 6}is a U-net11 with no deep supervision,
depth of 3, width of 1, and spectral complexity of 128, leading
to 107.52 trainable weights. The best longwave model}again
based on Table 6}is a U-net31 with no deep supervision,
depth of 5, width of 1, and spectral complexity of 64, leading
to 107.28 trainable weights. Therefore, the best models are on
the high end of the overall-complexity range in our experi-
ment, with number of weights ranging from O(105) to
O(108:5). This is because spectral complexity is the main con-
trol on both performance (allowing the models to represent
and leverage many features of the input data) and number of
weights (see supplemental Figs. S10 and S18).

b. Computing time

The original motivation for NNs was to decrease computing
time. To this point, we have compared the wall-clock time of
the RRTM and best NNs when run on the same hardware}i.e.,
one node with 24 CPUs and no GPUs}in stand-alone mode.
See Table 7 for details. In summary, the shortwave RRTM
(NN) processes 0.11 (843) profiles per second, resulting in a
speedup factor of 7510; while the longwave RRTM (NN) pro-
cesses 5.13 (460) profiles per second, resulting in a speedup fac-
tor of 90. Thus, we have accelerated the RRTM by orders of
magnitude.

c. Best shortwave model

Figure 5 shows the overall performance}i.e., averaged
over the whole testing set}of the best shortwave model. For
all flux variables (Figs. 5a–c), the model is almost perfectly re-
liable (see overlap between reliability curve and diagonal ref-
erence line) and almost perfectly reproduces the observed
distribution (see similarity between the two histograms).
However, the model has slight conditional biases, namely, an
overprediction of ;10 W m22 for the highest Fsfc

down and FTOA
up

predictions. In other words, when the model predicts an ex-
tremely large downwelling or upwelling flux, the prediction is
slightly too extreme. However, these two biases offset in the
calculation of Fnet [Eq. (2)], resulting in near-zero bias for all pre-
dicted Fnet values. The model has an absolute bias, 0.1 K day21

for HR at every height (Fig. 5d); this suggests that it could be sta-
bly integrated into an NWP system such as the GFS (Iacono et al.
2008), as systematic errors for an RT parameterization are much
more important than random errors (Pincus et al. 2003). The
model has a substantially larger MAE than bias for HR at every
height (Figs. 5d,e), which indicates that most of the model’s HR
error is random instead of systematic. Both bias and MAE are
largest in the upper stratosphere, where shortwave RT is dom-
inated by O3 absorption. The bias and MAE profiles in L21
were similar}even with a dataset that used a constant profile
for trace gases such as O3}which suggests that O3 absorption
is a fundamentally difficult process to emulate. Since the aver-
age HR in the upper stratosphere is large (e.g., 21.6 K day21

at 47 km AGL), the climatological model also has a large
MAE here, so the NN’s spike in MAE translates to only a
small dip in its MAE skill score (Fig. 5f). Last, the attributes di-
agram for HR (Fig. 5g) tells a similar story to those for the flux
variables: the model is almost perfectly reliable and almost per-
fectly reproduces the observed distribution. However, the
model has a slight positive bias (,,1 K day21) for the highest
predicted HR values.

Supplemental Figs. S22 and S23 are analogous to Fig. 5 but
only for extreme cases}i.e., the 3% of testing profiles with
the greatest height-maximum and height-averaged HR, re-
spectively. Although errors are expectedly higher for the ex-
treme cases, HR and flux predictions are still almost perfectly
reliable and absolute HR bias is well below 0.1 K day21 at al-
most every height.

TABLE 7. Timing tests for the RRTM and NN-based emulators,
based on the testing dataset. All computing times are given in wall-
clock time. Because the RRTM is slower for cloudy profiles and
faster for cloud-free profiles, the “time per profile” reported is an
average over all atmospheric conditions represented in the dataset.
Meanwhile, the NNs have constant computing time for each profile,
regardless of atmospheric conditions.

Model
No. of
profiles

Total
time (s)

Time per
profile (s)

Shortwave RRTM 472 412 4 207 793 0.11
Shortwave NN 474 726 563 843
Longwave RRTM 1894 239 369 363 5.13
Longwave NN 1 929 078 4194 460
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Figure 6 shows the model’s performance as a function of
liquid-only cloud regime. Performance for other cloud phases
(ice only, mixed phase, and any phase) is shown in supple-
mental Figs. S19–S21. The attributes diagram for each flux
variable (Figs. 6a–c) tells a similar story to its cloud-agnostic
analog (Figs. 5a–c): slight conditional bias for extreme predic-
tions of Fsfc

down and FTOA
up but with no absolute bias exceeding

20 W m22. The following discussion of error profiles for HR
(Figs. 6d–f) focuses on the troposphere (below;15 km AGL),
where shortwave heating is dominated by cloud rather than
O3. In the bottom few 100 m, errors are largest for clear-sky
profiles and smallest for cloudy profiles, because in cloudy
profiles most of the incoming solar radiation has already been
absorbed by clouds above, which leaves little shortwave

radiation in the bottom few 100 m, thus making shortwave RT
an easier problem here. Meanwhile, in the troposphere above
;1 km, errors are smallest for clear-sky profiles and largest for
cloudy profiles, because this is the region where most clouds
and their associated extreme HRs occur. Also, errors for mul-
tilayer cloud are greater than for single-layer cloud, because
multilayer cloud produces nonlocal effects that are difficult to
emulate. For example, consider a profile with two clouds of
equal thickness and structure (i.e., equal series of LWC
values), one based at 10 km AGL and the other based at 1 km
AGL. The upper cloud will absorb most of the incoming solar
radiation, leaving little shortwave radiation to be absorbed by
the lower cloud; thus, the upper cloud will cause much larger
HRs, even though the two clouds are identical except for

FIG. 5. Performance of best shortwave model on testing data. (a)–(c) Attributes dia-
gram for each flux variable. The orange curve is the reliability curve; the diagonal gray
line is the perfect-reliability line; the vertical gray line is the climatology line; the hori-
zontal gray line is the no-resolution line; the blue shading is the positive-skill area, where
MSE skill score . 0; and the inset histograms show the distributions of predicted and
observed values. (d)–(f) Profiles of bias, MAE, and MAE skill score for HR. (g) Attrib-
utes diagram for HR, including all heights. In all panels, the orange line represents the
mean and the lighter shading around it represents the 99% confidence interval, both es-
timated from a bootstrapping test with 1000 replicates. However, in some panels the
99% confidence interval is narrower than the line representing the mean and is there-
fore invisible.
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location. This is a nonlocal effect, as the two clouds are far
(more than a few grid cells) apart. Last, the attributes dia-
grams for HR (Figs. 6g–i) tell a similar story to their cloud-
agnostic analog (Fig. 5g): an overall positive bias for the
highest predicted HR values and near-zero bias for all other
values. However, this positive bias is largest for multilayer
cloud (up to ;2 K day21)}likely due to a small sample size
for the highest predicted HR values, indicated by the wide
confidence intervals in Fig. 6i.

Figure 7 shows the model’s performance as a function of lo-
cation. The column-averaged MAE for HR (Fig. 7a) is mostly
between9 0.07 and 0.11 K day21; it exceeds 0.11 K day21 at a
few locations, notably the Tibetan Plateau and east Antarctica.

FIG. 6. Performance of best shortwave model on testing data, separated by liquid-only cloud regime. (a)–(c) Attributes diagram (format-
ting explained in the caption of Fig. 5) for each flux variable. The inset histograms are based only on cases with multilayer cloud.
(d)–(f) Profiles of bias, MAE, and MAE skill score for HR. (g) Attributes diagram for HR, including all heights, only for cases with no
cloud (89.67% of the testing data). (h) As in (g), but for single-layer cloud (9.98% of the testing data). (i) As in (g), but for multilayer
cloud (0.35% of the testing data). In all panels, the green, orange, and purple lines represent the mean and the lighter shading around
them represents the 99% confidence interval, both estimated from a bootstrapping test with 1000 replicates.

9 Henceforth, “mostly between” corresponds to the middle 95%
of the distribution, i.e., the 2.5th–97.5th percentiles. However,
note that the color bar in each panel shows 100% of the distribu-
tion, ranging from the minimum to the maximum.
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The MAE for near-surface HR (Fig. 7b) is larger}mostly be-
tween 0.07 and 0.23 K day21, exceeding 0.23 K day21 at a few
locations, again notably Tibet and east Antarctica. The two lo-
cations have very high surface elevation and albedo, the latter
due to snow/ice cover. High elevation decreases atmospheric

thickness and therefore increases near-surface HR; high al-
bedo decreases near-surface HR; and both extremes are glob-
ally rare, causing high model error under these extremes.
Many error metrics (Figs. 7a,b,d,f) are especially large over
the Tibetan Plateau, as it is the largest and highest plateau in

FIG. 7. Performance of best shortwave model on test-
ing data, binned by geographic location on a 58 3 58
grid. (a) Column-averaged MAE for HR. (b) MAE for
near-surface HR. (c) Column-averaged bias for HR.
(d) Bias for near-surface HR. (e) All-flux MAE, aver-
aged over the three flux variables. (f) MAE for net flux
only. (g) Bias for net flux only.
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the world, thus exacerbating both the thickness and albedo
effects. The column-averaged bias for HR (Fig. 7c) is mostly
between 20.02 and 10.03 K day21, with absolute bias not
exceeding 0.05 K day21 at any location. The bias for near-
surface HR (Fig. 7d) is larger}mostly between 20.09 and
10.09 K day21, with absolute value exceeding 0.09 K day21

over high-latitude continents such as Canada, Siberia, and
Antarctica. The all-flux MAE (Fig. 7e) is mostly between
2.5 and 6.4 W m22, exceeding 6.4 W m22 mainly in the South-
ern Hemisphere stratocumulus regions. These are regions of
semipersistent stratocumulus cloud in the subtropics off the
west coast of a continent}including South America, southern
Africa, and Australia (Fig. 6 of Neubauer et al. 2014). The net-
flux MAE (Fig. 7f) follows a similar pattern to the all-flux
MAE. Last, the net-flux bias (Fig. 7g) is mostly between 22.2
and 12.0 W m22, with mostly negative bias in the Southern
Hemisphere and positive bias in the Northern Hemisphere.

Supplemental Fig. S24 is analogous to Fig. 7 but shows
relative, instead of raw, errors. For example, “relative net-
flux MAE” at grid point P is (raw net-flux MAE at P)/
(mean observed net flux at P). We make two observations
from the two figures. First, for column-averaged HR MAE
(Fig. S24a and Fig. 7a), the highest relative errors are collocated
with the highest raw errors}in Tibet and east Antarctica. This
indicates that shortwave HR is fundamentally harder to predict
at said locations}i.e., these maxima in HR error are not just
caused by maxima in HR itself. Second, for all other error
metrics (Figs. S24b–g and Figs. 7b–g), the largest relative er-
rors occur at polar latitudes, where raw errors are small. Polar
latitudes receive little solar radiation, leading to small short-
wave HRs and fluxes, so a small raw error translates to a large
relative error. Supplemental Fig. S25 is another variant of
Fig. 7, but showing errors for individual flux variables instead
of averaging to produce all-flux quantities. The main conclu-
sion from this figure is that Fsfc

down errors are worst at the low
latitudes, including in the stratocumulus cloud regions, while
FTOA
up errors are worst at the high latitudes.
Figure 8 shows case studies from two regions with high model

error: Tibet (Figs. 8a–d) and east Antarctica (Figs. 8e–h). To se-
lect these case studies, we first plotted 400 random profiles}200
from each region}and then manually selected 4 profiles that
are representative of the original 400. In the following conclu-
sions, although we reference Fig. 8, we have ensured that they
represent most of the original 400 profiles as well. First, Tibet
experiences a lot of cloud, often complex mixtures of liquid and
ice. Second, east Antarctica also experiences a lot of cloud, of-
ten ice cloud reaching the surface as fog. Third, although the
model matches the shape of the HR profile well, it often misses
extreme HRs associated with cloud by .1 K day21. Sometimes
the model underestimates HR maxima (e.g., ;3 km in Fig. 8a,
;6 km in Fig. 8c), and sometimes it overestimates (e.g., ;7 km
in Fig. 8a, ;3 km in Fig. 8c, ;8 km in Fig. 8e). Fourth, Figs. 8e
and 8g are manifestations of the model’s positive near-surface
HR bias in east Antarctica (Fig. 7d).

Figure 9 shows the model’s performance as a function of
SZA and AOD. Supplemental Fig. S26 is analogous but shows
relative, instead of raw, errors. We make three observations

FIG. 8. Geography-based case studies for the best shortwave model.
(a),(b) Case study from Tibet, with AOD of 0.61 and SZA of 16.68;
(c),(d) another case study from Tibet, with AOD of 0.72 and SZA of
11.28; (e),(f) case study from east Antarctica, with AOD of 0.23 and
SZA of 67.78; (g),(h) another case study from east Antarctica, with
AOD of 0.17 and SZA of 70.78. For each case study, (left) actual and
predicted RT solutions and (right) four of the most important predic-
tor variables for shortwave RT. In each left panel, the legend shows
column-averaged MAE for HR (labeled “HRMAE”) and errors for
the three flux variables (predicted minus actual). AOD is a summary
of an important predictor variable (the height-integrated aerosol ex-
tinction), while SZA is an important predictor variable itself. These
scalars are thus reported in the caption above.
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from the two figures. First, for all error metrics except net-flux
bias (Figs. 9a–f and Figs. S26a–f), raw error decreases strongly
with SZA and increases weakly with AOD. In other words,
raw errors are worst when there is a lot of incoming solar

radiation and a lot of interaction with aerosols. Second, for the
same error metrics, relative error increases strongly with SZA
(the opposite relationship to raw error) and has no apparent
relationship with AOD. Thus, higher solar radiation and

FIG. 9. Performance of best shortwave model
on testing data, binned by AOD and SZA,
with AOD bins of width 0.15 and SZA bins of
width 108. (a) Column-averaged MAE for HR.
(b) MAE for near-surface HR. (c) Column-
averaged bias for HR. (d) Bias for near-surface
HR. (e) All-fluxMAE, averaged over the three
flux variables. (f) MAE for net flux only.
(g) Bias for net flux only.

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 401422

Authenticated amcgovern@ou.edu | Downloaded 06/07/24 03:25 PM UTC



aerosol content do not make shortwave RT fundamentally
harder to predict; raw errors increase because the actual values
(HRs and fluxes) increase. Third, for net-flux bias (Fig. 9g and
Fig. S26g), when SZA , 208, both raw and relative error
increase with decreasing SZA and increasing AOD. In other
words, when SZA , 208, higher solar radiation and aerosol
content make it fundamentally harder to predict net flux with-
out bias. Supplemental Fig. S27}with errors for individual
flux variables rather than all-flux errors}shows that this last
relationship is driven primarily by biases in Fsfc

down, which are
larger than biases in FTOA

up .
Figure 10 shows case studies from the low-SZA/high-AOD

regime (defined as SZA # 208 and AOD $ 0.75), where raw
errors are highest. The following observations aim to repre-
sent 200 random profiles, a superset of the four shown in
Fig. 10. First, many low-SZA/high-AOD cases feature ice
cloud near the tropopause, including the first three in Fig. 10.
This is a known climatological feature of the tropics (Jensen
et al. 2013), where the vast majority of low-SZA/high-AOD
cases occur. Second, low-SZA/high-AOD cases without liquid
cloud (Figs. 10e–h) feature large HRs in the bottom ;1 km of
the atmosphere, where the model sometimes overestimates
(Fig. 10e) but generally underestimates (Fig. 10g)}consistent
with the bottom grid row in Fig. 9d. Third, the model generally
overestimates net flux for these cases (by a large amount in
Fig. 10e). This is due mainly to overestimating Fsfc

down in the
low-SZA/high-AOD regime (supplemental Fig. S27).

d. Best longwave model

Figure 11 shows the overall performance of the best long-
wave model. For all flux variables (Figs. 11a–c), the model is
almost perfectly reliable and almost perfectly reproduces the
observed distribution. The model has only one perceptible
conditional bias, namely, an underprediction of ;10 W m22

for the lowest FTOA
up predictions. In other words, when the

model predicts an extremely low FTOA
up , the prediction is slightly

too extreme. The model has an absolute bias ,, 0.1 K day21

for HR at every height (Fig. 11d) but much larger MAEs
(Fig. 11e), reaching 0.55 and 0.24 K day21 at the bottom two
grid levels (;21 and ;44 m AGL). As will be shown, long-
wave RT near the surface is sensitive to fine-scale details of
the thermodynamic profile, which the model struggles to
capture. Because the climatological model also has its larg-
est HR MAE at the surface, the NN model’s local maximum
in MAE does not translate to a local minimum in MAE skill
score (Fig. 11f). Last, the attributes diagram for HR (Fig. 11g)
tells a similar story to those for the flux variables: the model is
almost perfectly reliable and almost perfectly reproduces the
observed distribution. Supplemental Figs. S31 and S32 are
analogous to Fig. 11 but only for extreme cases}i.e., the 3%
of testing profiles with the greatest height-maximum and
height-averaged absolute HR, respectively. As for the short-
wave model, we find that although errors are higher for the ex-
treme cases, HRs and fluxes still have almost perfect reliability
and absolute HR bias is well below 0.1 K day21 throughout
the profile.

Figure 12 shows the model’s performance as a function of
liquid-only cloud regime. Performance for other cloud phases
(ice only, mixed phase, and any phase) is shown in supplemen-
tal Figs. S28–S30. The attributes diagrams for flux variables

FIG. 10. Regime-based case studies for the best shortwave
model, specifically from the low-SZA–high-AOD regime, defined
as SZA # 208 and AOD $ 0.75. Formatting is explained in
the caption of Fig. 8. (a),(b) AOD 5 0.85 and SZA 5 10.78;
(c),(d) AOD 5 0.81 and SZA 5 7.68; (e),(f), AOD 5 0.76 and
SZA5 7.98; (g),(h), AOD5 1.44 and SZA5 5.58.
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(Figs. 11a–c) tell a similar story to the cloud-agnostic versions
(Figs. 11a–c): a few slight conditional biases but no absolute
bias exceeding 20 W m22. In the bottom few 100 m of the tro-
posphere, HR errors (Figs. 12d–f) are best for clear-sky pro-
files, followed by single- and multilayer cloud, and worst for
foggy profiles. In other words, the largest HR errors in the bot-
tom few 100 m are caused by clouds, especially clouds that
reach the surface. Meanwhile, in the troposphere above
;1 km, HR errors (Figs. 12d–f) are best for clear-sky profiles
and worst for those with multilayer cloud. Errors for foggy
profiles above ;1 km are intermediate, because many surface-
based clouds are not thick enough to reach these heights. Last,
the attributes diagram for HR (Figs. 12g–j) is nearly perfect in

all cloud regimes except fog. The model has a considerable
negative bias (as large as 1 K day21) when predicting HR
above 20 K day21 in foggy profiles, but as shown by the confi-
dence interval}which overlaps the 1:1 line}this apparent de-
fect could be an artifact of small sample size.

Figure 13 shows the model’s performance as a function of lo-
cation. The column-averaged MAE for HR (Fig. 13a) is mostly
between 0.10 and 0.15 K day21; it exceeds 0.15 K day21 at a few
locations, notably Tibet, southern Peru, and the northwestern
Rocky Mountains. The MAE for near-surface HR (Fig. 13b) is
much larger}mostly between 0.35 and 0.94 K day21, exceeding
0.94 K day21 at the same locations. The column-averaged bias
for HR (Fig. 13c) is mostly between 20.01 and 10.01 K day21,

FIG. 11. Performance of best longwave model on testing data. Formatting is
explained in the caption of Fig. 5. (a)–(c) Attributes diagram for each flux variable.
(d)–(f) Profiles of bias, MAE, and MAE skill score for HR. (g) Attributes diagram for
HR, including all heights.
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with absolute bias not exceeding 0.02 K day21 at any location.
The bias for near-surface HR (Fig. 13d) is larger}mostly be-
tween 20.24 and 10.22 K day21, with absolute value exceed-
ing 0.24 K day21 in Tibet, northern South America, and the

northwestern Rockies. The all-flux MAE (Fig. 13e) is mostly
between 0.24 and 0.63 W m22, exceeding 0.63 W m22 mainly
in Tibet. The net-flux MAE (Fig. 13f) follows a similar pattern
to the all-flux MAE. The net-flux bias (Fig. 13g) is mostly

FIG. 12. Performance of best longwave model on testing data, separated
by liquid-only cloud regime. Formatting is explained in the caption of
Fig. 6. (a)–(c) Attributes diagram for each flux variable. (d)–(f) Profiles of
bias, MAE, and MAE skill score for HR. (g) Attributes diagram for HR,
including all heights, only for cases with no cloud (90.84% of the testing
data). (h) As in (g), but for single-layer cloud (8.74% of the testing data).
(i) As in (g), but for multilayer cloud (0.42% of the testing data). (j) As in
(g), but for fog (0.63% of the testing data).
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between 20.23 and 10.24 W m22, with absolute bias not ex-
ceeding 0.72 K day21 at any location. Maxima in raw error
mostly correspond to maxima in relative error (supplemental
Fig. S33), which indicates that longwave RT is fundamentally
harder to predict in these regions. Last, supplemental Fig. S34

shows that, while Fsfc
down and FTOA

up have similar MAE values
over most of the globe, Fsfc

down bias is worse than FTOA
up bias at

most locations. Thus, at most locations, net-flux bias (which
equals Fsfc

down bias minus FTOA
up bias) primarily reflects Fsfc

down
bias, with a small contribution from FTOA

up .

FIG. 13. Performance of best longwave model
on testing data, binned by geographic location on
a 58 3 58 grid. (a) Column-averaged MAE for
HR. (b) MAE for near-surface HR. (c) Column-
averaged bias for HR. (d) Bias for near-surface
HR. (e) All-flux MAE, averaged over the three
flux variables. (f) MAE for net flux only. (g) Bias
for net flux only.
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Figure 14 shows case studies from regions with high model er-
ror: Tibet (Figs. 14a–d), the northwestern Rockies (Figs. 14e,f),
and southern Peru (Figs. 14g,h). The following observations aim
to represent 800 random profiles (200 per region), a superset of
the four shown in Fig. 14. First, most of the 800 profiles feature
liquid and/or ice cloud. Like the shortwave model, the longwave
model matches the shape of the HR profile well but often misses
extreme HRs associated with cloud by .1 K day21. Sometimes
the model overestimates longwave cooling above clouds (e.g.,
;2.5 and;10 km in Fig. 14a,;8 km in Fig. 14c), and sometimes
it underestimates cooling (e.g., ;0.4 and ;4 km in Fig. 14g).
Second, as for shortwave RT, regions with high longwave error
have very high surface elevations, which are globally rare.
Third, sometimes longwave HR error near the surface is large
even for profiles that appear uncomplicated near the surface
(e.g., Figs. 14e,f), because near-surface longwave RT is sensi-
tive to fine details of the near-surface thermodynamic profile.

Figure 15 shows the model’s performance as a function of
near-surface thermodynamics, specifically, the temperature
lapse rate [Gsfc

T in Eq. (5)] and humidity lapse rate [Gsfc
q in

Eq. (5)]. First, we note that all error metrics (Figs. 15a–g) are
worst in two regimes, which we call the positive/positive and
negative/negative regimes. The positive/positive regime has
large positive Gsfc

T and Gsfc
q }i.e., both temperature and humid-

ity decrease strongly with height. The negative/negative re-
gime has large negative lapse rates}i.e., both temperature
and humidity exhibit a strong inversion, increasing with
height. Second, both the positive/positive and negative/
negative regimes are quite rare in our dataset, as shown in
Fig. 15h. Most profiles have a small positive Gsfc

T and small
positive Gsfc

q , the “common” regime labeled in Fig. 15. Third,
while all error metrics are worst in the positive/positive and
negative/negative regimes, the most egregious errors are for
near-surface HR, where both MAE (Fig. 15b) and absolute
bias (Fig. 15d) can be ..1 K day21. Fourth, relative error
(supplemental Fig. S35) is also maximized in the positive/
positive and negative/negative regimes, which indicates that ex-
treme near-surface thermodynamics make longwave RT funda-
mentally harder to predict. Last, supplemental Fig. S36 shows
that Fsfc

down errors are worse than FTOA
up errors in both regimes.

Figure 16 shows case studies from the negative/negative re-
gime (Figs. 16a–d) and positive/positive regime (Figs. 16e–h).
The following observations aim to represent 400 random pro-
files (200 per regime), a superset of the four shown in Fig. 16.
First, we note that most of these profiles feature extreme
near-surface heating or cooling. Second, like the geography-
based case studies (Fig. 14), the model generally performs well
for these regime-based case studies, except for near-surface
HR and a few extremes associated with cloud (e.g., ;1.5 km
in Fig. 16e). Third, the model’s fractional error for near-
surface HR is generally quite low; cases like Fig. 16a do not oc-
cur very often.

6. Summary and future work

We have developed neural networks (NN) to emulate the
full RRTM, i.e., the shortwave and longwave RRTM with all

FIG. 14. Geography-based case studies for the best longwave
model. (a),(b) Case study from Tibet, with Gsfc

T 5 4:40Kkm21 and
Gsfc
q 5 5:9gkg21km21; (c),(d) another case study from Tibet, with

Gsfc
T 5 11:75Kkm21 and Gsfc

q 5 0:7gkg21 km21; (e),(f) case study
from northwestern Rockies, with Gsfc

T 5 4:62 K km21 and Gsfc
q 5

11:9 g kg21 km21; (g),(h) case study from southern Peru, with Gsfc
T 5

10:91 K km21 and Gsfc
q 5 4:3 g kg21 km21. For each case study,

(left) actual and predicted RT solutions and (right) four of the most im-
portant predictor variables for longwave RT. In each left panel, the leg-
end shows column-averaged MAE for HR (labeled “HR MAE”) and
errors for the three flux variables (predicted minus actual). Gsfc

T and Gsfc
q

[Eq. (5)] are summaries of important predictor variables (the thermody-
namic profiles). These scalars are thus reported in the caption above.
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FIG. 15. Performance of best longwave model on testing data, binned by near-surface thermodynamic
lapse rates, with Gsfc

T bins of width 10 K km21 and Gsfc
q bins of width 2 g kg21 km21. The three labeled

regimes (positive/positive, negative/negative, and common) are explained in the main text. (a) Column-
averaged MAE for HR. (b) MAE for near-surface HR. (c) Column-averaged bias for HR. (d) Bias for
near-surface HR. (e) All-flux MAE, averaged over the three flux variables. (f) MAE for net flux only.
(g) Bias for net flux only. (h) Number of testing samples per bin, in logarithmic scale.
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predictor variables. Both the RRTM and NN-based emulators
are driven by forecast profiles from the GFSv16 on the native
vertical grid, which uses hybrid pressure–sigma coordinates.
We experimented with novel deep learning methods designed
to produce realistic and accurate spatial structure in gridded
predictions: the U-net11 architecture, U-net31 architecture,
and deep-supervision training method. We hypothesized that
the best NNs would be those with the U-net31 architecture
and deep supervision. Contrary to our hypotheses, we found
that deep supervision leads to worse performance and archi-
tecture has little impact. We also experimented with three
other hyperparameters}NN width, depth, and spectral com-
plexity}which strongly control the NN’s overall complexity,
causing the number of trainable weights to vary from O(105)
to O(108:5). We found that the best NNs are at the more
complex end of the spectrum; the selected shortwave and
longwave NNs have 107.52 and 107.28 trainable weights, respec-
tively. Overall, the better NNs are deep (have encoders and
decoders at many spatial resolutions), narrow (have only one
convolutional layer per block), and have large spectral com-
plexity (many convolutional filters and thus many feature
maps). While NN type (U-net11 or U-net31) has only a weak
effect on performance, the best shortwave NN is a U-net11

model, while the best longwave NN is a U-net31 model. Our
NNs are an example of knowledge-guided machine learning,
identified as a major need in ML applications to the geosciences
(Gil et al. 2019; Reichstein et al. 2019). Specifically, we enforce
energy conservation in the NNs [Eq. (2)]; use a custom loss
function to emphasize large heating rates (HR), which are rare
but important for weather and climate [Eq. (3)]; and include
custom predictors to account for vertically nonlocal effects
[section 3c(3) of L21].

The best shortwave NN model performs extremely well in an
aggregate sense, i.e., averaged over all the testing data. Highlights
include reliable fluxes, with all conditional biases, 10 W m22 in
absolute value; reliable HRs, with all conditional biases
,, 1 K day21 in absolute value; and absolute HR bias
, 0.1 K day21 at all heights, suggesting that the NN could
be stably integrated into the GFSv16 as a parameterization.
The model also performs extremely well in all cloud re-
gimes, at most geographic locations, and in most regimes
defined by solar zenith angle (SZA) and aerosol optical
depth (AOD). The largest errors occur in Tibet and east
Antarctica, which feature high surface elevation/albedo,
and in the low-SZA/high-AOD regime, which features a lot
of incoming solar radiation and interaction with aerosols.
However, even these largest errors are quite small: mean
absolute error (MAE) for HR does not exceed 0.6 K day21,
even near the surface; absolute HR bias does not exceed
0.3 K day21, even near the surface; MAE for flux variables
does not exceed 10 W m22; and net-flux bias does not exceed
5 W m22. For regimes that make RT fundamentally harder to
predict}e.g., high elevation/albedo, which increase both raw
and relative errors}results could potentially be improved by
adding training data from these regimes. Table 8 compares our
model to NN-based emulators of shortwave RT from three
other studies: Krasnopolsky et al. (2012, hereafter K12), SR21,
and KS22. Although our model appears to perform best, this

FIG. 16. Regime-based case studies for the best longwave model.
(a),(b) Case study from the negative/negative regime, defined
as Gsfc

T ,2 30Kkm21 and Gsfc
q ,2 13gkg21 km21. Exact values

here are Gsfc
T 5294:56 K km21 and Gsfc

q 5214:0 g kg21 km21.
(c),(d) Another case study from the negative/negative regime,
with Gsfc

T 52164:83 K km21 and Gsfc
q 5216:2 g kg21 km21.

(e),(f) Case study from the positive/positive regime, defined as
Gsfc
T . 40Kkm21 and Gsfc

q . 1gkg21 km21. Exact values here
are Gsfc

T 5 44:06 K km21 and Gsfc
q 5 8:1 g kg21 km21. (g),(h) An-

other case study from the positive/positive regime, with Gsfc
T 5

40:25 K km21 and Gsfc
q 5 2:2 g kg21 km21. Formatting is explained in

the caption of Fig. 14.

L AGERQU I S T E T A L . 1429NOVEMBER 2023

Authenticated amcgovern@ou.edu | Downloaded 06/07/24 03:25 PM UTC



comparison is not apples-to-apples, due to different vertical res-
olutions (127 levels here, 64 in K12, 39 in the other two studies),
testing cases (time period and spatial domain), and predictor
variables. The three comparison studies omit aerosols, all trace
gases other than O3, LWC and IWC (they use cloud fraction in-
stead, with no distinction between liquid and ice), and the parti-
cle size distribution (for which we use liquid and ice effective
radii). Last, our shortwave NN runs 7510 times faster than the
shortwave RRTM.

The best longwave NN model also performs extremely
well in an aggregate sense; highlights include near-perfect
reliability for both fluxes and HRs and absolute HR bias ,,
0.1 K day21 at every height. The model’s main deficiency is a
large error in near-surface HR, e.g., an MAE of 0.55 K day21

at the lowest grid level. However, longwave RT near the sur-
face is complicated, and errors here are often quite large. For
example, in Veerman et al. (2020), who emulated only the
gas-optics part of the RRTMGP, near-surface HR bias is on
the order of 1 K day21 (their Fig. 2c). The model performs
well in all cloud regimes, at most geographic locations, and in
most regimes defined by near-surface thermodynamics. The
largest errors occur with liquid-only fog, where the bias and
MAE for near-surface HR reach 20.12 and 1.3 K day21, re-
spectively; in Tibet, where near-surface bias and MAE reach
almost 1 and 2 K day21, respectively; and under extreme
near-surface thermodynamics, where near-surface absolute
bias and MAE are .. 1 K day21. However, the extreme ther-
modynamic regimes are quite rare, so this last number is af-
fected by small sample size. Also, even in the aforementioned
regimes with large error in near-surface HR, column-averaged
bias for HR does not exceed 0.15 K day21 in absolute value,
column-averaged MAE for HR does not exceed 0.6 K day21,
MAE for flux variables does not exceed 10 W m22, and net-
flux bias does not exceed 7 W m22. Table 9 shows that our

longwave NN compares very favorably to other studies. Last,
our longwave NN runs 90 times faster than the longwave
RRTM.

Future work will include three items. First, we will develop
grid-agnostic NNs that work on profiles with any vertical reso-
lution. This work may benefit from Fourier neural operators
(FNO; Lu et al. 2019; Li et al. 2020), which naturally learn
physics in a grid-agnostic manner. Second, we will implement
the NNs in online mode, i.e., as a parameterization in the
GFSv16. To this end we have converted the NNs to a For-
tran-friendly format, using the Infero library (ECMWF 2022),
and ensured that the NNs yield the same predictions in For-
tran as in Python. Note that the NNs alone cannot handle sub-
grid-scale fractional cloudiness, as cloud fraction is a predictor
in neither the RRTM nor the NNs. To handle fractional
cloudiness in online mode, we will couple the NNs with the
Monte Carlo independent-column approximation (Pincus
et al. 2003). Third, we will perform thorough testing of the
NNs in online mode. Specifically, we will conduct month-long
retrospective simulations in both the summer and winter,
using a control model (original parameterization) and ex-
perimental model (NN parameterization). We will compare
the two models against each other and against observations,
using methods as in Turner et al. (2012, 2020). Given the ac-
curacy and efficiency of modern deep NNs, we expect them
to replace many existing parameterizations in weather and cli-
mate models. However, operational use should proceed only
after thorough NN evaluation and with the caution that NNs
may generalize poorly outside the distribution of their training
data, e.g., to future climates.10 Safeguards against this problem
should be built into NN parameterizations, such as continued
online learning or out-of-distribution detection.
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TABLE 8. Comparison of NN-based emulators for shortwave
RT. For our model, we use the testing data only. For the
comparison studies, we take results from Table 2 of K12, page 7
of SR21 for HR errors, Table 3 (the “WRF15” column) of SR21
for flux errors, and Fig. 1 of KS22 (these values are estimated
visually). “Profile RMSE” is defined in Eq. (A1) of K12; “near-
surface” means for the lowest model level; and “N/A” means
that the statistic is not reported. Although KS22 reports flux
errors, the statistic is all-flux RMSE, computed by averaging
over three variables: Fsfc

down, FTOA
up , and Fsfc

up . We predict a
different set of flux variables}Fnet instead of Fsfc

up}and thus do
not compare our flux errors with KS22.

Model statistic Ours K12 SR21 KS22

Column-averaged HR RMSE
(K day21)

0.14 0.26 0.17 ;0.2

Column-averaged HR bias
(K day21)

20.002 20.007 N/A N/A

HR profile RMSE (K day21) 0.12 0.18 N/A N/A
Near-surface HR RMSE (K day21) 0.20 0.20 N/A N/A
Near-surface HR bias (K day21) 10.0001 20.03 N/A N/A
Fsfc
down RMSE (W m22) 5.85 N/A 43.75 N/A

FTOA
up RMSE (W m22) 3.94 N/A 36.20 N/A

TABLE 9. Comparison of NN-based emulators for longwave RT.
For technical notes, see the caption of Table 8.

Model statistic Ours K12 SR21 KS22

Column-averaged HR RMSE
(K day21)

0.22 0.52 0.46 ;0.375

Column-averaged HR bias
(K day21)

20.0006 10.008 N/A N/A

HR profile RMSE (K day21) 0.20 0.38 N/A N/A
Near-surface HR RMSE

(K day21)
0.83 0.55 N/A N/A

Near-surface HR bias
(K day21)

20.002 10.02 N/A N/A

Fsfc
down RMSE (W m22) 0.64 N/A 5.71 N/A

FTOA
up RMSE (W m22) 0.81 N/A 7.11 N/A

10 In our case, motivated by the strong influence of clouds on
radiation}including their phase and number of layers}we paid
particular attention to the NNs’ ability to emulate the RRTM for
all cloud types.
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Data availability statement. The input data (predictor and
target variables for all the time periods: NN training, IR train-
ing, validation, and testing) and selected models (best short-
wave NN, best longwave NN, and IR model used to bias
correct each one) are stored on NOAA’s high-performance
computing systems and are available from the authors upon re-
quest. We used version 2.0.0 of Machine Learning for Radiative
Transfer (ML4RT; https://doi.org/10.5281/zenodo.7378773)}a
Python library managed by author Lagerquist}for all training,
evaluation, and analysis.
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