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ABSTRACT: Heatwaves are projected to increase in frequency and severity with global warming. Improved warning sys-
tems would help reduce the associated loss of lives, wildfires, power disruptions, and reduction in crop yields. In this work,
we explore the potential for deep learning systems trained on historical data to forecast extreme heat on short, medium
and subseasonal time scales. To this purpose, we train a set of neural weather models (NWMs) with convolutional architec-
tures to forecast surface temperature anomalies globally, 1 to 28 days ahead, at ;200-km resolution and on the cubed
sphere. The NWMs are trained using the ERA5 reanalysis product and a set of candidate loss functions, including the
mean-square error and exponential losses targeting extremes. We find that training models to minimize custom losses tai-
lored to emphasize extremes leads to significant skill improvements in the heatwave prediction task, relative to NWMs
trained on the mean-square-error loss. This improvement is accomplished with almost no skill reduction in the general
temperature prediction task, and it can be efficiently realized through transfer learning, by retraining NWMs with the
custom losses for a few epochs. In addition, we find that the use of a symmetric exponential loss reduces the smoothing
of NWM forecasts with lead time. Our best NWM is able to outperform persistence in a regressive sense for all lead
times and temperature anomaly thresholds considered, and shows positive regressive skill relative to the ECMWF
subseasonal-to-seasonal control forecast after 2 weeks.

SIGNIFICANCE STATEMENT: Heatwaves are projected to become stronger and more frequent as a result of
global warming. Accurate forecasting of these events would enable the implementation of effective mitigation
strategies. Here we analyze the forecast accuracy of artificial intelligence systems trained on historical surface tem-
perature data to predict extreme heat events globally, 1 to 28 days ahead. We find that artificial intelligence sys-
tems trained to focus on extreme temperatures are significantly more accurate at predicting heatwaves than
systems trained to minimize errors in surface temperatures and remain equally skillful at predicting moderate tem-
peratures. Furthermore, the extreme-focused systems compete with state-of-the-art physics-based forecast systems
in the subseasonal range, while incurring a much lower computational cost.

KEYWORDS: Forecasting; Forecasting techniques; Artificial intelligence; Deep learning; Machine learning;
Neural networks

1. Introduction

An important consequence of anthropogenic radiative forc-
ing is the robust increase in heatwave days per year, both glob-
ally and at a regional level (Perkins-Kirkpatrick and Lewis
2020). Heatwaves pose a significant health risk, as evidenced by
the more than 70000 excess deaths that occurred during the
2003 European heatwave (Robine et al. 2008). More frequent
heatwaves will also lead to higher wildfire risk (Parente et al.
2018; Ruffault et al. 2020), stress on the power grid (Ke et al.
2016), and loss of agricultural crops (Brás et al. 2021). These
trends underscore the importance of developing effective miti-
gation strategies to reduce the negative impacts of extreme

heat. Accurate forecasts with sufficient lead time are a stepping
stone in the development of such strategies (Lin et al. 2022).
Current physics-based models, however, can only provide accu-
rate forecasts of extreme heat events a few days in advance,
which may not be sufficient to deploy effective mitigation strat-
egies (White et al. 2017; Wulff and Domeisen 2019).

There is mounting evidence of heatwave predictors on
weekly to subseasonal time scales. These include large-scale
quasi-stationary atmospheric Rossby waves (Teng et al. 2013;
Mann et al. 2018; White et al. 2022), negative soil moisture
anomalies (Vautard et al. 2007; Benson and Dirmeyer 2021),
and anomalous Pacific Ocean sea surface temperature (SST)
gradients in the case of North American heatwaves (Deng
et al. 2018; Miller et al. 2021). Recently, Miller et al. (2021)
used a linear regression model based on empirical orthogonal
functions of the North Pacific SST and soil moisture over the
United States to predict the weekly frequency of extremely
warm days in the United States, 1–4 weeks ahead. They show
that their statistical model outperforms the operational
NCEP CFSv2 model in this task over the eastern United
States after the second week, which suggests that purely data-
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driven forecasting may provide a path forward in extreme
heat prediction beyond the 10-day horizon.

In this context, deep neural networks represent a natural ex-
tension of the data-driven approach, given their remarkable suc-
cess in image segmentation and forecasting tasks (Ronneberger
et al. 2015; Sønderby et al. 2020; Ravuri et al. 2021). Different
methods to classify heatwaves leveraging deep learning have
recently been proposed. Chattopadhyay et al. (2020) trained
a capsule neural network on midtropospheric geopotential
and surface temperature from a large ensemble of climate
model runs to classify several future days into five different
classes, each representing either a specific heatwave pattern
over North America, or the absence of extreme tempera-
tures. Jacques-Dumas et al. (2022) trained a convolutional
neural network on wavenumber space to forecast the occur-
rence of heatwaves in France with a 15-day lead time. They
used the same predictors as Chattopadhyay et al. (2020), and
data from a 1000-yr cyclic climate model simulation.

These studies showcase the potential of deep learning to
forecast extreme heat events as a classification problem, in
particular regions, and trained on very large datasets sampled
from quasi-stationary distributions. Here, we tackle some of
the practical questions left unanswered by previous work:

• Can deep learning models forecast extreme heat events
when trained on limited historical data? The use of observa-
tions or reanalysis data is crucial for systems to improve
upon existing physics-based models, since deep learning
models trained solely on synthetic data will at best inherit the
biases of the numerical models they are trying to substitute.

• Can general purpose neural weather models (NWMs) be
used to predict extreme heat events? By general purpose,
we refer to deep learning systems trained to minimize errors
in the underlying fields, such as temperature, and not on ex-
treme classification explicitly (e.g., Rasp et al. 2020; Weyn
et al. 2020; Pathak et al. 2022; Keisler 2022).

• Can NWMs improve their extreme prediction skill through
the use of custom losses while retaining their skill in a gen-
eral weather forecasting setting?

To answer these questions, we frame extreme heat predic-
tion as a regression problem and restrict our training data to
a large subset of the ERA5 reanalysis product. Framing the
forecast problem as a regression task bridges the gap with
NWMs that act as time integrators and require reliable
previous forecasts as inputs to generate a new prediction
(Weyn et al. 2020). The regression problem is also more ro-
bust to the definition of heatwaves, diverse in the literature
(e.g., Chattopadhyay et al. 2020; Wulff and Domeisen
2019; Miller et al. 2021), and allows learning about the nu-
ances of target states that may otherwise be masked un-
der the same class in a classification problem. The advent of
skillful regression-based NWMs would democratize the use of
ensemble-based weather forecasting for targeted applications,
which requires enormous computational resources when real-
ized through state-of-the-art physics-based models (Palmer
2017). In contrast, deep learning systems designed to forecast
a few fields of interest (e.g., surface temperature) only incur

high computational costs during training, but not during infer-
ence (Scher and Messori 2021; Weyn et al. 2021).

To address the second question, we make use of a state-of-
the-art convolutional architecture on the cubed sphere, fol-
lowing Weyn et al. (2020), so that results can be extrapolated
to similar NWMs described in the literature. To explore the last
question, we compare forecasts of NWMs trained with the
general-purpose mean-square-error loss with forecasts from
NWMs trained to minimize custom losses that emphasize
extremes. All results presented are contextualized through com-
parison with the European Centre for Medium-Range Weather
Forecasts (ECMWF) subseasonal-to-seasonal (S2S) operational
forecast system (Vitart et al. 2017).

The paper is organized as follows. In section 2, we define
the forecasting task and describe the data and losses used to
train the NWMs. In section 3, the model architecture is dis-
cussed. Section 4 explores the skill of NWMs trained using
different loss functions in tasks varying from extreme heat to
general surface temperature prediction, including example
forecasts for the 2017 Iberian heatwave and the 2021 western
North American heatwave. In section 5, the relevance of the
different NWM inputs is explored using integrated gradients
(Sundararajan et al. 2017). Section 6 ends with a discussion of
the results and potential future research directions.

2. The forecasting problem

The forecasting task, given a set of observed input and tar-
get pairs (x, y) with y 2 V , R

d and x 2 V , R
q, can be

framed as the following minimization problem (Lopez-Gomez
et al. 2022),

u* 5 argmin
u

�
X
L[C(u, x), y] dy, (1)

where C : Rp 3 R
q " R

d is a mapping from parameter and in-
put space to target space, u 2 R

p are model parameters, x 2 R
q

is an input data vector, and L(,) is some loss that we seek to
minimize over a target setV , R

d. In this paper, we consider
C to be a convolutional neural network operating on a
gnomonic equiangular cubed sphere, described in detail
in section 3. Architecture exploration for NWMs is an ac-
tive area of research (Pathak et al. 2022; Keisler 2022), but
it is not the emphasis of this work, so we keep the architec-
ture C fixed. Instead, we are interested in comparing the
usefulness of NWMs C(u*,) that result from the minimiza-
tion (1) when varying the definition of the loss. The NWM
parameter vector u* is obtained through minibatch gradi-
ent descent, using the Adam algorithm (Kingma and Ba
2017).

a. Data, predictors, and targets

The targets y are constructed from the daily average of the
standardized climatological anomalies of the temperature 2 m
above the surface T2m, which we denote T̃2m. We recognize
that air temperature is a suboptimal indicator of heat-related
illness (Xu et al. 2016; Heo et al. 2019), but it enables compar-
ison with other models in the literature (Weyn et al. 2021;
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Wulff and Domeisen 2019; Lin et al. 2022). Each target vector
y includes T̃2m for a set of lead times t 5 1, … , tl days and
for all tiles of a gnomonic equiangular grid of Earth’s surface
(Ronchi et al. 1996). Thus, the target size d is the flattened
length of the tensor ycs 2Rtl3f3h3w, where f 5 6 is the num-
ber of faces of the cubed sphere and h 5 48 and w 5 48 are
the number of meridional and zonal tiles of each face, respec-
tively. The grid is shown in Fig. 1 for reference; the surface
area of each tile is approximately 1922 km2. To assess the skill
of the model from the short to the subseasonal range, we aim
to predict temperature anomalies for the next tl 5 28 days.

The inputs x 2 V , R
q contain y daily averaged surface

fields on the cubed sphere, such that q is the flattened length
of the tensor xcs 2Ry3f3h3w. Here, y 5 tpyt 1 yi is the number
of input fields and yt and yi are the number of time-dependent
and independent fields, respectively. For time-dependent
fields, daily averages from the last tp 5 7 days are included.
We consider as time-dependent fields the geopotential height
and potential vorticity at 300, 500 and 700 hPa, the tempera-
ture T2m, the top net outgoing longwave radiative flux (OLR),
and the volume of soil water. To these fields we append as
auxiliary time-independent variables the latitude, longitude,
topography, and a land–sea mask. We also include the present
insolation and date as inputs. The full list of predictors is sum-
marized in Table 1.

The choice of predictors is informed by studies linking ex-
treme heat events to midtropospheric geopotential height
(Teng et al. 2013; Mann et al. 2018), soil moisture (Vautard et al.
2007; Benson and Dirmeyer 2021) and large-scale phenomena
with characteristic OLR signatures, like the Madden–Julian os-
cillation (MJO; Jacques-Coper et al. 2015; Maloney et al. 2019)
or the boreal summer intraseasonal oscillation (Lin et al. 2022).

In addition, we include T2m to learn about transport processes
such as advection; and its standardized anomaly to facilitate
improving upon a persistence model. Both T2m and T̃2m cap-
ture the signature of large-scale oscillations such as El Niño–
Southern Oscillation or the North Atlantic Oscillation (Ogi
et al. 2003; Wang et al. 2011; Wright et al. 2014).

All data are daily averages from the ERA5 reanalysis prod-
uct (Hersbach et al. 2020), downloaded at 28 3 28 resolution
from the Copernicus Climate Data Store (CDS) and pro-
jected onto the cubed sphere following Ullrich and Taylor
(2015), Ullrich et al. (2016). The climatology is computed for
the time period 1979–2019. All days of the year, not only the
summer days, are used to train the model. We do this to learn
about physical processes that are season independent, like ad-
vection. When framed as a classification task, extreme heat
prediction may require undersampling of nonextreme samples
during training (Jacques-Dumas et al. 2022). Here, we make
use of all available information with no explicit undersamp-
ling; class imbalance is dealt with through the use of custom
losses as discussed in section 2b. In addition, we perform a se-
quential split of the data into training (1979–2012), validation
(2013–16), and test sets (2017–21). The limited amount of his-
torical data available means that the influence of longer
modes of climate variability (e.g., the Pacific decadal oscilla-
tion) is unlikely to be robustly captured. Furthermore, a shift
in the target distribution from training to testing sets is im-
plicit with this split, due to climate change (White et al. 2022;
Chan et al. 2020). This shift in the temperature distribution is,
however, representative of situations in which a warning sys-
tem might be used in practice, since both data-driven and
NWP models are calibrated using historical observations.

b. Losses considered

Unless the optimal parameter vector u* is able to yield a
perfect model [i.e., C(u*, x) 5 y ∀ (x, y)], the optimum will
depend on the definition of the loss. This is the case in the

FIG. 1. Depiction of the gnomonic cubed-sphere grid onto which
predictors and targets are projected. The cubed sphere is composed
of 6 faces with 482 5 2304 cells each.

TABLE 1. Predictors used for the temperature anomaly
forecasting task. Anomalies are standardized (std) with respect
to climatology. Heights are specified as above ground level (a.g.)
and below ground level (b.g.).

Predictor Levels

Temperature anomaly (std) 2 m (a.g.)
Temperature 2 m (a.g.)
Geopotential height anomaly (std) 300, 500, and 700 hPa
Geopotential height 300, 500, and 700 hPa
Potential vorticity anomaly (std) 300, 500, and 700 hPa
Potential vorticity 300, 500, and 700 hPa
Outgoing longwave radiation Top of atmosphere
Incoming shortwave radiation Top of atmosphere
Surface soil moisture 0–7 and 7–28 cm (b.g.)
Deep soil moisture 28–100 and

100–289 cm (b.g.)
Topography }

Land–sea mask }

Latitude, longitude }

Date }
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extreme heat prediction task, since the chaotic nature of the
atmosphere precludes a perfect forecast of trajectories from
inexact initial conditions (Lorenz 1969a,b; Slingo and Palmer
2011). For this reason, we can expect models that minimize ge-
neric losses to be suboptimal for the extreme prediction task.

To study the potential benefits of training NWMs on losses
targeting extreme prediction, we consider two losses: the mean-
square error (MSE) and a custom loss Le based on the exponen-
tial of targets and forecasts,

Le(y′, y) 5 aMSE(ey′ , ey) 1 bMSE(e2y′ , e2y), (2)

where y are the targets and y′ are the forecasts. In (2), the
choice (a, b)5 (1, 0) emphasizes the correct prediction of pos-
itive extremes, (a, b) 5 (0, 1) emphasizes negative extremes,
and the midpoint (a, b) 5 (0.5, 0.5) emphasizes both extremes.
In the context of temperature anomaly prediction, these losses
emphasize heatwaves, cold spells and extreme deviations from
climatology, respectively. This custom loss is motivated by the
reported success of neural networks in extreme prediction
tasks when using target transformations involving the softmax
and softmin functions (Qi and Majda 2020). However, we ex-
clusively take the numerator of the suggested transformations
because the softmax and softmin functions are invariant under
translational shifts (Lopez-Gomez et al. 2020, their appendix A),
which in this application means that climatological biases would
not be penalized.

In the following, we denote models trained with the loss (2)
as HeatNet for (a, b)5 (1, 0) and ExtNet for (a, b)5 (0.5, 0.5).
The model trained with the MSE loss, representative of general
neural weather prediction systems (Rasp et al. 2020; Weyn et al.
2020, 2021), is denoted GenNet. We trained HeatNet, ExtNet,
and GenNet models using a hyperparameter search over the
learning rate, and the magnitude of L1 and L2 norm regulariza-
tion. All models were trained until they started overfitting to
the training set, evidenced by an increase in validation loss
persistent over many epochs. Notably, our best HeatNet and
ExtNet models were obtained through transfer learning, by re-
training our best GenNet model for a few (,3) epochs on the
custom exponential loss. This implies that any performance im-
provements of HeatNet or ExtNet with respect to generic mod-
els trained on the MSE loss can be realized efficiently through
transfer learning from the original models. Our transfer learn-
ing methodology relies on early stopping to retain an inductive
bias toward the GenNet parameters (Yosinski et al. 2014; Li
et al. 2018). The implementation of other transfer learning tech-
niques, like Bayesian regularization toward the original (i.e.,
prior) model parameters (Li et al. 2018; Inubushi and Goto
2020), may result in further skill improvements and will be ex-
plored in the future.

3. Neural weather model architecture

We employ a convolutional architecture to construct the
neural network C, which maps the input fields at all past
times t 5 26, … , 0 days to the daily averaged temperature
anomaly T̃2m at all lead times t 5 1, … , 28 days. Consistent
with our projection of the data, convolutions are performed

on each of the cubed sphere faces, using halo exchange at the
borders (Weyn et al. 2020). Kernel weights are shared among
all four equatorial faces, and a different set of kernel weights
is used for the polar faces. This enables learning about differ-
ent processes governing on one hand tropical and subtropical
dynamics, and on the other mid and high-latitude dynamics.
The northern polar face is mirrored before each convolution
to align cyclonic and anticyclonic motions in each hemisphere,
following Weyn et al. (2020).

a. Receptive field

Because of the nonrecurrent nature of the architecture and
the lead times considered, it is crucial to achieve a fully recep-
tive field if we want to capture long-range dependencies and
teleconnections (Espeholt et al. 2022). A fully receptive field
is realized through two design characteristics of the proposed
architecture, which is sketched in Fig. 2. The first one is the
use of dilated convolutions, which rapidly increase the recep-
tive field of any location on the cubed sphere as information
traverses the network (Yu and Koltun 2016). The second one
is the use of a UNet-type architecture (Ronneberger et al.
2015) with 3 resolution levels going from the data resolution
to the synoptic scale: ;2002, ;4002, and ;8002 km2. Coarser-
resolution levels increase the receptive field proportionally to
their downsampling rate, allowing one to achieve larger re-
ceptive fields with fewer layers.

b. Encoder and decoder architecture

The architecture of our model is based on the UNet 31
architecture (Huang et al. 2020) with a few modifications.
All nonlinearities consist of parametric rectified linear units
(PReLUs) that share parameters across all dimensions ex-
cept the channels (He et al. 2015). We use dilated convolu-
tions, as previously mentioned, with dilation factors r that
increase geometrically with network depth at every resolu-
tion level. The first two levels have encoder and decoder
stacks with two layers each, and the synoptic-scale level is
composed of an encoder stack with four layers.

Each encoder layer l5 0, 1, … applies 2D 33 3 dilated con-
volutions with dilation factor r 5 2l and a PReLU nonlinearity.
The decoder layers in the first two levels apply 2D 33 3 convo-
lutions with dilation factors r 5 23 and 24, respectively, and are
each followed by a PReLU nonlinearity. In addition, we in-
clude a nonlinear skip connection at the finest resolution level
to easily capture persistence. Downsampling between levels is
performed using max-pooling. In the decoder, upsampling is
followed by 2D 3 3 3 convolutions. The number of layers per
level was obtained through cross-validation from a small set of
architectures that achieved a full receptive field.

All layers at 2002 km2 are composed of 32 convolutional fil-
ters, and layers at 4002- and 8002-km2 resolution apply 64 and
128 filters to their inputs, respectively. The skip connections
between encoder and decoder stacks, as well as the upsam-
pling layers, have 32 filters each. In each layer of the network,
we use two independent convolutional kernels for each filter:
one covering all four equatorial faces of the cubed sphere,
and the other covering the polar faces. As shown in section 4,
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there is no discernible imprint of the cubed sphere edges on the
model forecasts. In the end, the model architecture has about
1.8 million parameters, halfway between the complexity of the
models used in Weyn et al. (2020, 2021).

4. Results

a. Reference models considered

We assess the skill of HeatNet, ExtNet, and GenNet against
persistence and the ECMWF S2S forecast system (Vitart et al.
2017). The ECMWF S2S system is an operational model that
provides real-time 46-day forecasts 2 times per week. For dates
in the test set (2017–21), real-time forecasts used ECMWF’s
IFS cycles CY43R1, CY46R1, and CY47R2 (ECMWF 2016,
2019, 2020). The S2S system employed 91 vertical levels until
May 2021, and 137 levels after that. All versions are coupled to
an ocean model at 0.258 resolution with an interactive sea ice
model and use a triangular-cubic-octahedral horizontal discreti-
zation with 16-km resolution for days 1–15 and 32 km after that
(Malardel et al. 2016).

To allow comparison with our deep learning systems, the
ECMWF forecasts are bilinearly interpolated to the same
resolution as the input ERA5 data (28), subtracting the
same ERA5 mean climatology to produce climatological
anomalies. Then, the results are mapped to be cubed sphere
using the conservative remapping of Ullrich and Taylor
(2015) and Ullrich et al. (2016); all skill metrics are com-
puted on this grid. To assess potential errors due to the
spherical harmonics truncation employed by ECMWF’s

Meteorological Archival and Retrieval System (MARS), we
downloaded the forecasts at 28 and 0.258 resolutions, and com-
pared the forecasts after bilinearly interpolating the latter to
the 28 grid. The root-mean-square difference between the fore-
casts is;1023 K, much lower than typical forecast errors.

For all comparisons in this study, we employ both the real-
time daily averaged ECMWF control and perturbed ensemble
forecasts (Vitart et al. 2017). Model drift is removed from the
real-time ECMWF forecasts using 660 reforecasts covering
the past 20 years and initialized from ERA5 data (Vitart et al.
2017). Comparisons with the ECMWF control assess the skill
of NWMs against a deterministic “best guess” physics-based
forecast. The ECMWF S2S ensemble prediction system em-
ploys 50 additional ensemble members, perturbing both their
initial conditions and model physics to capture forecast un-
certainty (Buizza et al. 1999). Operational warning systems
typically use perturbed ensembles, which have been shown
to yield a higher economic value than high-resolution deter-
ministic forecasts (Richardson 2000; Palmer 2017). For this
reason, we include the ECMWF ensemble mean forecast for
comparison. Information beyond the first moment of the en-
semble statistics is also valuable (Molteni et al. 1996; Zhu
et al. 2002; Palmer 2017). However, we limit our comparison
to the ensemble mean in this study, since we only consider
NWM point forecasts. Even though our models yield a sin-
gle deterministic output, direct NWM forecasts more closely
resemble an ensemble mean prediction than a physical tra-
jectory of the system; this interpretation is supported by the
results in sections 4b–f.

FIG. 2. Neural weather model architecture, modified from a UNet 31 architecture (Huang et al. 2020). The number
of layers of each encoder and decoder stack is as indicated in the schematic. Encoder convolutional layers have geo-
metrically growing dilation factors r 5 2l, where l 5 0, 1, … is the layer number within the stack from inputs to out-
puts, and decoder layers have dilation factors r 5 8 and 16. The layers connecting same-level encoders and decoders
have convolutions with 32 filters and dilation factor r 5 4. All other layers have dilation factor r 5 1, and all layers
have convolutional kernels of size 3 3 3. Same-level layers implement 32, 64, and 128 filters in the first, second and
third levels, respectively.
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Two additional points should be considered when interpret-
ing the relative skill of the ECMWF forecasts. First, the real-
time ECMWF system is initialized from the operational IFS
analysis, not ERA5, which leads to reduced accuracy at short
lead times. Second, the native resolution of the ECMWF sys-
tem is higher than the resolution of the NWMs. This is both an
asset and a liability when evaluating pointwise objective scores;
higher resolution reduces structural model errors, but inevitable
errors in the timing and location of sharper resolved features
can result in lower skill (Mass et al. 2002). Nevertheless, nega-
tive impacts of resolution on forecast skill are reduced in our
study through the smoothing induced by bilinear interpolation
and daily averaging (Accadia et al. 2003).

b. Forecast skill for summer over land

Although we train the NWMs using global data from all sea-
sons, we evaluate here the performance of the forecast systems
exclusively for summer over land, where heatwave prediction
is most relevant. We define summer as the June–August tri-
mester for the Northern Hemisphere and December–February
for the Southern Hemisphere.

To assess model skill during increasingly hot summer days,
we evaluate forecasts using two different temperature anomaly
percentiles: the 75th (hot) and 95th (extremely hot) percen-
tiles. Setting these thresholds allows assessing the forecast sys-
tems as binary classifiers. When evaluating regressive skill,
conditioning on the target distribution can confront forecasters
with the dilemma of overforecasting a rare event to improve
their scores. There is no obvious way to avoid this problem
when evaluating the regressive skill of deterministic forecasts
at predicting extremes (Lerch et al. 2017). We verified that this
dilemma is not a concern for the models we evaluate, after
their global bias is subtracted, since they either underpredict
extreme anomalies (NWMs), or are well-calibrated (ECMWF
control); results conditioned on the union of forecast and
target values, which account for false alarms, are included in
appendix B.

The regressive skill of the models is characterized in this
study through the debiased root-mean-square error (RMSEd)
and the centered anomaly correlation coefficient (AnCC) of
standardized temperature anomalies. The RMSEd is defined
as the RMSE of forecasts with respect to targets after remov-
ing the global mean bias per lead time of forecasts with respect
to targets in the entire test set. We choose to debias the fore-
casts to prevent forecast bias from positively affecting the skill
metric, since the mean target above the temperature thresh-
olds is nonzero (Lerch et al. 2017). (The subtracted bias is
shown for all models in Fig. 5 for reference; it is clear that sub-
tracting the bias prevents HeatNet from hedging.)

The centered anomaly correlation coefficient for a given
lead time i is defined as (Wulff and Domeisen 2019)

AnCCi 5

∑
Ni

k51
(yik 2 yi)(y′ik 2 y′i )�������������������������������������

∑
Ni

k51
(yik 2 yi)2∑

Ni

k51
(y′ik 2 y′i )2

√ , (3)

where yi 2R is the temporal and spatial average of the target
temperature anomaly T̃2m at lead time i for summer over
land over the entire test set; yik 2R are individual values of
T̃2m at lead time i and at a given location and summer day, in-
dexed by k; and the sums are over the Ni summer targets yik
above the considered standardized temperature anomaly
threshold. The forecast counterparts y′i and y′ik are defined
similarly based on the forecast temperature anomaly, but the
sum over indices k is still conditioned on the anomaly thresh-
old of the targets. The AnCC is a useful metric of the poten-
tial of a forecast system, measuring the correlation between
the target and forecast outputs (Wilks 2019, chapter 9). Our
definition (3) takes into account the dynamic temperature
anomalies, filtering out the thermodynamic shift of tempera-
ture anomalies over land with respect to the 1979–2019 clima-
tology due to global warming, as well as lead-time dependent
model biases. This is not the case for the noncentered anom-
aly correlation coefficient, which does not filter out forecast
biases with respect to climatology (e.g., Weyn et al. 2020).

The classification skill of the models is evaluated through
the extremal dependence index (EDI; Ferro and Stephenson
2011) and the equitable threat score (ETS). The EDI is de-
fined as

EDI 5
logF 2 logH
logF 1 logH

, with H 5
a

a 1 c
and F 5

b
b 1 d

,

(4)

where F is the false alarm rate, H is the hit rate, a are the hits,
b are the false alarms, c are the misses, and d are the correct
negatives (Wilks 2019). Positive values of EDI indicate higher
skill than a random forecast. We choose this metric because it
is base-rate independent, equitable, and it does not degener-
ate for rare event classifiers. Thus, the EDI between both
thresholds considered can be compared, which is not the case
for base-rate dependent measures (Wulff and Domeisen
2019). The equitable threat score is defined as

ETS 5
TS 2 TSref
1 2 TSref

, with TS 5
a

a 1 b 1 c
, (5)

where TSref is the threat score of a random forecast and
higher ETS is representative of higher skill.

The skill of the different models over land is shown in
Fig. 3 for the summers of 2017–21. The lead time is shown
in a logarithmic scale to differentiate between three differ-
ent time scales: the short range (,3 days), the medium
range (3–10 days), and the extended or subseasonal range
(11–28 days). In the short-range errors are dominated by the
initialization, which is more precise for the NWMs, since ERA5
data are fed as predictors. The medium range is characterized
by predictable trajectories of the atmospheric state, whereas
forecasting a single physical trajectory in the extended range
typically adds little value over climatology (Lorenz 1969b). Pre-
dictive power in the subseasonal range is associated with slower
dynamical modes of the climate system, like the MJO or those
arising from ocean–atmosphere interactions (Palmer 1993;
Zhou et al. 2019).
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The extreme-focused HeatNet and ExtNet outperform
GenNet for both temperature thresholds and all metrics
considered, highlighting the usefulness of the exponential
loss (2) in the extreme prediction task. All NWMs main-
tain a higher anomaly correlation with the targets than
persistence, but only the models trained on the exponen-
tial loss improve upon persistence in a mean-square-error
sense during extremely hot days (T̃2m . 95th percentile).
HeatNet, which is trained to emphasize positive extremes ex-
clusively, yields forecasts with higher AnCC than the symmet-
ric ExtNet during hot summer days. Although the AnCC
difference indicates higher predictive potential relative to
ExtNet in this task, its one-sided emphasis on heatwaves leads
to a significant positive bias, as shown in Figs. 4 and 5. This
bias is detrimental to the prediction of dynamic temperature
anomalies, increasing the RMSEd, and does not lead to signifi-
cant classification skill improvements over ExtNet (Figs. 3g,h).

The skill of all models is comparable for day-ahead forecast-
ing. In the medium range, the control and ensemble ECMWF
forecasts remain superior, but their skill drops significantly
faster than that of the NWMs beyond the first week. After the

second week, the extreme-focused NWMs have higher regres-
sive skill than the physics-based models. The RMSEd skill of
NWMs relative to the ECMWF system is significantly higher
when considering all hot days (T̃2m . 75th percentile) than
during extremely hot days (T̃2m . 95th percentile). Positive
skill in the extended range is enabled by the use of the expo-
nential loss, without which the NWM forecasts cannot im-
prove upon the AnCC of the operational ensemble system.

The ECMWF ensemble mean forecast substantially im-
proves upon the regressive skill of the control run in the ex-
tended range, with RMSEd and AnCC metrics closer to
ExtNet. However, higher regressive skill in the extended
range does not translate into higher classification skill, as shown
by the ETS and EDI diagnostics. As classifiers, HeatNet and
ExtNet have slightly higher skill than the ECMWF models be-
yond the medium range for hot days (T̃2m . 75th percentile).
During extremely hot days (T̃2m . 95th percentile), all NWMs
fail to improve upon the ECMWF system as classifiers, al-
though the use of the exponential loss significantly increases
the skill of the NWMs for all regression and classification met-
rics considered.

FIG. 3. Forecast metrics for different models during the summer months of 2017–21 and over land. Metrics are shown for forecasts
conditioned on target standardized temperature anomalies being above the (a)–(d) 75th and (e)–(h) 95th percentiles. Shown are
the (left) debiased root mean square error (RMSEd), (left center) centered anomaly correlation coefficient (AnCC), (right center) equitable
threat score (ETS) and (right) extremal dependence index (EDI). Uncertainty bands, shown for the NWMs as a reference, represent 1
standard deviation. Results are only shown for metrics with a robust uncertainty estimate; details may be found in appendix A.
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We also analyzed interhemispheric differences in skill for
summer over land using the same thresholds and found that
all models have higher skill in the Northern Hemisphere. The
interhemispheric contrast is higher for the NWMs than for
the physics-based models; results are included in the online
supplemental material.

c. Smoothing of forecasts with lead time

The contrast between regressive and classifying skill of
NWMs and the ECMWF ensemble is due to a smoothing of
their forecasts as lead time progresses, and the predictability
of the targets diminishes. Here, we define smoothing as loss of
sharpness, or loss of ability to predict events far from clima-
tology. This smoothing is illustrated in Fig. 4 through the evo-
lution of the forecast probability density functions (PDFs)

with lead time for all models considered. Smoothing leads to
a density concentration near the mean, as the probability of
strong temperature anomalies decreases.

In the case of the ECMWF ensemble, lower predictability
reduces the correlation between individual forecasts with lead
time. This leads to a variance reduction in the ensemble mean
distribution. Smoothing is also typical of data-driven methods,
although in this case it is the result of forecast error minimiza-
tion under uncertainty (e.g., Sønderby et al. 2020). While the
PDF of individual (hindcast corrected) physics-based fore-
casts remains relatively constant, data-driven forecasts shift
toward distributions closer to the target mean, with fewer ex-
treme events.

Notably, this smoothing is slowed down through the use of
the exponential loss (2), particularly in ExtNet. The use of the

FIG. 4. PDFs [here f()] of forecast global standardized temperature anomalies during the period 2017–21. Results are shown for all
NWMs, the control and ensemble forecasts from the ECMWF S2S system, and the true target distribution (ERA5). Note that the PDFs
are not centered about zero, indicating a prediction of the shift in climatology from the 1979–2019 mean.

FIG. 5. Forecast metrics for the general 2-m temperature T2m prediction task, for different models as a function of lead time, showing
the (a) RMSE, (b) AnCC, (c) Kullback–Leibler divergence DKL of T̃ 2m with respect to the targets, and (d) unconditional T2m bias. All
results are global and temporal averages over the period 2017–21. NWM names follow section 2b. Uncertainty is defined as in Fig. 3.
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symmetric exponential loss increases the probability of signifi-
cant deviations from climatology: ExtNet forecasts deviations
above the 95th target percentile 14 days ahead 4.5 times more
frequently than GenNet, and only 25% less frequently than
the ECMWF ensemble mean. Minimizing the positive expo-
nential loss also reduces forecast smoothing, but it leads to a
positive bias and makes HeatNet forecasts of negative anoma-
lies extremely unlikely. The deviation of the forecast distribu-
tion from the true target PDF is further quantified in Fig. 5
through the Kullback–Leibler (KL) divergence, which is an
information-based measure of the difference between proba-
bility distributions (Kullback and Leibler 1951; Joyce 2011).
The use of the symmetric exponential loss reduces the divergence
of ExtNet to less than half of the GenNet divergence for all lead
times, whereas the bias induced by the positive extreme loss re-
sults in a similar KL divergence when compared with GenNet.

Although ExtNet does not manage to capture the same
sharpness as the ECMWF ensemble, it is closer in KL diver-
gence to it than to the MSE-trained GenNet model, highlight-
ing the effectiveness of the exponential loss (2) in retaining
forecast sharpness for a given architecture. Interestingly, the
difference in probability of strong positive anomaly forecasts
between ExtNet and the ECMWF ensemble mean in the ex-
tended range is significantly smaller than the difference in
negative anomaly probabilities (Fig. 4c), even though the loss
used to train ExtNet is symmetric. This suggests that positive
anomalies are easier to capture than negative anomalies given
our predictors.

d. Global surface temperature prediction skill

To further assess the effect of the exponential loss (2) on
the general temperature prediction problem, we include in
Fig. 5 the RMSE and AnCC of T2m (i.e., not standardized) for
all dates in the test set, over both land and oceans. Note that
the RMSE in this case is not debiased. Remarkably, ExtNet
shows a very small reduction in forecast skill in the general
temperature prediction problem with respect to GenNet. All
NWMs beat persistence for all lead times and remain skillful
with respect to the ECMWF control beyond the medium
range; the ECMWF ensemble mean remains the most skillful
model in the general prediction task. Although the RMSE of
ExtNet forecasts converges to that of climatology after 3 weeks,
the model can forecast strong deviations from climatology (as
shown in Fig. 7 for an individual forecast at 23 days of lead
time). Finally, the forecast biases of GenNet and ExtNet are
similar in magnitude to those of the ECMWF model (Fig. 5d),
even though the neural weather predictions are not bias-
corrected by reforecasts. HeatNet does suffer from a signifi-
cant positive bias, which explains its loss of skill with respect
to ExtNet. From Figs. 3 to 5, it is evident that ExtNet pro-
vides the best compromise between extreme heat forecast-
ing skill, forecast reliability and general prediction accuracy
among the NWMs considered.

Figure 5a also allows comparison with other NWMs in the
literature. Weyn et al. (2021) use a neural network with a sim-
pler albeit similar architecture as a time integrator, forecasting
fields 6 and 12 h into the future with each inference step. They

show that only when taking an ensemble mean of such models
can they beat the RMSE of the ECMWF S2S control forecast
in the extended range. In contrast, producing all lead time pre-
dictions at once, a single ExtNet forecast is able to improve
upon the ECMWF control forecast both in RMSE and AnCC
in the extended range. This is consistent with studies compar-
ing direct and iterative forecasting using NWMs, which show
that the former configuration leads to enhanced regressive
skill (Rasp et al. 2020). The similarities between the ensemble
forecast of Weyn et al. (2021), the ECMWF ensemble, and
our results, suggest that NWMs outputting longer lead times
yield forecasts more similar to the ensemble mean of physics-
driven forecasts than to a given physical trajectory. The simi-
larities include the smoothing of forecasts with lead time, and
the saturation of the RMSE in the extended range around the
climatological error.

The results in Figs. 3–5 yield important insights into the
questions that we posed in the introduction. NWMs trained
on limited historical data can improve upon persistence in the
prediction of out-of-sample rare events, in a regressive sense.
As classifiers of extreme events, they only remain skillful with
respect to persistence in the short range, due to their loss of
sharpness with lead time. For our chosen architecture, positive
regressive and classifier skill can only be achieved for extreme
events when employing the exponential loss (2). Furthermore,
training on the symmetric exponential loss, ExtNet is able to
reduce the prediction error for extreme events and slow down
the distributional shift with lead time, all while maintaining an
unconditional regressive skill practically indistinguishable from
models trained on the MSE. The extreme-focused models im-
prove upon the ECMWF models in the prediction of rate events
in a regressive sense after 2 weeks; in the medium range the
physics-based models remain vastly superior. We now explore
two specific heatwave events as forecast by the ECMWF model
and the NWMs to illustrate the implications of these results.

e. Analysis of the 2017 western European heatwave

Sections 4b–d highlight the different ways in which uncertainty
affects physics-based and NWM forecasts. These differences
are further explored here at the regional scale by consider-
ing the western European heatwave of June 2017. The 2017
heatwave resulted in the hottest June on record in Spain
and the Netherlands, and the second warmest in France and
Switzerland. It was associated with northward warm air intru-
sions fostered by a subtropical ridge over western Europe, as
shown by Sánchez-Benı́tez et al. (2018).

Forecasts of the standardized temperature anomaly on
20 June 2017 are shown in Fig. 6 for several lead times. The
ECMWF S2S forecasts initialized 5 days prior accurately pre-
dicted the spatial anomaly patterns over western Europe,
slightly overpredicting their magnitude over coastal regions and
Morocco. In contrast, the control forecast initialized 15 days
prior projected important negative temperature anomalies over
most of western Europe, the opposite of what was observed. It
also failed to predict the warm air intrusion from the Saharan
coast. Only about 10 of the 50 ECMWF perturbed ensemble
members predicted warm temperature anomalies over France
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and Spain, and a higher fraction predicted negative anomalies;
forecasts from 22 of these members are shown in appendix C
for reference. As a result, the ensemble mean forecast was close
to climatology outside the Mediterranean Sea.

On the other hand, ExtNet robustly forecast the warm air
intrusion for the same lead time (15 days), but not its north-
ward penetration into France and the “Benelux” countries.
At 5 days of lead time, ExtNet predicted positive temperature
anomalies over Europe, although the forecast was too mild
and inferior to the ECMWF forecasts. Overall, the NWM
forecasts track well both the magnitude and patterns of tem-
perature anomaly in the short range. In the medium and ex-
tended ranges, the forecasts match the temperature anomaly

patterns well, but underestimate their magnitude. Figure 6 is
consistent with our hypothesis that, contrary to physics-based
models, forecasts by direct NWMs do not represent trajectories
of the system. They are more closely related to the mean pro-
jection of an ensemble of physics-based forecasts, or NWMs
acting as time integrators (Slingo and Palmer 2011; Weyn et al.
2021; Scher and Messori 2021).

f. Analysis of the 2021 western North American heatwave

To showcase the benefits of the symmetric exponential loss,
we compare forecasts of the 2021 western North American
(WNA) heatwave provided by ExtNet, GenNet, and the
ECMWF ensemble in Fig. 7. We consider the WNA heatwave

FIG. 6. Daily averaged standardized 2-m temperature anomaly over Europe on 20 Jun 2017 from (a) the ERA5 reanalysis product and
as forecast by (b),(c) the ECMWF S2S control (ECMWF Cont.), (d)–(f) the ECMWF perturbed ensemble mean (ECMWF Ens.), and
(g)–(i) ExtNet. The lead time of the forecasts is given in parentheses in the title of each panel.
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because its forecast using operational systems is well charac-
terized in the literature (Lin et al. 2022). Several phenomena
have been suggested as causes of the WNA heatwave. Lin
et al. (2022) note the eastward propagation of a Rossby wave
train from the tropical western Pacific that may have favored
the formation of a heat dome over western North America.
Mo et al. (2022) and Lin et al. (2022) also show that the heat-
wave was preceded by a strong atmospheric river transporting
warm moist air from Southeast Asia into the region.

We focus on the heatwave onset, which took place 25–26 June
2021. The actual temperature anomaly on 26 June was charac-
terized by heatwave conditions over Washington, Oregon, and
British Columbia (Canada). Extreme temperature anomalies

were also observed over the northeastern Pacific and the
Labrador Sea (Fig. 7a). The ECMWF ensemble forecast
from 21 June correctly predicted warm temperature anoma-
lies over western North America. The forecast from 3 June,
more than 3 weeks ahead, failed to predict positive anoma-
lies over western North America or the Labrador Sea. This
loss of predictive skill over land has been linked to the inabil-
ity to forecast both the continental penetration of the atmo-
spheric river (Mo et al. 2022), and the eastward shift of the
atmospheric ridge over western Canada (Lin et al. 2022).

ExtNet forecast the anomaly pattern correctly with 2 days of
lead time, but only predicted significant positive anomalies over
Washington, Oregon, and the Labrador Sea in the forecast

FIG. 7. Daily averaged standardized 2-m temperature anomaly over North America on 26 Jun 2021 from (a) the ERA5 reanalysis prod-
uct and as forecast by (b),(c) ECMWF Ens.; (d)–(f) ExtNet; and (g)–(i) GenNet. The lead time of the forecasts is given in parentheses in
the title of each panel.
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5 days prior. Relative to GenNet, ExtNet provides significantly
better and sharper forecasts for all lead times considered, con-
firming the results in sections 4b–d. GenNet underpredicted the
extent of the heatwave over North America even in the short
range, and failed to predict continental penetration 5 days prior
to the event. At 23 days of lead time, the ExtNet forecast
closely resembles that of the ECMWF ensemble, exhibiting an
anomaly dipole over the eastern Pacific (Figs. 7c,f). The data-
driven model exhibits better correlation with the target over
the Labrador and Bering Seas at this lead time, highlighting the
skill of the model in the extended range.

5. Model interpretation

The NWMs presented here leverage a wider range of pre-
dictors than other extreme heat forecasting systems in the
literature (Chattopadhyay et al. 2020; Jacques-Dumas et al.
2022). Here we assess the importance of the additional input
fields using integrated gradients for feature attribution
(Sundararajan et al. 2017; Sundararajan and Agrawal 2021).

a. Feature attribution through integrated gradients

The attribution for each feature x(i) is defined as the mean
absolute value of its contribution to the model forecast
y′ 5 C(u*, x) with respect to a null-contribution baseline
forecast y′b 5C(u*, xb). We formulate the baseline input xb to
be the feature vector on the linear path between xmin and xmax

that results in a forecast closest to global climatology (y′ ’ 0),
where xmin and xmax are feature vectors constructed using the
minimum and maximum values of the features found in the
evaluation set, respectively.

For each actual forecast y′a 5C(u*, xa), the contribution is
computed as the partial derivative of the forecast with respect
to x(i), integrated along a linear path from the baseline
xb 5 [x(1)b , x

(2)
b ,…]T to the actual input value xa 5 [x(1)a , x(2)a ,…]T,

Att[x(i)]|y′a 5
1
N

�1

0

dC[u* ,x(a)]
dx(i)

da [x(i)a 2 x
(i)
b ]

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
1

, (6)

where N is the number of pixels over which the L1 norm is
computed, dC/dx(i) is a discretized approximation of the par-
tial derivative, and a 2 [0, 1] parameterizes the linear path
from baseline to actual feature values, such that x(a 5 0)5 xb
and x(a 5 1) 5 xa. Last, we compute the mean attribution for
each feature over dates in the evaluation set.

b. Relevance of model inputs

We apply the integrated gradients methodology described
in section 5a to ExtNet forecasts for summer over land during
the 5-yr period from 2015 to 2019. Feature attributions are
shown in Fig. 8 for the extreme and the general prediction
task, and for lead times spanning the short, medium and ex-
tended range. The contributions from the most recent data,
data from the previous 2 days, and data from the first 4 days
of the week preceding the forecast are shown in different col-
ors to quantify the relevance of past history as a predictor of
future states.

We find that T̃2m itself is the most important feature in all
cases, while the relative relevance of other features increases
with forecast lead time and depends strongly on the task con-
sidered (i.e., extreme or general prediction). In addition, the
relevance of feature history robustly increases with lead time,
suggesting that NWM forecasts in the extended range learn to
rely on lower frequency signals. These shifts in relevance with
lead time may be used to optimize the NWM architecture, for
instance by pruning connections between short lead time fore-
casts and predictors more than a few days old.

In the extreme prediction task, the temperature anomaly,
700-hPa geopotential height anomaly, topography, and OLR
are important predictors at all lead times. Soil moisture below
7 cm gains relevance with lead time, consistent with the char-
acteristic low frequency of land–atmosphere coupling pro-
cesses and the memory of root-zone soil moisture (Wu et al.
2002). Additional relevant predictors include the potential
vorticity at 500 hPa, and the geopotential height anomaly at
300 and 500 hPa. The potential vorticity at 700 hPa and the
surface soil moisture above 7 cm are irrelevant to ExtNet pre-
dictions at all time scales.

The most important predictors for extreme prediction are
also the most important ones for the general forecasting task.
However, the relative importance of the temperature anom-
aly is significantly greater in the general problem, dominating
the total attribution. Soil moisture plays a much smaller role in
this task relative to heatwave prediction, consistent with obser-
vations of a much stronger land–atmosphere coupling under
extreme conditions (Orth and Seneviratne 2012; Benson and
Dirmeyer 2021). Overall, Fig. 8 suggests that generic estimates
of the relevance of alternative features for NWM forecasting
may underestimate the contribution of such predictors to ex-
treme event forecasting. For the auxiliary features, we find to-
pography to be the most relevant predictor, followed by the
land–sea mask. Finally, the global attribution decreases with
lead time, consistent with the progressive loss of predictive in-
formation and forecast sharpness.

6. Discussion

Referencing the first question that we posed in the intro-
duction, we find that deep learning systems trained on limited
historical data can forecast out-of-sample extreme heat events
with positive regressive skill above persistence for lead times
between 1 and 28 days. This is remarkable given the length of
the reanalysis record, and potentially indicative of the ability
of regression-based neural weather models to learn about
causal physical mechanisms that are common to both the ex-
treme and general forecasting tasks. The rare nature of heat-
waves implies that this learning process occurs in the low data
regime, and that improved models may be obtained through
data augmentation techniques (Miloshevich et al. 2022). In
this context, an interesting research direction would be to train
deep learning models using a much larger synthetic dataset as
a first step (Chattopadhyay et al. 2020; Jacques-Dumas et al.
2022), and then leverage reanalysis products like ERA5 to
fine-tune the model through transfer learning. This technique
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has already resulted in remarkable achievements in other fields
of science, such as organic synthesis (Pesciullesi et al. 2020).

For the second question, we find that NWMs trained on the
mean-square-error loss fail to yield skillful forecasts of ex-
tremely hot days at any lead time considered, at least with our
architecture and only using historical data. Our results suggest
that it is crucial to train models using losses that emphasize ex-
tremes to achieve positive skill in this task, which has been
shown before for idealized dynamical systems (Qi and Majda
2020). Moreover, the switch to the proposed symmetric expo-
nential loss results in negligible skill loss in the general temper-
ature prediction problem and yields more reliable and sharper
forecast distributions farther into the future. Thus, the answer
to our third question, whether NWMs trained to predict ex-
tremes retain skill in more general settings, is positive.

Our best neural weather model (ExtNet) compares favor-
ably to the ECMWF S2S control forecast in the subseasonal
range, yielding lower errors and higher correlations with the
target both in the general and extreme heat prediction tasks.
In the medium range, the ECMWF model remains the most
powerful forecast system. The ECMWF ensemble pushes the
dominance of physics-based forecasts to longer lead times, but

even then ExtNet retains regressive skill in the extreme pre-
diction task after 2 weeks. This, however, does not fully trans-
late into higher skill as a binary classifier due to the smoothing
of forecasts with lead time, which also results in reduced effec-
tive resolution. Although the symmetric exponential loss re-
duces the distributional shift of the forecasts, additional
modifications to NWMs, such as the use of generative model-
ing (Kingma and Welling 2013; Rezende and Mohamed 2015),
may be necessary to further increase forecast sharpness be-
yond the short range. This requirement is particularly impor-
tant for the prediction of extremes. In addition, many practical
applications require higher-resolution forecasts than those
provided by the neural weather models analyzed here. Higher
sharpness and effective resolution at long lead times are some
of the specifications that neural weather models will need to
meet before they can be used to produce actionable informa-
tion; we expect the results in this paper to inform the design of
such models.

Operational warning systems achieve maximum economic
value when they can represent the space of possible trajectories
as a probability density function, such that the occurrence of ex-
treme events can be treated probabilistically, not as a binary

FIG. 8. Forecast feature attribution for summer over land, using data spanning the period 2015–19. Attribution is shown for
(a),(c),(e) extreme (T̃ 2m . 2) and (b),(d),(f) general prediction, and for different lead times. Feature names follow the notation name/
pressure level, where each name follows ECMWF notation: mtnlwrf is outgoing longwave radiation, pv is potential vorticity, z is geopoten-
tial, swvli is soil water volume at level i below the ground, and t2m is temperature 2 m above the surface. Pressure level 0 represents the
land surface. The legend label2iD defines the contribution of data i days before forecast initialization.
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problem (Palmer 2017). This is done in practice through the
use of perturbed ensembles. The use of perturbed ensem-
bles has recently been explored for NWMs acting as time in-
tegrators (Scher and Messori 2021), which still show a
moderate distributional shift with lead time (Weyn et al.
2021). The use of our proposed exponential loss may enable
the use of longer time steps in iterative NWMs while pre-
serving forecast sharpness.

An alternative avenue of research that may prove fruitful is
the direct prediction of the probability distribution of trajecto-
ries (Sønderby et al. 2020), or some parametric approximation
of it. In the context of climate modeling, Guillaumin and Zanna
(2021) trained a convolutional neural network to predict the

mean and standard deviation of subgrid-scale momentum fluxes
in the ocean, which they parameterized as Gaussian. Similar ap-
proaches could be taken to predict the ensemble distribution in
temperature anomaly projections, retaining the regressive skill
of direct NWM forecasts while correcting their underdispersion
and smoothness. We hope that these or other methodologies,
combined with the use of extreme-focused loss functions such as
the one we propose, can enable reliable, actionable and efficient
forecasting of extreme events using neural weather models in
the near future.
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neural weather models is available on GitHub (https://github.
com/google-research/heatnet).

APPENDIX A

Metric Uncertainty Estimation

The test set used in this article contains about 7 mil-
lion samples, .170 000 samples of hot days over land
(T̃2m . 75th percentile), and.34000 samples of extremely hot
days over land (T̃2m . 95th percentile). To determine the vari-
ance of the sample mean due to finite sample size, we use block
bootstrapping with yearlong disjoint blocks (Hall et al. 1995).
We construct the empirical distribution function of the sample
mean from 106 bootstrap samples and use its standard deviation
as a measure of uncertainty. All uncertainty estimates proved
robust to block size reduction except for EDI during extremely
hot days and after a certain lead time for GenNet. Results are
omitted for these EDI estimates.

APPENDIX B

Regressive Skill Conditioned on Target and
Forecast Values

To verify that the evaluated models do not suffer from the
forecaster’s dilemma (Lerch et al. 2017), the debiased RMSE
and the centered anomaly correlation coefficient are evaluated
here over all dates and locations where either the target or
the forecast temperature anomalies were above a certain per-
centile of values in the test set. This conditioning assesses the
skill over false alarms, as well as over hits and misses, penaliz-
ing models that overforecast extremes. As shown in Fig. B1,
differences with respect to Fig. 3 are most prominent for the
ECMWF and persistence forecasts, which are well calibrated.
The skill reduction is smaller for NWMs, which tend to under-
predict extremes, and insignificant for GenNet. This pushes
the threshold above which ExtNet improves upon GenNet to
a higher percentile. Above the 95th percentile, ExtNet still
outperforms GenNet.

APPENDIX C

Stamp Plot of the 2017 European Heatwave from the
ECMWF Ensemble

Figure C1 shows a stamp plot of 22 random individual 15-day
forecasts of the heatwave described in section 4e, from the
ECMWF ensemble. Several members (e.g., 4, 15, and 20) cap-
ture elements of the heatwave, but many others show similar
shortcomings to the control forecast.
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