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Abstract

Given the growing use of Artificial intelligence (AI) and machine learning (ML) methods across all aspects of
environmental sciences, it is imperative that we initiate a discussion about the ethical and responsible use of Al In
fact, much can be learned from other domains where Al was introduced, often with the best of intentions, yet often led
to unintended societal consequences, such as hard coding racial bias in the criminal justice system or increasing
economic inequality through the financial system. A common misconception is that the environmental sciences are
immune to such unintended consequences when Al is being used, as most data come from observations, and Al
algorithms are based on mathematical formulas, which are often seen as objective. In this article, we argue the
opposite can be the case. Using specific examples, we demonstrate many ways in which the use of Al can introduce
similar consequences in the environmental sciences. This article will stimulate discussion and research efforts in this
direction. As a community, we should avoid repeating any foreseeable mistakes made in other domains through the
introduction of Al In fact, with proper precautions, Al can be a great tool to help reduce climate and environmental
injustice. We primarily focus on weather and climate examples but the conclusions apply broadly across the
environmental sciences.

Impact Statement

This position paper discusses the need for the environmental sciences community to ensure that they are
developing and using artificial intelligence (AI) methods in an ethical and responsible manner. This paper is
written at a general level, meant for the broad environmental sciences and earth sciences community, as the use of
Al methods continues to grow rapidly within this community.

1. Motivation

Artificial intelligence (Al) and machine learning (ML) have recently exploded in popularity for a wide
variety of environmental science applications (e.g., McGovern et al., 2019; Reichstein et al., 2019;
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Gagne et al., 2020; Gensini et al., 2021; Hill and Schumacher, 2021; Lagerquist et al., 2021; Schumacher
etal., 2021). Like other fields, environmental scientists are seeking to use AI/ML to build a linkage from
raw data, such as satellite imagery and climate models, to actionable decisions.

While the increase in applications of Al can bring improved predictions, for example, for a variety of
high-impact events, it is also possible for Al to unintentionally do more harm than good if it is not
developed and applied in an ethical and responsible manner. This has been demonstrated in a number of
high-profile cases in the news outside of weather or climate (e.g., O’Neil, 2016; Benjamin, 2019;
Kantayya, 2020). We argue that the potential for similar issues exists in environmental science applica-
tions and demonstrate how AI/ML methods could go wrong for these application areas.

On the other hand, Al can also be helpful for environmental sustainability. Al is already being applied
to enable the automated monitoring of our ecosystems to support accountability for climate justice.
Applications include monitoring land cover changes to detect deforestation (Karpatne et al., 2016; Mithal
et al., 2018), counting populations of endangered species in very-high resolution satellite data (Duporge
etal., 2021), and tracking bird populations in radar data (Chilson et al., 2019; Lin et al., 2019). Automated
monitoring of retrospective and real-time datasets can help interested parties to monitor environmental
trends and respond appropriately.

In our listing of how Al can go wrong for the environmental sciences, we specifically want to address
environmental justice and injustice. According to the EPA (EPA, 2022), “environmental justice (EJ) is the
fair treatment and meaningful involvement of all people regardless of race, color, national origin, or
income with respect to the development, implementation and enforcement of environmental laws,
regulations and policies.” In the following sections, many aspects of the ways in which Al can go wrong
(and the ways to address it) center around this definition.

There are both instrumental and consequential as well as principled ethical perspectives such as duties
and virtues for Al environmental scientists to consider. These are entangled in the biases and pitfalls this
paper explores. Debiasing has the potential to address both.

Note, we assume the reader is generally familiar with the concepts of Al and ML and do not focus on
any specific AI/ML methods but instead on the applications across environmental sciences. For brevity,
we refer to AI/ML as Al throughout the rest of the paper.

2. How AI can Go Wrong for Environmental Sciences

Although Arthur C. Clarke’s famous line “Any sufficiently advanced technology is indistinguishable
from magic” was not directed at Al, it may seem that way to many new users of Al It seems as if one
simply has to give an Al method data and use a premade package and an amazing predictive model results.
The problem with this approach is that Al is not magic and can be led astray in a number of ways, which we
outline here.

Box 1 provides a nonexhaustive list of ways in which Al can go wrong for environmental sciences, and
other issues that can arise. We discuss this list in more depth below and provide examples from the
environmental sciences to illustrate them.

2.1. Issues related to training data

Al models follow the well-known computer science adage: Garbage in, garbage out. If the training data
are not representative of what we actually want to use the Al model for, then it will produce models that do
not accomplish our goals. Because training data are key, issues related to them are particularly common
and hard to avoid. First of all, as we demonstrate in the examples below, it is extremely difficult to create a
dataset that does not have some kind of bias or other shortcoming, even if it was developed with great care
and with the best intentions. Secondly, while the data developers might be aware of many (but usually not
all) of the shortcomings, the scientist using the data to train Al models might be completely unaware of
them, since there is no standard (yet!) in the community to document these shortcomings and include them
with the data. Furthermore, whether a dataset is biased also depends on the application. It might be
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Box 1. A nonexhaustive list of issues that can arise though the use of Al for environmental science applications.

Ways in which AI can go wrong for environmental sciences

Issues related to training data:

1. Non-representative training data, including lack of geo-diversity
2. Training labels are biased or faulty
3. Data is affected by adversaries

Issues related to AI models:

Model training choices

Algorithm learns faulty strategies

Al learns to fake something plausible

Al model used in inappropriate situations
Non-trustworthy Al model deployed
Lack of robustness in the AI model

DR AEE

Other issues related to workforce and society:

1. Globally applicable Al approaches may stymie burgeoning efforts in developing
countries.

2. Lack of input or consent on data collection and model training

Scientists might feel disenfranchised.

4. Increase of CO, emissions due to computing

&

perfectly fine to use a dataset for one purpose, but not for another. Lastly, there is no established set of tests
to check for the most common biases in environmental science datasets.

It is important to understand that when Al models are trained on biased data, they inkerit those biases.
This phenomenon is known as coded bias (O’Neil, 2016; Kantayya, 2020) and is easy to understand—ifa
hail dataset shows hail occurring only in populated areas (see Example 1(a)), the Al system trained on this
dataset is likely to also predict hail only in highly populated areas, making the AI model just as biased to
population density as the data it was trained on. Since established algorithms are often used in regions or
under circumstances other than the origin of the data, such an algorithm can even perpetuate the bias
beyond the regions and circumstances it was trained on.

2.1.1. Nonrepresentative training data
Statistical distribution of training, testing, and validation data: If the training data are nonrepresentative
statistically, the output is likely to be biased. This could include geographic or population biases
(discussed in more detail in Section 2.1.2) but it could also include unintentional temporal biases. For
example, if an Al model is trained on data from 1900 to 1970, 1970 to 2000 is used as a validation set, and
then 2000 to 2020 is used as a test set, the model may not be properly accounting for climate change.
Sensor limitations provide other examples. Many sensors require sunlight for high quality observations,
and thus many phenomena are under-observed at night. Similarly, inferring certain surface conditions
from satellites using passive sensors tends to be easier for clear sky conditions.

Lack of geo-diversity: In order to enable Al algorithms to facilitate environmental justice we thus need
to ensure that different populations are well represented in their training data. This includes ensuring that
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the data are diverse geographically, including addressing population biases and biases in sensor place-
ments that could affect the ability to obtain a statistically representative training set. For example, the
national radar network has coverage gaps which can inadvertently under-represent some populations, as
indicated in Figure 1 (Sillin, 2021; Shepherd, 2021). We should explicitly take population representation
into account for the design of future sensor networks and seek to close gaps in existing sensor networks by
placing additional sensors in strategic locations. Furthermore, we can put Al to good use by developing Al
algorithms to estimate sensor values at the missing locations based on other sensor types, such as
generating synthetic radar imagery from geostationary satellite imagery (Hilburn et al., 2021).

Lastly, because environmental sciences are characterized by a superposition of various processes at
very different temporal and spatial scales, it is challenging to have a dataset fully representative of all
potential processes to be analyzed and inferred by AI/ML methods; some processes may be neglected in
the process.

2.1.2. Training labels are biased or faulty

Human generated datasets: Obtaining data for environmental science prediction tasks is often quite
challenging, both in terms of finding the data and in terms of identifying a complete dataset. For example,
if one was to predict hail or tornadoes but only to use human reports, there is a known bias toward areas
with higher population (Allen and Tippett, 2015; Potvin et al., 2019) as shown in Figure 2. If more people
live in an area, there is a higher chance that someone observes and reports a hail or tornado event. This
might bias the AI model to over-predict urban hail/tornadoes and under-predict rural hail/tornadoes.

Are Black Americans Underserved by the NWS Radar Network?
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by sending beams of energy out| - Memphis 7 e = Charlotte
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Figure 1. Coverage of the national Doppler weather network (green and yellow circles) overlaid with the
black population in the southeast United States, courtesy of Jack Sillin. This is an example of
nonrepresentative data (Section 2.1.1).
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Figure 2. Hail and tornado reports both show a clear population bias with reports occurring more
frequently along roads and cities. This can be seen as examples of (i) data being missing in low population
areas (Section 2.1.1) and (ii) faulty labels (Section 2.1.2). Panel a is from Allen and Tippett (2015) © Allen
and Tippett. Reproduced under the terms of the Creative Commons Attribution—NonDerivative License
(CC BY-ND) Panel b is from Potvin et al. (2019) © American Meteorological Society. Used with
permission. Contact copyright holder for further re-use.
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Figure 3. Human reports of wind speed show biases in both perception of the speed itself (Panel a) and in the
binning of the data (Panel b). Both panels are from Edwards et al. (2018). This example highlights both non-
represenative training data (Section 2.1.1) and biased and faulty labels (Section 2.1.2). Panels 2a and b
© American Meteorological Society. Used with permission. Contact copyright holder for further re-use.

A related issue is that even if a diverse geographical area is represented in the dataset, the Al model will
focus on patterns that are associated with the most common regimes and areas where the hazard occurs
most frequently. It also may ignore patterns that affect a small portion of the dataset since the contribution
to the overall training error is relatively small. For example, solar irradiance forecasts from an AI model
trained across multiple sites in Oklahoma had higher errors at the sites in the Panhandle compared with
central Oklahoma due to limited representation of Panhandle weather in the dataset (Gagne et al., 2017).

Figure 3 illustrates the typical biases of humans to estimate wind speed due to two effects. Figure 3a
shows that humans tend to overestimate wind speed, and thus tend to classify it as severe at levels that are
not actually considered severe. Thus, human reported wind speed results in training data with significant
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bias toward higher wind speeds. Figure 3b illustrates that humans tend to assign wind speeds in discrete
increments, with a strong bias toward multiples of five, that id, 60, 65, 70, ..., kt. This example also
demonstrates how nonrepresentative training data and the biases could result in an Al algorithm that does
not predict true wind speed impacts correctly.

Sensor generated datasets: A potential response to these data issue could be to use only sensor-based
data, such as radar-derived hail estimates. We often assume that sensors are inherently objective yet that is
not guaranteed. First, the data from these sensors must be interpreted to create a full dataset. For radar-
derived hail data, there are well-known overprediction biases to the data (e.g., Murillo and Homeyer,
2019). Second, data from sensors may also be incomplete, either due to sensor errors or missing sensors.
With many sensors, there are areas which are well represented and areas where data are lacking. Sensor
placement often depends on geological features, for example, there might be a lack of sensors at remote
mountain tops or in empty fields. Economical reasons can also come into play in the placement of sensors,
such as the placement of crowd-sourced sensors where there are more affluent people. Consider for
example the deployment of air quality sensors. While the EPA has a network of just over 1,100 air quality
sensors that are relatively evenly distributed throughout the United States, this is not the case for the
popular new generation of low-cost air quality sensors, called PurpleAir. There are now over 5,500
PurpleAir sensors deployed in the United States, but they are deployed in significantly Whiter, higher
income areas than the national average (deSouza and Kinney, 2021). Access to these sensors in less-
privileged communities is needed to democratize air pollution data (deSouza and Kinney, 2021).

2.1.3. Data are affected by adversaries

Adpversarial data are a well-known problem in machine learning (e.g., Diochnos et al., 2018; Goodfellow
etal., 2018; Nelson et al., 2010). Adversaries can cause an Al model to either learn a faulty model or to be
used incorrectly when applied to real-world data. For example, there are well-known examples of minor
changes to speed signs causing a computer vision system to see a 35-mph speed limit as an 85-mph speed
limit, something that could be quite dangerous in an autonomous car.

Al applied to environmental science data has to contend with two kinds of adversaries: humans and the
environment. One needs to be aware of both types of adversaries when training and applying the Al
models to the real-world.

Human adversaries: When using human reported data, there is always the possibility of users
intentionally adding bad data. Figure 4 provides two examples. Figure 4a provides the screenshot of
wind reported by someone who hacked the crowd-sourced mPing system for the state of Alabama. Note
the long line of wind reported outlining the state border which clearly represents an intentional input of
incorrect information. Such data would be detrimental to any Al model trained on these data. A second
source of human adversarial data are insurance fraud (Davila et al., 2005). As the number of expensive
natural disasters are increasing (Figure 4b), the number of fraudulent weather-related insurance claims
is increasing, with estimates of fraudulent reports hovering around 10% (Sorge, 2018). Such fraudulent
reports can also affect training data for Al by appearing in the databases of severe weather reports.

Weather as an adversary: Weather can act as its own adversary, especially when collecting observa-
tions for extreme events. For example, when seeking to observe the severity of storms, sensors can fail due
to power outages caused by a strong storm (Figure 5a) or a strong storm can even destroy sensors
(Figure 5b).

2.2. Issues related to the AI model

In addition to problems caused by bias or other complications in the training data, Al models can also
develop issues on their own. Examples are given in this section.

2.2.1. Model training choices
Model training choices will affect every aspect of the Al model. While Al methods are based on
mathematical equations and thus often seen as “objective,” there are countless choices that a scientist
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(b) Catastrophe related insured losses from 1970 to 2018 from (RE, 2018; Scotti,
2019). With at least 10% of weather-based insurance claims estimated as fraud-
ulent (Sorge, 2018), there is increasing motivation for humans to report incorrect
severe weather data
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Figure 4. Humans sometimes create adversarial data, which may be ingested by an artificial intelligence
(AD) model (Section 2.1.3). While in example (a) the user intent is to create false inputs, in example, (b) the
motivation for the false reports is more for personal financial gain (insurance fraud). Nevertheless, both
can cause problems for Al by directly affecting reports databases used by AI models.
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(b) A destroyed Oklahoma Mesonet station follow-
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Figure 5. Weather also creates its own adversaries (Section 2.1.3) by creating power outages (a) or
destroying sensors (b), especially during major events. Graphics from Mesonet (2020) and Staff (2021).

has to make that greatly affect the results. These choices include: (a) which attributes (e.g., which
environmental variables) to include in the model; (b) which data sources to use; (c) how to preprocess the
data (e.g., normalizing the data, removing seasonality, and applying dimension reduction methods);
(d) which type of Al model to use (e.g., clustering, random forest, neural networks, etc.); and (e) how to
choose hyper parameters (e.g., for random forest—how many trees, maximal depth, minimal leaf size,
etc). Each of these choices has significant impact and can lead to vastly different results with severe
consequences. For example, the choice of spatial resolution for the output of a model can be crucial for
environmental justice. Training an Al model to predict urban heat at a low spatial resolution may average
out, and thus overlook, extreme values in small neighborhoods, while using a higher spatial resolution
could reveal those peaks but potentially introduce noise.
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2.2.2. Algorithm learns faulty strategies

Al models are tasked to learn patterns in the data that help them come up with good estimates or
classifications. Sometimes, even if the data are not faulty in the traditional sense, they may contain
spurious correlations that are not representative of the real world and that the Al model learns to exploit.
This issue could be discussed in the section on data-related issues (Section 2.1), but we chose to include it
in this section since it is so closely coupled with Al model development, and often only diagnosed once an
Al model has been developed.

One approach to identifying when the Al has learned a faulty strategy is to either use interpretable or
explainable Al (XAI) (e.g., Ras et al., 2018; Molnar, 2018; McGovern et al., 2019; Samek et al., 2019;
Ebert-Uphoff and Hilburn, 2020). In the case of interpretable Al, the models are intended to be under-
standable by human experts (Rudin, 2019) while explainable Al attempts to peer inside the black box of
more complicated models and identify the internal strategies used by the models. Both approaches allow a
human expert to examine the model and potentially to identify faulty strategies before deploying a model.

Figure 6a is an example of how an Al model can learn a faulty strategy and how this can be discovered
through XALI In this example, a deep learning model was trained to predict tornadoes (Lagerquist et al.,
2020) and then examined to identify what the model had learned. Unexpectedly, we discovered that the
model was still predicting a high probability of tornadoes even if the reflectivity image contained mostly
noise (Chase and McGovern, 2022).

2.2.3. Al learns to fake something plausible

The emergence of an advanced type of Al algorithm, namely the generative adversarial network (GAN)
introduced by Goodfellow et al. (2014), yields the ability to generate imagery that looks extremely
realistic. The result of a GAN can be seen as one possible solution (an ensemble member) which might not
be representative of the distribution of possible solutions. An important question is how forecasters would
respond to GAN imagery with intricate small scale features that look overwhelmingly realistic, but might
not be as accurate as they appear to be. Ravuri et al. (2021) conducted a cognitive assessment study with
expert meteorologists to evaluate how forecasters respond to GAN imagery of radar for precipitation
nowcasting. They concluded that for their application forecasters made deliberate judgements of the
predictions by relying on their expertise, rather than being swayed by realistic looking images (Suppl.
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(b) Example of a partial dependency plot (Molnar,
2018) which shows how an Al model could product
unphysical results when given unexpected inputs
(Section 2.2.4). From (Chase et al., 2021). ©Molnar.
Reproduced under the terms of the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0
International License (CC-BY-NC-SA 4.0).

(a) Tornado prediction model from
Lagerquist et al. (2020) and Randy Chase
(Chase and McGovern, 2022). ©Chase and
McGovern. Used with permission.

Contact copyright holder for further re-use.

Figure 6. Examples of an Al learning to fake something plausible (Section 2.2.3) and of a model
generating unexpected output when applied to data outside of the range of expected data (Section 2.2.4).
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C.6. of Ravuri et al., 2021). Nevertheless, the jury is still out whether that is generally the case. Such
methods might sometimes trick forecasters into greater trust than is warranted. Similar methods are used
to generate deep fake images and videos (Adee, 2020) which have successfully fooled people into
believing misinformation (Vaccari and Chadwick, 2020). If similar approaches are used in environmental
science, trust in AI models could be lost.

One of the major dangers of generative models used in contexts where they are parameterizing fine
scale data (Gagne et al., 2020) or filling in missing data (Geiss and Hardin, 2021) is the lack of guarantees
about what data they use to fill in the gaps. If an ML model is trained without any physical constraints, it is
possible for the algorithm to insert spurious weather features. If this occurs in otherwise data sparse
regions, forecasters may not have any additional data to discredit the false prediction for many hours.
More subtle discrepancies would be the most problematic since they are harder for forecasters to catch.

2.2.4. Models used in inappropriate situations

Another model-based issue that can arise is when an Al model is trained for one situation, perhaps a
specific weather regime or for a specific geographical area, and then applied to new situations where it is
not physically meaningful. In such situations, the Al may predict incorrectly, without giving any warning,
which could lead to loss of life and environmental injustice.

For example, Figure 6b shows a partial dependence plot (Molnar, 2018) of the predictions of an Al
method predicting total ice water content (i.e., mass of snow in a cloud) from radar data (Chase et al.,
2021). If input given to the model is uncharacteristic of the training dataset, the output may not be
physically realistic. This issue also comes up frequently when ML is used to replace numerical weather
prediction parameterization schemes. If the ML model is transferred to a different climate or geographic
regime or even to the hemisphere opposite where it was trained (where the sign of many common
variables are flipped), it often performs quite poorly.

2.2.5. Nontrustworthy models deployed

Ensuring that a model is trustworthy is a key part of ethical and responsible Al. Often Al systems are
deployed before they are ready, in particular before they have been thoroughly tested and validated by
domain experts. Figure 7 shows the results of a commercial Al system predicting damage caused by a
hypothetical 7.0-magnitude earthquake in the Seattle area. The three panels show results from three
different version of the system delivered to the city of Seattle to assist them to plan where to establish
earthquake shelters. The widely differing results in the three panels arose from using different data
sources, but also from programming errors (e.g., counting each apartment in a high-rise building as a
separate structure). Deploying the model before it was ready for operation forced the city to revamp nearly

Figure 7. Three vastly different damage predictions for the same hypothetical 7.0-magnitude Seattle area
earthquake delivered by different versions of the same Al system. Figure from Fink (2019), crediting the
Seattle Office of Emergency Management.
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completed plans for sheltering earthquake-displaced residents that were developed using the original
version (Fink, 2019). The trust in the Al system was so eroded that the city considered terminating their
contract, and only kept it because the company found an external funder and could offer it to Seattle
for free.

Typical mistakes to be avoided, illustrated by this example, are developing a system without engaging
domain experts or local end-users, deploying a system before it has been rigorously validated, and over-
promising the system’s accuracy to the end user without any scientific evidence. For the latter, there are
many new methods for uncertainty quantification in machine learning models that we as a community
should start utilizing routinely for this purpose (e.g., Barnes et al., 202 1; Orescanin et al., 2021).

2.2.6. Lack of robustness

While a lack of robustness could also be categorized under models being inappropriately applied,
adversarial data, or even a lack of trust, we separate it into its own category to highlight the need for
robustness in ethical and responsible Al. Robust Al for environmental sciences will fail gracefully
when outputs are out of range (e.g., Section 2.2.4) and will also constrain the outputs by the laws of
physics. For instance, when preparing a workshop tutorial, one of the authors was demonstrating a simple
ML method that could predict a local temperature. When presented with an input that was two standard
deviations outside of its training data, the method suddenly predicted a temperature hotter than the surface
of the sun. Such predictions may contribute to a lack of trust and create environmental injustices.
Furthermore, integrating advances in Al methods that enable physics and/or fairness principles
(Kearns and Roth, 2019; Thomas et al., 2019; Mehrabi et al., 2021) into the learning methods could
both align with and help advance ethical and responsible Al

2.3. Other issues related to workforce and society

We have discussed ways that both the training data and the Al model could go wrong. Here, we focus on
the broader picture of how Al is applied and developed and how that relates to environmental justice.
This aspect also needs to be addressed in developing ethical and responsible Al for environmental
sciences.

2.3.1. Globally applicable Al approaches may stymie burgeoning efforts in developing countries

Large organizations developing and deploying Al systems, including government agencies and private
companies, generally want their Al systems to be globally applicable. People in countries outside that of
the provider organization can benefit from technological advances that may not otherwise be available to
them. Provider organizations can benefit from a broader set of customers and stakeholders. These kinds of
global activities work best when researchers and companies directly engage with different local popu-
lations and incorporate their needs and concerns into the design process. For example, Google’s crisis
team has been working with multiple local and government partners in India and Bangladesh to create a
hyper-local flood forecasting product (Matias, 2021).

However, the relative ease of deploying Al on global datasets can also increase the temptation for
organizations to automate deployment without fully monitoring its impact. Without direct engage-
ment with various populations, organizations may not be aware of the unintended consequences of
their algorithms. They also may not have access to observations in these areas to validate their
performance. They may also undercut local providers who are more aligned with the community but
do not have the same resources and economies of scale to compete on price, especially if the service is
offered for free or is supported by advertising revenue. Government meteorological centers in both
developed and developing countries have dealt with budget cuts and cost-recovery requirements even
before the growth of Al and the private weather industry, so further adoption of Al could exacerbate
these trends.
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For example, mobile weather apps have become the primary source of weather information for
younger people (Phan et al., 2018). However, the apps’ uniform presentation of weather information
may result in users not being aware of more localized and rare weather hazards. A local government
or television meteorologist on the other hand can tailor their communication to highlight these
issues.

2.3.2. Lack of input or consent on data collection and model training

As illustrated in the discussion of Figure 7, when collecting local data for training an Al model or when
creating an Al model to inform decisions in or about a specific place, it is critical that the people affected
and those with local expertise are involved from the beginning (Renn et al., 1995; Stern and Fineberg,
1996; Chilvers, 2009; Voinov et al., 2016; Pidgeon, 2021). This is more typically known in the social
sciences but not nearly as common in Al

The types of data that are collected affect the Al models that can be applied and trained. Understanding
that data provide a source of power and that what is not collected cannot be used (D’Ignazio and Klein,
2020), it is possible to see that Al could too easily be used to perpetuate environmental and climate
injustices if data are not collected carefully.

In environmental research it has long been noted that engaging those whose concerns the science is
purportedly informing or addressing can improve models and outcomes, is a moral obligation, and is
the virtuous course of action (e.g., Lemos and Morehouse, 2005). A core duty in environmental
sciences, as in all sciences, is to be honest (e.g., National Academies of Sciences, Engineering, and
Medicine (NASEM), 2009; 2019), which respects the dignity and rights of persons (e.g., Keohane et al.,
2014). In Al for environmental sciences this requires grappling with how to be transparent (i.e., show
your work—D’Ignazio and Klein, 2020) about methodological biases and uncertainties that are often
complex and poorly understood. When scientific conditions such as sensitivity to training conditions
or data provenance are not reported, that lack of transparency both disempowers and disrespects
those the model may be intended to help, and can make a study irreplicable and even irreproducible
(NASEM, 2019).

It is thus critical to keep in mind that many types of data and knowledge already exist outside of the
colonial framework in which most Al data have been collected. For example, scientists must work directly
with local leaders to incorporate Indigenous knowledge (Hiwasaki et al., 2014; Cartier, 2019) in an ethical
and responsible manner.

2.3.3. Scientists feeling disenfranchised
There are two primary reasons why scientists might feel disenfranchised.

Scientists not fluent in AI might feel disenfranchised: Environmental scientists are absolutely essential
for the development of meaningful Al tools for the their domains. Currently, with a lack of education in Al
for environmental sciences, leading scientists may feel excluded from advancing state-of-the-art tools.
They must either learn about Al themselves or collaborate with Al scientists to be part of major future
development in their field. As a consequence they may feel less independent and less appreciated. Clearly,
we need more educational resources to help environmental scientists learn the basics of Al in order to
empower them to play a leading role in future developments.

Required computational resources might limit research opportunities to privileged groups: While
Al methods for many environmental science applications require only modest computational
resources, some research now requires access to extensive high performance computing facilities,
which limits this kind of research to those research groups privileged enough to have such access. To
level the playing field we as a community need to find ways to develop an open science model that
provides access to computational resources also for other groups who need them (e.g., Gentemann
etal., 2021).
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2.3.4. Increase of CO, emissions due to computing

It is well known that the increasing computational demands of Al training are responsible for a surprisingly
large carbon footprint worldwide (Schwartz et al., 2020; Xu et al., 2021). Thus, we need to consider, and
limit, the carbon footprint from the computational needs of environmental science. Green deep learning (aka
Green Al) is a new research field that appeals to researchers to pay attention to the carbon footprint of their
research, and to focus on using lightweight and efficient methods (Xu et al., 2021). We should fully explore
these new developments, including focusing on how to make ML models simpler for environmental science
applications, which would have many advantages, including increased transparency and robustness (Rudin,
2019), but also lower computational needs and lower carbon footprints.

3. Discussion and Future Work

The scientific community is still grappling with the many ethical questions raised by the introduction of
Al in general (O’Neil, 2016; Floridi, 2019; Schmidt et al., 2021) and for Earth science applications in
particular (Doorn, 2021; Coeckelbergh, 2021). The effort presented here represents the beginning of our
work on developing a full understanding of the need for ethical, responsible, and trustworthy Al for the
environmental sciences and of the interactions between ethical and responsible Al and trustworthy Al
within the NSF Al Institute for Research on Trustworthy Al in Weather, Climate, and Coastal Oceanog-
raphy (AI2ES, ailes.org). In an upcoming paper, we plan to present guiding principles for ethical,
responsible, and trustworthy Al for the environmental sciences.
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