

1 **Control of Polymers' Amorphous-crystalline Transition Enables Miniaturization and**
2 **Multifunctional Integration for Hydrogel Bioelectronics**

3
4 Sizhe Huang^{1,2}, Xinyue Liu³, Shaoting, Lin⁴, Christopher Glynn², Kayla Felix², Atharva
5 Sahasrabudhe⁵, Collin Maley², Jingyi Xu², Weixuan Chen², Eunji Hong^{1,2}, Alfred J. Crosby⁶,
6 Qianbin Wang^{1,2,*}, Siyuan Rao^{1,2,*}

7 ¹. Department of Biomedical Engineering, Binghamton University, State University of New York,
8 Binghamton, NY, USA

9 ². Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA

10 ³. Department of Chemical Engineering and Materials Science, Michigan State University, East
11 Lansing, MI, USA

12 ⁴. Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA

13 ⁵. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA,
14 USA

15 ⁶. Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA,
16 USA

17
18 Corresponding authors: Qianbin Wang (qbwang@binghamton.edu), Siyuan Rao
19 (syrao@binghamton.edu).
20
21
22
23

1 **Abstract**

2 Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate
3 complex neural circuits. Here, we develop a fabrication approach through the control of
4 metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple
5 components into hydrogel bioelectronics. We attain an about 80% diameter reduction in
6 chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy
7 allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light
8 transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic
9 modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes
10 in the mouse ventral tegmental area, coupled with fiber photometry recordings and social
11 behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by
12 incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording.
13 We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-
14 triggered neural activities in Channelrhodopsin-2 transgenic mice.

15 **Introduction**

16 Soft materials bioelectronics enable the interrogation of biological function from single-cell to
17 organ-level resolution¹. In dynamically moving *in vivo* environments, soft bio-interfaces can adapt
18 to the persistent mechanical deformations of the living tissues, and consequently provide reliable
19 access to biological systems. For the sophisticated yet delicate nervous system interfaces, elastic
20 polymer materials, including polydimethylsiloxane (PDMS)², cyclic olefin copolymer elastomer
21 (COCE)³, polyurethane (PU)⁴, and hydrogels^{5, 6} have been deployed as the suitably elastic substrate
22 for multifunctional devices that enable neural optogenetics stimulation^{2, 7, 8, 9}, electrophysiological
23 recording^{10, 11, 12}, drug infusion¹³ and neurotransmitter detection¹⁴. However, fabricating dedicated

1 microstructures in soft and elastic devices is limited to two-dimensional (2D) architectures and
2 heavily relies on sophisticated manufacturing approaches such as lithography^{15, 16} and micro-
3 printing¹⁷.

4 The thermal pulling method yields multiple-step scaling-down feasibility for multifunctional
5 polymer fibers^{13, 18}, and this approach requires coherent parameters of the constituent materials,
6 such as glass transition temperature (T_g), melting temperature (T_m) and thermal expansion
7 coefficients (α) to be drawn into an integrated fiber. Moreover, the high-temperature process
8 narrows the selections of available polymers for high-water-content bioelectronics. Assisted with
9 hydrogel cross-linking as a soft material matrix, hybrid multifunction fibers permit adaptive
10 bending stiffness for long-term sensing and neural modulation^{5, 19}.

11 Besides mechanical stiffness changes in the hydrated state and the desiccated state, hydrogel
12 materials permit tunable volumetric control as the supporting scaffold. Hydrogel swelling
13 behaviors in response to external stimuli have enabled drug release²⁰, ingestible devices²¹, and
14 expansion microscopy to enhance microimaging resolution²². Anti-swelling hydrogels are usually
15 constructed by regulating the cross-linking, hydrophilicity/hydrophobicity balance and
16 nanocomposite for tissue engineering applications^{23, 24}. Meanwhile, hydrogel shrinking behaviors
17 in a desiccated state have been applied to densify patterned materials in volumetric scaffold
18 deposition and obtain nanoscale feature sizes in three dimensions^{25, 26}. However, the hydrogel
19 swelling and shrinking behaviors in these techniques are based on reversible polymer chains
20 collapse in the desiccated state and expansion upon hydration. When applied to an aqueous *in vivo*
21 environment, the shrunk hydrogels will expand and lose the miniaturized structures from the
22 original manufacturing.

1 Inspired by the volumetric change resulting from polymer chains' folding and expansion, we
2 propose a hypothesis centered on controlling the amorphous-crystalline transition in semi-
3 crystalline hydrogels. By intervening in the polymer chain folding and crystallization process, we
4 aim to limit the expansion of polymer chains from their nanocrystalline structure and consequently
5 enable hydrogels to preserve their designed volumes under a solvated state. Utilizing the nanoscale
6 structure change to regulate soft materials properties has been proven as an effective approach to
7 biomedical applications^{27, 28, 29, 30}. Polyvinyl alcohol (PVA) hydrogels, one of typical semi-
8 crystalline polymers, have been extensively used in drug release^{31, 32}, food packaging³³ and wound
9 healing³⁴ owing to their high-water content, transparency, and biocompatibility. In semi-
10 crystalline polymer matrices, the swelling behavior involves water molecule diffusion, amorphous
11 polymeric chain relaxation via hydration, and expansion of the cross-linked polymer network. To
12 finely tune polymeric crystallization processes, we can apply engineering approaches that impact
13 polymer chain interactions, solvent evaporation, and external stretching to facilitate molecular
14 chain arrangement³⁵. Moreover, PVA polymer matrix can be incorporated with nanomaterials to
15 enhance mechanical strength, conductivity, and biocompatibility^{36, 37}. For PVA hydrogel
16 bioelectronics, controlling nanostructures through polymeric crystallization approaches can
17 enhance the stability to maintain their designed architectures in biological environments.

18 Here, we developed a set of cross-linking chemistry and micro-fabrication processes to control
19 polymeric crystalline domain growth with cross-linked PVA hydrogels. A stable and tunable
20 volumetric decrease of hydrogels was consistently achieved in a hydrated state under physiological
21 conditions (pH 6-8, 37 °C). Through acidification treatment that affects polymer chain interactions
22 while introducing dual cross-linkers of the inorganic binder tetraethyl orthosilicate (TEOS) and
23 the generic glutaraldehyde (GA), we minimized the polymeric crystalline scattering (crystal size

1 around 3.5 nm) and increased the hydrogels' refractive indices (RI). Further nanocrystalline
2 orientation induced by uniaxial deformation promoted the generation of nanoscale anisotropic
3 architectures. This control of metamorphic polymers' amorphous-crystalline transition
4 (COMPACT) strategy enabled a 79.7% diameter decrease of hydrogel fibers in the hydrated state
5 while maintaining high stretchability (139.3-169.2%), relatively low elastic moduli (2.8-9.3 MPa),
6 and low bending stiffness (4.6 ± 1.4 N/m). With the ability to control COMPACT hydrogel RI
7 with a series of options, we developed core-cladding hydrogel fibers with distinct RI contrast
8 ($n_{\text{core}}=1.40$, $n_{\text{cladding}}=1.34$). These core-cladding structured hydrogel fibers were applied for
9 concurrent photometry recordings from mouse brain ventral tegmental area (VTA) in the context
10 of social interactions. Taking advantage of these tunable hydrogel matrix scaffolds, we loaded
11 conductive nanomaterials, carbon nanotubes (CNTs), into COMPACT hydrogels to fabricate soft
12 microelectrodes, and tested its functionalities for electrophysiological recordings of spontaneous
13 neural activity in the mouse brain. Integrating a hydrogel optical core and CNTs-PVA
14 microelectrodes, we developed multifunctional hydrogel optoelectronic devices and demonstrated
15 the simultaneous optogenetic stimulation and electrophysiological recording of optically triggered
16 neural activities in transgenic *Thy1:: ChR2-EYFP* mice.

17 **Results and Discussion**

18 **COMPACT strategy for hydrogels controllable shrinking**

19 Chemically cross-linked PVA hydrogels have been widely employed with superior optical
20 properties³⁸, fatigue-resistance^{39, 40, 41} and biocompatibility for bioelectronics applications^{42, 43}. To
21 further explore PVA hydrogels' controllable miniaturization properties while preserving these
22 advantageous features, we designed fabrication approaches by control of metamorphic polymers'
23 amorphous-crystalline transition with the following aspects: (i) polymer chains folding and

1 immobilization with multiple cross-linkers, (ii) intervention on intermolecular chain interactions
2 in the hydrogel matrix, (iii) inducing the oriented growth of nanocrystalline domains. We
3 implemented the COMPACT strategy following three major procedures to control individual
4 polymer chain folding, polymer chain network interactions and nanocrystalline growth. We first
5 introduced the hydrolysis of TEOS in PVA solutions through homogenization (Fig. 1a and
6 Supplementary Figure 1), followed by the addition of a generic cross-linker (GA). A combination
7 of two types of cross-linkers is chosen to allow the control of polymer chain mobility via covalent
8 bonding and parallel tuning of hydrogels' refractive index. We then acidified the cross-linked
9 hydrogels to promote intermolecular chain interactions. We prepared fiber-shaped hydrogels via
10 molding and extrusion methods (Supplementary Figure 2a). External mechanical stretching was
11 applied to the fully acidified hydrogels and maintained during the desiccating process
12 (Supplementary Figure 2b). After the removal of water molecules from hydrogels, high-
13 temperature (100 °C) annealing was employed to further promote the growth and orientation of
14 the nanocrystalline domains. To test whether COMPACT strategy can preserve hydrogels
15 volumetric shrinking under hydrated state, we next examined the dimensions and water fractions
16 of cross-linked hydrogels under pristine, desiccated, and re-hydrated states (Fig. 1b-e).

17 At the pristine (Fig. 1b) and desiccated states (Fig. 1c), the two hydrogel fibers with TEOS-GA
18 cross-linking (COMPACT+) and GA cross-linking (COMPACT-) exhibited comparable
19 geometries and water fractions (Fig. 1e); however, only the TEOS-GA cross-linked PVA hydrogel
20 fiber with acidification and mechanical stretching maintained the reduced diameters in the re-
21 hydrated state (Fig. 1d, e).

22 After we confirmed that hydrogels retained shrinking behaviors in the re-hydrated state with
23 COMPACT treatment, we tested whether size reduction is dependent on the materials' geometries

1 and external constraints. We prepared hydrogels with the shapes of thin film, fiber, and block, and
2 examined the changes of COMPACT hydrogel film thickness (T , Fig. 1f), fiber diameter (D , Fig.
3 1g) and volume (V , Fig. 1h). TEOS-GA cross-linked PVA hydrogel thin films with acidification
4 treatment exhibited a thickness reduction ratio of $93.4 \pm 3.6\%$ (pristine thickness: $501 \pm 134 \mu\text{m}$;
5 rehydrated thickness: $33 \pm 18 \mu\text{m}$, Fig. 1f). TEOS-GA cross-linked PVA hydrogel fibers, with
6 treatment of acidification and mechanical strain (200%), reached the maximum diameter shrinking
7 ratio of $79.7 \pm 2.3\%$ (Fig. 1g). In 3D free shrinking structures, we observed $80.9 \pm 0.7\%$ volumetric
8 shrinking in acidified TEOS-GA cross-linked cylinders (Fig. 1h).

9 We then investigated the mechanisms of the sustained hydrogel volumetric decrease and the design
10 of amorphous and crystalline architectures. Fourier transform infrared spectroscopy (FTIR) results
11 indicated covalent bonds (Si-O-Si and Si-OH) generated in the COMPACT hydrogel network (Fig.
12 1i). The Si-O-Si (1080 cm^{-1}) and Si-OH (950 cm^{-1}) bonds came from the hydrolyzed TEOS Si-OR
13 groups' reactions with the hydroxyl groups on PVA chains. The generic cross-linker GA reactions
14 were confirmed by the observation of C=O bond (1740 cm^{-1}) and the Si-O-C bond (1140 cm^{-1})
15 from the reaction with TEOS Si-OR groups. Besides confirming covalent bonds generated among
16 hydrogel polymer chains, differential scanning calorimetry (DSC) results exhibited the change of
17 polymer chain interactions and polymeric crystallinity after COMPACT treatment⁴⁴. PVA
18 powders showed $28.4 \pm 3.5\%$ crystallinity (Fig. 1j and Supplementary Table 1), similar to the
19 reported crystallinity percentage of semi-crystalline PVA polymers⁴⁵. GA-cross-linked PVA
20 hydrogels exhibited $21.6 \pm 1.1\%$ crystallinity while the additional TEOS cross-linking and
21 acidification suppressed the polymer chain folding to form crystalline domains (crystallinity: 12.7
22 $\pm 1.5\%$, Supplementary Fig. 3 and 4, and Supplementary Table 2). We further examined the
23 nanocrystalline domains and orientation with X-ray scattering techniques (Supplementary Table

1 3). The Small-angle X-ray scattering (SAXS) results suggested that the size of PVA nanocrystals
2 was measured as 3.5 ± 0.1 nm while the nanocrystalline spacing increased from 8.32 ± 0.08 nm to
3 9.83 ± 0.38 nm after 200% axial stretching (Fig. 1k and Supplementary Fig. 5-9). Wide-angle X-
4 ray scattering (WAXS) 2D patterns suggested that the lamellae crystal domains were re-oriented
5 along the axial stretching direction (Fig. 1k and Supplementary Fig. 3c, 10, 11a, 11b, 12, and 13).
6 Similar anisotropic nanocrystalline structures have been reported in other PVA hydrogels⁴⁶.
7 In COMPACT hydrogels, chemical cross-linking and acidification treatment both contribute to the
8 retained volumetric decrease upon re-hydration while mechanical deformation induces the
9 orientated nanocrystalline growth. An increased number of chemical cross-linkers, TEOS (0-4
10 wt. %, Fig. 1g), enhanced the anchoring of amorphous PVA chains through covalent cross-linking
11 and prevented swelling in the hydrated state. Under the same cross-linking degree, acidification
12 treatment granted polymer chains enhanced interactions and suppressed the folding of polymer
13 chains to form crystalline (Fig. 1j and Supplementary Fig. 4). Nanocrystalline domains maintained
14 the nanoscale size (~ 3.5 nm) without compromising the light transmittance in the visible range.
15 Axial mechanical deformation introduced tensile stress to re-orientate polymer chain alignment
16 and created anisotropic nanostructures (Fig. 1k and Supplementary Fig. 6 and 7), which enabled
17 hydrogel fibers' desired decrease in diameter while causing a minimal effect on crystallinity degree
18 (Supplementary Fig. 3a and b) or nanocrystalline size (Fig. 1k and Supplementary Fig. 5c and d).
19 Controllable hydrogel shrinking through cross-linking and polymer chain crystallization process
20 provides an effective methodology to miniaturize hydrogel bioelectronics, especially for the
21 application *in vivo*. The approaches to regulating polymer chain folding and interactions can be
22 extended to other semi-crystalline polymers. Without affecting the nanocrystalline size, the
23 mechanical stretching method offers a straightforward way to create anisotropic orientations of

1 polymeric nanostructures. The molding and extrusion approaches offer a series of precisely
2 controlled hydrogel fiber diameters with structural homogeneity and low surface asperity to avoid
3 diffuse reflection at the hydrogel interfaces. Although the mold sizes are commercially limited,
4 COMPACT procedures, including regulating polymer and crosslinker constituent content and
5 fiber extensions can expand the range of available fiber sizes.

6 **COMPACT hydrogel fibers' tunable properties**

7 With COMPACT-enabled hydrated hydrogel size reduction, we expanded this methodology to
8 develop a series of hydrogel fibers with controlled diameters and tunable optical and mechanical
9 properties for biomedical use. We mapped a rational and comprehensive shrinking diagram by
10 varying the content of inorganic cross-linker (TEOS), acidification, and external mechanical
11 stretching (Fig. 2a). Generally, increasing cross-linking density with more cross-linkers yielded
12 less ductile polymer chains with reduced dimension upon hydration. Acidification treatment
13 dramatically boosted shrinking percentages across different cross-linking densities while
14 mechanical static stretching further decreased hydrogel fibers in diameters ($79.7 \pm 2.3\%$). To fit
15 COMPACT into a practical molding-extrusion fabrication process (Supplementary Figure 2a)^{37,47},
16 we examined a series of hydrogel fibers made with different sizes of silicone molds (Fig. 2b and
17 Supplementary Fig. 14). Independent from the mold size, all COMPACT hydrogel fibers reached
18 reduced diameters of more than 79%, which is consistent with the shrinking diagram (Fig. 2a). As
19 an example, using 300 μm (inner diameter, ID) silicone molds, thin hydrogel fibers were fabricated
20 with diameters of $80 \pm 4 \mu\text{m}$.

21 Considering the fiber optic in vivo applications^{9,37,41}, we examined the optical, mechanical, and
22 cytotoxicity properties of COMPACT hydrogel fibers. To ensure efficient light transmission for
23 optical stimulation and recordings, we considered two important parameters of the hydrogel fiber

1 core: refractive index (RI) and light transmittance. We found that hydrogels' refractive indices can
2 be tuned by TEOS contents. COMPACT hydrogels with 0 wt. % to 4 wt. % TEOS contents
3 exhibited refractive indices ranging from 1.48 to 1.60 in the desiccated state (Fig. 2c) and 1.37 to
4 1.40 in the hydrated state (Supplementary Fig. 15a and b), which is comparable with the RI of
5 other conventional polymers⁴⁸. Although all the transmittance remained above 96%, increasing
6 TEOS content also led to decreased transmittance (Fig. 2c and Supplementary Fig. 15c), and
7 increased autofluorescence (17.8% increase of 4 wt. % TEOS hydrogels compared to 0 wt. %
8 TEOS hydrogels, excitation wavelength: 485 nm, excitation peak: 520 nm, Supplementary Fig.
9 13d). The optimal TEOS content was chosen as 3 wt. %, which resulted in hydrogels with 1.54 ± 0.01 of refractive index (Fig. 2c), $> 96\%$ of transmittance (Fig. 2c, for 0.15 ± 0.02 mm thick
10 membranes), and 6.13 ± 0.16 relative fluorescent units (RFU)/mm of autofluorescence (for 0.15 ± 0.02 mm thick membranes. water: 3.70 RFU/mm, Supplementary Fig. 15d).

13 To mimic the in vivo working condition, we examined COMPACT hydrogels' mechanical
14 properties in the hydrated state. The COMPACT hydrogel fibers exhibited relatively low elastic
15 moduli while maintaining high stretchability (Fig. 2d and Supplementary Fig. 16). The optimized
16 COMPACT hydrogel fiber (3 wt. % TEOS, 12 mM HCl acidification treatment and 200%
17 stretching, diameter: $227 \pm 18 \mu\text{m}$) exhibited an elastic modulus of 4.8 ± 1.7 MPa and stretchability
18 of $139.4 \pm 26.0\%$. When fiber-shaped neural probes are inserted into brain tissues, their axial
19 bending stiffness serves as an important mechanical parameter under brain micromotions
20 (Supplementary Fig. 17). Compared to silica fibers (~ 20 GPa elastic modulus)⁴⁹ and polymer fibers
21 (~ 1 GPa elastic modulus)^{3, 5}, COMPACT hydrogel fibers offer improved mechanical matching to
22 the nervous tissues ($1\text{-}4$ kPa)^{50, 51} and much lower axial bending stiffness (Fig. 2e) to achieve less
23 neural tissue damage from micro-motion involved in vivo studies^{52, 53}. Our initial evaluation

1 focused on the immune response of brain tissues 14 days post-implantation. We observed a
2 reduced presence of astrocytes, microglial accumulations, activated macrophages, and
3 immunoglobulin G around the sites of hydrogel fiber implantation compared to the stiffer silica
4 fibers (Supplementary Fig. 18). Subsequently, we assessed the chronic immune response after 30
5 days and noted a lower incidence of astrocyte and microglial formation around the hydrogel fiber
6 sites relative to those with silica fibers (Supplementary Fig. 19).

7 We then tested whether crystalline-enabled size reduction of COMPACT hydrogels can overcome
8 the intrinsic hydrogel swelling exhibited upon hydration and maintain structural stability *in vivo*.
9 We incubated COMPACT hydrogel fibers in *ex vivo* physiological conditions (pH: 6-8, 37 °C,
10 saline solution) and monitored fibers' dimensions over time. We observed the shrinking percentage
11 maintained above 74% over 3 months (Fig. 2f and Supplementary Fig. 20). Cytotoxicity tests with
12 human embryonic kidney cells (HEK293) exhibited no significant cell death in the presence of
13 COMPACT hydrogels (Fig. 2g and Supplementary Fig. 21).

14 Unlike other established approaches to shrink hydrogels via desiccation, where collapse of
15 polymer chain during drying leads to reversible swelling upon hydration, COMPACT hydrogels'
16 polymeric nanocrystalline and enhanced interpolymer chain interactions maintained stable
17 folding in the hydrated state and therefore permit retained volumetric size reduction. Over 3
18 months of incubations under physiological temperature and osmolarity, the shrunk COMPACT
19 hydrogel fibers maintained the designed diameters within less than 1% variance (Fig. 2f), which
20 illustrates hydrogel bioelectronics' volumetric stability of their miniaturized size *in vivo*³⁷. In
21 contrast, COMPACT hydrogel fibers incubated at PVA dissolution temperature (100 °C) in water
22 for several hours resumed their pristine swollen size; this volume reversion demonstrates the
23 crystalline impact on size reduction through control of local free volume in hydrogel matrices.

1 This crystalline-dominated hydrogel miniaturization phenomenon can be extended to other semi-
2 crystalline polymers at different material interfaces, where volumetric stability is important, such
3 as the proton-exchange membrane in packed fuel cells.

4 **Step-index hydrogel optical fibers**

5 COMPACT hydrogels were first fabricated into step-index optical fibers (Supplementary Fig. 22).
6 Increased RI contrast between optical core and cladding layers ensures light transmission and the
7 consequent photodetection sensitivity (Fig. 3a). Based on tunable refractive indices of COMPACT
8 hydrogels (Fig. 2c and Supplementary Fig. 15 a and b), we designed step-index hydrogel fibers
9 with high-RI core ($n_{\text{core}}=1.40$) and low-RI cladding ($n_{\text{cladding}}=1.34$). Hydrogel fibers were
10 connected to a silica segment embedded in an optical ferrule, which provides a strong connection
11 while preventing directly exposed hydrogel dehydration out of tissues and light loss⁴¹
12 (Supplementary Fig. 22). We validated the function of RI-contrasting core-cladding structures by
13 comparing the light transmission between bare core fibers, step-index fibers with plain cladding
14 and those with light-protective cladding (Fig. 3b-c, and Supplementary Fig. 22 and 23). The bare
15 core fibers (diameter of $329 \pm 17 \mu\text{m}$) exhibited a relatively high attenuation ($1.87 \pm 0.53 \text{ dB/cm}$)
16 while introducing a thin low-RI cladding layer (thickness of $84 \pm 4 \mu\text{m}$ on the surface of 372 ± 10
17 μm cores, $n_{\text{cladding}}=1.34$) decreased the light transmission attenuation to $1.75 \pm 0.08 \text{ dB/cm}$ (Fig.
18 3d). A representative light-absorption nanomaterials^{54, 55}, reduced graphene oxide (rGO) was
19 loaded into low-RI cladding to further protect light leakage from fibers' lateral surface and
20 consequently reduced the light attenuation to $0.94 \pm 0.25 \text{ dB/cm}$ (core $339 \pm 35 \mu\text{m}$, cladding: 36
21 $\pm 11 \mu\text{m}$ of 5 wt. % PVA with 0.21 wt. % rGO) (Fig. 3d and Supplementary Fig. 24).

22 To validate their functionality for in vivo optical interrogation, we tested COMPACT hydrogel
23 fibers with photometric recording in the context of mouse social behaviors. Activation of VTA

1 region and its related circuits has been studied with various techniques^{56, 57, 58}, related to social
2 behaviors in mice⁵⁹. As a proof-of-concept application, we validated COMPACT hydrogel fibers
3 to photometrically record mouse deep brain structure, VTA, with concurrent social behavior
4 observation. We unilaterally implanted COMPACT optical fibers ($580 \pm 35 \mu\text{m}$) in VTA after
5 injecting adeno-associated virus (AAV) containing genetically encoded calcium indicator
6 (hSyn::GCaMP6s) (Fig. 3e). The stiffness changes of the hydro gel fibers from a desiccated state
7 (stiff) to a hydrated state (soft) facilitated the implantation with calibrated mouse brain coordinates
8 (Supplementary Figure. 25 and 26). A fiber photometry system (wavelengths: $\lambda_{\text{isosbestic point}}=405$
9 nm, $\lambda_{\text{excitation}}=470$ nm, $\lambda_{\text{emission}}=510$ nm) was used to collect GCaMP fluorescent changes as proxies
10 to reflect the neural activity⁶⁰ (Fig. 3f-g and Supplementary Fig. 27). After an incubation period of
11 4 weeks for AAV expression, we subjected mice to social behavioral tests with concurrent
12 photometric recordings. Mouse social interactions were analyzed with DeepLabCut (DLC)⁶¹
13 markless pose estimation and a custom developed MatLab algorithm (Fig. 3f). We observed the
14 increased fluorescent intensity of GCaMP was correlated with mouse social interaction epochs
15 (Fig. 3h). Linking the neural activities at the cellular level to system neuroscience behavioral
16 assessment provides important tools to discover causal relationship of neural circuits and behaviors
17 for neuroscience studies.

18 **Multifunctional hydrogel neural probes**

19 Hydrogel matrix can incorporate various nanoscale materials to extend the functionalities while
20 maintaining stretchability^{12,62}. To enrich hydrogel neural probes' modality for electrical recordings,
21 we introduced conductive CNTs (length to diameter ratio 2000-10000:1) into PVA hydrogels
22 during hydrogel cross-linking (Fig. 4a, b, and Supplementary Fig. 28). Through acidification to
23 promote polymer chain interactions and mechanical stretching facilitated CNTs plaiting into

1 polymer matrices and ensured entanglement with PVA chains and consequently augmented
2 electrical conductivity as a percolated network^{63, 64}. After introducing CNTs (0.08-0.24 wt. %), we
3 observed insignificantly changed nanocrystallinity (Supplementary Fig. 29 and Supplementary
4 Table 4) but decreased nanocrystalline sizes (Supplementary Fig. 30 and 31). These results could
5 be interpreted as the limited polymer chain folding under additional interactions between
6 nanomaterials and polymer chains. When CNTs-PVA hydrogel fibers underwent mechanical
7 stretching, they preserved anisotropic structures with similar sizes (Supplementary Fig. 11c, 32,
8 and 33). With rigid carbon materials incorporated into the hydrogel matrix, the CNTs-PVA
9 composite exhibited an increase in elastic modulus (0.16 wt. % CNTs-PVA hydrogels, 39.4 ± 13.7
10 MPa, and decreased stretchability ($47.9 \pm 12.2\%$, Supplementary Fig. 34). For the use as an
11 electrode *in vivo*, we optimized the CNT concentration to balance the conductivity and mechanical
12 properties. CNTs-PVA hydrogel electrodes ($86 \pm 5 \mu\text{m}$ diameter, Fig. 4c), insulated with a
13 viscoelastic coating of styrene-ethylene-butylene-styrene (SEBS) (Supplementary Fig. 28 and 35),
14 exhibited impedances of $658 \pm 277 \text{ k}\Omega$ at 1kHz and impedance was tunable with designed mold
15 sizes to control the electrode diameters and CNTs loadings (Fig. 4d-e). The stability of CNTs-PVA
16 electrodes was evaluated through over 6 weeks of incubation in PBS (37 °C, Fig. 4f), over 2 weeks
17 of incubation in artificial cerebrospinal fluid (aCSF) and implantation in mouse brain tissues
18 (Supplementary Fig. 36). We observed stable impedance performance under all these conditions.
19 The functionality of CNTs-PVA hydrogel electrodes were validated for *in vivo* electromyographic
20 (EMG) and extracellular electrophysiological recordings. We first deployed CNTs-PVA hydrogel
21 electrodes for EMG recordings of mouse hindlimb muscles in response to the pulsed blue light
22 illumination. CNTs-PVA hydrogel electrodes repeatedly detected hindlimb muscle electrical
23 signals upon transdermal optical stimulation (wavelength $\lambda=473 \text{ nm}$, 200 mW/mm^2 , 0.5 Hz, pulse

1 width 50 ms) in *Thy1::ChR2-EYFP* mice, which express photo-excitatory opsin,
2 Channelrhodopsin 2 (ChR2), in the nervous system (Supplementary Fig. 37). Instead of recording
3 collective electrical response from muscles, we then implanted CNTs-PVA hydrogel electrodes in
4 mouse VTA to record neuron spontaneous spiking activity in anesthetized wild-type mice under
5 continuous isoflurane (Fig. 4g-i). A bandpass filter of 300–3000 Hz was applied to detect spiking
6 activity, and we found one distinct cluster of spikes of principal component analysis (PCA). The
7 signal-to-noise ratio (SNR) of these spiking activities was approximately 3.73 with repeatable
8 waveforms.

9 When extending hydrogel miniaturization from bulk materials to interfaces, the COMPACT
10 strategy offers an opportunity for multiple components integration. Since RI-distinct core-cladding
11 structures ensure light transmission in optical cores, we introduced two CNTs-PVA electrodes into
12 the cladding layers with a COMPACT hydrogel core (Fig. 4j). A hydrogel optoelectrical device
13 termed optrode (Fig. 4k and Supplementary Fig. 38), is designed to enable optical modulation with
14 simultaneous electrophysiological recording. In *Thy1::ChR2-EYFP* mice, blue light pulses ($\lambda=473$
15 nm, 0.5 Hz, pulse width 50 ms, 10 mW/mm²), delivered through the hydrogel optical core,
16 consistently activated ChR2-expressing neurons in VTA while the neural electrical signals were
17 collected through CNTs-PVA electrodes (Fig. 4l-m). The optical evoked potentials were
18 repeatedly captured with correlation with the onset of light stimulation over 10 weeks post-
19 implantation (Fig. 4n-o).

20 Simultaneous bi-directional stimulation and recording of neurons with optical and electrical
21 modalities offer comprehensive approaches to studying brain function. The COMPACT strategy
22 offers the convenience of integrating multiple functional components into a single miniaturized
23 device. Successive rounds of molding with strong polymer chain infiltration at the interfaces

1 enable the design of multimodal microstructures. Currently, the number of integrated components,
2 such as electrodes and microfluidic channels, is limited by the coaxial alignment in the secondary
3 molding step; the accessibility and throughput of multimodal fabrication can be further improved
4 with guiding devices to facilitate integration and alignment, or alternative coating approaches.

5 In this study, we developed a set of hydrogel cross-linking chemistry and fiber-shaped device
6 microfabrication approaches through a bottom-up strategy of tuning polymers' amorphous-
7 crystalline transition for hydrogel bioelectronics miniaturization and integration. The COMPACT
8 strategy provides an accessible, scalable, and controllable fabrication method for micro-structured
9 hydrogel fibers with consistently low asperity. These hydrogels provide a platform for functionally
10 augmented interfaces through loadings of additional nanomaterials. COMPACT hydrogels can be
11 further designed into step-index optical probes and optoelectronic devices which are well-suited
12 for neural modulation and recordings concurrent with behavioral assays in mice.

13 The COMPACT strategy is generalizable for soft and stretchable bioelectronics. Polymer matrices
14 provide sufficient free volume for water access as well as nanomaterials' incorporation. High
15 aspect-ratio nanomaterials can be effectively entangled with polymer chains through cross-linking
16 and condensation during acidification and stretching. This procedure augments electrical
17 conductivity while maintaining viscoelasticity. Compared to other soft bioelectronics fabrication
18 approaches, such as lithography and micro-printing, COMPACT technique offers scalable and
19 efficient multimodal hydrogel fibers manufacturing without the need for expensive and
20 sophisticated facilities. COMPACT multifunctional hydrogel neural probes have been employed
21 for bi-directional optical interrogation concomitant with mouse social behaviors and electrical
22 recordings of light-triggered neural activity in mice. Extended functionalities, such as drug or viral
23 vector delivery, can be further achieved by integrating additional microfluidic channels in the

1 cladding layer and retaining light transmission efficiency in the optical core. COMPACT
2 multifunctional neural probes involve independent component alignment and miniaturization steps,
3 which potentiates the integration of multiple components with various lengths to target multiple
4 depths of tissue within single-step implantation. This adaptability will increase the density of
5 functional interfaces and overcome the traditional limitation of fiber-shaped neural probes with
6 single-target interfaces at the tip.

7 Control over semi-crystalline polymers' amorphous-crystalline transition creates a direct
8 fabrication methodology for elastic soft materials. Extending it to the manufacture of sophisticated
9 optoelectronic devices, the COMPACT strategy imparts a generalizable and modular platform for
10 hydrogel bioelectronics' miniaturization and integration, which consequently enables multimodal
11 interrogation of complex biological systems.

12 **Methods**

13 **Ethical statement.** All experiments on mice were reviewed and approved by the Institutional
14 Animal Care and Use Committee at Binghamton University (Protocol number: 897-23) and
15 University of Massachusetts Amherst (Protocol number: 2520). Wild-type (C57BL/6J,
16 <https://www.jax.org/strain/000664>) mice and *Thy1::ChR2-EYFP* transgenic mice
17 (<https://www.jax.org/strain/007612>) were purchased from the Jackson Laboratory. Mice were
18 given ad libitum access to food and water and were housed at 24 ± 1 °C, with 50% relative humidity,
19 and on a 12-h light/12-h dark cycle. All experiments were conducted during the light cycle. The
20 species, strain, sex, number and age of mice used in every experiment are included in
21 Supplementary Table 5.

22

1 **Hydrogel synthesis.** The chemicals used in this study included tetraethyl orthosilicate (TEOS,
2 Sigma-Aldrich 86578, 99%), hydrochloric acid (HCl, Sigma-Aldrich, 258148, 37%),
3 glutaraldehyde solution (GA, Sigma-Aldrich G6257, 25% in water), and polyvinyl alcohol (PVA)
4 with an average molecular weight of 146,000 to 186,000 Da and 99+% hydrolyzed (Sigma-Aldrich,
5 363065). Materials were used as received. MilliQ water with a resistivity of 18 MΩ·cm at 25 °C
6 was used throughout the experiments. To prepare the PVA (10 wt. %) solution, PVA was dissolved
7 in MilliQ water and stirred in a water bath at 100 °C for at least 4 hours until a clear and transparent
8 solution was obtained. The hydrolysis of TEOS was carried out using HCl as a catalyst in PVA
9 solutions with a molar ratio of TEOS: HCl: H₂O=x: 4: y, where x was between 1 to 4, and y started
10 from 4 to 16. TEOS solutions with concentrations ranging from 2 wt. % to 8 wt. % were added to
11 the PVA solutions, which were then homogenized at two different levels. A mixture of HCl and
12 MilliQ water in a molar ratio of 4: y, where y was in the range of 4 to 16, was added dropwise to
13 the PVA-TEOS emulsion while homogenizing at 12000 rpm using a portable homogenizer until a
14 stable emulsion was formed. The resulting emulsion was further homogenized using a high-speed
15 homogenizer (FSH2A lab). The mixed solutions were stirred in a water bath at 100 °C for 1 hour
16 until transparent solutions were obtained, followed by an additional 12 hours of stirring at 60 °C.
17 The composition of all solutions used in this study is provided in Table 1.
18

19 **Optical hydrogel probe fabrication.** A step-index multimode silica fiber (core diameter 400 μm,
20 NA 0.5, Thorlabs FP400URT) was prepared by removing the protective coating using a fiber
21 stripping tool (Micro-strip, Micro Electronics, Inc). The stripped fiber was then divided into 13-
22 mm segments using a diamond cutter. These fiber segments were inserted and extruded from one
23 end of an optical ferrule (bore diameter 400 μm, Thorlabs CFX440-10) with a length of 2.5 mm

1 and secured with EccoBond F adhesive (Loctite). Both ends of the silica fibers in the ferrules were
2 polished using a polish kit (Thorlabs D50-F, NRS913A, and CTG913). The light transmission of
3 all silica fibers and ferrules was tested by coupling with a 470 nm blue light-emitting diode (LED)
4 (Thorlabs M470F3) after polishing. To remove the plastic coatings on the extruded silica fibers,
5 they were treated with 2M sodium hydroxide solution (Sigma-Aldrich, 1064980500) for 2 hours
6 followed by an additional treatment with chloroform (Sigma-Aldrich, 472476) for 30 minutes. A
7 thin layer of 10 wt. % PVA was then coated on the extruded silica fibers via dip coating, and the
8 PVA-coated silica fibers were air-dried at room temperature for 12 hours and annealed at 100 °C
9 for 2 hours. A vacuum planetary mixer (Musashi ARV-310, 2000 rpm, and 16 kPa vacuum) was
10 utilized for the mixing and degassing of all solutions. For degassing and mixing, 100 µL of GA
11 was added to 10 g of 10 wt. % PVA pre-solution and agitated for 1 minute. 10 g of pre-made PVA-
12 TEOS solution was also degassed and mixed for 1 minute. Subsequently, the above two solutions
13 were combined (weight ratio of 1:1) and mixed for another minute. The resulting PVA-TEOS-GA
14 solution was infused into silicone tubes (McMaster-Carr 5236k204, 80 mm in length), and the
15 optic ferrules were inserted into the silicone tubes, with the silica fiber end connected to the PVA
16 mixture. After curing at room temperature for 4 hours, the PVA-TEOS-GA fibers were demolded
17 using dichloromethane (DCM, Sigma-Aldrich, 270997, 99.8%) and washed with a large amount
18 of water to remove residual chemicals for two days. Ferrule-connected fibers were air-dried at
19 room temperature for 12 hours and annealed at 100 °C for 20 minutes. Finally, the hydrogel fibers
20 were rehydrated with MilliQ water before use. The compositions of all fabricated fibers are listed
21 in Table 2.

22

1 **Core-cladding optical probe fabrication.** A vacuum planetary mixer (Musashi ARV-310, 2000
2 rpm, and 16 kPa vacuum) was employed for mixing and degassing of all solutions. The optical
3 fiber probes were first dried and then re-inserted into silicone tubing (McMaster-Carr 51845K66)
4 and reswelled in water. For the preparation of the core-cladding optical fiber probes, 100 μ L of
5 GA was added to 10g of 5 wt. % PVA pre-solution, which was then degassed and mixed for 1
6 minute. Additionally, 150 μ L of HCl was added to 10g of 5 wt. % PVA pre-solution, which was
7 also degassed and mixed for 1 minute. The two solutions were combined (weight ratio of 1:1) and
8 mixed for 1 minute. The resulting mixed solution was infused into the silicone tubing and allowed
9 to cross-link for 4 hours at room temperature. The core-cladding optical fiber probes were extruded
10 by immersing them in DCM and stored in MilliQ water until further use.

11 **XRD characterization of hydrogel materials.** X-ray scattering measurements were conducted
12 using the SAXSLAB GANESHA 300XL instrument, equipped with a Dectris Pilatus 300K 2D
13 CMOS photon counting detector (size: $83.8 \times 106.5 \text{ mm}^2$). A small-angle 2 mm beamstop was
14 utilized for SAXS measurements, while a wide-angle 2 mm beamstop was employed for WAXS
15 measurements. The exposure time was set at 600 seconds. The average size of the nanocrystalline
16 domain was determined using Scherrer's equation, which is expressed as $D = \frac{k\lambda}{\beta \cos\theta}$, where k is a
17 dimensionless shape factor that varies based on the actual shape of the nanocrystalline domain (k
18 = 1, approximating the spherical shape of the nanocrystalline domains), λ is the wavelength of X-
19 ray diffraction ($\lambda = 1.54 \text{ \AA}$), θ is the peak of the Bragg angle, and β is the full width at half
20 maximum (FWHM) of the WAXS peaks. The d-spacing between nanocrystalline domains was
21 calculated using $d = \frac{2\pi}{q_{max}}$, where q_{max} is the q value at its maximum intensity from SAXS patterns.
22 The FWHM (β) and q_{max} were obtained by curve fitting of the WAXS and SAXS patterns,

1 respectively, in Origin software (OriginLab Corporation). For representative WAXS and SAXS
2 2D patterns, each hydrogel fiber was repeated three times with similar results.

3 **DSC characterization of hydrogel materials.** The degree of crystallinity of hydrogel fibers and
4 materials was assessed using a DSC instrument (2920 TA instrument). The PVA hydrogels were
5 analyzed in the desiccated state. A small quantity of sample (1-15 mg) was loaded into a crucible
6 (TA instrument T81006) and inserted into a temperature-controlled DSC cell. A blank crucible
7 served as a reference. The sample was heated from 30 °C to 300 °C in air, with a heating rate of
8 20 °C/min. The differential heat flow to the sample and reference was recorded by the instrument.
9 To determine the melting fusion enthalpy of endothermic peaks, heat flow (mW) over sample
10 weight (mg) was plotted against time (s). The areas of melting endothermic peaks were integrated
11 using TA analyze software (TA Universal Analysis). The degree of crystallinity α was estimated
12 using the equation: $\alpha = \frac{\Delta H_m}{\Delta H_m} \cdot 100\%$, where ΔH_m (J/g) was calculated from the integration of
13 melting endothermic peaks and ΔH_m (150 J/g) was the enthalpy of melting 100% of PVA
14 crystallites. For representative DSC data, each sample was repeated three times with similar results.
15 The crystallinity outcomes of PVA samples are presented in Supplementary Table 1.

16 **Hydrogel refractive index measurement.** A series of hydrogel membranes were prepared via
17 spin coating using a spin coating instrument (SETCAS, KW-4A) on silicon (Si) substrates
18 (University Wafer, Inc., Model 447). The Si substrates were cut into square wafers (13.5 mm ×
19 17.5 mm) using a diamond cutter and then subjected to a rigorous cleaning process. The cleaning
20 process involved washing and ultrasonication in Acetone (Sigma-Aldrich 179124, 99.5%) for 3
21 minutes, followed by rinsing with MilliQ water. The Si wafers were then washed and
22 ultrasonicated in 30 wt. % H₂SO₄ solution (Fisher Chemical 210524, 95.0%) for 3 minutes,

1 followed by rinsing with MilliQ water. Finally, the Si wafers were washed and ultrasonicated in
2 10 wt. % of H₂O₂ solution (Sigma-Aldrich 216763, 30 wt. % in water) for 3 minutes, followed by
3 rinsing with 95% ethanol (Fisher Chemical A962P4, 95.0%). The Si wafers were mounted on the
4 spin coater and coated with 10P-GA, 10P-1T-GA, 10P-2T-GA, 10P-3T-GA, and 10P-4T-GA
5 membranes (n=4 for each group) at 1000 rpm for 10s, and at 5000 rpm 50s. PVA solutions used
6 for the membranes were prepared using the same method as discussed above. After spin-coating,
7 the PVA membrane-coated Si wafers were allowed to cross-link and dry in the air for at least 12
8 hours and then annealed at 100 °C for 20 minutes. The refractive index (RI) of the PVA membrane-
9 coated Si wafers was measured using an ellipsometer (J.A. Woollam RC2) in the range of 400 nm
10 to 700 nm. The measurements were carried out on the membranes in their desiccated states. A
11 series of COMPACT hydrogel membranes (0-4 wt. % TEOS) were prepared using a similar
12 procedure as described above but using a rectangular mold (21.5 × 21.5 × 1 mm). The membranes
13 were demolded after cross-linking, dried at room temperature for 12 hours, and cut into small
14 sheets (2 × 2 mm). The sheets were then annealed at 100 °C for 20 minutes and reswelled in MilliQ
15 water for 1 hour. The RI of the membranes in their hydrated states was measured using a
16 refractometer (Sper Scientific 300034) with water used for calibration.

17 **Hydrogel absorbance and fluorescence measurement.** A set of hydrogel membranes
18 (designated as 10P-GA, 10P-1T-GA, 10P-2T-GA, 10P-3T-GA, and 10P-4T-GA, comprising 4
19 replicates for each group) were synthesized and cross-linked in a 96-well plate using established
20 techniques. Subsequently, 1 mL of PVA solution was added to each well and allowed to cross-link
21 and air dry for at least 12 hours, followed by annealing at 100 °C for 20 minutes. Rehydration of
22 the membranes was achieved by the addition of 100 µL of MilliQ water to each well. To obtain
23 transmittance spectra in the range of 400 nm to 700 nm, the 96-well plate was subjected to analysis

1 using a plate reader (Biotek Synergy 2). Autofluorescence measurements were acquired using
2 excitation/emission wavelengths of 470 nm/510 nm and 485 nm/520 nm, respectively. Membrane
3 thickness was determined by caliper measurements and recorded three times to normalize the
4 transmittance spectra and autofluorescence readings with respect to thickness. A blank control
5 consisting of 200 μ L of MilliQ water was included for comparison purposes.

6 **Mechanical characterization of hydrogel fibers.** To ensure consistency, all hydrogel fibers were
7 hydrated prior to the extension test. Tensile tests were conducted using a tensile instrument
8 equipped with a 50N load cell (Stable Micro System TA, XT plusC). The fibers were stretched at
9 a constant rate of 1 mm/second. The nominal stress was calculated from the formula $\sigma = \frac{F}{A}$, where
10 F represents the force measured by the instrument, and A represents the cross-sectional area of the
11 fibers in their hydrated state. The strain was calculated using $\varepsilon = \frac{\Delta L}{L}$, where ΔL represents the
12 displacement and L represents the initial gauge length. Two marks were labeled on the fibers using
13 a sharpie pen to determine the initial gauge length L prior to the tensile test. A high-resolution
14 camera was used to capture the entire tensile process and track displacement. The stress-strain
15 curve was generated based on the calculated nominal stress and strain. The elastic moduli (E) were
16 determined by calculating the average slope of the stress-strain relationship in the first 10% of
17 applied strain. The average slope was determined by linear regression analysis (OriginLab
18 Corporation). The stretchability of the fibers was reported as a percentage of the strain at the
19 fracture point obtained from the stress-strain curves. The bending stiffness of hydrogel and silica
20 fibers was measured using a mechanical tester (CellScale, Univert) equipped with a three-point
21 beam bending setup. A deflection amplitude of 100 μ m within the frequency range of 0.5-4 Hz
22 (heartbeat frequency range) was employed^{65, 66}.

1 **Light attenuation of hydrogel fibers.** The light transmission loss of hydrogel fibers was tested
2 by the cutback method. Ferrule-connected hydrogel fibers were inserted into a plastic tube (5 cm
3 in length and 3 mm in diameter) and injected with 1 wt. % agar gel to maintain their hydrated state.
4 The ferrule was connected to a 470 nm LED light (Thorlabs M470F3) via an adaptor (Thorlabs
5 SM1FCM). The power (in dB) of transmitted light through the hydrogel fiber was measured using
6 a power meter (Thorlabs, PM16-122). The original power reading was recorded, and a 5 mm
7 interval of cutting was adapted. Starting from the far end of the ferrule, the output power was
8 measured after each cut using a cutter. The attenuation coefficient (α) was calculated using the
9 formula $\alpha = \left(\frac{10^4}{L_1 - L_2}\right) \cdot \log\left(\frac{P_1}{P_2}\right)$, where L_1 and L_2 represent the original and cut lengths of the fiber
10 in meters, respectively. P_1 and P_2 are the transmitted power readings before and after the cut,
11 respectively.

12 **Dimension measurements of hydrogel fibers.** Microscopic images of hydrogel fibers were
13 captured using a bright field mode microscope (AmScope) in MilliQ water. Three distinct regions
14 of each fiber, namely two ends and the middle part, were imaged. The diameter of each fiber was
15 measured using ImageJ software, with nine measurements taken for each fiber. The length of the
16 fibers was measured using a caliper, with three measurements taken for each fiber.

17 **SEM imaging.** SEM was performed on dried samples using an FEI Magellan 400 XHR instrument.
18 To analyze the cross-sectional morphology of the integrated hydrogel optrode probe, the probe
19 was sectioned into thin pillars (0.1 mm in height) and subsequently mounted on carbon tape for
20 imaging. For representative SEM images, each sample was repeated ten times with similar results.

21 **TEM imaging.** The TME images were acquired under a transmission electron microscope (FEI
22 Tecnai 12). The carbon nanotubes were diluted (1:10) in MilliQ water and deposited on a copper

1 grid (Sigma-Aldrich, FCF200-Cu) for imaging. For representative TEM images, each sample was
2 repeated ten times with similar results.

3 **Stability tests of hydrogel fibers.** The fabricated COMPACT hydrogel fibers (3 wt. % TEOS)
4 were incubated at 37 °C under physiological-like solutions (saline, ionic strength 305~310 mOsm,
5 pH from 6.0 to 8.0) over 3 months to validate the stability of hydrogel materials. The dimensions
6 of fiber were measured before and after the incubation and statistical analysis was performed on
7 the dimensions between pre-incubation and post-incubation each week.

8 **Cell culture and biocompatibility tests.** The HEK 293T cell line was a gift from F. Zhang (MIT)
9 and P. Anikeeva (MIT). Detailed information of the cell line can be found here from American
10 Type Culture Collection (item number CRL-3216). HEK 293T cells were authenticated before
11 receiving. HEK 293T cells were maintained in DMEM (with GlutaMax, Sigma Aldrich,
12 D5796) + 10% fetal bovine serum and seeded in a 24-well plate. COMPACT hydrogel fibers (3
13 wt. % TEOS) were incubated in DMEM for 24 hours at 37 °C. Hydrogel-incubated DMEM was
14 then added to the well plate and incubated for 24 hours. Calcein-AM (green, 2 µL of 1 mg/mL per
15 well, Sigma-Aldrich 17783) was added to indicate living cells, and ethidium homodimer-1 (red, 2
16 µL of 1 mg/mL per well, Sigma-Aldrich 46043) was added to indicate dead cells. A fluorescent
17 microscope (Nikon TiU with SOLA Light Engine Gen III illumination hardware and PCO panda
18 sCMOS camera) was used to take images of cells with and without hydrogel incubation. Image J
19 was utilized to count living cells and dead cells. Cell death rate (%) was calculated by using the
20 formula:
$$\text{death rate (\%)} = \frac{\text{dead cell numbers}}{\text{total cell numbers}} \cdot 100\%.$$

21 **Electrochemical impedance spectroscopy (EIS) of COMPACT hydrogel electrodes.** The
22 impedance of COMPACT hydrogel electrodes was assessed using an Electrochemical working

1 station (Princeton Applied Research, PARSTAT 2273) by applying a sinusoidal driving voltage
2 (10 mV, 10 Hz ~1 MHz). Impedance spectra of COMPACT hydrogel electrodes were acquired in
3 PBS solutions.

4 **Virus package.** pAAV-hSyn-GCaMP6s-WPRE-SV40 was a gift from The Genetically Encoded
5 Neuronal Indicator and Effector Project (GENIE) and D. Kim (Addgene viral preparation no.
6 100843-AAV9). AAV9-hSyn-GCaMP6s were prepared in Rao Lab at UMass Amherst with
7 Beckman Coulter Ultracentrifuge Optima XL70 with VTi 50.1 rotor. Before use, the viral vector
8 was diluted to a titer of 10^{12} transducing units per milliliter.

9 **In vivo hydrogel optical probe implantation into the mouse brain.** Mice were anesthetized
10 using 1.0% isoflurane administered in a chamber and subsequently secured onto a stereotactic
11 frame (RWD Life Science) with a heating pad to maintain their body temperature. All surgical
12 procedures were conducted in sterile conditions with 1% isoflurane used to maintain anesthesia.
13 The Allen Brain Atlas was used to align the skull and determine the coordinates for viral injection
14 and fiber implantation, specifically targeting the ventral tegmental area (VTA) at coordinates AP:
15 -2.95 mm, ML: ± 0.50 mm, DV: -4.80 mm. An opening was made in the skull using a micro drill
16 (RWD Life Science) at the designated coordinates. A total of 600 nL of adeno-associated virus
17 (AAV) carrying hSyn::GCaMP6s was injected into the target region via a micro syringe and pump
18 (World Precision Instruments, Micro 4). The viral injection device was held in place in the VTA
19 region for 15 minutes to facilitate virus diffusion. Following fiber probe insertion, the probes were
20 lifted by 0.1 mm to accommodate the viral volume. Finally, the fiber probes were secured to the
21 skull using an adhesive (Parkell, C&B METABOND) and reinforced using dental cement (Jet Set-
22 4). The mice were monitored on the heating pad following removal of isoflurane until they were

1 fully awake. C57BL/6J mice (n=8) were implanted with hydrogel optical probe, detailed
2 information is listed in Supplementary Table 5.

3 **In vivo optrode device implantation into the mouse brain.** Mice were anesthetized with 1.0%
4 isoflurane and placed on a stereotactic frame (RWD Life Science) equipped with a heating pad to
5 maintain body temperature. Surgery was conducted under sterile conditions, and 1% isoflurane
6 was continuously administered to maintain anesthesia. Allen Brain Atlas was utilized to align the
7 skull and establish optrode device coordinates (VTA, AP: -3.00 mm, ML: + (or -) 0.45 mm, DV:
8 -4.80 mm) based on the mouse brain atlas. Prior to optrode implantation, a ground screw was
9 implanted (AP: -3.50 mm, ML: - (or +) 1.50 mm, DV: -0.20 mm) and cerebrospinal fluid was
10 contacted with the screw. The optrode devices were fixed on the skull with adhesive (Parkell, C&B
11 METABOND) and reinforced with dental cement (Jet Set-4). Following the removal of isoflurane,
12 the mice were monitored on the heating pad until fully awakened. *Thy1::ChR2-EYFP* mice (n=5)
13 were implanted with optrode devices, detailed information is listed in Supplementary Table 5.

14 **Fiber photometry recording.** Following a four-week recovery period, hSyn::GCaMP6s injected
15 mice were tethered to a fiber photometry (FIP) system (RWD and Thorlabs. Inc) using silica fiber
16 (with a core diameter of 400 μ m and a numerical aperture of 0.5, Thorlabs FP400URT). The silica
17 fiber was connected to the FIP system using an adaptor (Thorlabs SM1SMA), and a ferrule
18 (Thorlabs CF440) was fixed to the other end of the fiber. The ferrule was coupled to the implanted
19 fiber probe using a connecting sleeve (Thorlabs ADAF1). The mice were placed in a custom-made
20 chamber (20 \times 20 \times 20 cm) for social preference tests, and fluorescent signals were computed
21 using custom-written Python code. To excite the fluorescent signal, a custom setup consisting of
22 a 470 nm LED (Thorlabs M470F3), a 405 nm LED (Thorlabs M405F3), and dichroic mirrors
23 (Thorlabs DMLP425R) were used. Illumination periods were determined by detecting

1 synchronization ON/OFF pulses for each LED, with each illumination containing pulses at 10 Hz.
2 To eliminate moving artifacts, the fitted 470 nm signals were subtracted from the fitted 405 nm
3 signals.

4 **Social behavioral assay.** For all behavioral experiments, adult C57BL/6 mice implanted with
5 optical fiber probes were utilized during the dark phase of the light/dark cycle and were given at
6 least 30 minutes of acclimatization in the behavior chamber before testing. Adult male C57BL/6
7 mice aged 5-6 weeks were used as strangers, and tests were performed in a dark environment. A
8 chamber box (20 × 20 × 20 cm) containing a social cage was utilized for social interactions.
9 Subsequently, a strange mouse was introduced to the social zone, and the test mouse was exposed
10 to the strange mouse and allowed to interact freely. Concurrently, GCaMP fluorescence changes
11 were recorded during social tests. A dark-vision camera was installed above the social chamber to
12 record video footage during the social tests. The time spent interacting and the distance of social
13 interaction were analyzed using customized algorithms for social interaction assessment with
14 DeepLabCut. The analyzed social interaction epochs were then correlated with GCaMP signals.

15 **Immunohistology.** The mice were euthanized using fatal plus (Vortech Pharmaceuticals, LTD)
16 and transcardiac perfusion was carried out using 20 mL of PBS (Sigma-Aldrich P3813) solution
17 followed by 20 mL of 4% paraformaldehyde (PFA, Sigma-Aldrich 8187151000) solution. The
18 brains were then dissected from the bodies and fixed in 4% PFA solution at 4 °C overnight. After
19 fixation, the brain tissues were treated with 30% sucrose in PBS for 2 days and subsequently frozen
20 at -20 °C in an O.C.T. cube (21.5 × 21.5 × 22 mm) and sectioned on a cryostat (Leica CM1900)
21 with a thickness of 20 µm. The sectioned tissues were then permeabilized with PBST (0.3% Triton-
22 X-100 in PBS, Sigma-Aldrich 93443) for 15 minutes at room temperature and blocked with 1%
23 bovine serum albumin in PBS (Sigma-Aldrich A9647) for 30 minutes prior to staining. Primary

1 antibody solutions (Table 3) were applied to stain the tissues and incubated overnight at room
2 temperature. After washing the tissues with PBS three times, secondary antibody solutions (Table
3 3) were applied and incubated at room temperature for 2 hours. The tissues were then washed with
4 PBS three times and mounted on glass slides. DAPI mounting medium (Southernbiotech,
5 Fluoromount-G, Cat. No. 0100-01) was used to mount the cover glass on top of the glass slide
6 with the sections. The slides were left to dry in the air at room temperature overnight before images
7 were acquired using a confocal microscope (Leica SP2 and ZEISS LSM 880, confocal fluorescent
8 imaging was repeated 10-30 times with similar results). The quantitative analysis (fluorescence
9 intensity, total fluorescence area and total cell number counts) was performed with ImageJ. Area
10 analysis of antibody labeled cells was performed by creating binary layers of the implantation sites
11 using the threshold tool and quantified using the measurement tool in Image J⁶⁷.

12 **Electromyography.** EMG signals were recorded from the gastrocnemius muscle with one
13 reference needle electrode, one hydrogel working electrode ($287 \pm 14 \mu\text{m}$) and one ground
14 electrode. A 473 nm laser (200 mW/mm^2 , 0.5 Hz, pulse width 50ms) was used for transdermal
15 optical stimulation. EMG data triggered by optogenetic activation were amplified ($1,000\times$,
16 DAM50, World Precision Instruments), filtered (1–1000 Hz, DAM50, World Precision
17 Instruments), and digitized at 10 kHz (DI-1100, DATAQ Instruments).

18 **In vivo electrophysiology.** Electrophysiological recordings were performed by connecting the pin
19 connectors of optrode devices to an extracellular amplifier (DAM50, World Precision Instruments).
20 Endogenous electrophysiological activities were filtered within the frequency range of 300–3000
21 Hz and digitized at a sampling frequency of 40 kHz (PowerLab 4/20T, ADInstruments).
22 Subsequent signal processing and analysis were conducted using ROSS Offline Spike Sorter⁶⁸.
23 Optical illumination was carried out using a 473 nm laser connected to the implanted optrode

1 devices via a ferrule-sleeve-ferrule connecting system. The laser (10 mW/mm²) was pulsed at a
2 frequency of 0.5 Hz with a pulse width of 50 ms during optical stimulation. Signals were digitized
3 at 10 kHz (DI-1100, DATAQ Instruments) and filtered between 1-1000 Hz. The amplitude and
4 noise level of evoked potentials were assessed utilizing a MATLAB algorithm incorporating a
5 bandpass filter ranging from 0.1 to 300 Hz.

6 **Statistical analysis.** We conducted statistical analyses using GraphPad Prism version 10 and R
7 Studio. Sample sizes were based on pilot and previously (similar types of) experiments and were
8 not statistically predetermined. Initially, we applied the Shapiro-Wilk test to assess data normality.
9 The data in all main figures met the normality criteria, enabling us to use parametric statistical
10 tests. For comparing three or more independent groups, we employed one-way Analysis of
11 Variance (ANOVA) with Tukey's Honest Significant Difference (HSD) test for post-hoc multiple
12 comparisons. To analyze unpaired data across two groups, we used the unpaired student's t-test.
13 Similarly, we applied the paired student's t-test for paired data sets. We considered P-values less
14 than 0.05 as significant. The specific significance levels are as follows: * for $0.01 \leq P < 0.05$, **
15 for $0.001 \leq P < 0.01$, *** for $0.0001 \leq P < 0.001$, and **** for $P < 0.0001$.

16 **Data Availability**

17 The data relevant to this study including the material characterizations, biocompatibility tests, fiber
18 photometry recording results, and electrophysiological recording results are comprehensively
19 detailed within the article and its Supplementary Information. Additionally, the original datasets
20 have been made publicly accessible via the public repository figshare (<https://figshare.com>) and
21 are available here: <https://doi.org/10.6084/m9.figshare.25521286>. Source Data are provided with
22 this paper.

1

2 **Code Availability**

3 The customized code for fiber photometry recordings and social interaction analysis is available
4 at <https://github.com/neurobiologylab>.

5 **Ref:**

- 6 1. Garg R, *et al.* Wearable High-Density MXene-Bioelectronics for Neuromuscular
7 Diagnostics, Rehabilitation, and Assistive Technologies. *Small Methods* **7**, 2201318
8 (2023).
- 9 2. Park SI, *et al.* Soft, stretchable, fully implantable miniaturized optoelectronic systems for
10 wireless optogenetics. *Nature Biotechnology* **33**, 1280-1286 (2015).
- 11 3. Lu C, *et al.* Flexible and stretchable nanowire-coated fibers for optoelectronic probing of
12 spinal cord circuits. *Science Advances* **3**, e1600955.
- 13 4. Yang Q, *et al.* High-speed, scanned laser structuring of multi-layered eco/bioresorbable
14 materials for advanced electronic systems. *Nature Communications* **13**, 6518 (2022).
- 15 5. Park S, *et al.* Adaptive and multifunctional hydrogel hybrid probes for long-term sensing
16 and modulation of neural activity. *Nature Communications* **12**, 3435 (2021).
- 17 6. Tringides CM, *et al.* Viscoelastic surface electrode arrays to interface with viscoelastic
18 tissues. *Nature Nanotechnology* **16**, 1019-1029 (2021).
- 19 7. Wu Y, *et al.* Wireless multi-lateral optofluidic microsystems for real-time programmable
20 optogenetics and photopharmacology. *Nature Communications* **13**, 5571 (2022).
- 21 8. Kathe C, *et al.* Wireless closed-loop optogenetics across the entire dorsoventral spinal cord
22 in mice. *Nature Biotechnology* **40**, 198-208 (2022).
- 23 9. Fu R, *et al.* Implantable and Biodegradable Poly(l-lactic acid) Fibers for Optical Neural
24 Interfaces. *Advanced Optical Materials* **6**, 1700941 (2018).
- 25 10. Yoon Y, *et al.* Neural probe system for behavioral neuropharmacology by bi-directional
26 wireless drug delivery and electrophysiology in socially interacting mice. *Nature
27 Communications* **13**, 5521 (2022).
- 28 11. Bonaccini Calia A, *et al.* Full-bandwidth electrophysiology of seizures and epileptiform
29 activity enabled by flexible graphene microtransistor depth neural probes. *Nature
30 Nanotechnology* **17**, 301-309 (2022).

1 12. Liu Y, *et al.* Soft and elastic hydrogel-based microelectronics for localized low-voltage
2 neuromodulation. *Nature Biomedical Engineering* **3**, 58-68 (2019).

3

4 13. Canales A, *et al.* Multifunctional fibers for simultaneous optical, electrical and chemical
5 interrogation of neural circuits *in vivo*. *Nature Biotechnology* **33**, 277-284 (2015).

6

7 14. Li J, *et al.* A tissue-like neurotransmitter sensor for the brain and gut. *Nature* **606**, 94-101
8 (2022).

9

10 15. Cho H, *et al.* Multiplex lithography for multilevel multiscale architectures and its
11 application to polymer electrolyte membrane fuel cell. *Nature Communications* **6**, 8484
12 (2015).

13

14 16. Eichelsdoerfer DJ, *et al.* Large-area molecular patterning with polymer pen lithography.
15 *Nature Protocols* **8**, 2548-2560 (2013).

16

17 17. Saccone MA, Gallivan RA, Narita K, Yee DW, Greer JR. Additive manufacturing of
18 micro-architected metals via hydrogel infusion. *Nature* **612**, 685-690 (2022).

19

20 18. Park S, Loke G, Fink Y, Anikeeva P. Flexible fiber-based optoelectronics for neural
21 interfaces. *Chemical Society Reviews* **48**, 1826-1852 (2019).

22

23 19. Tabet A, *et al.* Modular Integration of Hydrogel Neural Interfaces. *ACS Central Science* **7**,
24 1516-1523 (2021).

25

26 20. Holback H, Yeo Y, Park K. 1 - Hydrogel swelling behavior and its biomedical applications.
27 In: *Biomedical Hydrogels* (ed Rimmer S). Woodhead Publishing (2011).

28

29 21. Liu X, *et al.* Ingestible hydrogel device. *Nature Communications* **10**, 493 (2019).

30

31 22. Wassie AT, Zhao Y, Boyden ES. Expansion microscopy: principles and uses in biological
32 research. *Nature Methods* **16**, 33-41 (2019).

33

34 23. Zhan Y, Fu W, Xing Y, Ma X, Chen C. Advances in versatile anti-swelling polymer
35 hydrogels. *Materials Science and Engineering: C* **127**, 112208 (2021).

36

37 24. Zhu T, *et al.* Recent advances in conductive hydrogels: classifications, properties, and
38 applications. *Chemical Society Reviews* **52**, 473-509 (2023).

39

40 25. Oran D, *et al.* 3D nanofabrication by volumetric deposition and controlled shrinkage of
41 patterned scaffolds. *Science* **362**, 1281-1285 (2018).

42

43 26. Han F, Gu S, Klimas A, Zhao N, Zhao Y, Chen S-C. Three-dimensional nanofabrication
44 via ultrafast laser patterning and kinetically regulated material assembly. *Science* **378**,
45 1325-1331 (2022).

46

1 27. Kuang X, Arican MO, Zhou T, Zhao X, Zhang YS. Functional Tough Hydrogels: Design,
2 Processing, and Biomedical Applications. *Accounts of Materials Research* **4**, (2022).

3

4 28. Ko B, *et al.* Tunable metasurfaces via the humidity responsive swelling of single-step
5 imprinted polyvinyl alcohol nanostructures. *Nature Communications* **13**, 6256 (2022).

6

7 29. Yuk H, Wu J, Zhao X. Hydrogel interfaces for merging humans and machines. *Nature
Reviews Materials* **7**, 935-952 (2022).

8

9 30. Wu SJ, Zhao X. Bioadhesive Technology Platforms. *Chemical Reviews*, (2023).

10

11 31. Hu S, *et al.* A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal
12 drug delivery. *Nature Communications* **12**, 1689 (2021).

13

14 32. Lai Y-H, *et al.* Stem cell–nanomedicine system as a theranostic bio-gadolinium agent for
15 targeted neutron capture cancer therapy. *Nature Communications* **14**, 285 (2023).

16

17 33. Yu J, Ruengkajorn K, Crivoi D-G, Chen C, Buffet J-C, O’Hare D. High gas barrier coating
18 using non-toxic nanosheet dispersions for flexible food packaging film. *Nature
19 Communications* **10**, 2398 (2019).

20

21 34. Zhang Y, *et al.* Scarless wound healing programmed by core-shell microneedles. *Nature
22 Communications* **14**, 3431 (2023).

23

24 35. Kumar A, Han SS. PVA-based hydrogels for tissue engineering: A review. *International
25 Journal of Polymeric Materials and Polymeric Biomaterials* **66**, 159-182 (2017).

26

27 36. Patil N, Balzano L, Portale G, Rastogi S. A Study on the Chain–Particle Interaction and
28 Aspect Ratio of Nanoparticles on Structure Development of a Linear Polymer.
29 *Macromolecules* **43**, 6749-6759 (2010).

30

31 37. Huang S, *et al.* A nanoscale inorganic coating strategy for stabilizing hydrogel neural
32 probes in vivo. *Journal of Materials Chemistry B* **11**, 7629-7640 (2023).

33

34 38. Guo J, *et al.* Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. *Advanced
35 Materials* **28**, 10244-10249 (2016).

36

37 39. Liu J, *et al.* Fatigue-resistant adhesion of hydrogels. *Nature Communications* **11**, 1071
38 (2020).

39

40 40. Lin S, *et al.* Anti-fatigue-fracture hydrogels. *Science Advances* **5**, eaau8528.

41

42 41. Liu X, *et al.* Fatigue-resistant hydrogel optical fibers enable peripheral nerve optogenetics
43 during locomotion. *Nature Methods* **20**, 1802-1809 (2023).

44

45

1 42. Deng J, *et al.* Electrical bioadhesive interface for bioelectronics. *Nature Materials* **20**, 229-
2 236 (2021).

3

4 43. Tan P, *et al.* Solution-processable, soft, self-adhesive, and conductive polymer composites
5 for soft electronics. *Nature Communications* **13**, 358 (2022).

6

7 44. Peppas NA, Merrill EW. Differential scanning calorimetry of crystallized PVA hydrogels.
8 *Journal of Applied Polymer Science* **20**, 1457-1465 (1976).

9

10 45. Peppas NA, Merrill EW. Development of semicrystalline poly(vinyl alcohol) hydrogels for
11 biomedical applications. *Journal of Biomedical Materials Research* **11**, 423-434 (1977).

12

13 46. Lin S, Liu J, Liu X, Zhao X. Muscle-like fatigue-resistant hydrogels by mechanical
14 training. *Proceedings of the National Academy of Sciences* **116**, 10244-10249 (2019).

15

16 47. Choi M, Humar M, Kim S, Yun S-H. Step-Index Optical Fiber Made of Biocompatible
17 Hydrogels. *Advanced Materials* **27**, 4081-4086 (2015).

18

19 48. Beecroft LL, Ober CK. High Refractive Index Polymers for Optical Applications. *Journal*
20 *of Macromolecular Science, Part A* **34**, 573-586 (1997).

21

22 49. Kurkjian C, Krause J, Matthewson M. Strength and Fatigue of Silica Optical Fiber.
23 *Lightwave Technology, Journal of* **7**, 1360-1370 (1989).

24

25 50. Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable
26 neuroprostheses. *Nature Reviews Materials* **1**, 16063 (2016).

27

28 51. Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its
29 implications for tissue engineering. *Nature Reviews Materials* **5**, 351-370 (2020).

30

31 52. Király B, *et al.* In vivo localization of chronically implanted electrodes and optic fibers in
32 mice. *Nature Communications* **11**, 4686 (2020).

33

34 53. Apollo NV, *et al.* Gels, jets, mosquitoes, and magnets: a review of implantation strategies
35 for soft neural probes. *Journal of Neural Engineering* **17**, 041002 (2020).

36

37 54. Yi J, Choe G, Park J, Lee J. Graphene oxide-incorporated hydrogels for biomedical
38 applications. *Polymer Journal* **52**, 1-15 (2020).

39

40 55. Kashyap S, Pratihar S, Behera S. Strong and ductile graphene oxide reinforced PVA
41 nanocomposites. *Journal of Alloys and Compounds* **684**, (2016).

42

43 56. Lammel S, *et al.* Input-specific control of reward and aversion in the ventral tegmental
44 area. *Nature* **491**, 212-217 (2012).

45

1 57. Markovic T, *et al.* Pain induces adaptations in ventral tegmental area dopamine neurons to
2 drive anhedonia-like behavior. *Nature Neuroscience* **24**, 1601-1613 (2021).

3

4 58. Rao S, *et al.* Remotely controlled chemomagnetic modulation of targeted neural circuits.
5 *Nature Nanotechnology* **14**, 967-973 (2019).

6

7 59. Gunaydin Lisa A, *et al.* Natural Neural Projection Dynamics Underlying Social Behavior.
8 *Cell* **157**, 1535-1551 (2014).

9

10 60. Kim CK, *et al.* Simultaneous fast measurement of circuit dynamics at multiple sites across
11 the mammalian brain. *Nature Methods* **13**, 325-328 (2016).

12

13 61. Mathis A, *et al.* DeepLabCut: markerless pose estimation of user-defined body parts with
14 deep learning. *Nature Neuroscience* **21**, 1281-1289 (2018).

15

16 62. Wang Y, *et al.* A highly stretchable, transparent, and conductive polymer. *Science Advances* **3**, e1602076.

17

18 63. Grieder WP, Gannett W, Saunders R. Percolation in Carbon Nanotube Networks. *IdeaFest: Interdisciplinary Journal of Creative Works and Research from Cal Poly Humboldt* **4**, 10 (2020).

19

20 64. Zeng X, *et al.* Characteristics of the Electrical Percolation in Carbon Nanotubes/Polymer
21 Nanocomposites. *The Journal of Physical Chemistry C* **115**, 21685-21690 (2011).

22

23 65. Jia BZ, Qi Y, Wong-Campos JD, Megason SG, Cohen AE. A bioelectrical phase transition
24 patterns the first vertebrate heartbeats. *Nature* **622**, 149-155 (2023).

25

26 66. Sahasrabudhe A, *et al.* Multifunctional microelectronic fibers enable wireless modulation
27 of gut and brain neural circuits. *Nature Biotechnology*, (2023).

28

29 67. Jiang S, *et al.* Spatially expandable fiber-based probes as a multifunctional deep brain
30 interface. *Nature Communications* **11**, 6115 (2020).

31

32 68. Toosi R, Akhaee MA, Dehaqani M-RA. An automatic spike sorting algorithm based on
33 adaptive spike detection and a mixture of skew-t distributions. *Scientific Reports* **11**, 13925
34 (2021).

35

36

37

38

39 **Acknowledgements**

40 We thank D. Kim and P. Anikeeva for the generous gifts of the plasmids and cell lines, Y. Liu for
41 his assistance on electrochemical characterization, H. Kim for her assistance on mechanical
42 property characterization, R. Chen for his thoughtful comments on our manuscript, and T. Liu, A.

1 Koh, and K. Ye for their supports on hydrogel synthesis and characterization. This work was
2 funded in part by the National Institutes of Health (R00MH120279), National Science Foundation
3 Faculty Early Career Development Program (CAREER, 2239030), Brain&Behavior Research
4 Foundation Young Investigator Grant (29878), Faculty Startup Funds from Binghamton
5 University and UMass Amherst, UMass Amherst Faculty Research Grant (P1FRG0000000295),
6 UMass OTCV Technology Development Fund and Binghamton University S3IP Small Grant
7 award (ADLG267). This work made use of the Binghamton University and UMass Amherst core
8 facilities of Electron Microscopy, Light Microscopy, Raman, IR and XRF Spectroscopy, Roll-to-
9 Roll Fabrication and Processing, and X-Ray Scattering, Analytical & Diagnostics Laboratory,
10 Laboratory Animal Resources and Animal Care Service.

11

12 **Author Contributions**

13 S.H., S.R., and Q.W. initiated the concept, designed the overall experiments, and conducted the in
14 vivo photometry and electrophysiological recordings. S.H., X.L., Q.W., and S.R. were responsible
15 for designing the materials and fabrication methods. S.H., S.L., and S.R. focused on the X-ray
16 characterization. S.H. carried out the characterization of materials and devices and analyzed the
17 data. A.S. and S.R. conceptualized the design for the carbon nanotubes hydrogel fibers. C.G. and
18 C.M. developed the Python code and LabVIEW software for the customized fiber photometry
19 system. S.H. and W.C. performed the in vivo experiments. K.F. and J.X. conducted the
20 DeepLabCut analysis on social interaction behaviors. S.H., S.R., and A.C. were in charge of
21 designing the experiments for characterizing mechanical properties. E.H. executed the tissue
22 sample processing, immunostaining, and confocal imaging. S.H., S.R., and Q.W. prepared the
23 figures and wrote the manuscript with contributions from all authors.

1 **Competing Interests**

2 The authors declare no competing interests.

3

4 **Figure Legends**

5 **Figure 1. COMPACT strategy for hydrogel miniaturization.** **a**, Schematic illustration of
6 hydrogel network of metamorphic polymers' amorphous-crystal transition (COMPACT).
7 COMPACT treatment includes cross-linking with both glutaraldehyde (GA) and tetraethyl
8 orthosilicate (TEOS), acidification, and mechanical stretching. **b-d**, Representative photographs
9 and water contents of TEOS-GA cross-linked polyvinyl alcohol (PVA) hydrogel with COMPACT
10 treatment (+) and GA cross-linked hydrogel without acidification and stretching (-) at the pristine
11 state (**b**), desiccated state (**c**) and re-hydrated state (**d**). Grid size: 5 mm. **e**, Water content of
12 hydrogel fibers (non-COMPACT and COMPACT. Data presented as mean \pm standard deviation
13 (s.d., n=3 independent hydrogel fibers). **f**, Shrinking behaviors of TEOS-GA cross-linked PVA (4
14 wt. % TEOS) hydrogel film with acidification treatment. Film thickness is quantified as mean \pm
15 s.d. (Two-tailed paired student's t-test, F=56.78, t=8.455, df=10, $\alpha=0.05$, ***p=0.0004, n=6
16 independent hydrogel films). **g**, Shrinking behaviors of COMPACT hydrogel fibers (1-4 wt. %
17 TEOS and 200% stretching). Hydrogel fibers' length and diameter are quantified as mean \pm s.d.,
18 (n=4 independent hydrogel fibers). **h**, Shrinking behaviors of cross-linked hydrogel cylinders. The
19 volume of TEOS-GA cross-linked hydrogel cylinders (4 wt. % TEOS) and with acidification
20 treatment and GA cross-linked hydrogel cylinders without acidification treatment are compared
21 with mean \pm s.d. (Two-tailed unpaired student's t-test, F=6.084, t=3.316, df=6, $\alpha=0.05$, *p=0.0161,
22 n=4 independent hydrogel cylinders). **i**, Fourier transform infrared (FTIR) spectroscopy of
23 COMPACT (-) and COMPACT (+) hydrogels. **j**, Differential scanning calorimetry (DSC) profiles

1 of COMPACT (-) and COMPACT (+) and their crystallinity percentages. **k**, Small-angle X-ray
2 (SAXS) and wide-angle X-ray (WAXS) results of hydrogel materials in the desiccated state (mean
3 \pm s.d., n=3-6 independent hydrogel samples). Upper inset: schematic illustration of nanocrystalline
4 distance change before and after stretching, middle inset: SAXS 2D patterns., lower inset: WAXS
5 2D patterns.

6

7 **Figure 2. Controllable hydrogel fiber fabrication and its properties.** **a**, A shrinking diagram
8 of COMPACT (+) hydrogel fibers. The samples shaded in red areas are treated with acidification.
9 Mean \pm s.d.. n=3-4 independent hydrogel fibers. **b**, Shrinking behaviors of COMPACT hydrogel
10 fibers (4wt. % TEOS) prepared in different sizes of molds. One-way ANOVA and Tukey's
11 multiple comparisons test ($F_{3,12}=0.9543$, n.s.: not significant, $p=0.4455$). Mean \pm s.d.. n=4
12 independent hydrogel fibers. **c**, COMPACT hydrogel fibers' optical properties of refractive index
13 and normalized light transmittance. Inset: representative photographs of 0 wt. % TEOS and 4 wt. %
14 TEOS hydrogel membranes. Grid size: 1 mm. Mean \pm s.d.. n=5-9 independent hydrogel samples.
15 **d**, COMPACT hydrogel fibers' elastic modulus and stretchability calculated from tensile tests in
16 water. One-way ANOVA and Tukey's multiple comparisons test were used to determine the
17 statistical significance of elastic modulus: ($F_{4,34}=30.07$, *** $p<0.0001$) and stretchability:
18 ($F_{4,34}=1.040$, n.s., $p=0.4009$), respectively. Mean \pm s.d., n=7-8 independent hydrogel samples. **e**,
19 Bending stiffness of COMPACT (3 wt. % TEOS) hydrogel fiber (n=4 independent hydrogel fibers)
20 with identical cross-sections in comparison with silica fiber (diameter: 200 μ m, mean \pm s.d., n=3
21 independent samples). **f**, Stability assessment of diameter reduction of COMPACT hydrogel fibers
22 (3 wt. % TEOS). Two-way ANOVA and Tukey's multiple comparisons tests ($F_{14,72}=0.3027$, n.s.,
23 $p=0.9921$, mean \pm s.d.. n=4 independent hydrogel fibers). **g**, Cytotoxicity assessment of

1 COMPACT (+) hydrogels. Hydrogel fibers were incubated with Human Embryonic Kidney (HEK)
2 293 cell cultures. Calcein-AM (green) was used to stain living cells and ethidium homodimer-1
3 (red) was used to stain dead cells. Cell death rates are presented as mean \pm standard error (s.e.m.),
4 Two-tailed unpaired student's t-test was used: $F=3.570$, $t=1.531$, $df=15$, $\alpha=0.05$, n.s. $p= 0.1466$,
5 n=8-9 microscopy measurements from 3 independent culture samples. Scale: 50 μ m.

6

7 **Figure 3. Hydrogel optical neural probes for photometric recording with behavioral**
8 **assessment.** **a**, A schematic illustration of light transmission in a step-index hydrogel fiber. **b**,
9 Schematic illustrations and representative photographs of a COMPACT core hydrogel fiber, a
10 COMPACT core-plain-cladding hydrogel fiber, and a COMPACT core-reduced reduced graphene
11 oxide (rGO, 0.21 wt. %)-cladding fiber. Scale: 200 μ m. **c**, Representative photographs of blue light
12 (480 nm) transmission from a COMPACT (-) core hydrogel fiber and a COMPACT (+) core
13 hydrogel fiber into solutions containing Calcein fluorescent dye. **d**, Light attenuation coefficients
14 of COMPACT core hydrogel fibers, COMPACT core-plain-cladding hydrogel fibers, and
15 COMPACT core-rGO-cladding fibers (mean \pm s.d., one-way ANOVA and Tukey's multiple
16 comparisons test, $F_{2,9}=13.3$, ** $p=0.0021$, n=4 independent optical probes). **e**, Experimental
17 scheme for the viral injection, optical fiber implantation, fiber photometry recording and mouse
18 social behavior tests. **f**, Representative images of tracking mouse social interactions. **g**, A
19 schematic illustration of fiber photometry recording setup with concurrent mouse social behavior
20 tests. **h**, Normalized fluorescence intensity change ($\Delta F/F_0$) of GCaMP6s from mouse VTA during
21 social behavior tests. Blue bars indicate social interaction time analyzed by DeepLabCut (DLC).
22 Fiber photometry recordings were performed with 5 mice implanted with COMPACT hydrogel
23 optical probes.

1

2 **Figure 4.** Integrated multifunctional hydrogel neural probes. **a**, A representative photograph of a
3 carbon nanotubes (CNTs)-PVA hydrogel electrode as compared with a piece of human hair. Scale:
4 300 μ m. **b**, A transmission electron microscopy (TEM) image of CNTs (repeated 10 times with
5 similar results). Scale: 200 nm. **c**, Impedance at 1 kHz and diameters of the electrodes fabricated
6 different stretching percentages (mean \pm s.d., n=3-4 independent hydrogel electrodes). **d**,
7 Impedance at 1 kHz of electrodes fabricated with different CNTs concentrations (mean \pm s.d., n=3-
8 5 independent hydrogel electrodes). **e**, Impedance at 1 kHz of electrodes and diameters of the
9 electrode fabricated with different sizes of molds (mean \pm s.d., n=4 independent hydrogel
10 electrodes). **f**, Stability assessment on impedance and diameters of hydrogel electrodes incubated
11 in PBS at 37 °C (mean \pm s.d., n=4 independent hydrogel electrodes). **g**, A schematic illustration of
12 electrical recordings from mouse VTA with a CNTs-PVA electrode bundle (5 electrodes). **h**,
13 Representative electrophysiology recording signals from mouse VTA with CNTs-PVA hydrogel
14 electrodes. **i**, A representative sorted neural spiking signal. **j**, A representative scanning electron
15 microscopy (SEM) image at the cross-section of an integrated multifunctional neural probe
16 containing a hydrogel optical core and two CNTs-PVA hydrogel electrodes (repeated 10 times
17 with similar results). Scale: 100 μ m. **k-l**, Photographs of a hydrogel optoelectronic device (optrode)
18 before implantation and after implantation in a *Thy1::ChR2-EYFP* mouse brain. Scale: 2 mm. **m**,
19 Confocal images of the expression of ChR2-EYFP in the VTA region of the mouse. Scale: 50 μ m.
20 **n**, Representative *in vivo* electrical signals recorded with optrodes upon optical stimulation (blue
21 bars, λ =473 nm, 0.5 Hz, pulse width 50 ms, 10 mW/mm²). **o**, Amplitudes of electrical signals
22 recorded with optical stimulation over 10 weeks post-implantation (λ =473 nm, 0.5 Hz, pulse width

1 50 ms, 10 mW/mm², mean \pm s.e.m., n=20-30 individual optically evoked peak measurements from
2 3 mice).

3

Table.1. TEOS and PVA concentrations of PVA-TEOS solutions

TEOS: HCl: H ₂ O (molar ratio)	TEOS wt. % in PVA pre-solutions	HCl wt. % in solutions	PVA wt. % in solutions
1: 4: 4	2	0.014	10
2: 4: 8	4	0.014	10
3: 4: 12	6	0.014	10
4: 4: 16	8	0.014	10

1
2

Table.2. TEOS and PVA concentrations in PVA-TEOS-GA fibers

Nomenclatura	TEOS: HCl: H ₂ O (molar ratio)	TEOS wt. % in fibers	HCl wt. % in fibers	GA wt. % in fibers	PVA wt. % in fibers
10P-1T-GA	1: 4: 4	1	0.007	0.005	10
10P-2T-GA	2: 4: 8	2	0.007	0.005	10
10P-3T-GA	3: 4: 12	3	0.007	0.005	10
10P-1T-GA	4: 4: 16	4	0.007	0.005	10

1
2

Table 3. Antibodies and dilutions for immunohistology

Primary Antibody (dilution)	Secondary Antibody (dilution)
Tissue assessment 14 days post implantation	
GFAP (Mouse, Southern Biotech 12075-01, 1:1000)	Goat anti-Mouse (Alexa Fluor 555 Invitrogen A-21422, 1:500)
IBA1 (Rabbit, Invitrogen PA5-119231, 1:300)	Chicken anti-Rabbit (Alexa Fluor 488 Invitrogen A-21441, 1:200)
CD68 (Rat, Invitrogen 14-0681-82, 1:500)	Goat anti-Rat (Alexa Fluor 555 Invitrogen A-21434, 1:1000)
CD16/32 (Rat, Invitrogen 14-0161-82, 1:200)	Goat anti-Rat (Alexa Fluor 555 Invitrogen A-21434, 1:1000)
NeuN (Rabbit, Invitrogen PA5-78499, 1:200)	Chicken anti-Rabbit (Alexa Fluor 488 Invitrogen A-21441, 1: 200)
Tissue assessment 1 month post implantation	
GFAP (Rabbit, Agilent Dako Z0334, 1:400)	Donkey anti-Rabbit (Alexa Fluor 488 Invitrogen A-21206, 1: 200)
IBA1 (Rabbit, Invitrogen PA5-119231, 1:400)	Chicken anti-Rabbit (Alexa Fluor 594 Invitrogen A-21442, 1:200)