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Machine learning photodynamics uncover
blocked non-radiative mechanisms
in aggregation-induced emission

Li Wang,1 Christian Salguero,2 Steven A. Lopez,2,* and Jingbai Li1,3,*

SUMMARY

Aggregation-induced emission (AIE) is a photophysical phenomenon
in which weakly luminescent organic chromophores become strongly
luminescent in aggregate. The reduced non-radiative decay in aggre-
gates is often cited as the explanation of the AIE. However, the mech-
anism of competing non-radiative decay pathways is not resolved due
to the lack of excited-state structural information in the time-resolved
experiments and prohibitively expensive quantummechanical calcula-
tions for photodynamics simulations. We investigated the excited-
state dynamics of classic AIEmolecules in aggregate, hexaphenylsilole
(HPS), tetraphenylsilole (TPS), and cyclooctatetrathiophene (COTh)
with a multiscale machine learning accelerated photodynamics
approach, integrating neural networks, semiempirical methods, and
molecular mechanics. Our simulations predict 263-, 5-, and 12-fold
fluorescence enhancement ofHPS, TPS, andCOTh in good agreement
with the experiments (255, 3, and 12).We identified a shared non-radi-
ative decay mechanism involving pCC torsions in these molecules.
These torsions are blocked in aggregate due to intermolecular
hindrance between substituents, promoting AIE.

INTRODUCTION

Organic luminescent molecules are gaining increasing interest in material science,
biology, and chemistry, triggering rapid developments of organic light-emitting di-
odes,1 chemosensors,2–5 biosensors,6,7 and bioimaging.8–10 These molecules can
emit light because they are trapped in an excited-state local minimum after photo-
excitation. The excitation energy is converted back to a photon in a radiative
pathway. The excitation energy can also lead to photochemical reactionaules11

through a crossing point between the excited and the ground states, which converts
the absorbed photonic energy into molecular vibrations non-radiatively. Hence,
designing luminescent materials with high luminescent quantum yields should avoid
this non-radiative process. However, the non-radiative processes of organic
molecules are often intricate because they occur in an ultrafast timescale, and their
relationship with the molecular structures is elusive due to the lack of high-fidelity
structural information in experiments. Investigating the fundamental mechanistic na-
ture of the competing radiative and non-radiative pathways is required to rationally
design organic luminescent materials.

Aggregation-induced emission (AIE)12,13 has provided a novel strategy for
designing organic luminescent materials with reduced non-radiative processes in
the last two decades.14–21 The restriction of intramolecular motions (RIM) mecha-
nism was proposed by Tang and co-workers to explain the AIE phenomena in

THE BIGGER PICTURE

Aggregation-induced emission
(AIE) provides fertile ground for
the rapid development of organic
luminescent materials. However,
resolving the excited-state
mechanisms of AIE phenomena
remains a formidable challenge
because of the limited resolutions
of the time-resolve experiments
and costly excited-state dynamics
simulations of aggregates.

Here, we report our multiscale
machine learning accelerated
photodynamics simulations for
classical AIE molecules in
aggregate state. Our results
reproduce the fluorescence
enhancement reported in
experiments and reveal that the
substituents block the pCC

torsions in the conjugated cores,
which significantly reduces non-
radiative decay to produce AIE.
The new mechanistic insights
provide an atomistic
understanding of the relationship
between the substituents and the
conjugated core in AIE
phenomena, thus paving the way
toward the rational design of AIE
materials in a broadened chemical
space.
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many molecular aggregates based on chemical intuition.22–24 The non-radiative
decay pathways were deactivated because of the restricted intramolecular rotations
(RIR) in hexaphenylsilole (HPS),25,26 tetraphenylethylene (TPE),27 and dimethytetra-
phenylsilole (DMTPS),28 and the restricted intramolecular vibrations (RIV) in
bidibenzo [7]-annulenylidene (BDBA) and tetrahydrobidibenzo [7]-annulenylidene
(THBDBA),22 as shown in Figure 1A. Later, computational studies by Blancafort
and co-workers suggested that the RIM mechanism in the diphenyldibenzofulvene
(DPDBF)29 and DMTPS crystals hinder the pCC-bond distortions toward the conical
intersection (CI).30 These findings extended the RIM mechanism to the restricted ac-
cess to a CI (RACI)30,31 theory for studying the enhanced fluorescence in molecular
crystals (Figure 1B). The RIM and RACI mechanisms provide a static perspective of
the non-radiative decay in AIE molecules (Figure 1C) but cannot inform the non-radi-
ative decay rate constants and quantum yields (QYs). Shuai and co-workers devel-
oped the thermal vibration correlation function (TVCF) theory to predict QYs for
AIE molecules in close agreement with experiments.32 However, the TVCF theory
cannot predict the non-radiative decay rate constants in non-harmonic regions
(such as a peaked CI) because it employs the harmonic approximation in excited-
state potential energy surfaces (PESs). Moreover, the photoexcited molecule is sub-
stantially higher in energy than the minimum energy CI. The non-radiative decay
could occur at many points along the intersection seam instead of the minimum
energy CI,33 which further complicates the mechanism. This study, thus, uses
state-of-the-art quantum chemical calculations and machine learning (ML) tech-
niques to disentangle non-radiative decay mechanisms and identify the origin of
the reduced non-radiative decay of aggregated AIE molecules (Figure 1D).

It remains unclear which nuclear motion(s) control(s) the non-radiative decay in AIE
molecules leading to the AIE. Photodynamic simulations provide a path toward un-
derstanding the dynamical mechanism of the behavior of molecular photoexcited
states, especially non-radiative decay.36,37 These simulations are costly; they are
limited to studying the excited-state dynamics of medium-sized molecules (50
atoms) in subpicosecond38 because they require on-the-fly quantum mechanical
(QM) calculations of the excited-state PES and nonadiabatic couplings (NACs).
Most AIE molecules (e.g., HPS) require prohibitive computational costs because
of their relatively complex molecular structures and relatively long excited-state life-
times (picoseconds to nanoseconds). Moreover, the molecular aggregates feature
thousands of atoms and undergo slowed non-radiative decay, which makes the pho-
todynamics simulations computationally infeasible. A few reports explain the gas-
phase photodynamics of the AIE molecules; these simulations suggest that various
intramolecular motions (e.g., pCC-bond twisting39 and stretching40) are relevant to
non-radiative decay mechanisms. The vast computational cost, even at the molecu-
lar level, limits the studies to relatively small molecules (e.g., TPE39) or a low-cost
semiempirical QM method (e.g., the time-dependent (TD) density functional tight
binding theory40).

To determine the nuclear motion(s) controlling the non-radiative decay of AIE mol-
ecules, we use ML accelerated photodynamics simulations developed by our group
and others (e.g., Dral and Barbatti,41 Westermayr and Marquetand,42 and Li and
Lopez43 to simulate non-radiative processes in molecular aggregates. The ML-pho-
todynamics simulations showed fast and accurate predictions in studying the
excited-state dynamics of various molecules up to nanoseconds.44,45 For simulating
molecular aggregates, we expanded the ML-photodynamics approach into
multiscale by combining the neural networks (NNs) trained with QM calculations,
semiempirical (GFN0-xTB), and molecular mechanics (GFN-FF) calculations (details
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are in Multiscale approach). We studied three prototypical AIE molecules, HPS, TPS,
and cyclooctatetrathiophene (COTh), to identify the role of intramolecular motions
in the non-radiative decay mechanisms in different classes of AIE molecules (Fig-
ure 1D). The ML-photodynamics reproduced the experimental enhancement of
the fluorescence QYs (i.e., AIE factors, aAIE) in good agreement with the experi-
ments. The trajectories revealed similar pCC torsions in the conjugated core,

Figure 1. Progress in molecular mechanisms for AIE phenomena

(A) The schematic illustration of the restricted intramolecular motion (RIM) mechanism, including the restricted intramolecular rotation (RIR) for

HPS,25,26 TPE,27 DMTPS,28 and the restricted intramolecular vibration (RIV) for BDBA and THBDBA.22

(B) The schematic illustration of the restricted access to a conical intersection (RACI) mechanism for DPDBF and DMTPS crystals. The restricted motions

of the phenyl groups and pCC-bond are highlighted with red arrows and bonds for (A) and (B).

(C) The comparison between the static and dynamical perspectives of the non-radiative mechanism in AIE phenomena.

(D) The main mechanistic questions addressed in this work and the selected AIE molecules with the fluorescence enhancement, aAIE. Previous works

predicted the aAIE of HPS,34 TPS,34 and COTh35 based on the static calculations in the gas-phase and crystal structures.
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contributing to the non-radiative decay despite the distinct core structures and vary-
ing number of substituents in HPS, TPS, and COTh. Our findings provide new mech-
anistic insights beyond the RIM and RACI theories and demonstrate a possible strat-
egy to enhance the fluorescence of organic molecules for the rational design of AIE
molecules.

RESULTS AND DISCUSSION

Gas-phase and aggregate-state models

The experiments measured the fluorescenceQYs ofHPS, TPS, andCOTh from a dilute
solution to a high concentration by increasing the water fraction in organic solutions to
investigate AIE phenomena. We approximate the dilute solution as a gas-phase simu-
lation and the high concentration as a molecular aggregate for the excited-state dy-
namics. The gas-phase and aggregate models correspond to the solutions with 0%
and 100% water fractions, respectively. These conditions enabled us to determine
the restricted motions responsible for the reduced non-radiative process (i.e., the
increased AIE intensity). For the gas-phase simulations, we used Wigner sampling to
generate 1,500 initial conditions forHPS,TPS, andCOTh at the zero-point energy level.
We defined the geometrical parameters to characterize the gas-phase intramolecular
motions.aandb represent thephenyl group rotationsand the silole-corepCC-bond tor-
sions of HPS (Figure 2A) and TPS (Figure 2B). g and qmeasure the inversion angle and
theCOTh-core pCC-bond torsions ofCOTh (Figure 2C). Detailed interpretations of the
geometrical parameters are in gas-phase ML-photodynamics.

To generate the aggregate models, we first pruned the HPS, TPS, and COTh super-
cells into a central molecule with two shells to generate the aggregates. The central

Figure 2. Gas-phase and molecular aggregate models

(A and B) Illustrations of the representative phenyl group rotation angle (a) and silole-core pCC torsion angle (b) in HPS (A) and TPS (B).

(C) The inversion angle (g) and COTh-core pCC torsion angle (q) in COTh (C).

(D–F) Snapshots of the HPS, TPS, and COTh aggregate models. The dynamics of the excitation core, inner shell (blue), and outer shell (red) are modeled

with NNs, GFN0-xTB, and GFN-FF methods in a three-layer ONIOM scheme.
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molecule was replaced with the gas-phaseWigner-sampled structures, and the mol-
ecules comprising the shells were relaxed withmolecular dynamics by the GFN0-xTB
and GFN-FF methods. Previous studies on HPS aggregates suggested the AIE
observed for the central molecule is independent of aggregate-solvent interac-
tions.46 Therefore, we employed an external spherical constraining potential to
mimic the solute-solvent interactions forming the aggregates. Figures 2D–2F illus-
trate one of the 500 initial conditions for theHPS, TPS, andCOTh aggregatemodels.
The average densities of the aggregate models were 1.01, 0.97, and 1.27 g,cm!3,
respectively, in line with the simulated amorphous aggregates in the previous
report.46 Detailed protocols for aggregate-state model preparation are in aggre-
gate models.

The experiments and TD-uB97XD/cc-pVDZ calculations (Table S1) suggest that
HPS, TPS, and COTh are promoted to their respective S1-Franck-Condon (FC)
points (Figure S1) upon photon absorption. The subsequent non-radiative decay
occurs when the molecular trajectories approach the S1/S0-CIs. Simulating the
excited-state dynamics toward S1/S0-CIs requires multireference QM methods,
such as complete active space self-consistent field (CASSCF) with second-order
perturbative corrections (CASPT2). However, neither CASPT2 nor CASSCF
methods are computationally feasible for large molecules like HPS and TPS. The
CASSCF energy calculations for HPS using the minimal basis set (ANO-S-MB)
required 4 h on our high-performance computer, which would spend 18 years to
simulate the non-radiative decay of HPS in 20 ps, according to the rate constant
(2.53 3 1010 s!1) reported by Shuai and co-workers.34 As such, we turned to
NNs to accelerate the excited-state dynamics for HPS, TPS, and COTh in the
gas phase and aggregate.

To generate the training data for the NNs, we interpolated the structures from the
S1-FC points to the S1/S0-CIs and compute the energies and gradients of the S0,
S1, and S2 states. These data can describe the dominating S1/S0 transitions and
possible transitions between S1 and S2. The training data were computed with the
TD-uB97XD/cc-pVDZ calculations because the CASSCF calculations overestimate
the excitation energies due to the poor quality of the affordable minimal basis
sets and the omission of dynamical electron correlation. The TD-uB97XD/cc-pVDZ
calculations produced comparable geometries, g (gradient difference), and h
(nonadiabatic coupling) vectors to the CASSCF reference, except for missing the
dimensionality of the branching plane.47,48 The discrepancy on the PESs became
less significant when leaving the S1/S0-MECIs (e.g., S1–S0 energy gap > 0.3 eV)
because the S1/S0-MECIs were sloped and the gradient differences dominated the
molecular vibrations to lift the S1/S0 degeneracy. Thus, the training set removes
the data points at the S1/S0-MECIs to exclude inaccurate PES data.

We used the curvature-driven time-derivative coupling (kTDC) approach49,50 to
approximate the NACs for Tully’s fewest switches surface hopping (FSSH)51,52 calcu-
lations. The kTDC approach showed almost identical results to the ground-truth
NACs when the S1–S0 energy gap < 0.1 eV.53,54 In our ML-photodyanmics simula-
tions, most S1/S0 transitions of HPS, TPS, and COTh (94.7%–97.0%) were pre-
dicted with an S1–S0 energy gap > 0.3 eV, where the kTDC overestimated the
ground-truth NACs by 2–10 times (Figure S5). Thus, the ML-photodynamics simula-
tions will overestimate the S1/S0 non-radiative decay rate constants. Nevertheless,
the predictions of the AIE factor are unlikely to be affected as they depend on
the ratio between the non-radiative decay rate constants in the gas phase and
aggregate (aggregate ML-photodynamics for details).
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Predictions of the AIE factors

The gas-phase ML-photodynamics simulations propagated 1,500 trajectories from
the S1-FC points for 200 ps with a time step of 0.5 fs. The aggregate-state simula-
tions run 500 trajectories for 20 ps with the same time step. Figure 3A plots the state
population dynamics of HPS in the first 40 ps. The S1 population of HPS showed an
exponential S1/S0 non-radiative decay in the gas phase when fitting a non-radiative
decay rate constant knr of 8.08 3 1010 s!1. The S1 population of HPS aggregate
showed frequent transitions between S1 and S2, where only 3 trajectories were found
in S0 at the end of simulations. The corresponding knr is 1.66 3 108 s!1. The pre-
dicted aAIE = 263 (Equation S7) was in excellent agreement with the experimental
results (aAIE = 255).34 Figure 3B shows the S1 state populations of TPS, fitting knr =
1.23 3 1011 and 2.58 3 1010 s!1 in the gas phase and aggregate, respectively.
The predicted AIE factor of TPS (aAIE = 5) further improved with the previously
calculated values (aAIE = 45) reported by Shuai and co-workers,34 close to the exper-
imental data (aAIE = 3). Figure 3C illustrates the state populations of COTh, domi-
nated by the S1/S0 non-radiative transition. The predicted knr of COTh were

Figure 3. ML-photodynamics simulations for HPS, TPS, and COTh in the gas phase

(A–C) Comparisons of the gas-phase and the aggregate-state electronic state population dynamics of HPS, TPS, and COTh in the first 40 ps.

(D and E) Plots for the selected HPS, TPS, and COTh trajectories from their S1-FC region to the S1/S0 surface hopping points (black circles) for the first

5 ps gas-phase ML-photodynamics simulations. (D) The a-front view and b-front view of the HPS trajectories are colored by the S1/S0 surface hopping

points where a < 0"(red) and a > 0" (blue). (E) The a-front view and b-front view of the selected gas-phase TPS trajectories highlight the preferred S1/S0
surface hopping points where b < 0"(red).

(F) The g-front view and q-front view of the gas-phase COTh trajectories illustrate the reversion (g < 180") and inversion (g > 180") of COTh.
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3.413 1011 and 2.873 1010 s–1 in the gas phase and aggregate, respectively. These
results predicted an AIE factor of COTh (aAIE = 12) that exactly matched the exper-
imental results (aAIE = 12).35 Together, the state population dynamics results
suggest the reliability of our ML-photodynamics approach for simulating the
aggregates. Details on the state populations and the calculations of aAIE are in
gas-phase ML-photodynamics and aggregate ML-photodynamics.

We examined the state population dynamics and found the knr of COTh is 3 and 8
times higher than TPS in the gas phase and the aggregate, respectively. These re-
sults indicate the knr decreases when the AIE molecules are substituted with phenyl
groups. We also noted that the knr of TPS was close to HPS in the gas phase but was
two orders of magnitude faster than those in aggregate. These results suggest the
knr further decreases with the increasing number of phenyl groups in aggregate.
The following discussions will explain how phenyl group motions control the non-
radiative decay of HPS and TPS and identify the relevant intramolecular motions
responsible for the non-radiative decay of COTh.

Non-radiative decay mechanisms

We characterizeHPS, TPS, and COTh geometries in the gas-phase trajectories using
the parameters introduced in Figure 2. The HPS trajectories (Figure 3D) started from
the S1-FC regions at a = 48" and b = 9". They bifurcate into two pathways along the a

parameter (a > 0" and a < 0"), indicating two accessible conformations of the phenyl
groups instead of random orientations at the S1/S0 surface hopping seam. The tra-
jectories feature simultaneous back-and-forth (e.g., fanning) phenyl torsions along
with the b axis (b > 0" and b < 0"). The concerted phenyl group torsions and
silole-core twisting at the S1/S0 surface hopping points (Figure S14) resemble the
silole-core pCC torsions. We froze the silole core during the gas-phase ML-photody-
namics to determine the role of the silole-core pCC torsions. None of the trajectories
showed S1/S0 surface hopping, while the phenyl groups showed full torsional flexi-
bility (Figure S15). These results suggest that the silole-core pCC torsions were the
driving force behind the non-radiative decay of HPS.

Figure 3E plots the structural evolutions of TPS in the gas phase. From the S1-FC
regions at a = 131" and b = !2", the phenyl group rotations slightly increased to
a = 143" at S1/S0 surface hopping points. The silole core showed strong pCC torsion
between !100" and 100", while the S1/S0 surface hopping points are found in a nar-
row range from !56" to !30". We observed the concerted phenyl group rotations
and silole-core twisting at the S1/S0 surface hopping points (Figure S18). These re-
sults suggest that the TPS followed a similar non-radiative decay mechanism to
HPS, controlled by the silole-core pCC torsions.

The gas-phase trajectories of COTh (Figure 3F) starting at the S1-FC region (g = 123"

and q = 0") showed rapid inversions of g from 77" to 283". We found a broad distri-
bution of the S1/S0 surface hopping points along each side of g = 180", which sug-
gests that COTh inversion does not control the S1/S0 surface hopping points. The
inversion ratio is 39%, corresponding to a decrease of 78% in circular dichroism in-
tensity by single photon absorption. The inversion ratio will converge to 50% upon
constant irradiation, showing a gradual reduction of circular dichroism intensity to
zero, in accordance with the experiments.35 The major retention structures of
COTh resulted from the preferred S1/S0 surface hopping points at g = 155". Tracking
the dihedral angles inside the COTh-core showed concerted pCC torsions (Fig-
ure S21). The trajectories displayed strong COTh-core pCC torsions in two opposite
directions approaching to !90" or 90", where most S1/S0 surface hopping points
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were located near 36" (Figure 3F). These results indicate that theCOTh-corepCC tor-
sions are responsible for the non-radiative decay of COTh.

Restricted intramolecular motions in aggregates

The gas-phase trajectories ofHPS, TPS, andCOTh highlighted the unique role of the
pCC torsions in the S1/S0 non-radiative decay. We continued to explore the rela-
tionship between the restrictions of the pCC torsions and the reduced non-radiative
decay in the aggregates. We compared the structural distributions of the S1/S0
surface hopping structures in 1,500 gas-phase trajectories and 500 aggregate trajec-
tories (Figure 4).

We analyzed the geometries of the trajectories and grouped the structures along the
gas-phase S1/S0 seam of HPS in Figure 4A, where a = 121" and b = 44". The scatter
plot in Figure 4D shows four S1/S0 surface hopping regions in the gas phase due to
the flexible phenyl rotations and silole-core pCC torsions. By contrast, the HPS

aggregates prevented the phenyl rotations and the silole-core pCC torsion. Most tra-
jectories clustered around a = 35" and b = 11" in 20 ps in aggregate, near the S1-FC
regions (a = 48" and b = 8"). We only found three HPS aggregate trajectories that
underwent the S1/S0 surface hopping at a = 25" and b = 33", which are close to
the gas-phase S1/S0 surface hopping regions with notable silole-core pCC torsions
(b = 44"). This finding implied that the silole-core pCC torsions were still responsible
for the non-radiative decay of the HPS in aggregate. The restricted silole-core pCC

torsions resulted in a significant reduction of the non-radiative decay of HPS

aggregate.

Figure 4B demonstrates the silole-core pCC torsions in the gas-phase S1/S0 surface
hopping structures of TPS. The structural distributions (Figure 4E) suggest an effi-
cient S1/S0 surface hopping region at a = 142" and b =!32". The broad S1/S0 surface
hopping regions were reduced in aggregate. A few trajectories arrived at the ground
state via a narrow region at a = 139" and b = !26" (Figure 4H). Compared with the
initial condition (a = 131" and b = !1"), the phenyl torsions were almost unchanged
in aggregate, while the silole-core pCC torsions (b =!26") are close to the gas-phase
S1/S0 surface hopping structures (b =!32"). These results agreed with our findings in
HPS aggregate trajectories; the silole-core pCC torsion controlled the non-radiative
decay of the aggregate. Moreover, the non-radiative decay of the TPS aggregate is
faster than theHPS aggregate because the silole-core pCC torsion contained flexible
hydrogen atoms, whose motions were less restricted than the phenyl groups in the
aggregates. Thus, the phenyl groups acted as molecular handles to block the silole-
core pCC torsions in the aggregates, deactivating the non-radiative decay.

The gas-phase S1/S0 surface hopping structures of COTh depicted a bendingCOTh-
core (Figure 4C). The inversion of COTh should lead to the mirror image of the S1/S0
crossing regions relative to the planar COTh (g = 180"). However, the trajectories
showed an uneven distribution, where most S1/S0 surface hopping points were
found at g = 153" and q= 30" (Figure 4F). This dynamical effect drives the trajectories
toward a relatively low-energy region of the S1/S0 seam near the S1-FC regions (g =
123" and q = 0"). The S1/S0 surface hopping points showed an elliptical distribution
of q from !67" to 67", suggesting a crossing seam along with the COTh-core pCC

torsions. In aggregate, the inversion angle of COTh decreased to g = 144" at the
energetically favorable S1/S0 surface hopping region (Figure 4I), which produced
no inversion product. The COTh-core pCC torsions showed a reduced range from
!53" to 48", where the most S1/S0 surface hopping points were at q = 15". These
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results confirmed that the COTh-core pCC torsions led to the non-radiative decay of
the COTh aggregate.

Themagnitudes of thepCC torsions in the S1/S0 surface hopping points informed the
accessibility of the non-radiative decay pathway of HPS, TPS, and COTh, which
reduced from 178", 182", and 133" in the gas phase (Figures 4D–4F) to 92", 144",
and 102" in aggregate (Figures 4G–4I), respectively. The reduction ratios were
48%, 21%, and 23%, which indicate the decreasing restriction on the non-radiative
decay in HPS>COTh>TPS. This trend explained the decreasing order of the pre-
dicted aAIE in TPS(5)<COTh(12)<HPS(263). These findings revealed the role of
phenyl groups as molecular handles that conveyed intermolecular steric clashes in

Figure 4. S1/S0 surface hopping in the gas phase and aggregates

(A–C) Overlay of the selected S1/S0 surface hopping structures in the 40 ps gas-phase ML-photodynamics simulations for HPS, TPS, and COTh. The H in

the phenyl and thiophene groups is omitted for clarity.

(D–F) Scatter plots for the structural distributions of the gas-phase S1/S0 surface hopping points of HPS, TPS, and COTh. The two-dimensional spaces

forHPS and TPS are spanned over the phenyl torsion angle (a) and silole-core pCC torsion angle (b); the space for COTh is defined by the inversion angle

(g) and the COTh-core pCC torsion angle (q). The ranges of b are!82" to 98" and !91" to 91" for HPS in (D) and TPS in (E), respectively. The range of q is –

67" to 67" for COTh in (F).

(G) The structural distributions of HPS in aggregate at the end of the simulations.

(H and I) The structural distributions of the S1/S0 surface hopping points of TPS and COTh in aggregate, respectively. The ranges of b are !82" to 98" for

HPS in (G) and !68" to 53" for TPS in (H). The range of q is !53" to 49" for COTh in (I). The color from red to blue describes the accumulation of S1/S0
surface hopping structures from high to low, estimated by the Gaussian Kernel.
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aggregates into intramolecular restrictions on the silole-core pCC torsions, deacti-
vating the non-radiative decay. Without adequate molecular handles, TPS or
COTh could not sufficiently harness the intermolecular interactions to restrict the in-
tramolecular pCC torsion in the conjugated core, which led to a weak AIE
phenomenon.

Conclusions

We used theML-photodynamics simulations based on a combination of NNs trained
with QM data, semiempirical methods, and molecular mechanics to investigate the
non-radiative decay mechanisms of typical AIE molecules,HPS, TPS, andCOTh. The
simulations provided high-fidelity structural information to reveal the contributions
of restricted intramolecular motions in the non-radiative decay pathways in
aggregates.

The excited-state population analysis predicted the AIE factors of HPS (263), TPS (5),
and COTh (12) in line with the experiments. The S1/S0 surface hopping distributions
showed the non-radiative decay originated from notable silole-core pCC torsions in
HPS (b = 44") and TPS (b = !32") in the gas phase instead of the phenyl group
rotations. The trajectories of COTh showed that the excited-state inversions are in-
dependent of the non-radiative decay, where the COTh-core pCC torsions (q = 28")
promoted the S1/S0 surface hopping. The trajectory analysis showed a decrease in
intermolecular restrictions of the pCC torsions as follows HPS>COTh>TPS in their
aggregates, which explained the decreasing trend in the predicted AIE factors.
These findings revealed the actual role of phenyl groups as molecular handles to
hinder the excited-state pCC torsions.

Understanding the non-radiative decay mechanism of typical AIE molecules is one
step forward toward the rational design of AIE materials. The ML-photodynamics
simulations suggest a simple design rule for the organic AIE molecules by intro-
ducing bulky or rigid substituent groups at or near the pCC -bonds. The substituents
act as molecular handles to harness the intermolecular steric hindrances and clashes
to resist the excited-state pCC torsions in the aggregates, leading to AIE.

EXPERIMENTAL PROCEDURES

Resource availability
Lead contact
Further information and requests for resources should be directed to and will be ful-
filled by the lead contact, Jingbai Li (lijingbai@szpu.edu.cn).

Materials availability
This study did not generate new unique reagents

Data and code availability
# The ML-photodynamics simulation code is open-sourced and released at:
https://github.com/mlcclab/PyRAI2MD-hiam.

# The NNmodels and initial conditions generated during this study are available
at: https://github.com/mlcclab/PyRAI2MD_publications/AIE_project.

# The training data and full initial conditions are available upon request to the
lead contact.

Model preparations

For gas-phase models, we optimized the geometries of HPS, TPS, and COTh

with the PBE0/cc-pVDZ method. Wigner sampling was used to sample the
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non-equilibrium geometries in the gas phase at the zero-point energy level. For
aggregate models, we created a 43433 supercell for HPS, TPS, and COTh from
the unit cell (CCDC: 195948, 933864, 606349). We then applied a cutoff radius (Rcut-

off) to select two crystal shells. The Rcutoff ofHPS, TPS, andCOTh are 17, 15, and 14 Å,
which contained 27, 30, and 33 molecules, respectively. Then, we replaced the cen-
tral molecule inside the crystal shells with 500 Wigner-sampled non-equilibrium ge-
ometries. We froze the non-equilibrium geometries and initial velocities at the cen-
ter and relaxed the crystal shells. The relaxations started with the GFN-FF dynamics
in 1 ps and switched to hybrid GFN0-xTB/GFN-FF dynamics for another 400 ps.
The time step was 1 fs. The hybrid GFN0-xTB/GFN-FF calculations first computed
the energy of the whole aggregate model with the GFN-FF method. Then, it re-
placed the GFN-FF energy of the inner shell with the GFN0-xTB results. The initial
velocities of atoms in the crystal shells are randomly generated following the Boltz-
mann distribution at 298 K. The translational and rotational velocities are projected
out. We confined the radius to 21.86, 27.30, and 18.34 Å for theHPS, TPS, andCOTh

aggregates to mimic the solvent-solute repulsions packing the isolated molecule
into aggregates. The GFN0-xTB and GFN-FF calculations used the program xTB
6.5.1.55,56

Multiscale approach

We partitioned the aggregate models into three layers: core, inner shell, and outer
shell. The HPS, TPS, and COTh aggregates have 11, 11, and 13 molecules in the
inner shells and 15, 18, and 19 molecules in the outer shell, respectively. The total
energy was expressed using the subtractive ONIOM scheme:

Etotal = EGFN!FF;model ! EGFN!FF;inner+center +EGFN0!xTB;inner+center

! EGFN0!xTB;center +ENN;center

where the EGFN-FF,model term is the GFN-FF energy of the whole aggregate
model. EGFN-FF,inner+center, and EGFN0-xTB,inner+center terms are the GFN-FF and
GFN0-xTB energies of the inner shells, including the molecule at the center. The
EGFN0-xTB,center, and ENN,center terms are the GFN0-xTB and NN-predicted energies
of the central molecule. As HPS, TPS, and COTh are neutral and apolar, the polari-
zations from the inner shell to the center were weak. The TD-uB97XD/cc-pVDZ
calculations suggest a mean absolute difference of 0.01–0.02 eV between the
gas-phase excitation energies and that with embedding charges of the inner shell
(Figure S6). Thus, we computed the EGFN0-xTB,center, and ENN,center terms in the gas
phase for simplicity and accounted for the interaction between the center and inner
shell in the EGFN0-xTB,inner+center term.

Further error analyses were discussed in error analysis. The nuclear forces are
negative first-order derivatives of the above total energy function with respect to
the nuclear positions. The three-layer ONIOM scheme was implemented in
PyRAI2MD.57

Quantum mechanical calculations

The ground-state geometries ofHPS, TPS, andCOThwere optimized with the PBE0/
cc-pVDZ method. The excited-state calculations used the uB97XD/cc-pVDZ. The
predicted excitation energies of HPS, TPS, and COTh were 3.67, 4.36, and 4.03
eV, which agreed with the experiment results, 3.42, 4.31, and 3.64 eV.25,58,59 The
predicted emission energies of HPS, TPS, and COTh were 2.65, 2.77, and 2.11 eV
in line with the measure data, 2.49, 2.94, and 2.46 eV.25,58,59 The simulated absorp-
tion spectra (Figure S2) suggest the lowest accessible excited state was S1.
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The photodynamics simulations for the non-radiative S1/S0 transitions require mul-
tireference methods, such as CASPT2, to correctly describe the PESs near the
crossing regions. To date, the CASPT2 calculations for AIE molecules remain
computationally infeasible. The CASSCF method is a second choice as it is less
resource-intensive than CASPT2, while it often overestimates the excitation energies
due to the lack of dynamical electron correlations. Our benchmarks showed the en-
ergy calculations for HPS with the SA2-CASSCF(4,4)/ANO-S-VDZP method
spent more than 2 h. Reducing the basis set to the minimal set (SA2-CASSCF(4,4)/
ANO-S-MB) still took 4 h to obtain the S1 and S0 energies and forces. For HPS, the
simulation time will be 18 years as the notable non-radiative decay occurred in
20 ps according to the rate constant (2.53 3 1010 s!1) reported by Shuai and co-
workers.34 Thus, to the best of our knowledge, ML-photodynamics is one of the
few available methods to simulate the non-radiative decay of HPS, TPS, and
COTh aggregates.

The SA2-CASSCF(4,4)/ANO-S-MB method was unsuitable for training data
calculations because of the poor data quality with the minimal basis set and
the lack of dynamical electron correlations, although the computational cost
seemed affordable. We compared the TD-uB97XD/cc-pVDZ method to SA2-
CASSCF(4,4)/ANO-S-MB at the S1/S0-MECIs. The TD-uB97XD/cc-pVDZ calcula-
tions showed comparable optimized structures, g (gradient difference), and h
(nonadiabatic coupling) vectors to the CASSCF(4,4)/ANO-S-MB reference.
The reference for COTh was computed with the CASSCF(8,8)/ANO-S-MB method
(Figure S3). A well-known issue of TDDFT calculations is the missing dimensionality
of the branching plane.47,48 Here, the discrepancy in the PESs became less signif-
icant when the S1–S0 energy gap was > 0.3 eV. It was because the S1/S0-MECIs
were sloped, and the gradient difference dominated the molecular vibrations
that lifted the S1/S0 degeneracy. Thus, the TD-uB97XD/cc-pVDZ method was
reliable if the structures were not at the S1/S0-MECIs, which was a fair assumption
for HPS, TPS, and COTh because more than 90% of S1/S0-surface hopping
events attempted to occur with an S1–S0 energy gap > 0.3 eV (Figure S11). The
initial training sets excluded the data at or near the S1/S0-MECIs (i.e., S1–S0
gap < 0.3 eV). The TD-uB97XD/cc-pVDZ, energy, and force calculations
were finished in 40 min. The PBE0/cc-pVDZ and TD-uB97XD/cc-pVDZ
calculations used ORCA 5.0.3.60 The CASSCF calculations used OpenMolcas
19.11.61 Detailed discussions on the QM methods are available in quantum me-
chanical calculations.

Training data generation

The initial training data contained two parts: Wigner sampling and geometric inter-
polation. We performed Wigner sampling based on the PBE0/cc-pVDZ optimized
geometries to generate 800HPS, TPS, andCOTh structures at the zero-point energy
level, respectively. The geometric interpolation generated 22 structures forHPS and
20 structures for TPS and COTh from the S1-FC point to the S1/S0 crossing points
(Figure S4). We only kept 18 structures in the middle of the interpolations to remove
duplicated data at the S1-FC point and incorrect data at the S1/S0 crossing points.
Then, the interpolated geometries were perturbed by the nuclear displacements
obtained from another 100 Wigner-sampled structures for HPS and 50 Wigner-
sampled structures for TPS and COTh, which produced 1,800, 900, and 900 data
points for HPS, TPS, and COTh. The total numbers of data in the initial set were
2,600, 1,700, and 1,700 for HPS, TPS, and COTh, respectively. The training data
contain the S0, S1, and S2 energies and gradients. The training data were split into
training and validation sets in a 9:1 ratio.
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We performed adaptive sampling to expand the initial training set with under-
sampled data. The adaptive sampling used a committee model of two NNs to
propagate 100 trajectories from the S1 state for 10 ps with a step size of 0.5 fs.
The standard deviation (STD) in the predicted energy and gradients by the NN com-
mittee indicate the uncertainty of the current prediction. The trajectories were
stopped if the STD exceeded the empirical thresholds for energy (0.03 Hartree) or
gradients (0.08 Bohr,Hartree!1), respectively. The last geometries of the stopped
trajectories were recomputed with the TD-uB97XD/cc-pVDZ calculations and
added to the initial training set. After that, the adaptive sampling retrained the com-
mittee model of NNs to restart the trajectories until no out-of-sampled structure was
found. Detailed information on the adaptive sampling is available in adaptive
sampling.

ML-photodynamics simulations

The ML-photodynamics simulations used a feed-forward NN consisting of multiple
Perceptron layers based on the TensorFlow/Keras API for Python.62 The NN com-
putes the inverse distance matrix of the input molecule to predict the energies
and gradients. The NN employed a leaky softplus activation function. The energies
and forces are trained using a combined loss function with a ratio of 5:1 to ensure
their physical relationship. The hyperparameters were optimized by a grid search
over 378 NNs. The mean absolute errors in the NN-predicted energies were
0.0135–0.0147, 0.0265–0.0343, and 0.0214–0.0293 eV for HPS, TPS, and COTh,
respectively. The optimized hyperparameters and detailed information on the NN
errors are available in neural network potential.

We propagated the 1,500 gas-phase and 500 aggregate-state trajectories from the
S1-FC points of HPS and TPS. The simulation times were 200 ps in the gas phase and
20 ps in aggregate. The time step was 0.5 fs. The probability of a nonadiabatic elec-
tronic transition was computed with Tully’s FSSH method,51,52 where we used the
curvature-driven time-derivative coupling (kTDC) method49,50 to evaluate the
NACs based on the NN-predicted energy gaps. The kTDC method showed a
good accuracy to the ground-truth NAC obtained with QM calculations when the
energy gap was sufficiently small (e.g., 0.5 eV).53,54 Our NNs tended to predict
the S1/S0 surface hopping at S1–S0 energy gap > 0.3 eV as the data with smaller
gaps were excluded. Thus, the ML-photodynamics simulations overestimated the
rate constants of the non-radiative decay. We benchmarked the S1–S0 energy gap
to determine the magnitude of the kTDC overestimation of the exact NAC. Based
on our results, we applied the S1–S0 energy gap threshold of 2.05, 2.0, and 1.0 eV
to evaluate the kTDC for HPS, TPS, and COTh, which overestimated the NAC
2–10 times (Figure S5). Since the gas-phase and aggregate-state simulation used
the same NN models, the overestimations of the non-radiative decay rate constants
were canceled out in the AIE factor, which did not significantly affect the predicted
AIE factors. Detailed discussions on the kTDC benchmarks are available in quantum
mechanical calculations.
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on Tröger’s Base. J. Phys. Chem. C 111,
12811–12816. https://doi.org/10.1021/
jp0711601.

29. Li, Q., and Blancafort, L. (2013). A conical
intersection model to explain aggregation
induced emission in diphenyl
dibenzofulvene. Chem. Commun. (Camb) 49,
5966–5968. https://doi.org/10.1039/
c3cc41730a.

30. Peng, X.-L., Ruiz-Barragan, S., Li, Z.-S., Li, Q.-S.,
and Blancafort, L. (2016). Restricted access to a
conical intersection to explain aggregation
induced emission in dimethyl tetraphenylsilole.
J. Mater. Chem. C 4, 2802–2810. https://doi.
org/10.1039/C5TC03322E.

31. Crespo-Otero, R., Li, Q., and Blancafort, L.
(2019). Exploring Potential Energy Surfaces
for Aggregation-Induced Emission—From
Solution to Crystal. Chem. Asian J. 14,
700–714. https://doi.org/10.1002/asia.
201801649.

32. Peng, Q., and Shuai, Z. (2021). Molecular
mechanism of aggregation-induced emission.
Aggregate 2. https://doi.org/10.1002/
agt2.91.

33. Pieri, E., Lahana, D., Chang, A.M., Aldaz, C.R.,
Thompson, K.C., and Martı́nez, T.J. (2021). The
non-adiabatic nanoreactor: towards the
automated discovery of photochemistry.
Chem. Sci. 12, 7294–7307. https://doi.org/10.
1039/D1SC00775K.

34. Xie, Y., Zhang, T., Li, Z., Peng, Q., Yi, Y., and
Shuai, Z. (2015). Influences of Conjugation
Extent on the Aggregation-Induced Emission
Quantum Efficiency in Silole Derivatives: A
Computational Study. Chem. Asian J. 10,
2154–2161. https://doi.org/10.1002/asia.
201500303.

35. Zhao, Z., Zheng, X., Du, L., Xiong, Y., He, W.,
Gao, X., Li, C., Liu, Y., Xu, B., Zhang, J., et al.
(2019). Non-aromatic annulene-based
aggregation-induced emission system via
aromaticity reversal process. Nat. Commun. 10,
2952. https://doi.org/10.1038/s41467-019-
10818-5.

36. Crespo-Otero, R., and Barbatti, M. (2018).
Recent Advances and Perspectives on
Nonadiabatic Mixed Quantum–Classical
Dynamics. Chem. Rev. 118, 7026–7068.
https://doi.org/10.1021/acs.chemrev.
7b00577.

37. Nelson, T.R., White, A.J., Bjorgaard, J.A.,
Sifain, A.E., Zhang, Y., Nebgen, B., Fernandez-
Alberti, S., Mozyrsky, D., Roitberg, A.E., and
Tretiak, S. (2020). Non-adiabatic Excited-State
Molecular Dynamics: Theory and Applications
for Modeling Photophysics in Extended
Molecular Materials. Chem. Rev. 120, 2215–
2287. https://doi.org/10.1021/acs.chemrev.
9b00447.

38. Zobel, J.P., andGonzález, L. (2021). The Quest
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