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Abstract

We consider a class of dispersive and dissipative perturbations of the inviscid Burgers equation, which
includes the fractional KdV equation of order «, and the fractal Burgers equation of order B, where
a,f €[0,1), and the Whitham equation. For all «, 5 € [0, 1), we construct solutions whose gradient blows
up at a point, and whose amplitude stays bounded, which therefore display a “shock-like” singularity. We
moreover provide an asymptotic description of the blow-up. To our knowledge, this constitutes the first
proof of gradient blow-up for the fKdV equation in the range o € [2/3,1), as well as the first description
of explicit blow-up dynamics for the fractal Burgers equation in the range § € [2/3,1).

Our construction is based on modulation theory, where the well-known smooth self-similar solutions
to the inviscid Burgers equation are used as profiles. A somewhat amusing point is that the profiles that
are less stable under initial data perturbations (in that the number of unstable directions is larger) are
more stable under perturbations of the equation (in that higher order dispersive and/or dissipative terms
are allowed) due to their slower rates of concentration. Another innovation of this article, which may be
of independent interest, is the development of a streamlined weighted L2-based approach (in lieu of the
characteristic method) for establishing the sharp spatial behavior of the solution in self-similar variables,
which leads to the sharp Holder regularity of the solution up to the blow-up time.

1 Introduction

In this article, we construct and describe the dynamics of solutions with smooth decaying initial data that
exhibit gradient blow-up (while the solution itself remains bounded) for a wide class of perturbations of the
inviscid Burgers equation

O + udyu = 0. (Burgers)

Examples covered by our result include the fractional KdV equations

Oru + udgu + \Dx]aflﬁxu =0 forany 0 < a < 1, (fKdV)
Whitham’s equation,
O+ udyu +T'(Dy)0pu =0 where T'(§) = tazhé, (Whitham)
as well as the fractal Burgers equations
Oy + uOzu + |D$|6u =0 forany 0 < 8 < 1, (fBurgers)

where |D,|* = (—A)Z%. These equations arise naturally as model problems in the theory of water waves [30],
which makes the problem of singularity formation a natural one.
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Gradient blow-up (also referred to as shock formation or wave breaking in the contexts of hyperbolic
conservation laws or water waves, respectively [38]) for in the range 0 < a < 1 was conjectured
from numerical experiments in [22] and later in [I8]. While the existence of gradient-blow-up solutions was
known for (fKdV]) in the range 0 < o < 2 and for (see for instance [I8], 17, B2, 39]), our result
seems to be the first construction of such blow-up solutions in the range % < a < 1. We furthermore give a
quantitative description of the blow-up dynamics in a stable blow-up regime in the case 0 < a < %, which
seems to have not appeared in the literature (note that in the case o = 0, the Burgers—Hilbert equation, a
precise description of the same blow-up dynamics has already appeared in the recent work of Yang [39], which
is discussed further below). In all cases, we also observe that there exist smooth compactly supported initial
data of either sign (everywhere nonnegative or nonpositive) that give rise to the same blow-up behavior,
which disproves (yet suggests a refinement of) a conjecture made by Klein—Saut [22], Conjecture 3] for
(Whithaml); see Remark [1.3| below.

Concerning , gradient blow-up was shown in the papers [20] [I, [14] for all ranges 0 < 8 < 1.
Moreover, in a recent work of Chickering—Moreno-Vasquez—Pandya [7], which we learned of while preparing
our article, a quantitative description of a stable blow-up dynamics analogous to [39] in the Burgers—Hilbert
case was given in the case 0 < f < % Our work provides an alternative, independent description of the same
stable blow-up regime, as well as the precise description of some examples of gradient-blow-up solutions in
the case % < 8 < 1, which seems new.

Our proof is based on a systematic study of the stability of self-similar blow-up solutions for
under perturbations of the equation. As is well-known, (Burgers) admits a two-parameter family of scaling
symmetries (corresponding to separate rescaling of time and space), which results in a one-parameter family
of self-similar change of Variablesﬂ

(t,z,u) = (s,y,U) = <_ log(—t), (_i)b, ((:tt))bu) )

parametrized by b > 0. Among these b’s, there exist countably many choices that lead to smooth self-similar
solutions (i.e., s-independent solution in the self-similar variables), namely b = %kal for k=1,2,... [15]. In
what follows, we will refer the self-similar solutions in the case k = 1 as ground states, and those in the case
k > 2 as excited states.

A key predecessor of this article is the recent work of Yang [39] that, based on the modulation-theoretic
approach of Buckmaster—Shkoller—Vicol [4], constructed an open set of initial data giving rising to gradient-
blow-up solutions to the Burgers—Hilbert equation (i.e., (1) with @ = 0) with ground state self-similar

solutions to (Burgers|) as blow-up profiles (see also the very recent work [7] for (fBurgers) with 0 < 8 <

2). In this article, we extend [39] (and [7]) to more general perturbations of the Burgers equation, while
simultaneously allowing for the use of excited states as blow-up proﬁleﬂ

In fact, these two extensions go hand in hand. A somewhat amusing point, made precise in this article,
is that higher excited self-similar profiles, which are less stable under perturbations of the initial data
(i.e., they are stable under higher co-dimensional set of initial data perturbations), are more stable under
perturbations of the equation, in that higher order dispersive and/or dissipative terms are alloweaﬁ. An
explanation behind this phenomenon is as follows. The key factor that determines the stability of a self-
similar profile under perturbations of the equation turns out to be its rate of concentration (i.e., the exponent
b= 2’;—21), and the slower rates of the excited states lead to larger classes of admissible perturbations of
the equation. To see this point heuristically, one may simply compare the “strength” of each term in the

equation on the characteristic time and length scales of the k-th Burgers self-similar profile, which are ~ (—t)

Here, (s,y,U) are the self-similar variables for solutions defined for negatives times that blow up at (¢,z) = (0,0).

2 At this point, we note the interesting work of Collot-Ghoul-Masmoudi [I0], which considered a two-dimensional partially
dissipative perturbation of and constructed blow-up solutions with both ground and excited states as blow-up profiles.
We refer to Section for further discussion.

31t is important to distinguish the perturbations of the equations discussed here, which are terms of the form Lu for some
linear operator L, with an external forcing term f, which is independent of u. The effect of an external forcing term with
compact support in spacetime should resemble that of a compactly supported initial data perturbation.



2k+1

and ~ (—t) o , respectively. For instance, for (fKdV|), compare

oun~ (r—t) " u  vs.  |Dp|* 1opu ~ (—t)*m;:lau.

(In self-similar variables for (Burgers|), the “strength” of u0,u is the same as that of d;u.) The “strength”
2k+1 2k .

of the perturbation |D,|* !'d,u is weaker than that of d;u when — =5 a < —1, or equivalently, a < 5775;
note that this range improves as k increases. Our main theorem demonstrates that under this condition,
the Burgers self-similar profile with b = % is stable under passage to , leading to gradient-blow-up
solutions to that asymptote to the same Burgers self-similar profile near the singularity. On the other
hand, it will become apparent that the instability of the self-similar profile under initial data perturbations
does not affect its stability under perturbations of the equation.

We remark that the preceding points are in parallel with the recent remarkable works of Merle-Raphaél—-
Rodnianski—Szeftel on singularity formation for the compressible Euler equations, the compressible Navier—
Stokes equations and defocusing nonlinear Schrédinger equations (NLS). In [27], smooth self-similar profiles
for the polytropic compressible Euler equations with characteristic length scales (—t)% are constructed for
discrete values of r. Then these profiles are used to demonstrate singularity formation for second-order
dissipative (i.e., compressible Navier—Stokes [28]) and dispersive (i.e., energy-supercritical defocusing NLS
after Madelung transform [26]) perturbations of the Euler equations, where the admissible values of r with
respect to each perturbation may be determined with similar heuristics as above.

Another innovation in this article is the introduction of a robust yet sharp weighted L2-based method
to establish the optimal spatial growth of the solution in the appropriate self-similar variables, in lieu of the
method of characteristics employed in [4] and subsequent works. Such information is necessary to establish
the sharp Holder regularity, and in general even the boundedness (due to the lack of the maximum principle),
of the solution up to the blow-up time. We refer the reader to Section below for a short description of
this method.

1.1 First statement of the main result and discussion
We now precisely state the class of equations studied in this article. For u : Ry x R, — R, consider
Owu + ulpu +I'dgu + Tu = 0. (1)
Here, " and Y are Fourier multipliers with symbols I'(§) and Y(&) satisfying the following properties:
1. T(€),T(&) € C=(R\ {0}) are real-valued and ever|'}

2. T'(¢)¢& and Y (&) are symbols of order a and 8 with 0 < «, f < 1, in the sense that for every multi-index
I, there exists constants Cr |7, Cy |7 > 0, such that for every [£] > 1,

OLT©)&)] < Crolel*, 9T (6)] < Crowlgl .
On the other hand, we assume that I'(£)¢ and Y (§) are bounded on {{ € R: |{| < 1}.
3. T(&) >0 (i.e., Y is elliptic).

Clearly, (fKdV)), (Whitham]) are examples of (1)) with T = 0, and (fBurgers|) is an example of (1) with I" = 0.
The order of I' for (Whitham)) is o = %
By the standard energy method, it can be readily seen that the initial value problem for is locally

well-posed in H® for any s > % Our main theorem concerns the formation of singularity for starting from
smooth and well-localized initial data. In simple terms, the statement of our main theorem is as follows.

4This property is equivalent to the requirement that the Fourier multiplier I'd, +Y maps real-valued functions to real-valued
functions.



Theorem 1.1. Let k be a positive integer such that o, 8 < % Then there exist smooth initial data ug

for such that the resulting solution of blows up in finite time in C° for every o > TIH’ while its
1

C2+1 norm stays bounded until the blow-up time. In the case k =1, and for a < % and 8 < %, the blow-up

behavior is stable in H®. In the case k > 1, these initial data form a “codimension 2k — 2 subset” of H?++3.

For more precise statements regarding the description of the initial data and blow-up dynamics, we refer
to Theorem Lemma [3.4] and the ensuing discussion. Note moreover that it would be possible, by a more
refined analysis, to show that the “codimension 2k — 2 subset” of H?**+3 in the above statement constitutes
in reality a suitably regular submanifold of initial data. However, this is not carried out in the present work.

Remark 1.2 (Stable blow-up regime). Note that Theorem applies to (tKdV) for 0 < a < %, (Whitham])
and (fBurgers) for 0 < 8 < 2 with k = 1, and as a result we obtain a blow-up behavior that is stable

under initial data perturbations for these equations. On the other hand, in the range % < a <1, the term
| D2 |10, cannot be merely treated as a small perturbation for k = 1, and we must perturb off of an excited
Burgers self-similar profile. Description of a stable (under initial data perturbations) blow-up for for
% < a <1 remains an open problem.

Remark 1.3 (The sign of the initial data). In [23, Conjecture 3], based on numerical investigation, the
following interesting conjecture concerning the blow-up dynamics for (Whitham|) and the sign of the initial
data was made:

e solutions to the Whitham equation [...] for negative initial data ug of sufficiently large mass
will develop a cusp at t* > t. of the form |z — x*|'/3 [...]

e solutions to the Whitham equation [...] for positive initial data uy of sufficiently large mass
will develop a cusp at t* < t. of the form |x — z*|/? [...]

Our construction provides an open set of initial data of each sign whose corresponding solutions all have
the same blow-up behavior (i.e., C3 remains bounded while C° for any o > % blows up), thereby providing
a counterezample to this conjecture as stated; see Remark [3.3 below. Nevertheless, it is possible that the
blow-up observed in [22] for positive initial data is another stable blow-up regime, whose blow-up profile must
have a positive sign. Verification of this revised picture remains an interesting open problem.

1.2 Prior works

The models we consider in the present paper have been considered several times in the literature. We try
to give a (non-exhaustive) list of previous results here, dividing them into four main areas.

e Water waves. Some of the above equations, such as (FKdV])) and (Whitham]) arise as approximated
models in the theory of water waves. In his 1967 paper Whitham [37] introduced the equation bearing
his name, arising as a nonlinear approximation for surface water waves, where the dispersive term
satisfies the appropriate dispersion relation. For further discussion of the connections of with
the theory of water waves, we refer the reader to the work of Klein-Linares-Pilod-Saut [21].

Many authors since the work of Whitham focused on the issue of singularity formation for such models.
Wave breaking for was first shown only formally by Seliger [34], followed by Naumkin—
Shishmarev [30]. The Russian authors were able to extend Seliger’s argument to in the case
0<ax< % However, it appears that their arguments were not completely rigorous. In follow-up work,
A. Constantin—Escher [I1] made these arguments fully rigorous in the case of a model problem very
similar to , requiring however boundedness of the kernel, which does not cover the case of

(Whitham)) itself.

In Castro—Cordoba—Gancedo [6], the authors proved blow-up for (fKdV)) in the full range 0 < a < 1:
their result show that the solution blows up in C?, however it does not imply gradient blow-up in
this case.



In Klein—-Saut [22], the authors performed numerical experiments on (fKdV)) in the full range 0 < o < 1,
which lead them to conjecture that wave breaking happens in the full range.

In Hur-Tao [I§], the authors were then able to show wave breaking for (fKdV)) in the case 0 < a < %
and for (Whithaml). In later work, Hur was able to extend the blow-up construction to the range
0<a< %, see Hur [17].

More recently, Yang [39] extended the shock formation construction to the case o = 0, by means of
a modulation-theoretic analysis in self-similar variables similar to [4] (discussed below), which gives a
precise description of singularity formation. Finally, Saut—Wang [32] have also proved gradient blow-up

for (FKdV)) in the case 0 < o < £ as well as for (Whitham).

Concerning model problems, let us mention the work of Klein—Saut—-Wang [23], where the authors
consider the modified fKdV equation (which features a cubic nonlinearity) in the range o € (0,2). In
the weakly dispersive range (« € (0, 1)), they show the existence of wave breaking solutions. Note also
that, by the work of Saut—Wang [33], modified fKdV admits global solutions for small data when « is
in the full range (0,2), a # 1.

Let us finally briefly mention the case of o > 1, where the situation seems to be delicate. Conjecturally,
when «a € (1,3/2), the picture of “shock formation” is expected not to hold (see Klein—-Saut [22]) for
the fKdV equation. In a recent work, Rimah was able to establish a precise version of this statement for
a paralinearized version of the fKdV equation, thereby excluding wave breaking in the case a € (1,2)
for a paralinearized model problem [31]. For modified fKdV with « € (1,2), Klein—Saut-Wang (again
in [23]), conjecture that, in the focusing case for o € (1,2), the L> norm of the solution blows up (and
no wave breaking occurs).

Finally, it is expected that, for a > 3/2, no blow-up occurs for fKdV. In this direction, we cite the work
of Linares—Pilod—Saut [24], in which the authors show local well-posendess for fKdV with initial data
in H*(R), where s > % - % and 0 < 8 < a— 1. More recently, Molinet—Pilod—Vento [29] extended the
previous result to s > % - %. Together with conservation of energy this implies global well-posedness
when o > 1+6/7. Showing global well-posedness all the way to o > 3/2 remains an outstanding open

problem.

Weak dissipation. Weakly dissipative models have also attracted significant attention from the
fluid dynamics community. For in the case 0 < < 1, Kiselev—Nazarov—Shterenberg [20]
and independently Alibaud-Droniou—Vovelle [1] as well as Dong-Du-Li [14] were able to show gradient
blow-up. Note that the approaches in [20, [} [I4] rely heavily on monotonicity properties of the fractional
Laplacian (a form of the maximum principle). Unfortunately, in the dispersive case (in particular, in
fKdAV with « € (2/3,1)), the monotonicity properties are lost and this approach breaks down. Very
recently, Chickering—Moreno-Vasquez—Pandya [7] used an approach similar to [4, [39] to give a precise
description of stable blow-up dynamics in the case 0 < 8 < %

We note that the blow-up solutions to constructed in this article sharply complement
known regularity criteria for . More precisely, regularity results on linear advection-fractional
dissipation equation [12,[35],36] (see also [19] for time-integrated criteria) imply that if u is a solution to
such that u € L ([0, 74); C'=#), then 0,u is Holder continuous up to time 7, and therefore
the solution extends past [0,74). On the other hand, for each £ > 1, Theorem demonstrates the

1
existence of a blow-up solution u to (fBurgers|) with v € L{°([0, 74 ); C2%+T) for any 8 < % (or more
instructively, ﬁ <1-20).

Self-similar constructions in fluids.

Our blow-up construction is based on the method of modulation theory in self-similar variables using
smooth self-similar solutions to the Burgers equation as blow-up profiles.

This method was first applied in the context of the Burgers equation in a seminal work by Collot—
Ghoul-Masmoudi [10], in which the authors construct gradient blow-up for a two-dimensional Burgers



equation with transverse viscosity, which is a simplified model for Prandtl’s boundary layer equation.
In particular, similarly to the present article, [I0] employs weighted L2-bounds and makes use of all
excited states as blow-up profiles via a topological argument.

The above method was applied more recently to compressible fluid dynamics with great success in a
series of works [4, [3, 5] by Buckmaster—Shkoller—Vicol. In [4} 3], the authors use a self-similar method
to show shock formation for polytropic compressible Euler in two and three space dimensions, giving a
precise asymptotic description of shock formation at the point of first singularity, even in the presence
of vorticity. They moreover extended their treatment to the non-isentropic case in [5], showing for the
first time generation of vorticity at the shock.

We also mention the work of Buckmaster—Iyer [2], in which the authors show formation of unstable
shocks for two-dimensional polytropic compressible Euler by using (first) excited states as blow-up
profiles, albeit via a different argument (Newton iteration) than what is used in this article (topological
argument) to control the unstable directions.

Concerning self-similar solutions in fluids, we finally mention the groundbreaking recent work of Elgindi
on the blow-up of the 3D incompressible Euler equations in the C1* regularity class [16].

e Geometric blow-up constructions. Finally, we also mention the geometric blow-up constructions
pioneered by Christodoulou in [§], where shock formation for the compressible irrotational Euler equa~
tions is shown. The work of Christodoulou relies on powerful energy estimates, which allow not only
to construct the point of first singularity, but also the maximal development of the solution. These
ideas enabled Christodolou to later address the restricted shock development problem [9]. Moreover,
Luk—Speck used geometric ideas to show stability of planar shocks under perturbations with nonzero
vorticity [25]. In the context of the present work, it would be very interesting to extend this type of
reasoning to include weakly dispersive and dissipative effects.

1.3 Strategy of the proof

In this section, we outline the strategy of the proof. For the purposes of this section, let us restrict to
the case of (fKdV|). Our argument is based on the underlying analysis of stable (and unstable) blow-up
for the Burgers equation. It is well known (see, for instance, [15]) that, for any given k € N, k > 1, the

Burgers equation admits self-similar solutions exhibiting blow-up in CO’TIHJF, which are each associated to
a self-similar blow-up profile and self-similar coordinates.

We start from equation , which is written in the variables (¢,z,u), and we rewrite it in the
appropriate self-similar variables arising from Burgers, which we call (s,y,U). For the precise definition of
these variables, see Section [2.2] We expect the unstable behavior to be encoded by the derivatives of U
up to and including order 2k at y = 0. In view of this observation, we are going to track of the values of
U (s,0) throughout the evolution, j =0, ..., 2k.

Three of the unstable modes can be controlled naturally by modulation parameters adapted to the sym-
metries of the equation: time translation, space translation and Galilean transformation. The modulation
conditions will therefore be imposed on U(s,0), d,U(s,0) and agkU(s, 0), and the modulation parameters
are going to be called (7,£, k). In the case k = 1, there are only three unstable directions, which allows us
to show stable blow-up.

In the case k£ > 1, the remaining 2k — 2 unstable directions will have to be controlled by selecting the
initial data appropriately. For the precise definition of the modulation parameters and to see how they arise
from the symmetries of the equation, see Section

With this setup, in the self-similar variables (defined precisely below in ), then becomes:

0sU + byo,U + (—ebsfs +(1+ eSTs)e(b_l)Sﬁ) U —-(b-1)U+ e sk + (14 e’1s)Uo,U
= (14 e*r)e 172y, |D,|*"1U.

2k+1

Here, we have defined b = =5,=.



For ease of exposition, we are now going to set all the modulation parameters to zero. We obtain the
following equation:
AU — (b— 1)U + (U 4 by)d,U = e~*17t99, | D, |*1U. (2)

The key observation is that, as long as 1 — ba > 0, we are able to treat the term on the RHS in a
perturbative way due to the exponentially decaying prefactor. Since b — 1 as k — oo, we are able to treat
values of «a arbitrarily close to 1 by choosing k appropriately.

We will set up a bootstrap argument and our goal will be to show that equation admits a global
(in self-similar time s) solution. The starting point is that d,U can be treated almost independently by
a Lagrangian analysis, which yields a uniform bound for 9,U in L*. Through the intermediate step of
showing a uniform L? bound for 8§U, we finally propagate appropriate weighted (in y) bounds for top-order
derivatives. The weights are adapted to the Lagrangian flow of the equation, and their purpose is to show
that the solution displays the correct asymptotic behavior at the time of blow-up. This is carried out in a
weighted L? framework, which has a twofold advantage. First, we show blow-up without the need to consider
the difference with the exact self-similar blow-up profile, which is an amusing aspect by itself. Second, this
part of the argument is entirely L? based, which avoids derivative loss at the top order.

The final part of the argument is then devoted to addressing the “unstable” part, i.e. the ODE analysis
for the modulation parameters and for the unstable derivatives of U at y = 0. We introduce a “trapping
condition” for the unstable coefficients (i.e., a decay condition on derivatives of U at y = 0) and show, by
way of a shooting argument, that initial data can be selected such that the trapping condition holds for all
times.

We are now going to describe the strategy in more detail, again focusing on the case of fKdV.

1. Control of ||0,U|| . We differentiate equation by 0, and we obtain:
U + U + (U + (U +by)d,U" = e=*(17t99, | D, [* 11" (3)

Let us for a moment neglect the nonlocal RHS. We rewrite U’ in Lagrangian coordinates (we let s
be U’ written in Lagrangian coordinates) and we obtain the following equation for U’

0,0 = —U' (U +1).

We immediately see that the inequality —1 < U "< 1is preserved by the above Lagrangian ODE, and
moreover this bound carries over to the original equation (3. This control is going to be the starting
point of our analysis (see Lemma [5.2)).

Building upon this inequality, we then show that, depending on the region considered, U’'(s,y) either
satisfies a coarse polynomial bound in terms of |y|, or it decays exponentially in self-similar time (see
Lemma part 4). We will use this, later in the course of the argument, to show dissipativity of the
equation in a region where y is large.

2. Control of Hagk“UHLz(R) and ||8§k+3UHL2(R). These terms are “top order” in terms of derivatives.
In this part, we shall first accomplish the intermediate task of controlling ||8§U | 22(r)- We first show,
by a Lagrangian argument, that U” satisfies a uniform L bound in the “close” region |y| < i. We
emphasize that, in this case, it is extremely important that the bound, as well as its region of validity,
be independent of the bootstrap parameters. The reason is that we then perform a weighed L? estimate
in the region R:={y e R: % < ly| < y2}, and we wish to control the expression

where A is a positive real parameter, and ys is a positive number which we regard as large. We thus
require the parameter A to depend on the lower bound for |y| when y € R, and it is therefore crucial



that this lower bound be independent of the bootstrap parameters. Finally, we need to show a bound
in the “far away” region, where |y| > y2. We use the smallness of U’ to show that the equation for U”
has a dissipative character for |y| > 3. Combining the three regions, we obtain a uniform L? bound
for U”. This is the content of Lemma [5.3

Turning now to the proof of the bounds for H@;’”QUHB(R) and ||8§k+3UHL2(R), we recall the familiar
observation that, taking 2k + 2 derivatives of equation , the linear term on the LHS becomes
dissipative everywhere on R. Combining this fact with interpolation and the control of 6§U in L2,
which was obtained as an intermediate step, allows us to deduce a uniform bound for H8§k+2U | 22(R)-
Using this control, it is then straightforward to derive a bound for [|92¥T3U|| 12 (g (we require control up
to this order due to a technical point: we will need to bound 6§k+2U at y = 0 by Sobolev embedding,
in order to control the evolution of 8§k+1U at y = 0 in the “unstable” part of the argument). The
high order bounds are obtained in Lemma

. Control of weighted L? norms. Recall that the exact self-similar profile U for the Burgers equation
satisfies, for large |y],

1 . P 1 .
’y|2k 1™ 5 |833L | S ‘y|2k ! ]7 (4)
where 7 >0, j € N.

In this part of the argument, we wish to propagate an appropriate L? version of the above polynomial
decay bound, using a weighted L? space, for top-order number of derivatives (i.e., when j = 2k + 3).
This information is needed to show that the blow-up solution is in the correct Holder regularity class
up to the blow-up time.

The weights are constructed such that, in a region of bounded z (i. e. a region which corresponds to the
image under the Lagrangian flow of a bounded y-interval centered at 0), one obtains the corresponding
decay in y. Outside this region, the weight is “tapered”: it is independent of y, and grows exponentially
in self-similar time at the correct rate.

More precisely, given n € N and L > 0, we define the semi-norm

1
2 2
Vi|i» = sup y e gR gy 2dy LR orv)idy | .
H Y y
<L jem2i<r \J2i-1<|y|<2i Y ly|>L

Note that it consists of two terms: each expression in the first summand scales according to (4)), and
the second summand is obtained by choosing the weight to be the matching constant outside the region
ly| < % In practice, since the Lagrangian flow away from y = 0 is well approximated by y = Ce®®, we
are going to set L = eb®.

Our goal will then be to show that ||U]| 4,2+3 1s uniformly bounded in s. As a first step, we first show a

<ebs
uniform bound on ||U]] i, To obtain it, we multiply the equation for U’ by a weight approximately
<e S

adapted to the Lagrangian flow in a region of large y. The growth rate of the weight is also chosen

appropriately.

Using this information, the bound for ||U|| 42++3 is obtained in a similar fashion. In this case, however,
bs

one needs to be careful about a potential loss of derivative, as the nonlocal term does not commute
with the weight. To deal with this issue, we show a commutator estimate (see Lemma [4.3). The
weighted bounds are proved in Lemma 5.5

Remark 1.4. Note that, if we set L = 0o, the above semi-norm is scale invariant.

. Topological argument. Finally, in Section [6 we employ a topological procedure relying on the insta-
bility of the ODE system satisfied by the Taylor coefficients of U at y = 0 to close the argument.



This procedure will moreover select appropriately the initial data in the unstable case. This type of
construction is well known in the dispersive community: see, for instance, the paper by Cote, Martel,
and Merle [13].

Recall the trapping condition, i.e. a decay condition for the “unstable” Taylor coefficients of U at
y = 0. We want to show that, upon appropriately choosing initial data, it can be arranged that the
solution remains trapped globally in time.

First, in Lemma [6.1] we show that, under the bootstrap assumptions and assuming the trapping
condition, the evolution of the modulation parameters is controlled.

Finally, in Lemma we show that the ODE system satisfied by the first 2k 4+ 1 Taylor coefficients
of U at y = 0 displays an unstable character, and we use this fact, combined with a Brouwer-type
argument, to show that we can select initial data such that the corresponding solution is trapped for
all time. This concludes the argument.

Remark 1.5. Note that parts 1. and 2. of the above outline rely on showing L™ estimates, which are proved
here by means of Lagrangian analysis. This Lagrangian approach seems to be the most efficient way (in
terms of degree of technicality) to analyze directly the unknown U (which is what we do in this paper), rather
than the difference between U and the exact self-similar profile. However, we believe that, if instead one were
to analyze the difference between U and the corresponding self-similar profile, one would be able to carry out
the argument without the need for Lagrangian analysis. This approach would make the argument completely
L? based.

1.4 Organization of the paper

In Section [2| we introduce the relevant equations, the self-similar coordinates, the modulation parameters,
and the unstable ODE system for Taylor coefficients at y = 0. In Section [3] we give a precise statement of
the main theorem (Theorem , and reduce its proof to establishing two key lemmas, Lemma (main
bootstrap lemma) and Lemma (shooting lemma for unstable coefficients when k£ > 1). After collecting
some useful lemmas for the Fourier multipliers arising in our problem in Section [ the following two sections
are devoted to the proof of the two key lemmas. In Section[5], close the bootstrap assumptions on the solution
U in appropriate self-similar variables. In Section [6] we estimate the ODEs for the modulation parameters
and stable coeflicients, thereby completing the proof of Lemma Moreover, in case k > 1, we analyze the
ODEs for the unstable coefficients and establish Lemma 3.9
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2 Preliminaries

2.1 Notation and conventions

As is usual, we use C' > 0 to denote a positive constant that may change from line to line. Dependencies of
C' are expressed by subscripts. Moreover, we use the standard notation A < B for |[A| < CB, and A ~ B
for A < B and B < A, and dependencies of the implicit constant C' are expressed by subscripts.



Given a symbol T'(¢), we denote by T'(D,) its quantization in z, i.e., T'(D,)V = F, [T (€)F[V](€)],
where F, denotes the Fourier transform in the variable . For each k € Z, we define the Littlewood—Paley
projection P<j, to be the Fourier multiplier operator with symbol P<(¢) defined by P<y(£) = P<o(27%¢),
where P<( is a nonnegative smooth function supported in [—2, 2] and equals 1 on [—1, 1]. We also introduce
the symbols Py(§) = P<i(§) — P<jx—1(€) and P5(§) = 1 — P<x(§), as well as the corresponding Fourier
multipliers (which are also called Littlewood—Paley projections).

2.2 Derivation of the equations in self-similar variables

Given parameters 7,&,k € R and A > 0 (called modulation parameters), consider the change of variables
(t’ x? u) H (87 y’ U)? )\
t=71—e", =y +¢, u(t,x)zitU—l—h;. (5)
T —
Note that varying the modulation parameters 7, £, x and A correspond to applying time translation, space
translation, Galilean boost (u — u(x—~kt)—k) and spatial scaling to the solution, which are exact symmetries
for the (invsicid) Burgers equation. Hence, (s,y,U) are nothing but the rescaled variables for Burgers
equation centered at (t,x,u) = (7,§, k) at spatial scale A.
We let the modulation parameters depend dynamically on t, i.e., 7 = 7(t), £ = &(t), kK = k(t) and
A = A(t), and consider the same change of variables ([5). Note that

S S 1
Os=e*(1+es1) 7Y, Q= —e*(1+e°r) " <>;\y + i) , Ops =0, Oyy= IR

so that

)\8 S AS -
Opu = Xe**(1 + efr,) ™! <85U — Ty(‘)yU — %@,U + ( + 1) U+ ens) ,

A A
udyu = \e** <<U + e; /<a> 8yU> ;

['(Dy)0u = A T (A" D )N 19, (U + A le %k),
Y(Dy)u=Ae*T(A'Dy) (U + A te k).

Thus, becomes

osU — ﬁyByU—k (_ﬁs +(1+ 65’7'8)6_ > o,U + </\S + 1> U+ iﬁ;s

A ) DU ) )
+(14e°75) (UU + e TN D)X 10, (U+ A "1e™ k) + e *T(A'Dy) (U+A"'e ")) = 0.

In what follows, we shall assume the following self-similarity ansatz for A: Given k € N, set b := %;gl and

A= (r—t)l =et. (6)

Then % = —b, and we arrive at

OsU + byd,U + (—engs +(1+ eSTS)eU’*USm) AU — (b—1)U + b Vsg,

+ (14 e°7y) (UﬁyU + e *T(e"D,)e*0, (U + €(b_1)5/€> +e7 (D) (U + e(b_1)8m>> =0. "

If I' and T were zero, and 7, £, kK were constant, then is precisely the self-similar Burgers equation with
scales @ As is well-known, the values b = 2’;—;1 with kK = 1,2, ... are distinguished by the property that they
admit smooth steady profiles of the self-similar Burgers equation [I5 Section 11.2]; see also Subsection
below.
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Our intention is to view the linear terms e~*I'(e**D,)e®*9,U and e=*Y(e’*D,)U as perturbations. To
motivate the way we will decompose these terms, consider the model cases T'(¢) = cr|€|*~ ! and T (&) = ey [¢]°
(cr, ey € R). Then I'(e Dy)e?*0, = cre®®*|D,|*10, and Y(e**D,) = cye®®*|D,|?, so that

e T(e?* Dy)e?*0,U + e~ *Y(e?*D,)U = cFe_(l_ba)s|Dy|°‘_18yU + cTe_(l_b5)5|Dy|ﬂU.

In the regime we perform our construction, |D,|*~'9,U and |D,|’U will morally remain bounded in tim
Therefore, we may regard these terms as perturbative when ba < 1 and b5 < 1, in which case the factors
e~ (1=ba)s anq e~ (1-0A)s decay exponentially.

In view of the above discussion, in what follows, we are going to denote

@ =min{l — ba,1 — bB, 1}.

Note that, under our assumptions, u > 0. To simplify our notation, we will now rewrite the operator on the
RHS as follows:

e T(¥*D,)e?*0,U + e 5T (" D) (U + " Vsk) = —e7H5H (U + e(b_l)sm) —e°L (U + e(b—1)8K> ’
where
HV) = _P>0(€bsDy) (e— max{a,ﬂ,()}bsr(ebsDy)ebsayV T max{a,B,O}bs'r(ebsDy)V> ’ ®)
L(V) = —P<(e**Dy) (F(ebsDy)ebs(?yV + T(ebsDy)V) . (9)

Note that # (U + e(b_l)sli) = H(U) thanks to x>1(e**D,). Putting everything together, we finally have

05U + byo,U + (—ebS§S +(1+ eSTS)e(b_l)S/{) oU—(b—-1)U + e sk + (14 e’1s)U0,U

= (1+7) (¢ HW) + 7L (U400 ).

2.3 Definition of the profile

We now solve the steady profile equation for the Burgers problem (i.e., I', T are zero and 7, £ and k are
fixed): ) o
(1-b)U+ (by+U)o,U = 0.

We define U to be a solution to the above equation (an exact self-similar profile) such that U(0) = o,
o,U(0) = —1, 8§k+1U(O) = (2k)! and &U(0) = 0 for j = 2,...,2k. We can ensure the last condition by
simply noticing that the self-similar profile equation is equivalent to:

° o 2k+1
y=-U-mU"",

where h; > 0 is a free parameter. From this implicit definition, we see that the first three non-vanishing
Taylor coefficients at y = 0 are 8,U/(0), 85’““[3’(0) and 8;””1(0](0). We fix hy so that U satisfies 05’”1[0](0) =
(2k)!, and a calculation shows that h; = 1/(2k + 1); in what follows, we will suppress the dependence of
constants on h;.

By construction, U has the following Taylor expansion about y = 0:

g _ 2k+1 4k+1 1
Uly)=—y+ gy +0") (10)
and the following expansion about y = +o0:
o _ﬁ 1 _ 2k
Uy) = %h, " lyl7er (14 0(y| 7). (11)

SMore precisely, we will have boundedness of the gradient of these terms, and controlled growth for the terms themselves.

11



We now define our choice of the profile. Consider a function ¥ : R — R which is positive, equal to 1 on the
interval [—1, 1], equal to 0 outside of the interval [—8, 8], and such that Y’ > —%. We then define the cut-off

function x to be transported by the linearized flow generated by U:
Osx+ (by +U)dyx =0,  x(0,9) = X(y)-
Some basic properties of the cut-off function x are as follows:
Lemma 2.1 (Support property of x(s,y)). We have supp x C [~Ce®, Ces].
Proof of Lemma[2.1]. Define the Lagrangian trajectories Y4 (s) in the following way:
B:Yi(s) = bYi(s) + U(Yi(s)),  Yi(0)==£10, (12)

so that x(y) = 0 for all y : |y| > Y(0). The conclusion of the lemma will follow if we can show that |Yi| <
Ceb. By the form of U, we have that |U(Yi(s))| <1+ |Y4(s)|, and the lemma follows by integrating
in s. O

By Lemma and , we have

sup  [U(y)| S emFei® = b3, (13)
yEsupp x(s,)

We finally define the profile

U(s,y) = x(s,9)U(y).

This is no longer a time-independent profile. Moreover, the modified profile satisfies the equation

dsU — (b — 1)U + (by + U)9,U = —U(1 — x)8,U.

2.4 Equation for iterated derivatives of U

We let UU) = 8@(/j)U, with j > 1. We derive the equation satisfied by UU). For j = 1,

o U + U + ((1 + ) U + by — ¢ + (1 + SSTS)G(b_l)SI{) OyU" + (1 + e75) (U")?
(14)
= (1+e°r,) (e’“sH(U’) +e % 9,L(U + e<b*1>sm)) :

and for j > 2,

AU + ((1 + 51U + by — e*¢, 4+ (1 + eSTs)e(b_l)ch> yU+
+(1+G-Db+ G+ 1)1+ e r)U) UV + (14 e ) MY (15)
= (1+e'7) <e_“57-[(U(j)) + S_SBZE(U + e(b_l)sﬁ)> :

Here, M) = ) (UU") — UUGHY — (j + 1)U'TY) for j > 2.

2.5 Perturbation equation and commutation

We now define the perturbation W = U — U, and we obtain the following equation for W:

OW + (by +U+W)O,W — (b—1-09,U) W

_ 1 _
+ (—ebS§5 +(1+ CSTS)G(bil)SH) Oy(U+ W)+ e~V 4 563758y(U + W)? (16)

=B, + (1+e°7) (e*“S’H(U) +e 5L (U + e“’*l)%)) .

Here, E, = U(1— x)0,U.

12



Remark 2.2. Note that the error term E, arising from the cutoff is identically zero near y = 0.

Suppose now that 7 > 1. We now commute the above equation with 85, and obtain:

WD + (by + U + W) WUt 4 (1 + (G —1)b+ (G + 1)0’) WO 4 N(j) + L(j)

o : 1 o
+ (—ebsgs +(1+ SSTS)G(b_1)5K> (U(JH) + W(JH)) + 565753§J+1)(U + VV)2

= >(<j) + (1 +e°rs) (e‘“S”H(U(j)) + e_sﬁgﬁ(U + e(b_l)sl-{)> .

Here,

AW (WwW'y —wwl+h,

N(j) = 0,
(OwW)U) —gwU+h — (j + 1)T'W0),

L(7)

2.6 Derivation of the modulation equations and unstable ODE system at y =0

We now derive the equations satisfied by the derivatives of W at the origin. For each j > 0, we let
w; = W(5,0),  FO(5,0) = e H (UD) 4 e70)L (U + @D,
For 7 > 0, we have

Oswj + ((j — 1)(b—1) = D) w; + wowj1 + N(j)‘y:O + L(j)’y:[)

i 1 o

+ (—ebS§5 +(1+ esTs)e(b_l)sﬁ;> (U(]H)(O) + wjq1) + (50j€(b_1)81€5 + 5687'5 3353+1)(U + W)z‘ o (17)
y:

= (14 1) FY)(s,0),

where dg; is the Kronecker delta symbol, which equals 1 when j = 0 and vanishes otherwise. We also used
the following properties of the profile: U(s,0) = 95U = 0 for 2 < j < 2k, and 9,U(s,0) = 1.
We first consider the cases j = 0,1 or 2k:
Oswo — bwo + wowq
+ <—ebsfs +(1+ eSTs)e(b_l)S/{> (=14 wy) + e Dok, + e rywo(—1 4 wy) (18)
=(1+ esTs)F(O)(s, 0),
Osw1 — wy + wows + w%
+ (—eb‘s{s +(1+ esTs)e(b_1)5H> wy + €7 (wgwo +(-1+ w1)2) (19)
= (1 +e*15) FW(s,0),
Oswar + ((2k — 1)(b—1) — 1) wor + wowakr1 + N(Zk‘”yzo + (2k)!wy
n (#Sgs (1 esTs)e@—l)sn) ((2K)! 4 wap1) + €576 (2K 4+ 1)(—1 + w1 )wag, + ((2k)! + wops1)wo)
= (1 + &%) F¥) (5,0). (20)
Observe that the coefficients in front of the s-derivatives of the modulation parameters in these three
equations are always non-zero. Indeed, in , &, is multiplied by e”®, k4 is multiplied by e(®=Y5 and 7 is
multiplied by e® (similarly for and (20))).

For this reason, we shall use these equations to determine the dynamic evolution equations for x, 7 and
& by imposing the conditions

‘wo =w; =wo, =0 for all s, (21)
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which leads to the following equations:

Vs 4 e, — (1+ esTs)e(b_l)s/i =1+ 637'5)F(0)(57 0), (22)
e’ = (14 1) FD (5,0) — wa(—e"Es + (1 + e°75)e Dok, (23)
((2k)! + wops1) (eb8§s (14 eSTS>e<b*1>%) = N(2k)|,_o — (1 + ¢*7) FCR)(5,0). (24)

Remark 2.3. Note also that, in case k = 1, the last term in equation vanishes.

Conversely, if kg, 75 and & are fixed so that f are satisﬁedﬁ and wp, wi and wg are initially
zero, then by in the cases j = 0, 1, and 2k, holds.
When k > 1, the conditions in do not fix all values of w; for j = 0,...,2k. In such a case, we use the

above equation to determine the evolution of w;. More precisely, for the remaining indices j = 2,...,2k —1,
the ODE for wj is

Oswj + ((7 = 1(b—1) = Dw;j + N(j)|,—
+ (—ebs§5 +(1+ esTS)e(b’l)Sm) wjy1 + €77y (—wj + N(j)|y:0)
= (14 e*1)FY)(s,0).

Here, we used the properties of U(j)(()) and wy = wy = woy = 0.
We will now rewrite the above system as a system of ODEs. Introduce the vector @(s) = (wa(s), ..., war—1(s)).
Then, @(s) satisfies the following system of ODEs:

Ost(s) — Dw(s) + (1 + €7 ) N (w(s)) = Mib(s) + f(s)-

Here, D and M are (2k — 1) x (2k — 1) matrices given by
: . Jj—1
D:dlag()\g,...,)\gk_l), )\jzl—(j—l)(b—l)—l—w,
(25)
M = ée*1,I + (e”%s -1+ BSTS)G(b_1)5K> N,

where I is the identity matrix and IV is the nilpotent matrix such that Nj;; 1) =1 and N;;» = 0 otherwise.
Since b = %, each eigenvalue \; of D is strictly positive, so the main linear part (9s — D)w(s) defines
an unstable system of ODEs. In addition, N (w(s)) is a vector with quadratic entries as functions of the

entries of @, and f is the vector ((1 4 e575)F@(s,0), ..., (1 + e*15) FD(s,0)).

3 Precise formulation of the main theorem and reduction to the main
bootstrap lemma

3.1 Initial data in the original variables and the main theorem

The purpose of this subsection is to give a precise formulation of the main theorem of this paper (Theo-
rem . We begin by specifying the set of initial data.
We begin by introducing the following co-dimension 2k + 1 subspace of H?2k+3:

HESS = {Wo € B9 Wh(0) = Wg(0) = - = W™ (0) = 0},

SFor this purpose, we need to ensure that the coefficient (2k)! + w41 is uniformly bounded away from zero; this assertion
will be one of the bootstrap assumptions below.
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We parametrize the initial data in H2*+3 that will lead to the desired gradient blow-up solutions with the
help of the map @ : (0,00) x R x R x R?¥~2 x H?k3 _y {243 which is defined by the formula

(2k)
(70, €05 Ko, W2,0, - - -, War—1,0, Wo)
2l (26)
= ug(z) = 75" | x(~log7o,) (U(y) + Tolfbf’»o) +xW) Y — v+ W) ,
= 7

y="5 " (z—o)

where b = %, U is the k-th smooth self-similar profile for the Burgers equation and x(s,-) and X(-) are

as in Subsection When k = 1, the term y(y) Z?Sl %yﬂ is omitted.
Note that (26) maps the point (79, &, ko, w20, . ., Wak—1,0, Wo) = (70,&0, K0,0,...,0) to the translated
and rescaled self-similar Burgers profile whose gradient at x = &g is negative and of size 7 Lie.,

(70, &0 Ko, - - -, 0) = ug(x) = x(—log 7o) (T(l))*lf](%*b(l‘ —&o0)) + ffo) .

When k& > 1, wjo equals the j-th Taylor coefficient of U(y) at y = 0 in the self-similar variables for
j=2,...,2k—1.

Given 79, €9 > 0, we consider the following open subset of H (22%“3:

3p—1 _
Oryeo = {Wo € HAS® 7y (HW0||L2 + 7 ”<2k+3)ua§’f+3wo|yL2) < 60} .

When k > 1, for %y € R?*~2 and r > 0, we also introduce the notation
By, (r) = {T € R?*72 . |7 — G| < r}.
We are now ready to formulate the main theorem in precise terms.

Theorem 3.1 (Precise formulation of the main result). Let k be a positive integer such that o, 5 < %
and set b = % Then there exist v > 0 and positive decreasing functions T(+), €x(+) such that the following
holds. Let &y € R, ko € R, 10 < T(|k0]), €0 < €x(|ko]) and Wy € Oy, ¢,. When k =1, the initial data uo(zx)
given by gives rise to a (well—posedﬂ solution to with initial conditions u(0,z) = up(x) that blows
up in finite time. When k > 2, there exists Wy € Bo(ry) € R?**72 such that the initial data uo(x) given by
gives rise to a (well-posed) solution to (1)) with initial conditions u(0,x) = ug(x) that blows up in finite
time. In both cases, the following statements hold:

1. The blow-up time T4+ obeys the bound |7+ — 19| < CTOHW.
2. There exist &4, k4 such that
b— b
K4 — ko < Oy 16y = (6o + Tero)| < Oy,

and such that

sup ||u(t, )| + |u(t, - 1 < C,
2t e+ 00,

while for every o € (ﬁ, 1),

Ot =747 5 D) < fult, o < Colt — | B O me)

ast — T4.

"Local well-posedness of the equation considered holds, for instance, in the space H***3(R): if up € H?**3(R), there exists
a local-in-time classical solution u(t,z) € C*([0,T], H****(R)) which solves the equation (), and such that u(0,z) = uo(z).
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Remark 3.2. For the blow-up solutions in Theorem we expect U to be the blow-up profile, in the sense
that U(s,y) in appropriate self-similar variables converges to U as s — 00 on compact sets of y. Such a
statement would follow from estimates for W = U — Xﬁ on top of those proved in this paper, but we have
not carried out the details. We refer to [39] for the proof of this statement in the case of Burgers—Hilbert

(i.e., (tKdV]) with o« =0).

Remark 3.3 (Sign of the initial data). There exist smooth compactly supported initial data with both signs
(i.e., everywhere nonnegative or nonpositive) that satisfy the hypothesis of Theorem . Indeed, in , note
that |U] < C’OT&*b on the support of x(—logTo,-) (see Lemma for some constant Cy > 0 independent
of 1o. Therefore, if we choose, say, |ko| > 2Cy, then the initial profile x(—log T())(Tg_IfJ(TO_b(x —&)) + ko)
has a definite sign independent of o > 0. Moreover, observe that Wy € Oy, ¢, satisfies the pointwise bound
[Wo| < 7'01_b60 by the Sobolev embedding. As a consequence, when k = 1, the image of with the above
choice of ko and ey > 0 sufficiently small leads to the existence of an open subset of signed initial data in H®
that leads to the blow-up behavior described in Theorem[3.1], as alluded to in Remark[1.3 above. When k > 2,
by taking €9 and 19 > 0 sufficiently small, we may ensure that the initial data constructed by Theorem
has a definite sign.

All statements in Theorem can be read off from Theorem [3.1], with the exception of the stability
and the co-dimensionality statements. To formulate these statements, we show that the map is a local
homeomorphism.

Lemma 3.4. For each © = (19,0, ko, W2,0, - - . , Wak—1,0, Wo) satisfying the hypothesis of Theorem the
map ® defined by 1s a homeomorphism from an open neighborhood of © onto an open neighborhood of
®(0) in H*+3,

Note that ® does not possess any further regularity in, for instance, 79, as it acts as a scaling parameter.

Proof. Continuity of the map ® is evident. For every Oc @5,1%,60’ we may directly construct the continuous
inverse in a small neighborhood of @ = <I>(@) as follows. Let u be sufficiently close to # in the H?2k+3
topology. Since 92F+1i(g) = (2k)!75 272 and 9%k4,(€) = 0, we may ensure that 925+1u(€) is nonzero and
92ku(€) is small. Hence, we can find a unique point & near & such that 92*u(¢y) = 0. Next, we choose
70 = —(0,u(&0)) L, Ko = u(ép) and wjo = ngﬁgu(fo). Finally, define Wy from « and the parameters using

26). O

Lemma [3.4] shows that the set of initial data for which Theorem applies in the case £ = 1 is an
open subset of H®, which is the precise sense in which the blow-up dynamics described in Theorem is
stable. In the case k > 2, it establishes the precise sense in which the initial data given by prescribing
& € R, ko € R, 79 < Tu(|ko|), €0 < ex(|ro]) and Wy € Ony, but not specifying @y € Bo(ry) € R -2 is
“co-dimension 2k — 2”7 in H?**2  as alluded to in Theorem [1.1

Remark 3.5. An interesting question, which is not pursued in this article, is the reqularity of the co-
dimension 2k — 2 set of initial data in H***3 given by Theorem and Lemma (e.g., does it form a C!
submanifold of H***+3 modelled by H***32). Such a result seems to require a careful analysis of the difference
of blow-up solutions.

3.2 Initial data in self-similar variables

In this short subsection, we rephrase our ansatz for the initial data in the self-similar variables (5], in which
most of our analysis will take place.

We prescribe the initial data at s = oy, where conditions on oy will be specified later. In the self-similar
variables (s,y,U) given by with 7(0¢) = 10, £(00) = & and k(0p) = Ko, the initial data for U is of the

form
2k—1

B Do _ wj, . 1o
U(00,9) = x(00,9) (U(y) +el07) ”Ho) +X(y) Y j%oy] + Wo(y) — eHD7x,, (D1)
=
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where the assumptions on Wy are as follows:
IWo(0) =0 for all j =0,...,2k, (D2)
[Woll 2 + "I 95| 2 < egel2P~D. (D3)
When k > 1, the following smallness conditions are assumed for the unstable coefficients:

lwjo| <e 7 forj=2,...,2k—1. (D4)

3.3 Main bootstrap and shooting lemmas

In this section, we state two central ingredients of our proof, namely, the main bootstrap lemma in self-similar
coordinates (Lemma and a shooting lemma for handling the unstable modes when k > 2 (Lemma [3.9).
Recall that ;1 = min{1 — ba,1 — b3, 1}. Let po be given byﬂ

_3
2Zk2 when max{a, 8} = 5%

{min{u, 2’;—;1 when max{a, f} # ﬁ,
2k+1°

Fix also a number v satisfying

0 <y < po. (27)

To formulate our bootstrap assumptions, we introduce a semi-norm 7-[2 1, (n is a nonnegative integer and
L > 0) defined by the formula

1 1

1 dy \? n—oLl 1 2 ’

Whie, = s ([ oy ) epatnd (O epvyay)
Her GEZ, 2 <L \J29-1<|y|<2d Y Yy ly|>L% Y

A notable feature of this semi—norlm is that, in the limit L = oo, it is ‘nwvariant under the self-similar
transformation x = Ay, u(z) = A7vU(y) with b = 2@—:1 for any A > 0.

Lemma 3.6 (Main bootstrap lemma). There exist increasing functions e;*(-), A(),yy"(-) and o.(-) on
[0,00), all of which are bounded from below by 1, such that the following holds. Let ko € R, o¢ > o.(|kol)
and assume that the initial data conditions (D1)~(D4) are satisfied at s = oo with ey < €.(|ko|). Suppose
that, for some o1 > 0¢, A = A(|ko|) and yo = yo(|ko|), the following estimates are satisfied for s € |09, 01]:

10yU (s, )| oo ) < 1+ 20, (B1)

2k
Yo

19,U (s, Mo (qlylzaon < 1= =4
105520 (s, )l 2y < 24,

WUl ,, <24,

||U\|?.{2<;3§ < 24,

e 7ol + [P0 k] + [e%E — (1 + eory) e Do) < Ae™,
‘W(2k+1)(s,0)‘ <1.

Assume also that U(s,0) = U'(s,0) +1 = U (5,0) = 0 for all s € [00,01]. In case k > 1, assume
furthermore that W satisfies the trapping condition

|w(s)| < e " for s € [og,01]. (T)
8The reason why we separate out the case is max{a, §} = ﬁ“ is entirely technical; see Lemma below. We note that
2k—3 2k-1

can be replaced by any positive number strictly less than

2k 2k

17



Then, stronger estimates actually hold on the interval s € |09, 01], as follows:

10yU (s, )| Lo ) < 1+ wo, (IB1)

2k
Y
18,0 (s: Maeqlyizuon < 1= 5

1025430 (5, ) 2y < A,
1Tl ,. <4

1B2

1B3
B4

U0 < 4,

le’Ts| + |e(b_1)5/<as\ + \ebsés - (14 eSTS)e(b_l)sm\ <e 78, 1B6

(
(
(
(
(
(IB7

)
)
)
IB5)
)
)

|W(2k+1)(8,0)| < %
Remark 3.7 (On dependencies). We would like to clarify the order in which the above functions €., A, yo,
and o, are chosen. We start from e, which is essentially the size of the initial data. Then we choose A,
which is the bootstrap parameter (we will eventually choose it to be very large), and, in order to be able to
Taylor expand at y = 0, we choose yg to be very small based on A. This then forces us to choose o, very
large depending on yo and A.

When k& = 1, then Lemma 3.6 is already sufficient to set up a bootstrap argument to show the global
existence of U(s,y) for all s > og, which is the key step in the proof of Theorem (see the proof of
Theorem below).

When k > 1, the trapping condition for @ is not improved in general, so we need an extra argument
to find a global-in-s solution. For this purpose, we introduce the notion of a trapped solution as follows:

Definition 3.8. Let kK > 1. For kg € R, & € R and Wy satisfying the initial data conditions f,
let A, yo and oy be determined from Lemma . We say that a solution U(s,y) with the initial data
induced by oo, ko, &0, Wo and |@y| < e779° is trapped on an interval [og, 01] if it satisfies f and
on [0, 01].

By Lemma it follows that the only way a trapped solution U(s,y) on [0g, 01] can fail to be trapped
for s > oy is if is saturated at s = o1, i.e., |W(01)| = e~ 7. Combining this property with a topological
fact (namely, the nonexistence of a continuous retraction of a closed ball to its boundary), we shall prove
the existence of a globally trapped solution:

Lemma 3.9 (Shooting lemma). Let Wy, ko and & be fized so that the conditions (D2|)—(D3)) hold, and let
A, yo, and oy be as in Lemma . Then there is a vector |Wo| < e~77° such that the corresponding solution
U(s,y) with initial data at oy induced by Wy and Wy remains trapped for all s > oy.

We are going to prove Lemmas and [3.9]in Sections [5] and [6] by breaking the proof into several parts.
In the remainder of this section, we show how to establish Theorem [3.1] assuming Lemmas [3.6] and [3.9]
In addition to Lemmas [3.6] and we need three more ingredients, which will be useful in the rest of

the paper. The first ingredient is the following simple pointwise bound from the weighted L?-Sobolev norm
- n

H<L:
Lemma 3.10. For any 1 < /¢ <2k + 2, we have
T ST
95V ()] See max { Iyl =, LTTEI L (V1 + V).

Proof. This lemma follows easily from the Sobolev embedding on the unit interval and scaling; we omit the
details. O

The second ingredient is the observation that equation admits an L? bound for u(t, r), which readily
translates into an L? bound for U(s,y) itself. We record this fact in the following lemma.
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Lemma 3.11. Assume that the initial data conditions (D1)~(D4)) are satisfied at s = oo, and u(t,z), U(s,y)
are as above. Then, there is C > 0 such that the following bound holds for s € [og, 01]:

|U + "Dk 5 < Cel3PD(1 4+ kg). (28)
Proof. We first express the initial data for u in terms of the initial data for U. Due to (D1f), we have

2k—1

—b)o ° 1o B wj, .
u(ro,x) = e | x (00, ) (U(y) + =1 Of<e(ao)) +x(W) Y j%oy” +Wo(y) | »
=

where we remind the reader that = = e~%?0y + &. To bound the first (and dominant) term in the above
o 1
expression, recall from (13| that |U(y)| < eZhr1090 = ¢(b=1)o0 p the support of x(oy, ). Therefore,

o 2
[ Dm0, () + e I7k(00)) dr S (15 m0)? [ xlon, (o - ) do S (14w,

where we used Lemma 2.1 again in the last inequality. The contribution of the last term is bounded precisely
by (D4]), while the contribution of the second term would decay as oy — oo according to our assumptions
on the initial data. We eventually obtain:

[uollrz < C(1 + ko).

We now use the fact that equation satisfies an a-priori L? bound, since I'(D,)d, is anti-symmetric
(dispersive) and Y(D,) is nonnegative (dissipative). We then calculate, using the fact that u = e(1=)5(U 4
(b—1)s )
e K),

/‘u|2 do = /62(1b)S(U + e(bfl)sH)Z d(efbsy) — eZsbes /(U + e(bfl)sK)Z dy.
This readily implies
U + 0D 1o = e 3 u(r(s) — e, )l < CeFD3(1 + ). a

Finally, the third ingredient concerns some specific bounds for the initial data which follow from the
requirements in Section We record these bounds in the next subsection.

3.4 Consequences of the initial data bounds

We record here some consequences of the initial data bounds from Section which will be used in the
proof of Theorem By (D3)) and interpolation, we have

||ayW0HL2 < 06067(17%1;)00’ HaSkJrBWOHLz < Ceoef(1+(2k+%)b)aoj
and by the Gagliardo—Nirenberg inequality,
|02 W (0)] < Cege™(HH2R0)70, (29)
On the other hand, (D3)) also implies
”Wo||,~{1<eba0 + ||W0HH2<13§0 < Cep. (30)

Noting that [|U||zn , .S C,, for any n =0,1,..., we have
<e’?

otz < C. (31)

<eboo

0G0, Myt . + 100,
By the definition of U, and Lemma we also obtain the pointwise bound

10,U (00, )| < Cmax{(1+ [y])" 71, e ¢}. (32)
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3.5 Proof of the main theorem

We are now ready to give a proof of Theorem [3.1

Proof of Theorem [3.1] assuming Lemmas (3.0 and[3.9 Let 7.(-) = e¢=7*() and define og by 70 = e~. In
case k = 1, by a standard bootstrap argument using Lemma there exist C'! functions 7(-), x(+), and
&(+) on [0g,00) such that in the self-similar variables (s,y,U) given by with 7(-), x(-) and &(-), U(s,y)
is a globally trapped solution on [09,00) and 7, , and & solve (22)—(24) with 7(c¢) = 70 (so that s = oy
corresponds to t = 0), k(0g) = ko and £(09) = &. In case k > 2, by Lemmas and there exists
Wy € Bo(e™77?) such that the above conclusion holds.

By integrating the ODEs for 75, ks and & in ([B6)), it follows that (7(s),x(s),&(s)) = (T4, k4, &) as
s — 00, where

7 — 7| S ek — k| Se G e e (1 — T4 e k| SemtTs, (33)

In particular, by and |74 — 7| S e~ (HM)s it follows that the change of variables s — t is a well-
defined strictly increasing map from [og,00) onto [0,74). Since 9,U(s,0) = —1 for all s, it follows that
Opu(t,€(s(t))) = —(7(s(t)) —t)~t — oo as t — 74, which implies that u indeed blows up as t / 7. The
desired bounds on 74, k4 and & also follow from (33)).

To complete the proof, it remains to establish the regularity and blow-up properties of u, which we
derive from properties of U and the change of variables . To begin with, note that, by (IB4)—(IB5) and

Lemma we have
2k
U (s,y)| < CAmax{\y\—fzm,e—s} for |y| > 1. (34)

On the other hand, |U’(s,y)| < 2 for |y| < 1 by (IB1)-(IB2). Using U(s,0) = 0 and by integration, we arrive
at
Clyl for |y| <1,

35
C’Amax{\y|T1+1, ]y|6_5} for |y| > 1. (35)

U(s,y)| < {

For |y| > €%, we may eliminate the linear growth |y|e™® by using the Sobolev inequality based on the L?
bound and

b— 1y 1y

Hay(U + 6( 1)SH)HL2(|y\>ebS) = HayUHL2(|y\>ebS) < 6(2 1)S||U”?‘-L1<ebs < 6(2 Vs A.

As a consequence, we obtain

U(s,y) + e V| < CeD5(1 4 5o+ A)  for |y| > €,
which is an improvement over . In particular, it follows that

U(s,y)| < Ce® V(1 4+ ko + A) forall y € R,

which implies via that [|u|/pe is uniformly bounded up to the blow-up time 7.
To prove the upper bounds on the Holder semi-norms, first observe the simple gradient bound |U’| <

C’A(|y|_%kf1 +e*) from (IBI)-(IB2) and (34). Recalling (5), A = e7* and b = 25 we have, for each
t<Tyq

u(z + Az) — u(z)]

u| 1 = sup
| ]CQ’““ TER, Az>0 (Am)#ﬂ
uw(x + Az) — u(x
C oy AR —u@]
z€R, Aze(0,1) (Ax)QkJrl
~O=Ds|U(y + Ay) — U
< sup  © bl W+ A9 =W o,
yER, Aye(0,ebs) e THS(A:U) 2k+1
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1 y+Ay 2%
<oa s @ [T e
yeR, Aye(0,ebs) Y

<CA sup  (Ay) T ((Ay)TA + Aye™) < CA.
Aye(0,ebs)

Then interpolating with the trivial upper bound ||0,ul|pe = (74 — )70y U || < (74 —t) ™1, the upper

bounds when Tlﬂ < o < 1 follow.

Finally, to establish the lower bounds on the Holder semi-norms, note first that inf,>,, 1y<co [U'(s,9)| > 0
for some ¢y > 0 by Taylor expansion. By the mean value theorem,
Yl ~71U (s,9) = U(s,0)| > Cly['~7  for [y| < co,

and then by , the desired lower bound follows. O

4 Lemmas on Fourier multiplier

In this section, we establish key analytic lemmas concerning the operators H and £, whose definitions are
recalled here for conveniencd’t

H(V) =Py (ebsDy) (6_ max{a,ﬁ,()}bsr(ebsDy>ebsayV +e max{a,B,O}bsT(ebsDy)V> 7
LV) = —P<o(e?* Dy) (r(ebspy)ebsayv n T(ebsDy)V) .

Observe that the assumptions on I' and YT remain true under any increase of o or 5. In the proofs
in this section, we will often assume, without loss of generality, that « = § and a > 0, so that
max{a, 3,0} = a.

We begin with simple L? and L> estimates for H and L.

Lemma 4.1. For any £ > 0, we have

185L(V) |2 S €V |12, (36)
NOLL(V) | Sap e OV ]| 2. (37)
For max{«a, 8} < 1, we have
l1-max{«,3,0 max{a,3,0
IHV) 12 Sap V|5 20 g, v maxtef0) (38)
1-2m x{a,3,0} 2m x{a,3,0}
IHV) e Sap VI o), (39)

Proof. The L? bound for L is simply a consequence of the fact that, thanks to the frequency projection
Pgo(ebsDy) and the assumptions on I', T, £ is a Fourier multiplier with bounded symbol. The case £ > 1
then follows, thanks again to the frequency projection Pgo(ebsDy). Moreover, follows from Bernstein’s
inequality.

To prove , it suffices to prove that, for all k£ € Z,

|P(DHV |22 S min {22 P(Dy) V|12, 270710, P(D,)V |12 }
. o _(3_q
| P(Dy UV e S min {28 PU(Dy V] 1, 2G| 02 Pe(D,)V 12}
To see this (in particular, the L> bound), note that

Py(Dy)e " T(e"D,)e™ 0,V = 2°*Kj, « V(y),  where 2°* K}, = F [iPy(&,)e " T ("¢, )€, ).

Y

“Recall that P<o is the Fourier multiplier operator with symbol P<o(¢), where P<o(€) is a nonnegative smooth function
supported in [—2,2] which equals 1 on [—1, 1]. Moreover, Psq(§) = 1 — P<o(§).
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Indeed, by the assumptions on T', the kernel of Py (D,)T(D,)d, is of the form 2°* K. (x), where
[1Kk(z)|dz < 1 (independent of k). By rescaling z = e®y, we see that the kernel of Py (D,)e ***T'(e? D,)e*d),
is of the form 2ake_bsz_(10g2)71b8(6_bsy), where the y-integral of e‘bs]Kk_(log2)71b8(6_bsy)\ is uniformly
bounded in k. The desired bounds for the contribution of I in H now follows from Young’s inequality. A
similar bound holds for Y. O

Next, we prove a sharp upper bound on the kernel of the operator H.

Lemma 4.2. For each s, there exists a function Ky € C*®°(R\ {0}) such that

HV (y) = /_OO Ky —y)o,V(y)dy,

where
()] + |99, K (9)] S Jy] =500,

Proof. Without loss of generality, assume a = 8 > 0. By the Fourier inversion formula, we have

P-o(Dy)T(Dy)0, f = /OO K(z —2")0.f(2') da,

Poo(D,)Y(Dy)f = /00 K'(x — 2)0, f(2") d’,

where
K (2)] + [2|0:K(2)] < |27,
|K'(2)] + |2]|0: K" (2)] < |27
The desired statement now follows by applying the rescaling z = e?y. O

Finally, we formulate and prove a key commutator estimate for A in the weighted L?-Sobolev space ’Hz I
introduced earlier. For this purpose, it is instructive to generalize the weight in the semi-norm and introduce

1
2 2
Whig = s ([ qurvopviay) s ([ gpvray)
GEZ, 20 <L \J2i-1<|y|<2i ly|>%

Lemma 4.3. Let —% <v< %, ¢€{0,1,...} and L > 1. Let w be a smooth function satisfying one of the
following assumptions:

Case 1. suppww C {200717% < |y| < 200t} and 0 < w < Co2 D70 for some co,Co > 0 and jo € Z such
that 270 < L, or

Case 2. suppw C {|y| > 270717} and 0 < @ < Cx2 970 for some ¢y, Cy > 0 and jo = |logy L|.

Then for any s € R and V' € H?FLLV, we have

¢ - B,0}j
Hw?—[(?yVH,y ,Sa,ﬁ,u,co,Co 2 max{a,f }]O(HVH’HiZ + HVHH?FLLV% (40)
where the implicit constant is independent of s and L.
Suppose, in addition, that |w'| < Co2WH=1io gnd ¢ > 1. Then for any s €R and V € /Hili, we have

[, 118,V Il 2 SapivcoCo 27“‘”{“’5’0}”(!\‘/@% HIVIer ), (41)

where the implicit constant is independent of s and L.
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The fact that the bound —5 < v < 5 is sharp (at least when ¢ = 0 and a = 0) can be seen by fixing
H = Psole bsDy)H, where H is the Hilbert transform, and considering V' localized i 1n A; Wlth |7 — Jjo| large.
In the proof of Lemma below, this lemma will be applied with V' = U’ and v = 5 indeed, observe
that |U|l;» = [|U']] ST B for n > 1.
<L e

T 2k+1
<L

2k+1’

Remark 4.4. We note that while and are sharp in terms of the spatial weights, it is not sharp in
terms of regularity, as we are only working with integer regularity indices. Indeed, the orders of the operators
w?—l@é and [w, 7—[]85 are a + £ and o + € — 1, respectively, while we are using £ + 1 and £ derivatives on the
RHS, respectively (recall that 0 < o < 1). A crucial point, however, is that the RHS of the commutator
estimate, , mwvolves at most £ derivatives, which is important for avoiding any loss of derivatives in
Lemma [5.3.

Another important point is that and are independent of s and L. In particular, the only
s-independent information we have on the symbol of H are the scale-invariant bounds

ONH (&) S [g[mxtes =N,
which are essentially all we use about H.

Proof. Without loss of generality, assume o« = § > 0. In what follows, we suppress the dependence of
implicit constants on «, v, ¢g and Cp. In what follows, we simply write P, = Px(D,) (k € Z).

To simplify the notation, we introduce the following schematic notation: We denote by Py, (resp. K ko)
any function, which may vary from expression to expression, that obeys the same support properties and
bounds as P, (at the level of the symbol) (resp. K}), i.e., supp Py C {€ € R : 285 < |¢| < 28+5} and

~ (1+n)k
(€0)" Pr(©)] S 1 (resp. [0 Kic(y)] S o).
With the above conventions, we have the schematic identities P, = Pk and

M=) HP =) 2Py,
k k

where an important point in the last identity is that the implicit bounds for Py are independent of s. Note
also that any operator of the form Py has a kernel of the form P,V = Ky % V.

Next, we introduce a nonnegative smooth partition of unity {7;};cz on R subordinate to the open cover
{A; ={yeR:2773 < |y| < 2772}},cz. We shall write 7>; = >_jir>; Ny~ We also introduce the shorthands

27(1/+Z) ]

Njy = 2~ +0jo 5 in Case 1, N>jo = J0z7 in Case 2.

As the notation suggests, 7,, and 7>, have similar support and upper bound properties as 7;, and 7>,
respectively, thanks to the hypothesis on @w. However, note that we only have control of up to one derivative

of 7, and 7, since we only assume that || < Co2*+=1jo  and we have no assumptions on higher
derivatives.

Case 1, Step 1. We will use the following three bounds to treat the “non-local”, “low frequency” and “far-
away input” cases, respectively: there exists a positive constant ¢ independent of j, jo and k such that, for
|7 — jdo| > co+5 and k > —jp — 5,

2 0G0 Ok 1, Pr(ny V)| g2 S 27 oo biotklg=eli=doljjy7|| o, (42)
<L
and for k < —jo — 5,
2o+ OK 1, Py (V)2 2o i Hg =4 | (43)
<L
and

2(V+£)j02(a+€)kHﬁjopk(n>log2LV)HL2 < 9—ajog—cljot+klg—cllogs L—jo HVHHOM (44)
- <L
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We defer their proofs for a moment and prove and assuming f.
Case 1, Step 1.(a). To prove , we begin by expanding

wH@éV _ Z 2(u+f)j0 2(a+€)k,’y}j0 pk: (UjV) + Z 2(1/+€)j0 2(a+€)kﬁjopk (nzlogg LV) = Tear + Ifar-
k29 <L k

The term If,, can be treated using , so it only remains to estimate Ieqr. Unless [j — jo| < ¢o + 5
and k > —jp — b, we can apply (42)) and ( . to obtain an acceptable bound for the summand. When
|7 — ol < co+5and k> —jp — 5, we use the schematic identity Pk =2 (Hl)kPka”l to simply bound

20300t OK |y Pr(n; V)2 S 2707027 =R (Vo + [V ]| yex10),
<L H<L

which can be summed up in k > —jp + 5.

Case 1, Step 1.(b). Now we prove the commutator estimate . We begin by making the following
decomposition

[7]]0’ 7—[]6 Z 9 (v+0)3j0 2ak[77] ’ Pk]8€V + Z 2(1/+€)j02ak7v7j0 Pkazl;V
k>—jo—5 k<—jo—5
+ Z ) (v+0)j0 2akPk (77]086 )
k<— —Jo—>
—: 14+ 11+ 111 (45)

We treat each term in as follows. For I, we start by writing

- > 200002k i PrJ0y(n;V)
Jik:|j—Jjol<co+5,k>—jo—5 (46)
+ > 200002 [, Ploh(n;V)

Jik:|j—jo|>co+5, k>—j0—5

To treat the first sum on the RHS of , we make use of the commutator structure. We write
(110> PrlV /Kk y =) (@, () — 5, WV () dy,

where V = d4(n;V). Then using the bound for i, (which comes from that for @) and the O(2)-localization

of K, the kernel on the RHS can be written as 275770 K (y,1/), where sup,, IK (y,-)|| 11 and sup, 1K (-, 9)] 11
are bounded by an absolute constant. Hence, by Schur’s test,

2009020k [ Pk (n; V)| 2 S 20tV HOI g~ (=)ot h) | ol (1 V) |
< 9—ajog—(1—a)(jo+k) o 0w
< 9700 (Vg + 1V e ),

which is summable in the range {(j,k) : |7 — jo| < co+5, k > —jo — 5}.

For the second sum on the RHS of (46]), we simply note that [ﬁjo,pko]af(nj\/) = ﬁjopko (n;V') by the
support properties of 7, and 7;. Hence, we may apply , which is acceptable in the range {(j, k) :
|7 — Jo| > co+5, k> —jo— 5}

Next, the term II in is directly bounded using .

Finally, we turn to the term III in . We write

PO A U AL D DI U ACD)
k<—jo—5 dokik<—jo =5

0Recall that Py is a function whose support properties and bounds are the same as Py.
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By the support properties of ), and 7;, the summand vanishes unless |jo — j| < co + 5. In that case, we
have

2000090k | Py (i B V)) 2 S 2+ B0 26T DI 9L (1
< 22DV o+ [V ),

where on the first line we used the L' < L? Bernstein inequality and [|7;,|[z2 < 2390, The above bound is
acceptable in the range {(4,k) : |7 — jo| < co+ 5, k < —jo — 5}.

Case 1, Step 2. It remains to prove , , and . We start with the following bound for the kernel
Ky, of Py: for |j — jo| > co +5 and any N > 0,

150 W) Ki(y — 3 )n;(y)| Sy 2k~ Nmaxtidol+h), (47)

Indeed, follows from the boun for K, and the simple fact that ly —y'| ~ gmax{j.jo} if ly| ~ 270,
|y/| ~ 27 and |5 — jo| > co + 5.

As a result, we have ||1”7j0]~3k(77jV)HLoo <y 2k~ N(max{5jo}+8) ||, V|| 1. By two applications of Hélder’s
inequality, as well as ||n;V |12 S 2*”JHVHH0<,Z, we have

(u+€)]02 (a+2) anjOPk<77J )HL2 <y 2704]'02(V+%+a+€)(jo+k)2(71/+%)(J'Jrk)QfN(max{j,jo}Jrk)HV”’HW )
<L

By choosing N to be appropriately large, and in the case j > —k + ¢p follow (note that in the
last case, jo < —k — 5, 80 j > jo + co + 5). To treat the remaining cases in , namely k < —jg — 5 and
7 < —k + cg, we simply use the Holder and Bernstein inequalities to estimate
1pys 1405
2+ 05020tk iy, Py (n; V)| g2 S 202 H0020040k| By (V) || oo S 202 H0T0Q(0H IOk 7

< 2—aj02(1/—}—%+o¢+€)(jo+k)2(—u+%)(j+kz) HVHHO"
Finally, to prove , we first split

>log, LV = § 77jv + >log, L+co+10V
jilogy, L<j<logy L+co+10

Observe that the contribution of the first term can be treated using and . For the remain-
ing piece, thanks to the spatial separation between the supports of 7, and 7>1og, L+co+10; implies

N (logy L+k)

|’77]0Pk(n>]0g2 Ltco+10V)|[zee SN 93k9—3 anlogQ Ltco+10V || 2. Hence, by Holder’s inequality,

1 ; (N
2(u+€)jg2 (a+2) an]OPk (77>10g2 L+CO+10V)HL2 <y 92— ajo 2(1/+2+a+€)(]0+k)2 (5 +v)(logy L+k) HVHH%

By choosing N appropriately, follows.

Case 2, Step 1. In this case, L ~, 27°. We will use the following bound to treat the “nearby input” case:
for j < logy L,

200K iy P (V)2 S 290220 V) (18)
- <L

We defer their proofs for a moment and prove and assuming .
Case 2, Step 1.(a). As before, to prove , we expand

THOY = > 20RO Pr(n V) + Y 202 P10, V) = Tncar + Tar-
5,k:2i<L k

URecall that | Ky (y)| <

2k
~N <2ky> N
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This time, the term I, can be treated using , so it only remains to estimate I¢,.. By almost orthogo-
nality (in case o + ¢ = 0) or interpolation (in case a + ¢ > 0), it is straightforward to prove

I+a

I3 20+ 0009@ 0k Py (nssog, V) 112 < 2609 5106, VI 1106 (15108, VI 2"
k

which is acceptable.
Case 2, Step 1.(b). To prove (41), we expand

[w,H]@fV: Z 2(H0dogak ]OaP]ag(nZIOgQL—co—10V)

k>—jo—5
+ Z 209k POk (1108, L—co—10V)
k<—jo—5
+ Z 2(u+£)302akm o P }55(%‘/) =T 4+1I' + IIT.

J,k:j<logy L—co—10

For T', we argue as in term I in Case 1, Step 1.(b) using the commutator structure and bound

P S i G T ] PRI 27 (V00 + 1V 150 )-
k>—jo—5

For II', we expand the commutator expression and write

II' = Z 2(”+Z)302ak7l>30Pk6 (N>logy L—co—10V) — Z 2(”+Z)j°2"‘k15k(ﬁzjoaﬁ(nzlog,zL_CO_mV)).
k<—jo—5 k<—jo—5

We simply bound 2% < 27%0 then use almost orthogonality to estimate
—aj 0o AL —aj
|| 2 S 2799020407107 (3108, £—co-10V )12 S 2 UVIzer + Ve ).
For IIT', we simply observe that, by the support properties of N>, and nj,

I = > 2 hiogeky . Prob(n;V),
J,k:3<logy L—co—10

which can be treated using .
Case 2, Step 2. It remains to prove . Recall that L ~, 270 and j < log, L. We first split

N>jo = E 157> jo + M>logy L4co+107>jo -
j:logy L<j<logy L+co+10

Each summand in the first sum obeys the same properties as 7, so its contribution may be treated by
and . Let us abbreviate the second term by F]zlogQ L+co+10- Thanks to the spatial separation property,

implies |[7>10g, Lot 10PR(MiV) 12 Snv 2%k27%(j0+k)||njV||Loo. Hence, by Holder’s inequality,

9(w+£)jog(a+) kH77>log —ajog(vtatt—5)(jotk)o(—v+3)(j+k) HVH%O ",
, :

Lreor10Pk(mV) I p2 S 2

By choosing N appropriately, follows. ]

5 Estimates on U

In this section, we improve the improved bootstrap bounds in Lemma that involve U.

26



5.1 Non-top-order forcing term estimates

To prepare for the ensuing analysis, we establish some bounds for the forcing term involving H and L.
Lemma 5.1. Assume the hypotheses of Lemma . Then the following L? bounds hold:

e o) (s, ||, < cae for1<j<2k+2, (49)
e’ aqgj)ﬁ (U + e(b_l)sm) HL2 <C(1+ /@0)6_(2+(j_%)b)8 for j > 0. (50)
Moreover, the following pointwise bounds hold:
e HU) (S ) poo(—a,0) < C(A+ Ro)e™ 0%, (51)
e 0D () (s, ')Hm < CAe s for1<j<2k+1, (52)
e |lov)c (U + e<b*1>sm) HLOO < C(1 + ro)e~ G105 forj > 0. (53)

These bounds will be useful for the proof of essentially all non-top-order estimates (with the sole exception
of the weighted L2-Sobolev bound (IB4)). On the other hand, to estimate 8§k+3U , we shall rely instead on
the dispersive/dissipative property of I'/Y and appropriate commutator estimates; see Lemmas and
below.

Proof. Bounds and for e7°L immediately follow by combining and , respectively, with
Lemma On the other hand, to prove and , note that, by (B1]), we have ||U’||p~ < C. Moreover,
by (B2) (for |y| < 1) and (B4) (for |y| > 1), we have

U2 < CA. (54)

Recall also that H@;’”SU llr2 < 2A by (B3]). Therefore, and follow from and , respectively.
To prove the remaining bound , we apply Lemma By introducing a smooth partition of unity

(in the variable y') subordinate to {|y/| < 16} U {8 < |/| < 2e*} U {e®** < |¢/|} and using the bounds for K
and 0, K in Lemma [4.2] we may estimate

S HU) (5, )] < / Koy — )0,U (s,4/) dy/

,S e,us/ |y_y/’max{a,,B,O}|ayU(8’y/)|dy/+eus/ ‘yllfmax{a,/o’,()}f”U(S,y/)|dy/
ly'|<16 8<|y’|<2ebs

+6M8/ . ’y/|—max{a,,8,0}71‘U_'_e(bfl)s,ﬂ(s’yl) dy/
y'[>ebs

S POVl + eyl FTU o [ [P
8<y’|<2ebs

teHsem(GHmax{a,B.00bs) 7 | =Dyl

In the second inequality, we used integration by parts and the property that |y — ¢'| ~ |¢/| for |y/| > 8 (since

|yl < 4). When max{a, 8,0} # ', by (BI), (B2), (B4), and (28),

e Hs |H(U)(S, y)| < oS (1 + max{l, e(rarlfmax{a,,ﬁ,O})bS} + e—(%—&—max{a,/@,()})bse(%b—l)s) < e~ min{u, 21;;1 }s‘
Indeed, note that u = 1 — max{a, §,0}b. Therefore,
—p+ (ﬁ —max{a, 3,0})b = —1 + max{«a, §,0}b + Q—Ik — max{a, 3,0}b = —227;1,
—p— (% + max{a, 5,0})b + (%b —1) = -1+ max{a,3,0}b — %b + max{a«, 5,0}b + %b -1
- 94+ b= f4k;]3k+1 _ _21;21‘

Since pp = min{pu, 2’;—;1} in this case, follows. On the other hand, in case max{«, 3,0} = Tlﬂv the same
computation applies except that the second term is bounded instead by C Abs; however, such a modification
is acceptable since 0 < pg < 22—;1 O
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5.2 Estimates on J,U

Next, we proceed to obtain pointwise estimates for the low derivative 9, U using the method of characteristics.
It is important that the bounds proved below (in particular, items 3-4) are independent of A. On the other
hand, we need not obtain sharp pointwise bounds for 9,U at this point, as they would follow from the

weighted L2-Sobolev bounds ([B4) and ([B5)) (cf. derivation of (34)) in the proof of Theorem [3.1]).
g p

Lemma 5.2. There exist €y, A, yo, v, 0o such that if the initial data conditions (D1)—(D4)) are satisfied and
the bootstrap assumptions (B1))—(B7) hold for s € [0g,01], then the following conclusions hold.

1. For all s € 00, 01], and all y| > yo, we have (by + (1 + e°75)U(s,y))y > 0 (the flow is repulsive).

2. (IB1)) and (IB2)) hold.
3. For |ly| >4 and s € |00, 01], we have

_U(s,y) < g (55)

4. There exist C,r > 0 independent of A,yo,~y such that, for all y € R, and for all s € [0g, 01], we have
1
10,U (s,y)| < Cmax{r,Ae_rs}. (56)
! (1+1yl)
Proof of Lemmal5.9 We prove each item in order.

Proof of 1. We need to show that there exists a choice of yy and ¢ (depending on A, see Remark such
that the following holds in the interval s € [0g, 01]:

U(s,y) > Y if y > yo, U(s,y) < Y if y < —yo,

_1—|—es7'5 _1—|—657'S

Let us focus on the first claim, the second being analogous. By the fundamental theorem of calculus and
the bootstrap assumptions (B1f)—(B2|), we have that

2k
o) = U(s,0) = [0 (s, = ~snl1+2m) — (=) (1= ).

Then, we have, for y > yq,

(14 e 1)U (s,y) + by > (b— (1+ ) (1 — 43 /4))y — yo(1 + e°75) (1 + 2y0) + yo(1 + e°7) (1 — y3¥ /4).

The claim follows by choosing yg small enough, and then by choosing og large enough to control the factors
containing the modulation parameter 7 (recalling that the bootstrap assumptions hold true).

Proof of 2. We now show that we can restrict to yp small and op > 1 (depending on A, see Remark
such that the following inequalities hold true:

1 2R
o)+ 2’f+1‘ <0 foran
Ul(s, £y0)£yo F TS L Ty or all s € |09, 01] (57)
U (o, y)+y— —— 2k+1‘<’y‘%+1 for all y € (=1/4, —yo) U (30, 1/4) (58)
00,Y)TY 2k}+1y > 4(2]€+1) or all'y » —Y0 Yo, )
2%
U'(s, :I:yo)—l—l—ygk‘ < y% for all s € |09, 01], (59)
2%
U'(oo,y)+1-y*| < L forally € (—1/4,—y0) U (30, 1/4), (60)
2k
U'(oo,y) > -1+ % for all |y| > yo. (61)
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Note that the above inequalities imply (on initial data and at |y| = y + 0) bounds which are strict
improvements of and ([B2)). For instance, from it follows that 0 > U'(0p,y) > —1 + %y% >
—1+ 3y3k for all y € (—1/4, —yo) U (yo, 1/4), and similarly for the bounds (59), as well as (6I).

Bounds , and follow easily from our choice of initial data at oo and the expression for the
profile (with the choice concerning the (2k + 1)t derivative at y = 0), upon choosing yo to be small and
consequently og to be large.

o o Ok o
More precisely, we have, recalling the equation U = —y — TIHUZ +1, and letting R :=U+y— 21<;+1 2Rt
R(l + 72) _ ;y%ﬂz
2k +1 (2k +1)2 ’

where X =37, . . o) U y’. Since, for ly| < 1/4, |U| < 1 we also have that |Z| < Qk . The claim then follows

from the inequality (1 - W\ED W!ﬂ < m7

which is valid for all £ > 1. Thus, for the profile,
we have inequality with improved constant m on the RHS. The bound for U(oy,-) then follows

from this bound for the profile U and the bootstrap assumptions, after taking oy to be large.
The proofs of and are similar, so we will just focus on showing . Using Taylor expansion
with integral remainder and Sobolev embedding, we have

2k+1 jfl
‘U(syo +1—y ZW

Yo
B <ot [Tl < cagt @)
0

Note that the two principal terms on the LHS of the previous estimate arise from our choice of the
profile in display . Moreover, to bound the term |U?%2(s,y)| in display , we used the bootstrap
assumption and interpolation. We then notice that the coefficients T/V(j)(s7 0), 7 =0,...,2k decay by
(B6) (some of them are identically zero by (21))), and [W (21 (s,0)| < 4 by the bootstrap assumptions (B7).
We then first choose yg to be small, and then choose oy accordingly to be large to conclude that holds
true (see Remark [3.7).

Recall the equation for U’ from ; we arrange the equation as follows:

QU+ U'+(U")? + (by + (1 + €°15)U) 0, U’
= <eb5§$ —(1+ 657'5)6(6_1)SI£) U" — es1,(U")? (63)
F(1+ e'ry) (e_“sH(U’) + e 9,L(U + e<b—1>s,€)) —. B,

By (B1)—(B2) for U’, and (54) for U”, (B6) for the modulation terms and Lemma [5.1] for the forcing
terms, we have

IEMW || 100 < C A, (64)

where we take A sufficiently large compared to kg if necessary.

We will first focus on showing . We now define Lagrangian coordinates for the flow of equation (63)).
The flow can either start from a point on the half line s = og,y > yo or from a point on the half line
s > 00,y = yo. Distinguishing between these two cases, we consider Lagrangian maps Xi(s, ), Xa(s,$)
which are defined by solving the following initial value problems (5 and ¢ are the Lagrangian parameters):

0sX1(s,9) = bX1(s,9)+(1 + e’ 1)U (s, X1(s5,9)),  Xui(oo,y) =y,  forall § >y, (65)
0sX2(s,38) = bXa(s,5)+(1 + €°15)U(s, Xa(s, ), X2(5,3) = yo, for all § > oy. (66)

We now rewrite equation in Lagrangian coordinates, to obtain, letting U be the composition
~_/ ~ ~
U (Svy) = U/(Sle(Say)):
o U +U +(U)? = EW(s, X1(s,7)). (67)



Note that the following bound holds for all s > oy and all y:

U'(s,y) < =. (68)

N |

Indeed, recalling the form of the initial data (D1]), as well as the bounds on the initial data from Section
we have that the following bound holds: U’(o¢,y) < % upon choosing oy to be large. We then integrate

equation , using the upper bound on initial data we just obtaine and recalling that EW decays

exponentially, to obtain .

Let us for a moment assume that there exists 3 such that U /(é,gf/) > —%. Integrating , and using

the bound , it is then easy to show thaﬂ, upon choosing ¢ to be large (depending only on yo and A),
\U/(s,y])\ < 3 for all s > 3. This implies on the half line {y > 0} in this case.

Hence it suffices to show under the additional assumption that U ’(é, 7) < —%. By the repulsivity
of the flow, we always have that | X (s, 9)| > |yo| for s > 0¢. Hence, for s > oy, we can apply the bootstrap
assumption (B2) (i.e., U ' > -1+ #), which yields the following bound:

2k 2k 2k
/! 7\ 2 Yo Yo Yo
U — (U > — | == > =

( ) - (1 4 > 4 — 87 (69)

by virtue of the fact that yg is chosen to be small. We now choose o¢ to be sufficiently large for the following
inequality to be ValidE7 in view of :

o1 y2k
[ B s < 1 (70)
g0

We then integrate , taking into account the bounds and , as well as the bound . We
deduce, recalling :

- 1 -
U'(s: Xa(s, ) < 1= 5", for oo <5 < o1, (7] > yo- (71)
Essentially repeating the same argument for the X» trajectories, we have
1
|U' (s, X2(s,3))| Sl—iygk, for o <53<o0y, §<s<o0. (72)

Combining the bounds and yields (IB2) on the half line {y > 0}. Arguing in the same manner on

{y < 0}, we obtain (IB2).
Finally, (IB1]) follows from (IB2|) and Taylor expansion about y = 0, following a similar reasoning as in

inequality .

Proof of 8. To prove , we first show a quantitative lower bound on the time the Lagrangian trajectories
X1, Xo stay iny € [—4,4]. Recall the definition of Lagrangian coordinates X; and X5 in and .
Define now U, for i € {1,2} as follows:

Ul('s?@) :U(S,XI(S,ZNJ)), UZ(Saé) :U(S7X2(Sv'§))'
We then have the following coupled system for (f] is Xi):

dU; = (b—1)U,; + EO (s, X;),

0:X; = bXZ—|—<1 + €STS)UZ'.

12Note that, for the nonlinear ODE & = —a — z2, the equilibrium point z = 0 attracts all orbits originating in (=1, 00).
13This shows a lower bound. The upper bound comes from .
Note that this choice can be made independently of o7.
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Here, we recall that
EO = (—eSTSU +ebse, — (1 + esTs)e(b*I)sﬁ) U — 0Dy

+(1 + ers) (e‘“S’H(U) +e LU + e(b_l)s/-i)>

Welet A, = X, +U i, which diagonalizes the system up to a perturbative term on the RHS:

0sUi — (b—1)U; = B (s, X)), (73)
OsAi —bA; = 57,0, + (1 + 8 15) EO (s, X;). (74)
Let us now specify to the case i = 1. The RHS of and decays exponentially as s — co as long as
|X1(s,9)| < 4. Indeed, using Lemma [5.1] as well as the fact that |U(s,y)| < 2|y| for all y € [—4,4], and the
bootstrap assumptions , we have
e MHU) oo (—a,0) < CAeH0%,
e LU + e V%) || poe < C(1+ rp)el 208,
eS| Ui(s, )| < 8e 7.

This implies directly that, as long as | X;(s,7)| < 4,
(B (s, X;)| + U + (1 + ) EO (s, X;)| < CAe™"3, (75)

where ¢# is a positive constant depending on s, 7.
Let us first restrict to the case yg < |y| < 1. We integrate f between oy and s, and we obtain,
taking into account,

U (s, Xa(s, 7)) — U,5)| < U (00,7)],
L ) 1 ) (76)
[A1(s, Xa(s,7))e ) = As(o0, )| < 514100, ).

Note that the above inequalities hold by choosing og large as a function of yy. Indeed, due to our choice
of initial data for U at og, by possibly choosing o( large, we have that, for all § € [—1,—yo] U [v0, 1],
|U(00,79)| > %|U(O‘0, yo)| > ¥ It then suffices to choose g to be large so that, for all § € [—1, —yo] U [yo, 1],

g1
[ et e B0 s, s, gl < .
g0

This shows that the first inequality in holds, up to choosing g based on yy. A similar reasoning holds
for the second inequality in ([76]).
Display implies, due to our choice of initial data at oy,

|U(s, X1(s,9))| < 2@|€(b—1)(s—go)7

~ 31~ s s—0o
(s, Xa(s,9)) < S (191" +e 75)eem0),

We recall the bootstrap assumptions , which in particular imply that |e®75| < Ae™75. This allows us to
deduce that, for all times s € [0g, —2klog(|y|) + o0,

|U<S, Xl(saf/))’ <2,

Arls, Xils,0)| £ 2- 7 = [Xi(s9)] <4 ()
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The reasoning for X5 is completely analogous, and we deduce that, for all times s € [3, —2klog(yo) + 3],

U (s, Xa(s,3))] <2,

| X(s,3)| < 4. (78)

We are now in shape to do an L estimate for U’ in the near region. Let us recall the relevant equation:
U + U + (U + (by + (1 + e*1)U)d,U" = EW.
In Lagrangian coordinates with respect to X1, the above equation reads, letting U =u (s, X1(s,00)):
0,0 + U + (U2 = EW(s, X1(s,7)). (79)

Let us now suppose by contradiction that, for all s € [o9, 09 — 2k log(|7])],

(s, Xa(s3)) < 2. (80)

~ ~ k
Combined with the bootstrap assumption (B2)), display (80) yields the bound |U gy (U /)2\ < %" which in
)

]
turn implies, since the RHS of decays exponentiall upon choosing oy to be larger, and recalling the
definition of y/ from (64)),

_, ,
- 85U~/ +1< /ie*s%
U +(U)2 4

This implies

~ / ’ ,

U
Oslog( ~,)—|—1§%€_8%.

14+U
N . . o0 /’[’7, _5“—/ : _ 70/("’07@)
By integration, since fao 7€ 72 ds <log2, and denoting Q) = 21+U,(007Q) > 0, we have
_ —(s—00)
/ Qe
U (Sa Xl(S,O'())) > 1+ Qef(sfao) ’

We now calculate this expression at s = s, = o9 — 2klog(|y|). We notice that, for ¢y sufficiently small,
0/(0'0, y) > —1,and 1+ f]/(ao, y) > %ﬂ%, hence 0 < Q < 45~ 2*. Since e~ (5+=90) = 2% it follows that

4 4
(50, X1 (54 -t 2
U' (84, X1(84,00)) > g z

This contradicts (80), and yields, for all § such that yo < || < 1, the existence of s() € [0, 5] such that

- 4
U,(S(l)le(S(l))y)) > _5 (81)

Moreover, in the case || > 1, the existence of s(!) in the conditions above follows immediately by our choice
of initial data. Indeed, by possibly choosing o( to be larger and ¢y smaller,
N 4
U' (00, X1(00,9)) > 5 (82)
for all § such that |y| > 1.
A completely analogous reasoning shows that for all 3 < o + 2klog(|yo|), there exists 52 € [5,5 —

2k log(|yo|)] such that we have
U'(s?, X5(s?), 3)) > —%. (83)

5 This follows from bound on EMW.
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We now combine the bounds , and with the bounds on the Lagrangian trajectory and
to obtain the existence of s(!), s(2) (depending resp. on ¢ and yg), such that

4

U'(sW, X1 (sW,9) > ==, [Xu(sW,9)[ <4, forall j:yo < 7] <4,

(84)

(G2 Ny

U'(s?, Xo(s®,3) > ==, [Xa(s?,5)] < 4.

We now repeat the reasoning in part 2. integrating equation (@, with the difference that the starting
time of integration is now s (resp. s()), and we use the bounds (84). Recall that the RHS of (67) is

perturbative everywhere by . Repeating the same argument on {y < 0}, we deduce valid for |y| > 4,
g0 S S S g1.

Proof of 4. We only consider the case of the half-space {y > 0} in detail, as the other case is dealt with
similarly. We define Lagrangian trajectories X; and Xs as in and , respectively, but now with yg
replaced by y = 4. By U(s,0) = 0, (IBI), and (55)), we may deduce the simple bound |U(s,y)| <y by
integration. By and taking o( sufficiently large, it follows that

- 1 -
0. X; =bX;+ (1 +e’)U; = 5(95)(33 WX = |Xi| < 279, (85)

where (3,9) = (00,9) or (5,4) when i = 1 or 2, respectively.
Next, we again recall the equation for U’ in Lagrangian coordinates, which yields, letting U = (s, Xi(s,9)),

)2 = E(l)(saXi(57z~/))'

Multiplying by U’ and using plus Cauchy—Schwarz, we have (recall that 0 < vy < 1)

SO0 < — (0 + (s, Xi(s. )"

Recalling for EM_ it follows that
05 (6%8((}*’)2) < CAelT5—s,
Integrating this equation, we obtain that, for a constant C > 0,
Fr/ — L (s=3) |17/ (% 7 —Ls
U | < Ce 10 \U'(3,9)] + CAe™ 10°. (86)

In case i = 2, we have (3,7) = (8,4), and the desired bound with 7 = 5l; follows from (55)), and
. On the other hand, in case ¢ = 1, the desired bound with r = 2i0b follows from , and ,
O

2k
where we simply bound e~ 16(°=90)|7| " 2+1 < C|y|~" and e~ 16570 =%0¢) < C' A",

5.3 Estimates on 8§U

As a preparation for closing the bootstrap assumption on \|8§k+3U lz2, we first prove a uniform bound for
H(?SU ||r2. The key ingredients are the method of characteristics in the region close to y = 0, as well as the
a-priori pointwise bounds for U’ proved in Lemma

Lemma 5.3. There exist ey, A, yo, v, 0o such that if the initial data conditions (D1))—(D4) are satisfied
and the bootstrap assumptions (B1)—(B7) hold for s € [0g,01], then the following inequality holds true for
all s € [0g, 01]:

185U (5, )2 < C. (87)

Here, C' > 0 is a constant independent of A, yo, and oq.
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Proof of Lemma[5.3 We begin by recalling with j = 2 for U”, which we rewrite as follows:
OU" + (1 +b+3UNU" + (by + (1 + €57)U)8,U"
= -3e’r,U'U" + (ebsﬁs -1+ eSTs)e(b_l)S/@) u"” (88)

+(1 + e’ry) (e*“SH(U”) + 6758§£(U + e(bfl)sfz)> = E®,

Upon restricting to small yo and consequently to large og, the following properties are a consequence of
Taylor expansion about 0, the Taylor coefficients of the profile at y = 0, and the hypotheses on initial data

at s = o from displays (DI))~(D4) (exactly as in the reasoning around (62)):

)U”(s, +y0) F Qkygkfl‘ < ygkfl for all s > oy,

)U"(s, y) — 2ky2k_1’ < \y|2k_1 for all y € (—1/4, —yo) U (vo, 1/4).

We remark that, in order to ensure this condition, we first need to first choose 1y to be small, and as a
function of that, we need to choose o¢ to be large, cf. Remark
Let us recall the definition of the Lagrangian trajectories X7 and Xs from —. Let us first focus

on X1, and we define U’ = U"(s,X1(s,7)). Assume that 7 is such that yo < § < 1, the negative  case
being analogous. We easily have, from (88]) (using moreover (B2))) that

00" + (b= 2)T" < B?(s, X1(5,9)).
We now notice, similarly to , that
IE®) (s,y)|| e < CAe™. (89)

Hence, restricting to o possibly larger (and treating the terms on the RHS as perturbative), we have, for
§ > 09, upon integration
0<U" (s, X1(5,7)) < (2k 4 2)eZ~0(s—00)g2k=1 (90)

We notice that we have the following easy consequence of (B2) in the region y € (yo,2), s € [00,01] (upon
choosing o large as a function of A and yp):

U(s,y) > —(b—1y.

We now go back to the definition of the Lagrangian trajectories , and we immediately deduce that, for
9 € (y0, 1), as long as [X1(s, )| < 2,
Xi1(s,) = e~ DEmo0)y,

We now have that, for s such that s — o9 = —2klog ¢, the following holds:
X1(s,9) > 1. (91)
Inequality , now gives that, for all s such that s — o9 < —2klogy, and all § € (yo, i):
[U" (s, X1(s,5))| < (2k + 2)e~3b)2klogip2k=1 < op 4 9 (92)

since (2 — b)2k = 2k — 1.
Similarly, turning now our attention to Xs, we have, for s > 5, and ¢ such that yg < gy <

=

0 < U"(s, Xa(5,5)) < (2k + 2)e-2 2k, (93)
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We moreover have that, for s such that s — 5 = —2klogy, the following holds:
Xo(s,3) > yoe (P~ D2klogd — 1, (94)

Combined with inequality , this implies that, for all s such that s — o9 < —2klogy,

|U" (s, X2(s,3))| < 2k + 2. (95)
Combining previous inequalities , , , and , we conclude that
U"(s,y)| <2k +2 (96)

for |y| < 1, and s € [00,01]. This concludes the bounds in the “near” region.
We now proceed to show an L? bound in the “intermediate” region: y : i < |y| < y2, where g9 is chosen
depending on ¢ > 0 using Lemma in a way that, for all y : |y| > vy, s € [00,01],

U'(s,y)| <.

We are going to first show a weighted L? estimate on U”, where the weight is exponentially decaying in ¥.
Although the estimates for this part are carried out on the whole real line, one should think of them as just
useful to the “intermediate region” (|y| < y2). In the final part of the proof of this lemma, we are going to
deal with the “far” region using the smallness arising from point 3. in lemma [5.2

We now multiply equation by the weight e™U”, to obtain a weighted L? estimate in the region

ly| > 1. We integrate by parts on the set S = [~1/4,1/4]°. We have, denoting by || f || := He*%yf(y)HLz(S),

1 b 5 1
§as||U//(5, )H?U +/ (1 + 5 + §U/ _ §ESTSU/(S7y))(8_%yU”(S’ y))Q dy
S

5 [0+ 0+ en)U ) e U s dy

b 1
<2e7% (7 + 1)@k +22 4+ U7 (5,) Wl ED (5, s
where we used the bootstrap assumptions and the bounds on U” to control the boundary terms. Now,
for y > %, possibly choosing og to be large, by — U > b%, and |U'(s,y)| < 1. Hence, it suffices to choose A
to satisfy (16)"*A(b— 1) —2 > 1 to obtain (after using the inequality ab < 55a? + 5b? to bound the term
1T (s, )l E@ (s, )|lw on the RHS, and restricting to oq large):

1
01U (s, )l + 10" (s, ) [ < 22k +2) + 1E® (s, )13,

Together with the assumptions on initial data, and the bounds (89)), this implies [[U”(s,-)||2, < Cy for all
s > 09, where (Y is a constant depending only on k. Possibly redefining the constant Cj, we also have the
unweighted bound

107 (5, 2t yna < Ci- (97)

(recall the definition of ys from lemma .

We finally perform estimates in the “far away” region |y| > y2. Again we consider equation ({88§]),
we multiply by U” and integrate by parts. We have, adding a multiple of the bound , and letting
Sy = R\ [—y2, y2], possibly redefining the constant Cj,

1 b 5 1
585||U”(3’ ')H%Q(R) +/ (1+ 3+ 5U/ _ iesfsU’(S’y))(U”(s, )2 dy
Sa

< G+ 10" (s, ) 2@ 1 E®) (5, ) 22 ey,

(98)
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Recall now that, choosing ¢ appropriately, in particular |U’(s,y)| < i for |y| > yo, so that

b 5 1 1
1+§+§U'— §€STSU/(S,y) 1 >

=

Using this observation, we deduce, from ,

1 1

051U (5, )|y + 71U (5, ) | 2wy <Ck‘|'*HUH( M2y + 4IED (5,)172m) < Cr +4IEP (s, )72
(99)

Here, the second inequality is obtained using bound

Finally, by (B1)—(B2) for U’, (B3)) and (54)) for U” and U " ([B6) for the modulation terms and Lemmal5.1|
for the forcing terms, we have

IED| 2 < CAe™.

Combining the above bounds with inequality (99| , we obtain (possibly choosing oq large as a function of A)
on R as desired. 4

5.4 Top order L? estimate
We are now ready to close the bootstrap assumption (B3) on the top order L? norm.

Lemma 5.4. There exist €y, A, yo, v, 0o such that if the initial data conditions (D1)—(D4)) are satisfied and
the bootstrap assumptions (B1)—(B7) hold for s € [0¢, 01|, we have

187430 (s, )12 < C,
where C > 0 is a constant independent of A, yo and og. Hence, (IB3)) holds.

Proof of Lemmal5.4 Let j = 2k + 3 and consider equation . We multiply this equation by 83(,j U and
integrate by parts. Let (-,-) the standard L? inner product on R. We have (cf. f@), for a function
f e HI(R),

(f, e_SI‘(ebsDy)ebsayﬂ =0,
(f,e7*Y(e"Dy) f) > 0.

We obtain the following inequality:
1 ; . ) s ;
SO0 ey + /R (1=b) 4 jb+ (j + D1 + e*r)U") (UD)2 dy

3 /R(b+ (1+ e r)U")(U9)? dy

< (14 e ) [MD | 2y 1UD || 12wy

1 . 3 . 1 ;
iaquU)H%Q(R) +/R ((1 - 2b) + jb + (j + 2) (1+ €STS)U/> (U2 dy

<MD 2@y 1T 2 gy.

This implies

Note the following inequalities, valid for b > 2, a > 2:

TN 2@y S 1T 1 2 1T gy

Tz S IO T3 5
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where 0; = (b—2)/(j —2) and 03 = (a — 3/2)/(j — 2).
The general form of a term appearing in M) is UDUO®) | with a,b> 1 and a+b = j + 1. We estimate,
when a < b,

. No2— L
/R U@TOUD|dy < Ci||U" | ity PITD IR < CITDN L0877

where Cj is a constant which depends only on j (here, we used the bound |U”| 12y < C from Lemma.
Combining the previous inequalities, and substituting 2k + 3 for j,

1 o1
§as”U(2k+3)H%2(R) _|_/(] + 5)e U (U@R+3))2 4y

b
+ <2 e ||U(2k+3)||L4k+2> ||U(2k;+3 H2 < 0.

Here, Cy is a constant that depends only on k. It then follows, using the bootstrap assumptions , as
well as choosing o sufficiently large, that

1 b—-1
53£HU(2k+3)”%2(R) + (4 — Cp||UZE+3) HL24(I§1§)2> HU(Qk—i—B)H%?(R) <0.

From this inequality and the assumptions on initial data it follows that, for all s > oy, the following bound
is propagated:

40, \ Ak+2

2k+3 k

JUED gy < 2(5)

For A large, this proves the improved bound (IB3). O

5.5 Weighted L? estimates on U

Finally, we improve the bootstrap assumptions (B4) and (B5]) concerning weighted L? estimates on d,U and
8§k+3U, respectively.

Lemma 5.5. There exist €y, A, yo, v, 0o such that if the initial data conditions (D1)—(D4|) are satisfied and
the bootstrap assumptions (B1)—(B7)) hold for s € [og,01], the improved inequalities (IB4) and (IB5)) hold
true.

Proof of Lemmal[5.5 We begin the proof with a basic, abstract computation. Consider a first-order operator
of the form

T =05+ vy +q.

We decompose T into its anti-symmetric and symmetric parts, i.e., T = T + T*, where
TO= W T =TH =0+ 09, + L0w), T =3T+TH=q-10,0).

Let @? = @?(s,y) be a nonnegative weight. If we multiply 7V by @?V and integrate over [s1, s3] X R, we

have
/5 182 / (TV)(@*V) dyds

= % /w2V2 dy / / @W?TV)V dyds + = / /VTt V) dyds
s= 31
1
=3 /wQV2 dy / / 2 TV)V dyds + = / / @ T 4+ Tw?)VV dyds
s= 51
:% / w2V2dy - / / (Tw)wV?dyds.
$=81 S1
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where )
Tw = dyw + vdyw + 5(8yv)w —qw.

As in the proof of Lemma we introduce a nonnegative smooth partition of unity {n;};cz on R subordinate
to the open cover {A; = {y € R: 2773 < |y| < 2772} },c7, and also the shorthand 7>; = D> My

Step 1. Our goal is to prove ([B4) concerning U’. In view of in Lemma it suffices to bound the

expression

1
2
1_1 2 _1
swp ([ () ) e (R U)oy
JEZ, 27 <ebs 21— 1<|y|<29 ly|> %%

where the cutoff parameter ig > 0 is to be determined below. As a preparation for the proof, we introduce

NI

T1 = 0s +v0, + q1,

where
v = (by + (1 +e'r)U — e+ (1+ eSTs)e(bfl)sm) , q = (1 +(1+ €ST5)U/) ,

and define T := 9, + vy + %(8yv) — ¢1. Recall, from , that U’ obeys
TiU = (14 €°1s) (e_“SH(U') +e0,L(U + €(b_1)8/€)) . (102)
Let ji := |boglog2]|. For each integer j < j1, we introduce the weight

9
92

)jnj for j < j1,

Jitnsg,  for j = ji.

= o=
NI= N

(103)

1
@j(5,4) = IV (e o) = {
Observe that each w; solves the equation
1
<85 + byo, + ib — 1> w; =0,

where, as we will see, the LHS is a good approximation of ’7'1wj.
We are now ready to begin the proof of (IB4]) in earnest. For each j < ji, we apply (100) with @ = 1>4,w;,
which leads to

1 1 s o
5 /n%iowjz'U/(Sv y)2 dy = 5 /n%iowsz/(Jm y)2 dy + / / <T1 (nZiowj)U/ + nZiowj,TlU/> nZioij,dde'
o0

Thanks to (103)), if we take the supremum in j < jj, then the contribution of the LHS is equivalent to (101]),
whereas that of the first term on the RHS is bounded by a constant C as a consequence of . It is then
straightforward to derive the estimate

1
2 o1 .
swp s ([0 eay) <0 o [ (I Tl + 171001020 12) s

s€loo,01] 7<Jo J<jo J oo

We claim that, for some ¢ > 0 and o sufficiently large depending on A,

o1 o . .
sup [ (I Tl + [T 05ig)U" 12 ) ds € 20¥00 427004 4 oo,

J<jo Joo

From this claim, (IB4]) would follow by taking ig, A, and o large enough (in this order).
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To bound the contribution of 7>;,w;T1U’, we use (102)). Using for ey, in Lemma for
e MH(U') (with @ = n>j,@;, £ =0 and v = 1 — }) with (B4)-(B5), and for e 29, L(U + eb=V%k), we
have
230 iU |l p2 < (1+ e 7% A) (e’“sA 4 2G93 s—o0) (1 4 mo)e*@*%f%)
S(1+eA) (e ™A+ (1+ ko)),

where on the last line, we used the fact that 27 < 271 ~ ¢b70, Therefore,
g1
sup [ sy T2 S A
J<jo Jog

for some small ¢ > 0, A sufficiently large and oq sufficiently large (determined in this order).
Next, we bound the contribution of 71 (n>i,@;)U’. We compute

. 1
Fili03) = 01,5 + 120 (0 = ) — 51201+ €67) U5,

To proceed, we note, From its definition ((L03)), that the s-support of |1, ;|| L is at most of length O(1)
independent of iy and j (we remark that this property is also geometrically clear from the transport equation
obeyed by w;). Moreover, by and U(s,0) =0,

U (s, 9)| + 1yl MU (s, 9)| S max{(1 +[y) ™", Ae™"}. (104)

Then, using also ,
o= byl = [(1 + 1)U — "6, + (1 + e*7)e*™ | Syl max{(1 + |y[) ™", Ae ™"} + ¢ 7° A,

Finally, observe that 7>,%; and 1>, |y|@} are supported in {|y| 2 27 eb(s=70) N {|y| > 270} and are bounded
by CZ(%_%)je(l_%b)(s_‘m)1>2¢0_5(2jeb(5*"0)), where 1. ,i-5 is the characteristic function of {|y| > 2005},
Putting all these together, we may arrive at

a s 1,1y
/ I T1(n>i0005)U" |12 ds < 2(”+2)Z°HU/HLQ(suppn'zio)
(o4

0

o1 ) )
+/ (2_T]6_Tb(s_00)1>2i075(2j6b(5_00))+A€_Ts> HUHle b do
o <ebs

0

< 25+ Dio 4 (2770 4 gemo0) A,

where we used (IBI)), (IB2) and (B4) on the last line. Taking 0 < ¢ < r and =97 > A, the last line is
bounded by the right-hand side of the claim, as desired.

Step 2. Now we turn to the proof of (IBB) concerning U#+3). To simplify the notation, let us write
U = UCH3) In view of Lemma it suffices to bound the expression

1
2 bl
1 3 2 3
sup (/ 24 (ly1 T 2U (s, y)) dy) R (/ be niiou(s,y)Qdy> . (105)
JEZ, 27 <ebs 2i—1<|y|<27 ly|> €

2
where the cutoff parameter ig > 0 is to be determined below. Like in Step 1, we introduce
Tok+3 = Os + v0y + qar+3,
where v is as before and

Q2k+3 = (1 + (2]€ + 2)b + (2]4? + 4)(1 + CSTS)U,) .
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Recall, from , that U obeys
Torash = —(1 4 37) MPEH3) L (1 4 e°ry) <e_“s’H(U) + 6_58§k+3£(U + e(b_l)sn)) .

Let ji := |boplog 2| and for each integer j < ji, we introduce the weight

(3+2k+3)7,, . for i < j
, (14 @k+2)0) (5—00) — (,—b(s—00) )2 nj or j < Jji,
@j(s:y) = ¢ @jolye ) 50 {2(i4r2/<3+§)j1772j1 for j = j1.

For each j < j1, we apply (100) with @ = 1>;,;, which leads to

1

1 s o
2/ 2@ U(s,y)? dy = 2/ 2@ U (00, y)* dy +/ / <T2k+3(772iowj)u + 7721’0ij1€+3“> N>io@;Udyds.
a0

To avoid the derivative loss, we further write out the contribution of 7>, ;7T2x+3U as follows:
/U>iowj7§k+3uﬁ>iowju dy = /(1 + €°7s)e i, w H(U)N>i ;U dy
+ /(1 + eSTS)e*SnziOwﬁzkHE(U + eV s wU dy
- /(1 + 657'8)nZioij(2k+3)772¢0w]'U dy
= (1+e€15)e #° / H(M>io ;U )N>iow;U dy
+ /(1 + e°75)e " >y, HIUN>i, U dy
* /(1 + e T5)e iy @0, LU + O k) s U dy
— /(1 + eSTS)nZiOWjM(2k+3)nZ¢OWjZ/{ dy.
Observe that the first term on the far RHS is nonnegative, by the dispersive/dissipative property of I'/T,

respectively. Returning to the weighted energy identity, we take the supremum in j < j; and in s € |09, 01],
then use to bound

1
2
</ n%iow‘?u(a()a y)2 dy> < C.

In conclusion, we arrive at
3 o1
sup sup (/ n%iow?U(s,y)Q dy) < C+ Csup / (I4+II+1III+1V) ds, (106)
s€loo,01] 7<Jo n J<jo J oo
where
I=(1+e'r)e " ||[n=im;, HU| 12,

1= (14 e r)e *[n2i,@;02 LU + e VoK) 2

M = (1 + €°7,) |91, M| 12,

IV = || T okt 3(niow U 2

We claim that, for some ¢ > 0 and o0¢ sufficiently large depending on A,

g1 . .
sup / (I+ 11+ III + IV) ds < 25 F2k+8)io | 9—eio 4 4 g=co0 4,

J<jo Joo
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Since the LHS of (106]) is equivalent to (105)), (IB5|) would follow from the claim by taking i, A, and op
large enough (in this order).

To bound the contributions of I and II, we use Lemma and (as well as (B4)), (B5)), and ) to

estimate

g1 g1
sup/ Ids S e H9A, sup/ IIds < e 7°(1 + ko).

i<jo J oo J<jo Joo

Both right-hand sides are bounded by e™“?° A if we take 0 < ¢ < min{u, 1}, A sufficiently large and op
sufficiently large (in this order). To treat III, we begin by noting that

11134070 M PEF)] | 2

SNVl e (2(2k+%Jr%)a‘g((?k%)b*%)(swo)HU(2k+3)HLQ(AJ_) 4 2(%*%)1'2(1*%6)(8*00)”U/HLZ(AJ_)) :

where Aj is a slight enlargement of supp w;. Indeed, this inequality is proved by first writing

2k+-2

2io@i M) = sy Y
=2

2k+-2

1/2k+4 _ 12k +4\ 4 4,. e~

s et s, 35 (M o)
(=2

then applying the usual Gagliardo-Nirenberg inequalities to 7); U’; here, 7; is a smooth bump function such
that supp7); C Aj, |0?§V7N]j| <y 27N (for any N > 0) and 71; = 1 on supp ;. Then using (104}, (B4}, and
(B5) (as well as ), we obtain
o1 .
/ IIIds < (2770 4 Ae ") A,
g

0

which is bounded by 27 A 4 e~70 A if we take 0 < ¢ < 7 and e("=97 > A. Finally, the contribution of IV
is handled similarly as the term 7 (7> ;) in Step 1, where we use Lemma and (B4)—(B5|) instead of

(IB1)—(IB2)) and (B4)), respectively. We may show that

/ " Vs 22 1 (270 4 gemren) A,
g

0

which is bounded by the right-hand side of the desired claim if 0 < ¢ < r and e("~990 > A. This completes
the proof. ]
6 Estimates on modulation parameters and unstable coefficients

In this section, we analyze the ODE’s satisfied by the modulation parameters and the coefficients wu )(s, 0).
We prove the bootstrap assumptions in Lemma involving the modulation ODE’s and W(%H)(s, 0), as
well as Lemma [3.9] in its entirety.

6.1 Control of the modulation parameters and w1

We establish sharp bounds on the ODE’s for modulation parameters, which improve .

Lemma 6.1 (Control of the modulation parameters). Assume the hypotheses of Lemma . Then we have

’657'5‘ < CAe_ min{2’y7u}57 (107)
‘ebsgs o (1 + esTS)e(bfl)sﬁ‘ < CA@i min{2’y,u}s7 (108)
|e(b71)sﬁs‘ < CAei min{2’y,,u0}s‘ (109)

In particular, if og is sufficiently large (depending only on A, yo, ko), (IB6) holds.
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Proof. For 75, by , we have

‘F(1)<3a 0)] + ‘w2(€bsfs — (1 + 6878)6(1771)8"5)’
- [F0(5,0)

By (B6), (in the case k > 2 for ws), and with j = 1, [F()(s,0)| < Ca (e7# + €727%) (since
0 < p < 2), which implies that

lefTs| <

€575 < 2Ca(e™ 4 e7P% 4 Cem ™) < Cye 271,

thereby showing (107)).
For &, we use to bound
1

bs s (b—1)s
s 1 S S
¢ — (1 4 e'Tg)e K| @~ 1

(1N @R)],—ol + (1 + e 7 ) F® (s,0)]) .
where we crucially used (B7) to ensure that (2k)! 4+ war+1 > (2k)! — 1 > 0 in the denominator. By
and (21)), we have | N (2k)],—0l < e~ 275, On the other hand, by (52), with j = 2k, and (107)), we have
|F2k) (5,0)| < Cae ™ (since 0 < p < 2). At this point, (T08) follows.

Finally, for ks, we use to bound

|€(b_1)$/’is| < |eb$£s 1+ eSTS)e(b_l)Sli’ 1+ |e$Ts|)‘F(O)(S,O)|~

By and with j = 0, we have |[F(0(s,0)] < Ce~mir{ro2-b}s — Ce=H05 (since 2 — b = %)
Combined with the previous bounds (T07) and (T08) for |e*7,| and [e?*¢s — (1 + €57, )e(’~1%k|, respectively,

(1109) follows.

Finally, since v < min{2v, i, o} by , (IB6)) follows from (107)—(109) provided that og sufficiently
large. O

Next, we study the ODE satisfied by W(2k+1)(s, 0) and improve (B7]).

Lemma 6.2 (Control of the stable coefficient). Assume the hypotheses of Lemma . Then (IBT7) holds
true for og sufficiently large.

Proof. Using equation with j = 2k + 1, we have the equation for wopy; = W(2k+1)(s,0) (since

T (0) = (2k)! and T2 (0) = 0):

Oswop1 + (1 +€°75) N(2k +1)[,_,
+ (—ebs§5 +(1+ esTs)e(b71)5m> Wokt2 — €°Ts ((2k)! — (2k + 2)wog11) (110)
= (1 + e*5) FEHD (5 0).

Hence all terms in display other than Oswory1 decay exponentially as s increases. Let us analyze the

terms one by one. First,
(14 €15 )N(2k + 1)| < Cpqe™?

thanks to the trapping assumption , the improved bound , and the bounds [W 21 (5 0)| < 1 as
well as |[W(5+2)(s,0)| < C'A (this last bound follows from the estimate in Lemma and plus
Sobolev embedding).

In addition,

’ (—ebsﬁs +(1+ esTs)e(b_l)sn> w2k+2‘ < Cyue 7%,

which follows by (IB6]) and (IB3).
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Moreover, by (IB6]), and (53), we have |(1 + e*15) FCR1) (50)] <4 e 5. Finally, recall from (29)
that the initial data at o( are such that \8§2k+1)W(00, 0)| < Cege=(1+2kb)o0 Therefore, we obtain an equation
of the following type for wak1:

Oswopt1 — €°Ts(2k + 2)wop11 = h#(s), (111)

where |h#(s)] < Caexp(—min{vy,u}s). Integrating (111 in time, we can prove the improved bootstrap
bound (IB7]) upon choosing og sufficiently large, as desired.
O

6.2 Control of the unstable coefficients: proof of Lemma |3.9

The purpose of this subsection is to prove Lemma (shooting lemma), which is relevant when k£ > 1.
We start by establishing the key outgoing property of the unstable ODE near the boundary of the trapped
region:

Lemma 6.3. Under the hypotheses of Lemma there exists co > 0 such that, for o9 sufficiently large
(depending only on k, p, v and A), the following holds. For any s € [0g,01] such that

1
56_75 <w(s) <e 77 (112)

we have
D5l (s)> > 2colii(s)]*.

Proof. We recall the vector @w(s) = (wa, ..., wak—1)(s), which satisfies the following system of ODEﬂ
05 (s) — Di(s) + (1+ )N (@(s)) = Mid(s) + f(s), (113)
Here D = diag (A2,..., Agp—1) wWith A\; =1 — %, so that 1 > Ao > ... > Agp_1 > 0. We put

1
co = 5)\%—1-

We now evaluate 0;|@(s)|* using (113):
LOMi()/2 — Di(s) - () + (1+ CTINB(S)) - B(s) = M(s) - 5(s) + F(s) - 5(5).

The contribution of Dii(s) gives the main positive term 4co|w|? for a suitable choice of ¢, since D =
diag (X2,...,Aog—1), with A; > 0 for all j. We claim that the contribution of the remaining terms is
bounded below by —2c|w|? if o is sufficiently large. First, for N, we have, by

N (@(s))] < Cili(s)]* < Cre™*[t(s)] <

for og sufficiently large.
Next, concerning the term M@(s), we have

|M| < Cre ",
which follows from (IB6). Finally, by (52), for j > 2, (IB6) and (112)), we have
f] < Coae™ < 20y ae™ P02 (s)).

Recalling from that v < po < p, the contribution of f(s) decays exponentially, which concludes the
proof of the lemma. 0

Y5 Recall display , where D and M are defined, and moreover recall that N (@(s)) is a vector with quadratic entries as
functions of the entries of @, and f is the vector ((1+ e*7s)F® (s,0),..., (1 4+ €*7,) F*(s,0)).
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Finally, we are ready to prove Lemma [3.9]

Proof of Lemma([3.9. For each |wy| < e~79°, denote by Ug,(s,y) the solution with initial data at s = og
induced by wo and Wy, and write @g,(s) for the vector (8§U@0 (s,0),.. .,azk_lUg,O(s,O)). For the pur-
pose of contradiction, suppose that for all @y satisfying |wo| < e™79, Uy, does not remain trapped for-
ever. By Lemma and a standard bootstrap argument, there exists a unique oy,qp(@Wo) > 0o such that
@0 (Ttrap(W0))| = e 77trar(T0) while [z, (s)] < e~ for all o9 < s < Tyrap(iWo) (see the discussion following
Definition . The key step in the proof is to establish the following:

Claim. The map H : By(e770) — 0By(1), @o + 7rar(B0) @y (040 () is continuous.

Assuming the claim, we first conclude the proof of the lemma. Note, first, that for wy € 0By(e~77°),
we trivially have otyqp = 00 and W, (0trap) = Wo; hence H is equal to the identity when restricted to the
boundary dBy(e~779). Hence, by composing with By(1) — By(e~79°), ¥ > e~ 7999, we obtain a continuous
map from By(1) into 0By(1) that is equal to the identity map on 9By(1) (i.e., a continuous retraction
By(1) = 0By(1)). As is well-known (cf. proof of Brouwer’s fixed point theorem), such a map does not exist,
which is a contradiction.

It remains to establish the claim. Fix @y € By(e~77?). By definition, holds for s € [0¢, O¢rap(Wo)], sO
Ug, obeys f on s € (00, Orap(Wo)]. By a standard argument involving analysis of the linearized
system, it can be shown that ¥ — Uy is Lipschitz continuou near wo in Cy(1; H?**2), where I is a fixed
open interval containing [0, 0¢rqp(Wo)]. By Sobolev embedding, it follows that wgz(s) depends continuously
on (s,7) € I x Bg,(0) for some § > 0. To establish the continuity of H at @y, it therefore only remains to
show that that ¥+ 0yyqp(¥) is continuous at ¥ = .

To prove the continuity of o44p, we begin by using the outgoing property near the boundary (Lemma|6.3])
to make the following observation: for an arbitrary sufficiently small number ¢ > 0, if Uy is trapped on
[00,01) and Wg(o1) > e 77170 then |04rqp(U) — 01| < €. When @y € 0By(e~79°), the continuity of o4yq)p at
Wy follows immediately by applying the preceding statement with o1 = o9, since € > 0 may be arbitrarily
small. When @y ¢ 0By(e™779°), we have oypqp(Wo) > og. Clearly, there exists o1 € (00, Otrap(Wo)) such
that e7 779179 < Wy, (01) < e 770 and |01 — Oprap(Wo)| < €. By Lemma and the strict inequality
W, (01) < e 791, for ¥ sufficiently close to wp, the corresponding solution Uy is trapped on [og, o1] and
obeys e~ 7717¢ < wiz(o1) < €771, Hence, |0trap(V) — Otrap(Wo)| < |Otrap(V) — 1] + |Otrap(@Wo) — 01| < 2e,
which implies the desired continuity of o¢pqp. ]
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