
Gradient blow-up for dispersive and dissipative perturbations

of the Burgers equation

Sung-Jin Oh∗ and Federico Pasqualotto†

Abstract

We consider a class of dispersive and dissipative perturbations of the inviscid Burgers equation, which
includes the fractional KdV equation of order α, and the fractal Burgers equation of order β, where
α, β ∈ [0, 1), and the Whitham equation. For all α, β ∈ [0, 1), we construct solutions whose gradient blows
up at a point, and whose amplitude stays bounded, which therefore display a “shock-like” singularity. We
moreover provide an asymptotic description of the blow-up. To our knowledge, this constitutes the first
proof of gradient blow-up for the fKdV equation in the range α ∈ [2/3, 1), as well as the first description
of explicit blow-up dynamics for the fractal Burgers equation in the range β ∈ [2/3, 1).

Our construction is based on modulation theory, where the well-known smooth self-similar solutions
to the inviscid Burgers equation are used as profiles. A somewhat amusing point is that the profiles that
are less stable under initial data perturbations (in that the number of unstable directions is larger) are
more stable under perturbations of the equation (in that higher order dispersive and/or dissipative terms
are allowed) due to their slower rates of concentration. Another innovation of this article, which may be
of independent interest, is the development of a streamlined weighted L2-based approach (in lieu of the
characteristic method) for establishing the sharp spatial behavior of the solution in self-similar variables,
which leads to the sharp Hölder regularity of the solution up to the blow-up time.

1 Introduction

In this article, we construct and describe the dynamics of solutions with smooth decaying initial data that
exhibit gradient blow-up (while the solution itself remains bounded) for a wide class of perturbations of the
inviscid Burgers equation

∂tu+ u∂xu = 0. (Burgers)

Examples covered by our result include the fractional KdV equations

∂tu+ u∂xu+ |Dx|α−1∂xu = 0 for any 0 ≤ α < 1, (fKdV)

Whitham’s equation,

∂tu+ u∂xu+ Γ(Dx)∂xu = 0 where Γ(ξ) =

√︄
tanh ξ

ξ
, (Whitham)

as well as the fractal Burgers equations

∂tu+ u∂xu+ |Dx|βu = 0 for any 0 ≤ β < 1, (fBurgers)

where |Dx|α = (−∆)
α
2 . These equations arise naturally as model problems in the theory of water waves [30],

which makes the problem of singularity formation a natural one.
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Gradient blow-up (also referred to as shock formation or wave breaking in the contexts of hyperbolic
conservation laws or water waves, respectively [38]) for (fKdV) in the range 0 ≤ α < 1 was conjectured
from numerical experiments in [22] and later in [18]. While the existence of gradient-blow-up solutions was
known for (fKdV) in the range 0 ≤ α < 2

3 and for (Whitham) (see for instance [18, 17, 32, 39]), our result
seems to be the first construction of such blow-up solutions in the range 2

3 ≤ α < 1. We furthermore give a
quantitative description of the blow-up dynamics in a stable blow-up regime in the case 0 < α < 2

3 , which
seems to have not appeared in the literature (note that in the case α = 0, the Burgers–Hilbert equation, a
precise description of the same blow-up dynamics has already appeared in the recent work of Yang [39], which
is discussed further below). In all cases, we also observe that there exist smooth compactly supported initial
data of either sign (everywhere nonnegative or nonpositive) that give rise to the same blow-up behavior,
which disproves (yet suggests a refinement of) a conjecture made by Klein–Saut [22, Conjecture 3] for
(Whitham); see Remark 1.3 below.

Concerning (fBurgers), gradient blow-up was shown in the papers [20, 1, 14] for all ranges 0 < β < 1.
Moreover, in a recent work of Chickering–Moreno-Vasquez–Pandya [7], which we learned of while preparing
our article, a quantitative description of a stable blow-up dynamics analogous to [39] in the Burgers–Hilbert
case was given in the case 0 < β < 2

3 . Our work provides an alternative, independent description of the same
stable blow-up regime, as well as the precise description of some examples of gradient-blow-up solutions in
the case 2

3 ≤ β < 1, which seems new.
Our proof is based on a systematic study of the stability of self-similar blow-up solutions for (Burgers)

under perturbations of the equation. As is well-known, (Burgers) admits a two-parameter family of scaling
symmetries (corresponding to separate rescaling of time and space), which results in a one-parameter family
of self-similar change of variables1

(t, x, u) ↦→ (s, y, U) =
(︂
− log(−t), x

(−t)b
, (−t)
(−t)b

u
)︂
,

parametrized by b > 0. Among these b’s, there exist countably many choices that lead to smooth self-similar
solutions (i.e., s-independent solution in the self-similar variables), namely b = 2k+1

2k for k = 1, 2, . . . [15]. In
what follows, we will refer the self-similar solutions in the case k = 1 as ground states, and those in the case
k ≥ 2 as excited states.

A key predecessor of this article is the recent work of Yang [39] that, based on the modulation-theoretic
approach of Buckmaster–Shkoller–Vicol [4], constructed an open set of initial data giving rising to gradient-
blow-up solutions to the Burgers–Hilbert equation (i.e., (1) with α = 0) with ground state self-similar
solutions to (Burgers) as blow-up profiles (see also the very recent work [7] for (fBurgers) with 0 < β <
2
3). In this article, we extend [39] (and [7]) to more general perturbations of the Burgers equation, while
simultaneously allowing for the use of excited states as blow-up profiles2.

In fact, these two extensions go hand in hand. A somewhat amusing point, made precise in this article,
is that higher excited self-similar profiles, which are less stable under perturbations of the initial data
(i.e., they are stable under higher co-dimensional set of initial data perturbations), are more stable under
perturbations of the equation, in that higher order dispersive and/or dissipative terms are allowed3. An
explanation behind this phenomenon is as follows. The key factor that determines the stability of a self-
similar profile under perturbations of the equation turns out to be its rate of concentration (i.e., the exponent
b = 2k+1

2k ), and the slower rates of the excited states lead to larger classes of admissible perturbations of
the equation. To see this point heuristically, one may simply compare the “strength” of each term in the
equation on the characteristic time and length scales of the k-th Burgers self-similar profile, which are ∼ (−t)

1Here, (s, y, U) are the self-similar variables for solutions defined for negatives times that blow up at (t, x) = (0, 0).
2At this point, we note the interesting work of Collot–Ghoul–Masmoudi [10], which considered a two-dimensional partially

dissipative perturbation of (Burgers) and constructed blow-up solutions with both ground and excited states as blow-up profiles.
We refer to Section 1.2 for further discussion.

3It is important to distinguish the perturbations of the equations discussed here, which are terms of the form Lu for some
linear operator L, with an external forcing term f , which is independent of u. The effect of an external forcing term with
compact support in spacetime should resemble that of a compactly supported initial data perturbation.
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and ∼ (−t)
2k+1
2k , respectively. For instance, for (fKdV), compare

∂tu ∼ (τ − t)−1u vs. |Dx|α−1∂xu ∼ (−t)−
2k+1
2k

αu.

(In self-similar variables for (Burgers), the “strength” of u∂xu is the same as that of ∂tu.) The “strength”
of the perturbation |Dx|α−1∂xu is weaker than that of ∂tu when −2k+1

2k α < −1, or equivalently, α < 2k
2k+1 ;

note that this range improves as k increases. Our main theorem demonstrates that under this condition,
the Burgers self-similar profile with b = 2k+1

2k is stable under passage to (fKdV), leading to gradient-blow-up
solutions to (fKdV) that asymptote to the same Burgers self-similar profile near the singularity. On the other
hand, it will become apparent that the instability of the self-similar profile under initial data perturbations
does not affect its stability under perturbations of the equation.

We remark that the preceding points are in parallel with the recent remarkable works of Merle–Raphaël–
Rodnianski–Szeftel on singularity formation for the compressible Euler equations, the compressible Navier–
Stokes equations and defocusing nonlinear Schrödinger equations (NLS). In [27], smooth self-similar profiles

for the polytropic compressible Euler equations with characteristic length scales (−t)
1
r are constructed for

discrete values of r. Then these profiles are used to demonstrate singularity formation for second-order
dissipative (i.e., compressible Navier–Stokes [28]) and dispersive (i.e., energy-supercritical defocusing NLS
after Madelung transform [26]) perturbations of the Euler equations, where the admissible values of r with
respect to each perturbation may be determined with similar heuristics as above.

Another innovation in this article is the introduction of a robust yet sharp weighted L2-based method
to establish the optimal spatial growth of the solution in the appropriate self-similar variables, in lieu of the
method of characteristics employed in [4] and subsequent works. Such information is necessary to establish
the sharp Hölder regularity, and in general even the boundedness (due to the lack of the maximum principle),
of the solution up to the blow-up time. We refer the reader to Section 1.3 below for a short description of
this method.

1.1 First statement of the main result and discussion

We now precisely state the class of equations studied in this article. For u : Rt × Rx → R, consider

∂tu+ u∂xu+ Γ∂xu+Υu = 0. (1)

Here, Γ and Υ are Fourier multipliers with symbols Γ(ξ) and Υ(ξ) satisfying the following properties:

1. Γ(ξ),Υ(ξ) ∈ C∞(R \ {0}) are real-valued and even4;

2. Γ(ξ)ξ and Υ(ξ) are symbols of order α and β with 0 ≤ α, β < 1, in the sense that for every multi-index
I, there exists constants CΓ,|I|, CΥ,|I| > 0, such that for every |ξ| ≥ 1,

|∂I
ξ (Γ(ξ)ξ)| ≤ CΓ,N |ξ|α−|I|, |∂I

ξΥ(ξ)| ≤ CΥ,N |ξ|β−|I|.

On the other hand, we assume that Γ(ξ)ξ and Υ(ξ) are bounded on {ξ ∈ R : |ξ| ≤ 1}.

3. Υ(ξ) ≥ 0 (i.e., Υ is elliptic).

Clearly, (fKdV), (Whitham) are examples of (1) with Υ = 0, and (fBurgers) is an example of (1) with Γ = 0.
The order of Γ for (Whitham) is α = 1

2 .
By the standard energy method, it can be readily seen that the initial value problem for (1) is locally

well-posed in Hs for any s > 3
2 . Our main theorem concerns the formation of singularity for (1) starting from

smooth and well-localized initial data. In simple terms, the statement of our main theorem is as follows.

4This property is equivalent to the requirement that the Fourier multiplier Γ∂x+Υ maps real-valued functions to real-valued
functions.
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Theorem 1.1. Let k be a positive integer such that α, β < 2k
2k+1 . Then there exist smooth initial data u0

for (1) such that the resulting solution of (1) blows up in finite time in Cσ for every σ > 1
2k+1 , while its

C
1

2k+1 norm stays bounded until the blow-up time. In the case k = 1, and for α < 2
3 and β < 2

3 , the blow-up
behavior is stable in H5. In the case k > 1, these initial data form a “codimension 2k− 2 subset” of H2k+3.

For more precise statements regarding the description of the initial data and blow-up dynamics, we refer
to Theorem 3.1, Lemma 3.4 and the ensuing discussion. Note moreover that it would be possible, by a more
refined analysis, to show that the “codimension 2k− 2 subset” of H2k+3 in the above statement constitutes
in reality a suitably regular submanifold of initial data. However, this is not carried out in the present work.

Remark 1.2 (Stable blow-up regime). Note that Theorem 1.1 applies to (fKdV) for 0 ≤ α < 2
3 , (Whitham)

and (fBurgers) for 0 ≤ β < 2
3 with k = 1, and as a result we obtain a blow-up behavior that is stable

under initial data perturbations for these equations. On the other hand, in the range 2
3 ≤ α < 1, the term

|Dx|α−1∂x cannot be merely treated as a small perturbation for k = 1, and we must perturb off of an excited
Burgers self-similar profile. Description of a stable (under initial data perturbations) blow-up for (fKdV) for
2
3 ≤ α < 1 remains an open problem.

Remark 1.3 (The sign of the initial data). In [22, Conjecture 3], based on numerical investigation, the
following interesting conjecture concerning the blow-up dynamics for (Whitham) and the sign of the initial
data was made:

• solutions to the Whitham equation [...] for negative initial data u0 of sufficiently large mass
will develop a cusp at t∗ > tc of the form |x− x∗|1/3 [...]

• solutions to the Whitham equation [...] for positive initial data u0 of sufficiently large mass
will develop a cusp at t∗ < tc of the form |x− x∗|1/2 [...]

Our construction provides an open set of initial data of each sign whose corresponding solutions all have
the same blow-up behavior (i.e., C

1
3 remains bounded while Cσ for any σ > 1

3 blows up), thereby providing
a counterexample to this conjecture as stated; see Remark 3.3 below. Nevertheless, it is possible that the
blow-up observed in [22] for positive initial data is another stable blow-up regime, whose blow-up profile must
have a positive sign. Verification of this revised picture remains an interesting open problem.

1.2 Prior works

The models we consider in the present paper have been considered several times in the literature. We try
to give a (non-exhaustive) list of previous results here, dividing them into four main areas.

• Water waves. Some of the above equations, such as (fKdV) and (Whitham) arise as approximated
models in the theory of water waves. In his 1967 paper Whitham [37] introduced the equation bearing
his name, arising as a nonlinear approximation for surface water waves, where the dispersive term
satisfies the appropriate dispersion relation. For further discussion of the connections of (fKdV) with
the theory of water waves, we refer the reader to the work of Klein–Linares–Pilod–Saut [21].

Many authors since the work of Whitham focused on the issue of singularity formation for such models.
Wave breaking for (Whitham) was first shown only formally by Seliger [34], followed by Naumkin–
Shishmarev [30]. The Russian authors were able to extend Seliger’s argument to (fKdV) in the case
0 ≤ α < 2

3 . However, it appears that their arguments were not completely rigorous. In follow-up work,
A. Constantin–Escher [11] made these arguments fully rigorous in the case of a model problem very
similar to (Whitham), requiring however boundedness of the kernel, which does not cover the case of
(Whitham) itself.

In Castro–Cordoba–Gancedo [6], the authors proved blow-up for (fKdV) in the full range 0 < α < 1:
their result show that the solution blows up in C1,σ, however it does not imply gradient blow-up in
this case.
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In Klein–Saut [22], the authors performed numerical experiments on (fKdV) in the full range 0 < α < 1,
which lead them to conjecture that wave breaking happens in the full range.

In Hur–Tao [18], the authors were then able to show wave breaking for (fKdV) in the case 0 < α < 1
2

and for (Whitham). In later work, Hur was able to extend the blow-up construction to the range
0 < α < 2

3 , see Hur [17].

More recently, Yang [39] extended the shock formation construction to the case α = 0, by means of
a modulation-theoretic analysis in self-similar variables similar to [4] (discussed below), which gives a
precise description of singularity formation. Finally, Saut–Wang [32] have also proved gradient blow-up
for (fKdV) in the case 0 ≤ α < 3

5 as well as for (Whitham).

Concerning model problems, let us mention the work of Klein–Saut–Wang [23], where the authors
consider the modified fKdV equation (which features a cubic nonlinearity) in the range α ∈ (0, 2). In
the weakly dispersive range (α ∈ (0, 1)), they show the existence of wave breaking solutions. Note also
that, by the work of Saut–Wang [33], modified fKdV admits global solutions for small data when α is
in the full range (0, 2), α ̸= 1.

Let us finally briefly mention the case of α ≥ 1, where the situation seems to be delicate. Conjecturally,
when α ∈ (1, 3/2), the picture of “shock formation” is expected not to hold (see Klein–Saut [22]) for
the fKdV equation. In a recent work, Rimah was able to establish a precise version of this statement for
a paralinearized version of the fKdV equation, thereby excluding wave breaking in the case α ∈ (1, 2)
for a paralinearized model problem [31]. For modified fKdV with α ∈ (1, 2), Klein–Saut–Wang (again
in [23]), conjecture that, in the focusing case for α ∈ (1, 2), the L∞ norm of the solution blows up (and
no wave breaking occurs).

Finally, it is expected that, for α > 3/2, no blow-up occurs for fKdV. In this direction, we cite the work
of Linares–Pilod–Saut [24], in which the authors show local well-posendess for fKdV with initial data
in Hs(R), where s > 3

2 −
3β
8 and 0 < β < α− 1. More recently, Molinet–Pilod–Vento [29] extended the

previous result to s > 3
2 −

5β
4 . Together with conservation of energy this implies global well-posedness

when α > 1+6/7. Showing global well-posedness all the way to α > 3/2 remains an outstanding open
problem.

• Weak dissipation. Weakly dissipative models have also attracted significant attention from the
fluid dynamics community. For (fBurgers) in the case 0 ≤ β < 1, Kiselev–Nazarov–Shterenberg [20]
and independently Alibaud–Droniou–Vovelle [1] as well as Dong–Du–Li [14] were able to show gradient
blow-up. Note that the approaches in [20, 1, 14] rely heavily on monotonicity properties of the fractional
Laplacian (a form of the maximum principle). Unfortunately, in the dispersive case (in particular, in
fKdV with α ∈ (2/3, 1)), the monotonicity properties are lost and this approach breaks down. Very
recently, Chickering–Moreno-Vasquez–Pandya [7] used an approach similar to [4, 39] to give a precise
description of stable blow-up dynamics in the case 0 ≤ β < 2

3 .

We note that the blow-up solutions to (fBurgers) constructed in this article sharply complement
known regularity criteria for (fBurgers). More precisely, regularity results on linear advection-fractional
dissipation equation [12, 35, 36] (see also [19] for time-integrated criteria) imply that if u is a solution to
(fBurgers) such that u ∈ L∞

t ([0, τ+); C1−β), then ∂xu is Hölder continuous up to time τ+, and therefore
the solution extends past [0, τ+). On the other hand, for each k ≥ 1, Theorem 1.1 demonstrates the

existence of a blow-up solution u to (fBurgers) with u ∈ L∞
t ([0, τ+); C

1
2k+1 ) for any β < 2k

2k+1 (or more

instructively, 1
2k+1 < 1− β).

• Self-similar constructions in fluids.

Our blow-up construction is based on the method of modulation theory in self-similar variables using
smooth self-similar solutions to the Burgers equation as blow-up profiles.

This method was first applied in the context of the Burgers equation in a seminal work by Collot–
Ghoul–Masmoudi [10], in which the authors construct gradient blow-up for a two-dimensional Burgers
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equation with transverse viscosity, which is a simplified model for Prandtl’s boundary layer equation.
In particular, similarly to the present article, [10] employs weighted L2-bounds and makes use of all
excited states as blow-up profiles via a topological argument.

The above method was applied more recently to compressible fluid dynamics with great success in a
series of works [4, 3, 5] by Buckmaster–Shkoller–Vicol. In [4, 3], the authors use a self-similar method
to show shock formation for polytropic compressible Euler in two and three space dimensions, giving a
precise asymptotic description of shock formation at the point of first singularity, even in the presence
of vorticity. They moreover extended their treatment to the non-isentropic case in [5], showing for the
first time generation of vorticity at the shock.

We also mention the work of Buckmaster–Iyer [2], in which the authors show formation of unstable
shocks for two-dimensional polytropic compressible Euler by using (first) excited states as blow-up
profiles, albeit via a different argument (Newton iteration) than what is used in this article (topological
argument) to control the unstable directions.

Concerning self-similar solutions in fluids, we finally mention the groundbreaking recent work of Elgindi
on the blow-up of the 3D incompressible Euler equations in the C1,α regularity class [16].

• Geometric blow-up constructions. Finally, we also mention the geometric blow-up constructions
pioneered by Christodoulou in [8], where shock formation for the compressible irrotational Euler equa-
tions is shown. The work of Christodoulou relies on powerful energy estimates, which allow not only
to construct the point of first singularity, but also the maximal development of the solution. These
ideas enabled Christodolou to later address the restricted shock development problem [9]. Moreover,
Luk–Speck used geometric ideas to show stability of planar shocks under perturbations with nonzero
vorticity [25]. In the context of the present work, it would be very interesting to extend this type of
reasoning to include weakly dispersive and dissipative effects.

1.3 Strategy of the proof

In this section, we outline the strategy of the proof. For the purposes of this section, let us restrict to
the case of (fKdV). Our argument is based on the underlying analysis of stable (and unstable) blow-up
for the Burgers equation. It is well known (see, for instance, [15]) that, for any given k ∈ N, k ≥ 1, the

Burgers equation admits self-similar solutions exhibiting blow-up in C0, 1
2k+1

+, which are each associated to
a self-similar blow-up profile and self-similar coordinates.

We start from equation (fKdV), which is written in the variables (t, x, u), and we rewrite it in the
appropriate self-similar variables arising from Burgers, which we call (s, y, U). For the precise definition of
these variables, see Section 2.2. We expect the unstable behavior to be encoded by the derivatives of U
up to and including order 2k at y = 0. In view of this observation, we are going to track of the values of
∂j
yU(s, 0) throughout the evolution, j = 0, . . . , 2k.

Three of the unstable modes can be controlled naturally by modulation parameters adapted to the sym-
metries of the equation: time translation, space translation and Galilean transformation. The modulation
conditions will therefore be imposed on U(s, 0), ∂yU(s, 0) and ∂2k

y U(s, 0), and the modulation parameters
are going to be called (τ, ξ, κ). In the case k = 1, there are only three unstable directions, which allows us
to show stable blow-up.

In the case k > 1, the remaining 2k − 2 unstable directions will have to be controlled by selecting the
initial data appropriately. For the precise definition of the modulation parameters and to see how they arise
from the symmetries of the equation, see Section 2.2.

With this setup, in the self-similar variables (defined precisely below in (5)), (fKdV) then becomes:

∂sU + by∂yU +
(︂
−ebsξs + (1 + esτs)e

(b−1)sκ
)︂
∂yU − (b− 1)U + e(b−1)sκs + (1 + esτs)U∂yU

= (1 + esτs)e
−s(1−bα)∂y|Dy|α−1U.

Here, we have defined b = 2k+1
2k .
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For ease of exposition, we are now going to set all the modulation parameters to zero. We obtain the
following equation:

∂sU − (b− 1)U + (U + by)∂yU = e−s(1−bα)∂y|Dy|α−1U. (2)

The key observation is that, as long as 1 − bα > 0, we are able to treat the term on the RHS in a
perturbative way due to the exponentially decaying prefactor. Since b → 1 as k → ∞, we are able to treat
values of α arbitrarily close to 1 by choosing k appropriately.

We will set up a bootstrap argument and our goal will be to show that equation (2) admits a global
(in self-similar time s) solution. The starting point is that ∂yU can be treated almost independently by
a Lagrangian analysis, which yields a uniform bound for ∂yU in L∞. Through the intermediate step of
showing a uniform L2 bound for ∂2

yU , we finally propagate appropriate weighted (in y) bounds for top-order
derivatives. The weights are adapted to the Lagrangian flow of the equation, and their purpose is to show
that the solution displays the correct asymptotic behavior at the time of blow-up. This is carried out in a
weighted L2 framework, which has a twofold advantage. First, we show blow-up without the need to consider
the difference with the exact self-similar blow-up profile, which is an amusing aspect by itself. Second, this
part of the argument is entirely L2 based, which avoids derivative loss at the top order.

The final part of the argument is then devoted to addressing the “unstable” part, i.e. the ODE analysis
for the modulation parameters and for the unstable derivatives of U at y = 0. We introduce a “trapping
condition” for the unstable coefficients (i.e., a decay condition on derivatives of U at y = 0) and show, by
way of a shooting argument, that initial data can be selected such that the trapping condition holds for all
times.

We are now going to describe the strategy in more detail, again focusing on the case of fKdV.

1. Control of ∥∂yU∥L∞ . We differentiate equation (2) by ∂y and we obtain:

∂sU
′ + U ′ + (U ′)2 + (U + by)∂yU

′ = e−s(1−bα)∂y|Dy|α−1U ′. (3)

Let us for a moment neglect the nonlocal RHS. We rewrite U ′ in Lagrangian coordinates (we let Ũ
′

be U ′ written in Lagrangian coordinates) and we obtain the following equation for Ũ
′
:

∂sŨ
′
= −Ũ

′
(Ũ

′
+ 1).

We immediately see that the inequality −1 < Ũ
′
< 1 is preserved by the above Lagrangian ODE, and

moreover this bound carries over to the original equation (3). This control is going to be the starting
point of our analysis (see Lemma 5.2).

Building upon this inequality, we then show that, depending on the region considered, U ′(s, y) either
satisfies a coarse polynomial bound in terms of |y|, or it decays exponentially in self-similar time (see
Lemma 5.2, part 4). We will use this, later in the course of the argument, to show dissipativity of the
equation in a region where y is large.

2. Control of ∥∂2k+2
y U∥L2(R) and ∥∂2k+3

y U∥L2(R). These terms are “top order” in terms of derivatives.
In this part, we shall first accomplish the intermediate task of controlling ∥∂2

yU∥L2(R). We first show,

by a Lagrangian argument, that U ′′ satisfies a uniform L∞ bound in the “close” region |y| ≤ 1
4 . We

emphasize that, in this case, it is extremely important that the bound, as well as its region of validity,
be independent of the bootstrap parameters. The reason is that we then perform a weighed L2 estimate
in the region R := {y ∈ R : 1

4 ≤ |y| ≤ y2}, and we wish to control the expression⃦⃦⃦⃦
exp

(︃
−λ

2
y

)︃
U ′′
⃦⃦⃦⃦
L2(R)

,

where λ is a positive real parameter, and y2 is a positive number which we regard as large. We thus
require the parameter λ to depend on the lower bound for |y| when y ∈ R, and it is therefore crucial
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that this lower bound be independent of the bootstrap parameters. Finally, we need to show a bound
in the “far away” region, where |y| ≥ y2. We use the smallness of U ′ to show that the equation for U ′′

has a dissipative character for |y| ≥ y2. Combining the three regions, we obtain a uniform L2 bound
for U ′′. This is the content of Lemma 5.3.

Turning now to the proof of the bounds for ∥∂2k+2
y U∥L2(R) and ∥∂2k+3

y U∥L2(R), we recall the familiar
observation that, taking 2k + 2 derivatives of equation (2), the linear term on the LHS becomes
dissipative everywhere on R. Combining this fact with interpolation and the control of ∂2

yU in L2,

which was obtained as an intermediate step, allows us to deduce a uniform bound for ∥∂2k+2
y U∥L2(R).

Using this control, it is then straightforward to derive a bound for ∥∂2k+3
y U∥L2(R) (we require control up

to this order due to a technical point: we will need to bound ∂2k+2
y U at y = 0 by Sobolev embedding,

in order to control the evolution of ∂2k+1
y U at y = 0 in the “unstable” part of the argument). The

high order bounds are obtained in Lemma 5.4.

3. Control of weighted L2 norms. Recall that the exact self-similar profile Ū for the Burgers equation
satisfies, for large |y|,

|y|
1

2k+1
−j ≲ |∂j

yŪ | ≲ |y|
1

2k+1
−j , (4)

where j ≥ 0, j ∈ N.
In this part of the argument, we wish to propagate an appropriate L2 version of the above polynomial
decay bound, using a weighted L2 space, for top-order number of derivatives (i.e., when j = 2k + 3).
This information is needed to show that the blow-up solution is in the correct Hölder regularity class
up to the blow-up time.

The weights are constructed such that, in a region of bounded x (i. e. a region which corresponds to the
image under the Lagrangian flow of a bounded y-interval centered at 0), one obtains the corresponding
decay in y. Outside this region, the weight is “tapered”: it is independent of y, and grows exponentially
in self-similar time at the correct rate.

More precisely, given n ∈ N and L > 0, we define the semi-norm

∥V ∥Ḣn
<L

= sup
j∈Z, 2j<L

(︄∫︂
2j−1<|y|<2j

(|y|n−
1

2k+1∂n
y V )2

dy

y

)︄ 1
2

+ Ln− 1
2k+1

− 1
2

(︄∫︂
|y|>L

2

(∂n
y V )2dy

)︄ 1
2

.

Note that it consists of two terms: each expression in the first summand scales according to (4), and
the second summand is obtained by choosing the weight to be the matching constant outside the region
|y| ≤ L

2 . In practice, since the Lagrangian flow away from y = 0 is well approximated by y = Cebs, we
are going to set L = ebs.

Our goal will then be to show that ∥U∥Ḣ2k+3

<ebs
is uniformly bounded in s. As a first step, we first show a

uniform bound on ∥U∥Ḣ1
<ebs

. To obtain it, we multiply the equation for U ′ by a weight approximately

adapted to the Lagrangian flow in a region of large y. The growth rate of the weight is also chosen
appropriately.

Using this information, the bound for ∥U∥Ḣ2k+3

<ebs
is obtained in a similar fashion. In this case, however,

one needs to be careful about a potential loss of derivative, as the nonlocal term does not commute
with the weight. To deal with this issue, we show a commutator estimate (see Lemma 4.3). The
weighted bounds are proved in Lemma 5.5.

Remark 1.4. Note that, if we set L = ∞, the above semi-norm is scale invariant.

4. Topological argument. Finally, in Section 6, we employ a topological procedure relying on the insta-
bility of the ODE system satisfied by the Taylor coefficients of U at y = 0 to close the argument.
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This procedure will moreover select appropriately the initial data in the unstable case. This type of
construction is well known in the dispersive community: see, for instance, the paper by Côte, Martel,
and Merle [13].

Recall the trapping condition, i.e. a decay condition for the “unstable” Taylor coefficients of U at
y = 0. We want to show that, upon appropriately choosing initial data, it can be arranged that the
solution remains trapped globally in time.

First, in Lemma 6.1 we show that, under the bootstrap assumptions and assuming the trapping
condition, the evolution of the modulation parameters is controlled.

Finally, in Lemma 6.3, we show that the ODE system satisfied by the first 2k + 1 Taylor coefficients
of U at y = 0 displays an unstable character, and we use this fact, combined with a Brouwer-type
argument, to show that we can select initial data such that the corresponding solution is trapped for
all time. This concludes the argument.

Remark 1.5. Note that parts 1. and 2. of the above outline rely on showing L∞ estimates, which are proved
here by means of Lagrangian analysis. This Lagrangian approach seems to be the most efficient way (in
terms of degree of technicality) to analyze directly the unknown U (which is what we do in this paper), rather
than the difference between U and the exact self-similar profile. However, we believe that, if instead one were
to analyze the difference between U and the corresponding self-similar profile, one would be able to carry out
the argument without the need for Lagrangian analysis. This approach would make the argument completely
L2 based.

1.4 Organization of the paper

In Section 2, we introduce the relevant equations, the self-similar coordinates, the modulation parameters,
and the unstable ODE system for Taylor coefficients at y = 0. In Section 3, we give a precise statement of
the main theorem (Theorem 3.1), and reduce its proof to establishing two key lemmas, Lemma 3.6 (main
bootstrap lemma) and Lemma 3.9 (shooting lemma for unstable coefficients when k > 1). After collecting
some useful lemmas for the Fourier multipliers arising in our problem in Section 4, the following two sections
are devoted to the proof of the two key lemmas. In Section 5, close the bootstrap assumptions on the solution
U in appropriate self-similar variables. In Section 6, we estimate the ODEs for the modulation parameters
and stable coefficients, thereby completing the proof of Lemma 3.6. Moreover, in case k > 1, we analyze the
ODEs for the unstable coefficients and establish Lemma 3.9.
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discussions on blow-up constructions. This material is based partially upon work supported by the National
Science Foundation under Grant No. DMS-1928930 while the authors participated in a program hosted by
the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2021 semester. S.-
J. Oh was partially supported by the Samsung Science and Technology Foundation under Project Number
SSTF-BA1702-02, a Sloan Research Fellowship and a National Science Foundation CAREER Grant under
NSF-DMS-1945615.

2 Preliminaries

2.1 Notation and conventions

As is usual, we use C > 0 to denote a positive constant that may change from line to line. Dependencies of
C are expressed by subscripts. Moreover, we use the standard notation A ≲ B for |A| ≤ CB, and A ≃ B
for A ≲ B and B ≲ A, and dependencies of the implicit constant C are expressed by subscripts.
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Given a symbol Γ(ξ), we denote by Γ(Dx) its quantization in x, i.e., Γ(Dx)V = F−1
x [Γ(ξ)Fx[V ](ξ)],

where Fx denotes the Fourier transform in the variable x. For each k ∈ Z, we define the Littlewood–Paley
projection P≤k to be the Fourier multiplier operator with symbol P≤k(ξ) defined by P≤k(ξ) = P≤0(2

−kξ),
where P≤0 is a nonnegative smooth function supported in [−2, 2] and equals 1 on [−1, 1]. We also introduce
the symbols Pk(ξ) = P≤k(ξ) − P≤k−1(ξ) and P>k(ξ) = 1 − P≤k(ξ), as well as the corresponding Fourier
multipliers (which are also called Littlewood–Paley projections).

2.2 Derivation of the equations in self-similar variables

Given parameters τ, ξ, κ ∈ R and λ > 0 (called modulation parameters), consider the change of variables
(t, x, u) ↦→ (s, y, U),

t = τ − e−s, x = λy + ξ, u(t, x) =
λ

τ − t
U + κ. (5)

Note that varying the modulation parameters τ , ξ, κ and λ correspond to applying time translation, space
translation, Galilean boost (u ↦→ u(x−κt)−κ) and spatial scaling to the solution, which are exact symmetries
for the (invsicid) Burgers equation. Hence, (s, y, U) are nothing but the rescaled variables for Burgers
equation centered at (t, x, u) = (τ, ξ, κ) at spatial scale λ.

We let the modulation parameters depend dynamically on t, i.e., τ = τ(t), ξ = ξ(t), κ = κ(t) and
λ = λ(t), and consider the same change of variables (5). Note that

∂ts = es(1 + esτs)
−1, ∂ty = −es(1 + esτs)

−1

(︃
λs

λ
y +

ξs
λ

)︃
, ∂xs = 0, ∂xy =

1

λ
,

so that

∂tu = λe2s(1 + esτs)
−1

(︃
∂sU − λs

λ
y∂yU − ξs

λ
∂yU +

(︃
λs

λ
+ 1

)︃
U +

e−s

λ
κs

)︃
,

u∂xu = λe2s
(︃(︃

U +
e−s

λ
κ

)︃
∂yU

)︃
,

Γ(Dx)∂xu = λesΓ(λ−1Dy)λ
−1∂y

(︁
U + λ−1e−sκ

)︁
,

Υ(Dx)u = λesΥ(λ−1Dy)
(︁
U + λ−1e−sκ

)︁
.

Thus, (1) becomes

∂sU − λs

λ
y∂yU +

(︃
−ξs

λ
+ (1 + esτs)

e−s

λ
κ

)︃
∂yU +

(︃
λs

λ
+ 1

)︃
U +

e−s

λ
κs

+ (1 + esτs)
(︁
U∂yU + e−sΓ(λ−1Dy)λ

−1∂y
(︁
U + λ−1e−sκ

)︁
+ e−sΥ(λ−1Dy)

(︁
U + λ−1e−sκ

)︁)︁
= 0.

In what follows, we shall assume the following self-similarity ansatz for λ: Given k ∈ N, set b := 2k+1
2k and

λ = (τ − t)b = e−bs. (6)

Then λs
λ = −b, and we arrive at

∂sU + by∂yU +
(︂
−ebsξs + (1 + esτs)e

(b−1)sκ
)︂
∂yU − (b− 1)U + e(b−1)sκs

+ (1 + esτs)
(︂
U∂yU + e−sΓ(ebsDy)e

bs∂y

(︂
U + e(b−1)sκ

)︂
+ e−sΥ(ebsDy)

(︂
U + e(b−1)sκ

)︂)︂
= 0.

(7)

If Γ and Υ were zero, and τ , ξ, κ were constant, then (7) is precisely the self-similar Burgers equation with
scales (6). As is well-known, the values b = 2k+1

2k with k = 1, 2, . . . are distinguished by the property that they
admit smooth steady profiles of the self-similar Burgers equation [15, Section 11.2]; see also Subsection 2.3
below.
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Our intention is to view the linear terms e−sΓ(ebsDy)e
bs∂yU and e−sΥ(ebsDy)U as perturbations. To

motivate the way we will decompose these terms, consider the model cases Γ(ξ) = cΓ|ξ|α−1 and Υ(ξ) = cΥ|ξ|β
(cΓ, cΥ ∈ R). Then Γ(ebsDy)e

bs∂y = cΓe
bαs|Dy|α−1∂y and Υ(ebsDy) = cΥe

bβs|Dy|β, so that

e−sΓ(ebsDy)e
bs∂yU + e−sΥ(ebsDy)U = cΓe

−(1−bα)s|Dy|α−1∂yU + cΥe
−(1−bβ)s|Dy|βU.

In the regime we perform our construction, |Dy|α−1∂yU and |Dy|βU will morally remain bounded in time5.
Therefore, we may regard these terms as perturbative when bα < 1 and bβ < 1, in which case the factors
e−(1−bα)s and e−(1−bβ)s decay exponentially.

In view of the above discussion, in what follows, we are going to denote

µ = min{1− bα, 1− bβ, 1}.

Note that, under our assumptions, µ > 0. To simplify our notation, we will now rewrite the operator on the
RHS as follows:

e−sΓ(ebsDy)e
bs∂yU + e−sΥ(ebsDy)(U + e(b−1)sκ) = −e−µsH

(︂
U + e(b−1)sκ

)︂
− e−sL

(︂
U + e(b−1)sκ

)︂
,

where

H(V ) = −P>0(e
bsDy)

(︂
e−max{α,β,0}bsΓ(ebsDy)e

bs∂yV + e−max{α,β,0}bsΥ(ebsDy)V
)︂
, (8)

L(V ) = −P≤0(e
bsDy)

(︂
Γ(ebsDy)e

bs∂yV +Υ(ebsDy)V
)︂
. (9)

Note that H
(︁
U + e(b−1)sκ

)︁
= H(U) thanks to χ≥1(e

bsDy). Putting everything together, we finally have

∂sU + by∂yU +
(︂
−ebsξs + (1 + esτs)e

(b−1)sκ
)︂
∂yU − (b− 1)U + e(b−1)sκs + (1 + esτs)U∂yU

= (1 + esτs)
(︂
e−µsH(U) + e−sL

(︂
U + e(b−1)sκ

)︂)︂
.

2.3 Definition of the profile

We now solve the steady profile equation for the Burgers problem (i.e., Γ, Υ are zero and τ , ξ and κ are
fixed):

(1− b)Ů + (by + Ů)∂yŮ = 0.

We define Ů to be a solution to the above equation (an exact self-similar profile) such that Ů(0) = 0,
∂yŮ(0) = −1, ∂2k+1

y Ů(0) = (2k)! and ∂j
yŮ(0) = 0 for j = 2, . . . , 2k. We can ensure the last condition by

simply noticing that the self-similar profile equation is equivalent to:

y = −Ů − h1Ů
2k+1

,

where h1 > 0 is a free parameter. From this implicit definition, we see that the first three non-vanishing
Taylor coefficients at y = 0 are ∂yŮ(0), ∂2k+1

y Ů(0) and ∂4k+1
y Ů(0). We fix h1 so that Ů satisfies ∂2k+1

y Ů(0) =
(2k)!, and a calculation shows that h1 = 1/(2k + 1); in what follows, we will suppress the dependence of
constants on h1.

By construction, Ů has the following Taylor expansion about y = 0:

Ů(y) = −y +
1

2k + 1
y2k+1 +O(y4k+1) (10)

and the following expansion about y = ±∞:

Ů(y) = ∓h
− 1

2k+1

1 |y|
1

2k+1

(︂
1 +O(|y|−

2k
2k+1 )

)︂
. (11)

5More precisely, we will have boundedness of the gradient of these terms, and controlled growth for the terms themselves.
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We now define our choice of the profile. Consider a function χ̄ : R → R which is positive, equal to 1 on the
interval [−1, 1], equal to 0 outside of the interval [−8, 8], and such that χ̄′ ≥ −1

4 . We then define the cut-off

function χ to be transported by the linearized flow generated by Ů :

∂sχ+ (by + Ů)∂yχ = 0, χ(0, y) = χ̄(y).

Some basic properties of the cut-off function χ are as follows:

Lemma 2.1 (Support property of χ(s, y)). We have suppχ ⊆ [−Cebs, Cebs].

Proof of Lemma 2.1. Define the Lagrangian trajectories Y±(s) in the following way:

∂sY±(s) = bY±(s) + Ů(Y±(s)), Y±(0) = ±10, (12)

so that χ(y) = 0 for all y : |y| ≥ Y (0). The conclusion of the lemma will follow if we can show that |Y±| ≤
Cebs. By the form of Ů , we have that |Ů(Y±(s))| ≤ 1 + |Y±(s)|, and the lemma follows by integrating (12)
in s.

By Lemma 2.1 and (11), we have

sup
y∈suppχ(s,·)

|Ů(y)| ≲ e
1

2k+1
bs = e(b−1)s. (13)

We finally define the profile
Ū(s, y) = χ(s, y)Ů(y).

This is no longer a time-independent profile. Moreover, the modified profile satisfies the equation

∂sŪ − (b− 1)Ū + (by + Ū)∂yŪ = −Ů(1− χ)∂yŪ .

2.4 Equation for iterated derivatives of U

We let U (j) = ∂
(j)
y U , with j ≥ 1. We derive the equation satisfied by U (j). For j = 1,

∂sU
′ + U ′ +

(︂
(1 + esτs)U + by − ebsξs + (1 + esτs)e

(b−1)sκ
)︂
∂yU

′ + (1 + esτs)(U
′)2

= (1 + esτs)
(︂
e−µsH(U ′) + e−s∂yL(U + e(b−1)sκ)

)︂
,

(14)

and for j ≥ 2,

∂sU
(j) +

(︂
(1 + esτs)U + by − ebsξs + (1 + esτs)e

(b−1)sκ
)︂
U (j+1)

+
(︁
1 + (j − 1)b+ (j + 1)(1 + esτs)U

′)︁U (j) + (1 + esτs)M
(j)

= (1 + esτs)
(︂
e−µsH(U (j)) + e−s∂j

yL(U + e(b−1)sκ)
)︂
.

(15)

Here, M (j) = ∂
(j)
y (UU ′)− UU (j+1) − (j + 1)U ′U (j) for j ≥ 2.

2.5 Perturbation equation and commutation

We now define the perturbation W = U − Ū , and we obtain the following equation for W :

∂sW + (by + U +W )∂yW −
(︁
b− 1− ∂yŪ

)︁
W

+
(︂
−ebsξs + (1 + esτs)e

(b−1)sκ
)︂
∂y(Ū +W ) + e(b−1)sκs +

1

2
esτs∂y(Ū +W )2

= Eχ + (1 + esτs)
(︂
e−µsH(U) + e−sL

(︂
U + e(b−1)sκ

)︂)︂
.

(16)

Here, Eχ = Ů(1− χ)∂yŪ .
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Remark 2.2. Note that the error term Eχ arising from the cutoff is identically zero near y = 0.

Suppose now that j ≥ 1. We now commute the above equation (16) with ∂j
y, and obtain:

∂sW
(j) +

(︁
by + Ū +W

)︁
W (j+1) +

(︂
1 + (j − 1)b+ (j + 1)Ū

′
)︂
W (j) +N(j) + L(j)

+
(︂
−ebsξs + (1 + esτs)e

(b−1)sκ
)︂
(Ū

(j+1)
+W (j+1)) +

1

2
esτs∂

(j+1)
y (Ū +W )2

= E(j)
χ + (1 + esτs)

(︂
e−µsH(U (j)) + e−s∂j

yL(U + e(b−1)sκ)
)︂
.

Here,

N(j) = ∂(j)
y (WW ′)−WW (j+1),

L(j) = (ŪW )(j+1) − ŪW (j+1) − (j + 1)Ū
′
W (j).

2.6 Derivation of the modulation equations and unstable ODE system at y = 0

We now derive the equations satisfied by the derivatives of W at the origin. For each j ≥ 0, we let

wj := W (j)(s, 0), F (j)(s, 0) := e−µsH
(︂
U (j)

)︂
+ e−s∂j

yL
(︂
U + e(b−1)sκ

)︂
,

For j ≥ 0, we have

∂swj + ((j − 1)(b− 1)− 1)wj + w0wj+1 + N(j)|y=0 + L(j)|y=0

+
(︂
−ebsξs + (1 + esτs)e

(b−1)sκ
)︂
(Ū

(j+1)
(0) + wj+1) + δ0je

(b−1)sκs +
1

2
esτs ∂

(j+1)
y (Ū +W )2

⃓⃓⃓
y=0

= (1 + esτs)F
(j)(s, 0),

(17)

where δ0j is the Kronecker delta symbol, which equals 1 when j = 0 and vanishes otherwise. We also used

the following properties of the profile: Ū(s, 0) = ∂j
yŪ = 0 for 2 ≤ j ≤ 2k, and ∂yŪ(s, 0) = 1.

We first consider the cases j = 0, 1 or 2k:

∂sw0 − bw0 + w0w1

+
(︂
−ebsξs + (1 + esτs)e

(b−1)sκ
)︂
(−1 + w1) + e(b−1)sκs + esτsw0(−1 + w1) (18)

= (1 + esτs)F
(0)(s, 0),

∂sw1 − w1 + w0w2 + w2
1

+
(︂
−ebsξs + (1 + esτs)e

(b−1)sκ
)︂
w2 + esτs

(︁
w2w0 + (−1 + w1)

2
)︁

(19)

= (1 + esτs)F
(1)(s, 0),

∂sw2k + ((2k − 1)(b− 1)− 1)w2k + w0w2k+1 + N(2k)|y=0 + (2k)!w1

+
(︂
−ebsξs + (1 + esτs)e

(b−1)sκ
)︂
((2k)! + w2k+1) + esτs ((2k + 1)(−1 + w1)w2k + ((2k)! + w2k+1)w0)

= (1 + esτs)F
(2k)(s, 0). (20)

Observe that the coefficients in front of the s-derivatives of the modulation parameters in these three
equations are always non-zero. Indeed, in (18), ξs is multiplied by ebs, κs is multiplied by e(b−1)s, and τs is
multiplied by es (similarly for (19) and (20)).

For this reason, we shall use these equations to determine the dynamic evolution equations for κ, τ and
ξ by imposing the conditions

w0 = w1 = w2k = 0 for all s, (21)
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which leads to the following equations:

e(b−1)sκs + ebsξs − (1 + esτs)e
(b−1)sκ = (1 + esτs)F

(0)(s, 0), (22)

esτs = (1 + esτs)F
(1)(s, 0)− w2(−ebsξs + (1 + esτs)e

(b−1)sκ), (23)

((2k)! + w2k+1)
(︂
ebsξs − (1 + esτs)e

(b−1)sκ
)︂
= N(2k)|y=0 − (1 + esτs)F

(2k)(s, 0). (24)

Remark 2.3. Note also that, in case k = 1, the last term in equation (23) vanishes.

Conversely, if κs, τs and ξs are fixed so that (22)–(24) are satisfied6 and w0, w1 and w2k are initially
zero, then by (17) in the cases j = 0, 1, and 2k, (21) holds.

When k > 1, the conditions in (21) do not fix all values of wj for j = 0, . . . , 2k. In such a case, we use the
above equation to determine the evolution of wj . More precisely, for the remaining indices j = 2, . . . , 2k−1,
the ODE for wj is

∂swj + ((j − 1)(b− 1)− 1)wj + N(j)|y=0

+
(︂
−ebsξs + (1 + esτs)e

(b−1)sκ
)︂
wj+1 + esτs

(︂
−wj + N(j)|y=0

)︂
= (1 + esτs)F

(j)(s, 0).

Here, we used the properties of U
(j)

(0) and w0 = w1 = w2k = 0.
We will now rewrite the above system as a system of ODEs. Introduce the vector w⃗(s) = (w2(s), . . . , w2k−1(s)).

Then, w⃗(s) satisfies the following system of ODEs:

∂sw⃗(s)−Dw⃗(s) + (1 + esτs)N (w⃗(s)) = Mw⃗(s) + f⃗(s).

Here, D and M are (2k − 1)× (2k − 1) matrices given by

D = diag (λ2, . . . , λ2k−1) , λj = 1− (j − 1)(b− 1) = 1− j − 1

2k
,

M = esτsI +
(︂
ebsξs − (1 + esτs)e

(b−1)sκ
)︂
N,

(25)

where I is the identity matrix and N is the nilpotent matrix such that Nj(j+1) = 1 and Njj′ = 0 otherwise.

Since b = 2k+1
2k , each eigenvalue λj of D is strictly positive, so the main linear part (∂s −D)w⃗(s) defines

an unstable system of ODEs. In addition, N (w⃗(s)) is a vector with quadratic entries as functions of the
entries of w⃗, and f⃗ is the vector ((1 + esτs)F

(2)(s, 0), . . . , (1 + esτs)F
(2k−1)(s, 0)).

3 Precise formulation of the main theorem and reduction to the main
bootstrap lemma

3.1 Initial data in the original variables and the main theorem

The purpose of this subsection is to give a precise formulation of the main theorem of this paper (Theo-
rem 3.1). We begin by specifying the set of initial data.

We begin by introducing the following co-dimension 2k + 1 subspace of H2k+3:

H2k+3
(2k) = {W0 ∈ H2k+3 : W0(0) = W ′

0(0) = · · · = W
(2k)
0 (0) = 0}.

6For this purpose, we need to ensure that the coefficient (2k)! + w2k+1 is uniformly bounded away from zero; this assertion
will be one of the bootstrap assumptions below.
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We parametrize the initial data in H2k+3 that will lead to the desired gradient blow-up solutions with the
help of the map Φ : (0,∞)× R× R× R2k−2 ×H2k+3

(2k) → H2k+3, which is defined by the formula

(τ0, ξ0, κ0, w2,0, . . . , w2k−1,0,W0)

↦→ u0(x) = τ b−1
0

⎛⎝χ(− log τ0, y)
(︂
Ů(y) + τ1−b

0 κ0

)︂
+ χ̄(y)

2k−1∑︂
j=2

wj,0

j!
yj +W0(y)

⎞⎠⃓⃓⃓⃓⃓⃓
y=τ−b

0 (x−ξ0)

,
(26)

where b = 2k+1
2k , Ů is the k-th smooth self-similar profile for the Burgers equation and χ(s, ·) and χ̄(·) are

as in Subsection 2.3. When k = 1, the term χ̄(y)
∑︁2k−1

j=2
wj,0

j! yj is omitted.
Note that (26) maps the point (τ0, ξ0, κ0, w2,0, . . . , w2k−1,0,W0) = (τ0, ξ0, κ0, 0, . . . , 0) to the translated

and rescaled self-similar Burgers profile whose gradient at x = ξ0 is negative and of size τ−1
0 , i.e.,

(τ0, ξ0, κ0, . . . , 0) ↦→ u0(x) = χ(− log τ0)
(︂
τ b−1
0 Ů(τ−b

0 (x− ξ0)) + κ0

)︂
.

When k > 1, wj,0 equals the j-th Taylor coefficient of U(y) at y = 0 in the self-similar variables for
j = 2, . . . , 2k − 1.

Given τ0, ϵ0 > 0, we consider the following open subset of H2k+3
(2k) :

Oτ0,ϵ0 =

{︃
W0 ∈ H2k+3

(2k) : τ
3
2
b−1

0

(︂
∥W0∥L2 + τ

−b(2k+3)
0 ∥∂2k+3

y W0∥L2

)︂
< ϵ0

}︃
.

When k > 1, for v⃗0 ∈ R2k−2 and r > 0, we also introduce the notation

Bv⃗0(r) = {v⃗ ∈ R2k−2 : |v⃗ − v⃗0| < r}.

We are now ready to formulate the main theorem in precise terms.

Theorem 3.1 (Precise formulation of the main result). Let k be a positive integer such that α, β < 2k
2k+1

and set b = 2k+1
2k . Then there exist γ > 0 and positive decreasing functions τ∗(·), ϵ∗(·) such that the following

holds. Let ξ0 ∈ R, κ0 ∈ R, τ0 < τ∗(|κ0|), ϵ0 < ϵ∗(|κ0|) and W0 ∈ Oτ0,ϵ0. When k = 1, the initial data u0(x)
given by (26) gives rise to a (well-posed)7 solution to (1) with initial conditions u(0, x) = u0(x) that blows
up in finite time. When k ≥ 2, there exists w⃗0 ∈ B0(τ

γ
0 ) ⊆ R2k−2 such that the initial data u0(x) given by

(26) gives rise to a (well-posed) solution to (1) with initial conditions u(0, x) = u0(x) that blows up in finite
time. In both cases, the following statements hold:

1. The blow-up time τ+ obeys the bound |τ+ − τ0| < Cτ1+γ
0 .

2. There exist ξ+, κ+ such that

|κ+ − κ0| ≤ Cτ b−1+γ
0 , |ξ+ − (ξ0 + τ+κ0)| ≤ Cτ b+γ

0 ,

and such that

sup
0≤t<τ+

∥u(t, ·)∥L∞ + [u(t, ·)]
C

1
2k+1

≤ C,

while for every σ ∈ ( 1
2k+1 , 1),

C−1
σ |t− τ+|−

2k+1
2k

(σ− 1
2k+1

) ≤ [u(t, ·)]Cσ ≤ Cσ|t− τ+|−
2k+1
2k

(σ− 1
2k+1

)

as t → τ+.

7Local well-posedness of the equation considered holds, for instance, in the space H2k+3(R): if u0 ∈ H2k+3(R), there exists
a local-in-time classical solution u(t, x) ∈ C1([0, T ], H2k+3(R)) which solves the equation (1), and such that u(0, x) = u0(x).
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Remark 3.2. For the blow-up solutions in Theorem 3.1, we expect Ů to be the blow-up profile, in the sense
that U(s, y) in appropriate self-similar variables converges to Ů as s → ∞ on compact sets of y. Such a
statement would follow from estimates for W = U − χŮ on top of those proved in this paper, but we have
not carried out the details. We refer to [39] for the proof of this statement in the case of Burgers–Hilbert
(i.e., (fKdV) with α = 0).

Remark 3.3 (Sign of the initial data). There exist smooth compactly supported initial data with both signs
(i.e., everywhere nonnegative or nonpositive) that satisfy the hypothesis of Theorem 3.1. Indeed, in (26), note
that |Ů | ≤ C0τ

1−b
0 on the support of χ(− log τ0, ·) (see Lemma 2.1) for some constant C0 > 0 independent

of τ0. Therefore, if we choose, say, |κ0| > 2C0, then the initial profile χ(− log τ0)(τ
b−1
0 Ů(τ−b

0 (x− ξ0)) + κ0)
has a definite sign independent of τ0 > 0. Moreover, observe that W0 ∈ Oτ0,ϵ0 satisfies the pointwise bound
|W0| ≲ τ1−b

0 ϵ0 by the Sobolev embedding. As a consequence, when k = 1, the image of (26) with the above
choice of κ0 and ϵ0 > 0 sufficiently small leads to the existence of an open subset of signed initial data in H5

that leads to the blow-up behavior described in Theorem 3.1, as alluded to in Remark 1.3 above. When k ≥ 2,
by taking ϵ0 and τ0 > 0 sufficiently small, we may ensure that the initial data constructed by Theorem 3.1
has a definite sign.

All statements in Theorem 1.1 can be read off from Theorem 3.1, with the exception of the stability
and the co-dimensionality statements. To formulate these statements, we show that the map (26) is a local
homeomorphism.

Lemma 3.4. For each Θ = (τ0, ξ0, κ0, w2,0, . . . , w2k−1,0,W0) satisfying the hypothesis of Theorem 3.1, the
map Φ defined by (26) is a homeomorphism from an open neighborhood of Θ onto an open neighborhood of
Φ(Θ) in H2k+3.

Note that Φ does not possess any further regularity in, for instance, τ0, as it acts as a scaling parameter.

Proof. Continuity of the map Φ is evident. For every Θ̊ ∈ Õξ̊,κ̊,ϵ0
, we may directly construct the continuous

inverse in a small neighborhood of ů = Φ(Θ̊) as follows. Let u be sufficiently close to ů in the H2k+3

topology. Since ∂2k+1
x ů(ξ̊) = (2k)!τ−2k−2

0 and ∂2k
x ů(ξ̊) = 0, we may ensure that ∂2k+1

x u(ξ̊) is nonzero and

∂2k
x u(ξ̊) is small. Hence, we can find a unique point ξ0 near ξ̊ such that ∂2k

x u(ξ0) = 0. Next, we choose

τ0 = −(∂xu(ξ0))
−1, κ0 = u(ξ0) and wj,0 = τ bj0 ∂j

xu(ξ0). Finally, define W0 from u and the parameters using
(26).

Lemma 3.4 shows that the set of initial data for which Theorem 3.1 applies in the case k = 1 is an
open subset of H5, which is the precise sense in which the blow-up dynamics described in Theorem 3.1 is
stable. In the case k ≥ 2, it establishes the precise sense in which the initial data given by prescribing
ξ0 ∈ R, κ0 ∈ R, τ0 < τ∗(|κ0|), ϵ0 < ϵ∗(|κ0|) and W0 ∈ Oτ0,ϵ0 but not specifying w⃗0 ∈ B0(τ

γ
0 ) ⊆ R2k−2 is

“co-dimension 2k − 2” in H2k+2, as alluded to in Theorem 1.1.

Remark 3.5. An interesting question, which is not pursued in this article, is the regularity of the co-
dimension 2k− 2 set of initial data in H2k+3 given by Theorem 3.1 and Lemma 3.4 (e.g., does it form a C1

submanifold of H2k+3 modelled by H2k+3?). Such a result seems to require a careful analysis of the difference
of blow-up solutions.

3.2 Initial data in self-similar variables

In this short subsection, we rephrase our ansatz for the initial data in the self-similar variables (5), in which
most of our analysis will take place.

We prescribe the initial data at s = σ0, where conditions on σ0 will be specified later. In the self-similar
variables (s, y, U) given by (5) with τ(σ0) = τ0, ξ(σ0) = ξ0 and κ(σ0) = κ0, the initial data for U is of the
form

U(σ0, y) = χ(σ0, y)
(︂
Ů(y) + e(b−1)σ0κ0

)︂
+ χ̄(y)

2k−1∑︂
j=2

wj,0

j!
yj +W0(y)− e(b−1)σ0κ0, (D1)
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where the assumptions on W0 are as follows:

∂j
yW0(0) = 0 for all j = 0, . . . , 2k, (D2)

∥W0∥L2 + eb(2k+3)σ0∥∂2k+3
y W0∥L2 < ϵ0e

( 3
2
b−1)σ0 . (D3)

When k > 1, the following smallness conditions are assumed for the unstable coefficients:

|wj,0| ≤ e−γσ0 for j = 2, . . . , 2k − 1. (D4)

3.3 Main bootstrap and shooting lemmas

In this section, we state two central ingredients of our proof, namely, the main bootstrap lemma in self-similar
coordinates (Lemma 3.6) and a shooting lemma for handling the unstable modes when k ≥ 2 (Lemma 3.9).

Recall that µ = min{1− bα, 1− bβ, 1}. Let µ0 be given by8

µ0 =

{︄
min{µ, 2k−1

2k } when max{α, β} ≠ 1
2k+1 ,

2k− 3
2

2k when max{α, β} = 1
2k+1 .

Fix also a number γ satisfying
0 < γ < µ0. (27)

To formulate our bootstrap assumptions, we introduce a semi-norm Ḣn
<L (n is a nonnegative integer and

L > 0) defined by the formula

∥V ∥Ḣn
<L

= sup
j∈Z, 2j<L

(︄∫︂
2j−1<|y|<2j

(|y|n−
1

2k+1∂n
y V )2

dy

y

)︄ 1
2

+ Ln− 1
2k+1

− 1
2

(︄∫︂
|y|>L

2

(∂n
y V )2dy

)︄ 1
2

.

A notable feature of this semi-norm is that, in the limit L = ∞, it is invariant under the self-similar
transformation x = λy, u(x) = λ1− 1

bU(y) with b = 2k+1
2k for any λ > 0.

Lemma 3.6 (Main bootstrap lemma). There exist increasing functions ϵ−1
∗ (·), A(·), y−1

0 (·) and σ∗(·) on
[0,∞), all of which are bounded from below by 1, such that the following holds. Let κ0 ∈ R, σ0 ≥ σ∗(|κ0|)
and assume that the initial data conditions (D1)–(D4) are satisfied at s = σ0 with ϵ0 ≤ ϵ∗(|κ0|). Suppose
that, for some σ1 > σ0, A = A(|κ0|) and y0 = y0(|κ0|), the following estimates are satisfied for s ∈ [σ0, σ1]:

∥∂yU(s, ·)∥L∞(R) ≤ 1 + 2y0, (B1)

∥∂yU(s, ·)∥L∞({|y|≥y0}) ≤ 1− y2k0
4

, (B2)

∥∂2k+3
y U(s, ·)∥L2(R) ≤ 2A, (B3)

∥U∥Ḣ1
<ebs

≤ 2A, (B4)

∥U∥Ḣ2k+3

<ebs
≤ 2A, (B5)

|esτs|+ |e(b−1)sκs|+ |ebsξs − (1 + esτs)e
(b−1)sκ| ≤ Ae−γs, (B6)

|W (2k+1)(s, 0)| ≤ 1. (B7)

Assume also that U(s, 0) = U ′(s, 0) + 1 = U (2k)(s, 0) = 0 for all s ∈ [σ0, σ1]. In case k > 1, assume
furthermore that w⃗ satisfies the trapping condition

|w⃗(s)| ≤ e−γs for s ∈ [σ0, σ1]. (T)

8The reason why we separate out the case is max{α, β} = 1
2k+1

is entirely technical; see Lemma 5.1 below. We note that
2k− 3

2
2k

can be replaced by any positive number strictly less than 2k−1
2k

.
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Then, stronger estimates actually hold on the interval s ∈ [σ0, σ1], as follows:

∥∂yU(s, ·)∥L∞(R) ≤ 1 + y0, (IB1)

∥∂yU(s, ·)∥L∞({|y|≥y0}) ≤ 1− y2k0
2

, (IB2)

∥∂2k+3
y U(s, ·)∥L2(R) ≤ A, (IB3)

∥U∥Ḣ1
<ebs

≤ A, (IB4)

∥U∥Ḣ2k+3

<ebs
≤ A, (IB5)

|esτs|+ |e(b−1)sκs|+ |ebsξs − (1 + esτs)e
(b−1)sκ| ≤ e−γs, (IB6)

|W (2k+1)(s, 0)| ≤ 1

2
. (IB7)

Remark 3.7 (On dependencies). We would like to clarify the order in which the above functions ϵ∗, A, y0,
and σ∗ are chosen. We start from ϵ∗, which is essentially the size of the initial data. Then we choose A,
which is the bootstrap parameter (we will eventually choose it to be very large), and, in order to be able to
Taylor expand at y = 0, we choose y0 to be very small based on A. This then forces us to choose σ∗ very
large depending on y0 and A.

When k = 1, then Lemma 3.6 is already sufficient to set up a bootstrap argument to show the global
existence of U(s, y) for all s ≥ σ0, which is the key step in the proof of Theorem 3.1 (see the proof of
Theorem 3.1 below).

When k > 1, the trapping condition (T) for w⃗ is not improved in general, so we need an extra argument
to find a global-in-s solution. For this purpose, we introduce the notion of a trapped solution as follows:

Definition 3.8. Let k > 1. For κ0 ∈ R, ξ0 ∈ R and W0 satisfying the initial data conditions (D2)–(D3),
let A, y0 and σ0 be determined from Lemma 3.6. We say that a solution U(s, y) with the initial data (D1)
induced by σ0, κ0, ξ0, W0 and |w⃗0| ≤ e−γσ0 is trapped on an interval [σ0, σ1] if it satisfies (B1)–(B7) and
(T) on [σ0, σ1].

By Lemma 3.6, it follows that the only way a trapped solution U(s, y) on [σ0, σ1] can fail to be trapped
for s > σ1 is if (T) is saturated at s = σ1, i.e., |w⃗(σ1)| = e−γσ1 . Combining this property with a topological
fact (namely, the nonexistence of a continuous retraction of a closed ball to its boundary), we shall prove
the existence of a globally trapped solution:

Lemma 3.9 (Shooting lemma). Let W0, κ0 and ξ0 be fixed so that the conditions (D2)–(D3) hold, and let
A, y0, and σ0 be as in Lemma 3.6. Then there is a vector |w⃗0| < e−γσ0 such that the corresponding solution
U(s, y) with initial data at σ0 induced by w⃗0 and W0 remains trapped for all s ≥ σ0.

We are going to prove Lemmas 3.6 and 3.9 in Sections 5 and 6 by breaking the proof into several parts.
In the remainder of this section, we show how to establish Theorem 3.1 assuming Lemmas 3.6 and 3.9.

In addition to Lemmas 3.6 and 3.9, we need three more ingredients, which will be useful in the rest of
the paper. The first ingredient is the following simple pointwise bound from the weighted L2-Sobolev norm
Ḣn

<L:

Lemma 3.10. For any 1 ≤ ℓ ≤ 2k + 2, we have

|∂ℓ
yV (y)| ≲ℓ,k max

{︂
|y|−ℓ+ 1

2k+1 , L−ℓ+ 1
2k+1

}︂
(∥V ∥Ḣ1

<L
+ ∥V ∥Ḣ2k+3

<L
).

Proof. This lemma follows easily from the Sobolev embedding on the unit interval and scaling; we omit the
details.

The second ingredient is the observation that equation (1) admits an L2 bound for u(t, x), which readily
translates into an L2 bound for U(s, y) itself. We record this fact in the following lemma.
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Lemma 3.11. Assume that the initial data conditions (D1)–(D4) are satisfied at s = σ0, and u(t, x), U(s, y)
are as above. Then, there is C > 0 such that the following bound holds for s ∈ [σ0, σ1]:

∥U + e(b−1)sκ∥L2
y
≤ Ce(

3
2
b−1)s(1 + κ0). (28)

Proof. We first express the initial data for u in terms of the initial data for U . Due to (D1), we have

u(τ0, x) = e(1−b)σ0

⎛⎝χ(σ0, y)
(︂
Ů(y) + e(b−1)σ0κ(σ0)

)︂
+ χ̄(y)

2k−1∑︂
j=2

wj,0

j!
yj +W0(y)

⎞⎠ ,

where we remind the reader that x = e−bσ0y + ξ0. To bound the first (and dominant) term in the above

expression, recall from (13) that |Ů(y)| ≲ e
1

2k+1
bσ0 = e(b−1)σ0 on the support of χ(σ0, ·). Therefore,∫︂

e2(1−b)σ0χ(σ0, y)
2
(︂
Ů(y) + e(b−1)σ0κ(σ0)

)︂2
dx ≲ (1 + κ0)

2

∫︂
χ(σ0, e

bσ0(x− ξ0))
2 dx ≲ (1 + κ0)

2,

where we used Lemma 2.1 again in the last inequality. The contribution of the last term is bounded precisely
by (D4), while the contribution of the second term would decay as σ0 → ∞ according to our assumptions
on the initial data. We eventually obtain:

∥u0∥L2
x
≤ C(1 + κ0).

We now use the fact that equation (1) satisfies an a-priori L2 bound, since Γ(Dx)∂x is anti-symmetric
(dispersive) and Υ(Dx) is nonnegative (dissipative). We then calculate, using the fact that u = e(1−b)s(U +
e(b−1)sκ), ∫︂

|u|2 dx =

∫︂
e2(1−b)s(U + e(b−1)sκ)2 d(e−bsy) = e2s−3bs

∫︂
(U + e(b−1)sκ)2 dy.

This readily implies

∥U + e(b−1)sκ∥L2
y
= es−

3
2
bs∥u(τ(s)− e−s, x)∥L2

x
≤ Ce(

3
2
b−1)s(1 + κ0).

Finally, the third ingredient concerns some specific bounds for the initial data which follow from the
requirements in Section 3.2. We record these bounds in the next subsection.

3.4 Consequences of the initial data bounds

We record here some consequences of the initial data bounds from Section 3.2 which will be used in the
proof of Theorem 3.1. By (D3) and interpolation, we have

∥∂yW0∥L2 ≤ Cϵ0e
−(1− 1

2
b)σ0 , ∥∂2k+3

y W0∥L2 ≤ Cϵ0e
−(1+(2k+ 3

2
)b)σ0 ,

and by the Gagliardo–Nirenberg inequality,

|∂2k+1
y W0(0)| ≤ Cϵ0e

−(1+2kb)σ0 . (29)

On the other hand, (D3) also implies

∥W0∥Ḣ1

<ebσ0

+ ∥W0∥Ḣ2k+3

<ebσ0

≤ Cϵ0. (30)

Noting that ∥Ū∥Ḣn

<ebσ0
≤ Cn for any n = 0, 1, . . ., we have

∥U(σ0, ·)∥Ḣ1

<ebσ0

+ ∥U(σ0, ·)∥Ḣ2k+3

<ebσ0

≤ C. (31)

By the definition of Ū , (30) and Lemma 3.10, we also obtain the pointwise bound

|∂yU(σ0, y)| ≤ Cmax{(1 + |y|)−
2k

2k+1 , e−σ0ϵ0}. (32)
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3.5 Proof of the main theorem

We are now ready to give a proof of Theorem 3.1.

Proof of Theorem 3.1 assuming Lemmas 3.6 and 3.9. Let τ∗(·) = e−σ∗(·) and define σ0 by τ0 = e−σ0 . In
case k = 1, by a standard bootstrap argument using Lemma 3.6, there exist C1 functions τ(·), κ(·), and
ξ(·) on [σ0,∞) such that in the self-similar variables (s, y, U) given by (5) with τ(·), κ(·) and ξ(·), U(s, y)
is a globally trapped solution on [σ0,∞) and τ , κ, and ξ solve (22)–(24) with τ(σ0) = τ0 (so that s = σ0
corresponds to t = 0), κ(σ0) = κ0 and ξ(σ0) = ξ0. In case k ≥ 2, by Lemmas 3.6 and 3.9, there exists
w⃗0 ∈ B0(e

−γσ0) such that the above conclusion holds.
By integrating the ODEs for τs, κs and ξs in (IB6), it follows that (τ(s), κ(s), ξ(s)) → (τ+, κ+, ξ+) as

s → ∞, where

|τ+ − τ | ≲ e−(1+γ)s, |κ+ − κ| ≲ e−(b−1+γ)s, |ξ+ − ξ − (τ+ − τ + e−s)κ+| ≲ e−(b+γ)s. (33)

In particular, by (IB6) and |τ+ − τ | ≲ e−(1+γ)s, it follows that the change of variables s → t is a well-
defined strictly increasing map from [σ0,∞) onto [0, τ+). Since ∂yU(s, 0) = −1 for all s, it follows that
∂xu(t, ξ(s(t))) = −(τ(s(t)) − t)−1 → ∞ as t → τ+, which implies that u indeed blows up as t ↗ τ+. The
desired bounds on τ+, κ+ and ξ+ also follow from (33).

To complete the proof, it remains to establish the regularity and blow-up properties of u, which we
derive from properties of U and the change of variables (5). To begin with, note that, by (IB4)–(IB5) and
Lemma 3.10, we have

|U ′(s, y)| ≤ CAmax
{︂
|y|−

2k
2k+1 , e−s

}︂
for |y| ≥ 1. (34)

On the other hand, |U ′(s, y)| ≤ 2 for |y| ≤ 1 by (IB1)–(IB2). Using U(s, 0) = 0 and by integration, we arrive
at

|U(s, y)| ≤

{︄
C|y| for |y| ≤ 1,

CAmax
{︂
|y|

1
2k+1 , |y|e−s

}︂
for |y| ≥ 1.

(35)

For |y| > ebs, we may eliminate the linear growth |y|e−s by using the Sobolev inequality based on the L2

bound (28) and

∥∂y(U + e(b−1)sκ)∥L2(|y|>ebs) = ∥∂yU∥L2(|y|>ebs) ≤ e(
1
2
b−1)s∥U∥Ḣ1

<ebs
≤ e(

1
2
b−1)sA.

As a consequence, we obtain

|U(s, y) + e(b−1)κ| ≤ Ce(b−1)s(1 + κ0 +A) for |y| ≥ ebs,

which is an improvement over (35). In particular, it follows that

|U(s, y)| ≤ Ce(b−1)s(1 + κ0 +A) for all y ∈ R,

which implies via (5) that ∥u∥L∞ is uniformly bounded up to the blow-up time τ+.
To prove the upper bounds on the Hölder semi-norms, first observe the simple gradient bound |U ′| ≤

CA(|y|−
2k

2k+1 + e−s) from (IB1)–(IB2) and (34). Recalling (5), λ = e−bs and b = 2k+1
2k , we have, for each

t < τ+

[u]
C

1
2k+1

= sup
x∈R,∆x>0

|u(x+∆x)− u(x)|
(∆x)

1
2k+1

≤ sup
x∈R,∆x∈(0,1)

|u(x+∆x)− u(x)|
(∆x)

1
2k+1

+ 2∥u∥L∞

≤ sup
y∈R,∆y∈(0,ebs)

e−(b−1)s|U(y +∆y)− U(y)|
e−b 1

2k+1
s(∆y)

1
2k+1

+ 2∥u∥L∞
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≤ CA sup
y∈R,∆y∈(0,ebs)

(∆y)−
1

2k+1

∫︂ y+∆y

y
(|y′|−

2k
2k+1 + e−s) dy′

≤ CA sup
∆y∈(0,ebs)

(∆y)−
1

2k+1 ((∆y)
1

2k+1 +∆ye−s) ≤ CA.

Then interpolating with the trivial upper bound ∥∂xu∥L∞ = (τ+− t)−1∥∂yU∥L∞ ≲ (τ+− t)−1, the upper
bounds when 1

2k+1 < σ < 1 follow.
Finally, to establish the lower bounds on the Hölder semi-norms, note first that infs≥σ0, |y|≤c0 |U ′(s, y)| > 0

for some c0 > 0 by Taylor expansion. By the mean value theorem,

|y|−σ|U(s, y)− U(s, 0)| ≥ C|y|1−σ for |y| ≤ c0,

and then by (5), the desired lower bound follows.

4 Lemmas on Fourier multiplier

In this section, we establish key analytic lemmas concerning the operators H and L, whose definitions are
recalled here for convenience9:

H(V ) = −P>0(e
bsDy)

(︂
e−max{α,β,0}bsΓ(ebsDy)e

bs∂yV + e−max{α,β,0}bsΥ(ebsDy)V
)︂
,

L(V ) = −P≤0(e
bsDy)

(︂
Γ(ebsDy)e

bs∂yV +Υ(ebsDy)V
)︂
.

Observe that the assumptions on Γ and Υ remain true under any increase of α or β. In the proofs
in this section, we will often assume, without loss of generality, that α = β and α ≥ 0, so that
max{α, β, 0} = α.

We begin with simple L2 and L∞ estimates for H and L.

Lemma 4.1. For any ℓ ≥ 0, we have

∥∂ℓ
yL(V )∥L2 ≲α,β e−ℓbs∥V ∥L2 , (36)

∥∂ℓ
yL(V )∥L∞ ≲α,β e−( 1

2
+ℓ)bs∥V ∥L2 . (37)

For max{α, β} < 1, we have

∥H(V )∥L2 ≲α,β ∥V ∥1−max{α,β,0}
L2 ∥∂yV ∥max{α,β,0}

L2 , (38)

∥H(V )∥L∞ ≲α,β ∥V ∥1−
2
3
max{α,β,0}

L∞ ∥∂2
yV ∥

2
3
max{α,β,0}

L2 . (39)

Proof. The L2 bound (36) for L is simply a consequence of the fact that, thanks to the frequency projection
P≤0(e

bsDy) and the assumptions on Γ, Υ, L is a Fourier multiplier with bounded symbol. The case ℓ ≥ 1
then follows, thanks again to the frequency projection P≤0(e

bsDy). Moreover, (37) follows from Bernstein’s
inequality.

To prove (38), it suffices to prove that, for all k ∈ Z,

∥Pk(Dy)HV ∥L2 ≲ min
{︂
2αk∥Pk(Dy)V ∥L2 , 2−(1−α)k∥∂yPk(Dy)V ∥L2

}︂
,

∥Pk(Dy)HV ∥L∞ ≲ min
{︂
2αk∥Pk(Dy)V ∥L∞ , 2−( 3

2
−α)k∥∂2

yPk(Dy)V ∥L2

}︂
.

To see this (in particular, the L∞ bound), note that

Pk(Dy)e
−bαsΓ(ebsDy)e

bs∂yV = 2αkKk ∗ V (y), where 2αkKk = F−1
ξy

[iPk(ξy)e
−bαsΓ(ebsξy)e

bsξy].

9Recall that P≤0 is the Fourier multiplier operator with symbol P≤0(ξ), where P≤0(ξ) is a nonnegative smooth function
supported in [−2, 2] which equals 1 on [−1, 1]. Moreover, P>0(ξ) = 1− P≤0(ξ).
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Indeed, by the assumptions on Γ, the kernel of Pk′(Dx)Γ(Dx)∂x is of the form 2αk
′
Kk′(x), where∫︁

|Kk(x)| dx ≲ 1 (independent of k). By rescaling x = ebsy, we see that the kernel of Pk(Dy)e
−bαsΓ(ebsDy)e

bs∂y
is of the form 2αke−bsKk−(log 2)−1bs(e

−bsy), where the y-integral of e−bs|Kk−(log 2)−1bs(e
−bsy)| is uniformly

bounded in k. The desired bounds for the contribution of Γ in H now follows from Young’s inequality. A
similar bound holds for Υ.

Next, we prove a sharp upper bound on the kernel of the operator H.

Lemma 4.2. For each s, there exists a function Ks ∈ C∞(R \ {0}) such that

HV (y) =

∫︂ ∞

−∞
Ks(y − y′)∂yV (y′) dy′,

where
|Ks(y)|+ |y||∂yKs(y)| ≲ |y|−max{α,β,0}.

Proof. Without loss of generality, assume α = β ≥ 0. By the Fourier inversion formula, we have

P>0(Dx)Γ(Dx)∂xf =

∫︂ ∞

−∞
K(x− x′)∂xf(x

′) dx′,

P>0(Dx)Υ(Dx)f =

∫︂ ∞

−∞
K ′(x− x′)∂xf(x

′) dx′,

where

|K(z)|+ |z||∂zK(z)| ≲ |z|−α,

|K ′(z)|+ |z||∂zK ′(z)| ≲ |z|−α.

The desired statement now follows by applying the rescaling x = ebsy.

Finally, we formulate and prove a key commutator estimate for H in the weighted L2-Sobolev space Ḣn
<L

introduced earlier. For this purpose, it is instructive to generalize the weight in the semi-norm and introduce

∥V ∥Ḣn,ν
<L

= sup
j∈Z, 2j<L

(︄∫︂
2j−1<|y|<2j

(|y|n+ν∂n
y V )2 dy

)︄ 1
2

+ Ln+ν

(︄∫︂
|y|>L

2

(∂n
y V )2 dy

)︄ 1
2

.

Lemma 4.3. Let −1
2 < ν < 1

2 , ℓ ∈ {0, 1, . . .} and L > 1. Let ϖ be a smooth function satisfying one of the
following assumptions:

Case 1. suppϖ ⊆ {2j0−1−c0 < |y| < 2j0+c0} and 0 ≤ ϖ ≤ C02
(ν+ℓ)j0 for some c0, C0 > 0 and j0 ∈ Z such

that 2j0 < L, or

Case 2. suppϖ ⊆ {|y| > 2j0−1−c0} and 0 ≤ ϖ ≤ C02
(ν+ℓ)j0 for some c0, C0 > 0 and j0 = ⌊log2 L⌋.

Then for any s ∈ R and V ∈ Hℓ+1,ν
<L , we have

∥ϖH∂ℓ
yV ∥L2 ≲α,β,ν,c0,C0 2−max{α,β,0}j0(∥V ∥Ḣ0,ν

<L
+ ∥V ∥Ḣℓ+1,ν

<L
), (40)

where the implicit constant is independent of s and L.
Suppose, in addition, that |ϖ′| ≤ C02

(ν+ℓ−1)j0 and ℓ ≥ 1. Then for any s ∈ R and V ∈ Hℓ,ν
<L, we have

∥[ϖ,H]∂ℓ
yV ∥L2 ≲α,β,ν,c0,C0 2−max{α,β,0}j0(∥V ∥Ḣ0,ν

<L
+ ∥V ∥Ḣℓ,ν

<L
), (41)

where the implicit constant is independent of s and L.
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The fact that the bound −1
2 < ν < 1

2 is sharp (at least when ℓ = 0 and α = 0) can be seen by fixing
H = P>0(e

bsDy)H, where H is the Hilbert transform, and considering V localized in Aj with |j − j0| large.
In the proof of Lemma 5.5 below, this lemma will be applied with V = U ′ and ν = 1

2 −
1

2k+1 ; indeed, observe
that ∥U∥Ḣn

<L
= ∥U ′∥

Ḣ
n−1, 12− 1

2k+1
<L

for n ≥ 1.

Remark 4.4. We note that while (40) and (41) are sharp in terms of the spatial weights, it is not sharp in
terms of regularity, as we are only working with integer regularity indices. Indeed, the orders of the operators
ϖH∂ℓ

y and [ϖ,H]∂ℓ
y are α+ ℓ and α+ ℓ− 1, respectively, while we are using ℓ+ 1 and ℓ derivatives on the

RHS, respectively (recall that 0 ≤ α < 1). A crucial point, however, is that the RHS of the commutator
estimate, (41), involves at most ℓ derivatives, which is important for avoiding any loss of derivatives in
Lemma 5.5.

Another important point is that (40) and (41) are independent of s and L. In particular, the only
s-independent information we have on the symbol of H are the scale-invariant bounds

|∂N
ξyH(ξy)| ≲N |ξy|max{α,β,0}−N ,

which are essentially all we use about H.

Proof. Without loss of generality, assume α = β ≥ 0. In what follows, we suppress the dependence of
implicit constants on α, ν, c0 and C0. In what follows, we simply write Pk = Pk(Dy) (k ∈ Z).

To simplify the notation, we introduce the following schematic notation: We denote by P̃ k (resp. K̃k0)
any function, which may vary from expression to expression, that obeys the same support properties and
bounds as Pk (at the level of the symbol) (resp. Kk), i.e., supp P̃ k ⊆ {ξ ∈ R : 2k−5 < |ξ| < 2k+5} and

|(ξ∂ξ)nP̃ k(ξ)| ≲n 1 (resp. |∂n
y K̃k(y)| ≲N,n

2(1+n)k

⟨2ky⟩n+N ).

With the above conventions, we have the schematic identities Pk = P̃ k and

H =
∑︂
k

HPk =
∑︂
k

2αkP̃ k,

where an important point in the last identity is that the implicit bounds for P̃ k are independent of s. Note
also that any operator of the form P̃ k has a kernel of the form P̃ kV = K̃k ∗ V .

Next, we introduce a nonnegative smooth partition of unity {ηj}j∈Z on R subordinate to the open cover
{Aj = {y ∈ R : 2j−3 < |y| < 2j+2}}j∈Z. We shall write η≥j =

∑︁
j′≥j ηj′ . We also introduce the shorthands

η̆j0 = 2−(ν+ℓ)j0ϖ in Case 1, η̆≥j0 = 2−(ν+ℓ)j0ϖ in Case 2.

As the notation suggests, η̆j0 and η̆≥j0 have similar support and upper bound properties as ηj0 and η≥j0 ,
respectively, thanks to the hypothesis on ϖ. However, note that we only have control of up to one derivative
of η̆j0 and η̆≥j0 since we only assume that |ϖ′| ≤ C02

(ν+ℓ−1)j0 , and we have no assumptions on higher
derivatives.

Case 1, Step 1. We will use the following three bounds to treat the “non-local”, “low frequency” and “far-
away input” cases, respectively: there exists a positive constant c independent of j, j0 and k such that, for
|j − j0| > c0 + 5 and k ≥ −j0 − 5,

2(ν+ℓ)j02(α+ℓ)k∥η̆j0P̃ k(ηjV )∥L2 ≲ 2−αj02−c|j0+k|2−c|j−j0|∥V ∥Ḣ0,ν
<L

, (42)

and for k < −j0 − 5,

2(ν+ℓ)j02(α+ℓ)k∥η̆j0P̃ k(ηjV )∥L2 ≲ 2−αj02−c|j0+k|2−c|j+k|∥V ∥Ḣ0,ν
<L

, (43)

and

2(ν+ℓ)j02(α+ℓ)k∥η̆j0P̃ k(η≥log2 LV )∥L2 ≲ 2−αj02−c|j0+k|2−c|log2 L−j0|∥V ∥Ḣ0,ν
<L

, (44)
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We defer their proofs for a moment and prove (40) and (41) assuming (42)–(44).

Case 1, Step 1.(a). To prove (40), we begin by expanding

ϖH∂ℓ
yV =

∑︂
j,k:2j<L

2(ν+ℓ)j02(α+ℓ)kη̆j0P̃ k(ηjV ) +
∑︂
k

2(ν+ℓ)j02(α+ℓ)kη̆j0P̃ k(η≥log2 LV ) =: Inear + Ifar.

The term Ifar can be treated using (44), so it only remains to estimate Inear. Unless |j − j0| ≤ c0 + 5
and k ≥ −j0 − 5, we can apply (42) and (43) to obtain an acceptable bound for the summand. When
|j − j0| ≤ c0 + 5 and k ≥ −j0 − 5, we use the schematic identity P̃ k = 2−(ℓ+1)kP̃ k∂

ℓ+1
x to simply bound

2(ν+ℓ)j02(α+ℓ)k∥η̆j0P̃ k(ηjV )∥L2 ≲ 2−αj02−(1−α)(j0+k)(∥V ∥Ḣ0,ν
<L

+ ∥V ∥Ḣℓ+1,ν
<L

),

which can be summed up in k ≥ −j0 + 5.

Case 1, Step 1.(b). Now we prove the commutator estimate (41). We begin by making the following
decomposition 10:

[η̆j0 ,H]∂ℓ
yV =

∑︂
k≥−j0−5

2(ν+ℓ)j02αk[η̆j0 , P̃ k]∂
ℓ
yV +

∑︂
k<−j0−5

2(ν+ℓ)j02αkη̆j0P̃ k∂
ℓ
yV

+
∑︂

k<−j0−5

2(ν+ℓ)j02αkP̃ k(η̆j0∂
ℓ
yV )

=: I + II + III. (45)

We treat each term in (45) as follows. For I, we start by writing

I =
∑︂

j,k:|j−j0|≤c0+5, k≥−j0−5

2(ν+ℓ)j02αk[η̆j0 , P̃ k]∂
ℓ
y(ηjV )

+
∑︂

j,k:|j−j0|>c0+5, k≥−j0−5

2(ν+ℓ)j02αk[η̆j0 , P̃ k]∂
ℓ
y(ηjV ).

(46)

To treat the first sum on the RHS of (46), we make use of the commutator structure. We write

[η̆j0 , P̃ k]Ṽ =

∫︂
K̃k(y − y′)(η̆j0(y)− η̆j0(y

′))Ṽ (y′) dy′,

where Ṽ = ∂ℓ
y(ηjV ). Then using the bound for η̆′j0 (which comes from that for ϖ′) and the O(2k)-localization

of K̃k, the kernel on the RHS can be written as 2−k−j0K̆(y, y′), where supy ∥K̆(y, ·)∥L1 and supy′ ∥K̆(·, y′)∥L1

are bounded by an absolute constant. Hence, by Schur’s test,

∥2(ν+ℓ)j02αk[η̆j0 , P̃ k]∂
ℓ
y(ηjV )∥L2 ≲ 2(−α+ν+ℓ)j02−(1−α)(j0+k)∥∂ℓ

y(ηjV )∥L2

≲ 2−αj02−(1−α)(j0+k)(∥V ∥Ḣ0,ν
<L

+ ∥V ∥Ḣℓ,ν
<L

),

which is summable in the range {(j, k) : |j − j0| ≤ c0 + 5, k ≥ −j0 − 5}.
For the second sum on the RHS of (46), we simply note that [η̆j0 , P̃ k0 ]∂

ℓ
y(ηjV ) = η̆j0P̃ k0(ηjV ) by the

support properties of η̆j0 and ηj . Hence, we may apply (42), which is acceptable in the range {(j, k) :
|j − j0| > c0 + 5, k ≥ −j0 − 5}.

Next, the term II in (45) is directly bounded using (43).
Finally, we turn to the term III in (45). We write∑︂

k<−j0−5

2(ν+ℓ)j02αkP̃ k(η̆j0∂
ℓ
yV ) =

∑︂
j,k:k<−j0−5

2(ν+ℓ)j02αkP̃ k(η̆j0∂
ℓ
y(ηjV ))

10Recall that P̃ k is a function whose support properties and bounds are the same as Pk.
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By the support properties of η̆j0 and ηj , the summand vanishes unless |j0 − j| ≤ c0 + 5. In that case, we
have

2(ν+ℓ)j02αk∥P̃ k(η̆j0∂
ℓ
y(ηjV ))∥L2 ≲ 2(ν+ℓ+ 1

2
)j02(α+

1
2
)k∥∂ℓ

y(ηjV )∥L2

≲ 2
1
2
j02(α+

1
2
)k(∥V ∥Ḣ0,ν

<L
+ ∥V ∥Ḣℓ,ν

<L
),

where on the first line we used the L1 ↪→ L2 Bernstein inequality and ∥η̆j0∥L2 ≲ 2
1
2
j0 . The above bound is

acceptable in the range {(j, k) : |j − j0| ≤ c0 + 5, k < −j0 − 5}.
Case 1, Step 2. It remains to prove (42), (43), and (44). We start with the following bound for the kernel
K̃k of P̃ k: for |j − j0| > c0 + 5 and any N ≥ 0,

|η̆j0(y)K̃k(y − y′)ηj(y)| ≲N 2k2−N(max{j,j0}+k). (47)

Indeed, (47) follows from the bound11 for K̃k and the simple fact that |y − y′| ≃ 2max{j,j0} if |y| ≃ 2j0 ,
|y′| ≃ 2j and |j − j0| > c0 + 5.

As a result, we have ∥η̆j0P̃ k(ηjV )∥L∞ ≲N 2k2−N(max{j,j0}+k)∥ηjV ∥L1 . By two applications of Hölder’s
inequality, as well as ∥ηjV ∥L2 ≲ 2−νj∥V ∥Ḣ0,ν

<L
, we have

2(ν+ℓ)j02(α+ℓ)k∥η̆j0P̃ k(ηjV )∥L2 ≲N 2−αj02(ν+
1
2
+α+ℓ)(j0+k)2(−ν+ 1

2
)(j+k)2−N(max{j,j0}+k)∥V ∥Ḣ0,ν

<L
.

By choosing N to be appropriately large, (42) and (43) in the case j > −k + c0 follow (note that in the
last case, j0 < −k − 5, so j > j0 + c0 + 5). To treat the remaining cases in (43), namely k < −j0 − 5 and
j ≤ −k + c0, we simply use the Hölder and Bernstein inequalities to estimate

2(ν+ℓ)j02(α+ℓ)k∥η̆j0P̃ k(ηjV )∥L2 ≲ 2(ν+
1
2
+ℓ)j02(α+ℓ)k∥Pk(ηjV )∥L∞ ≲ 2(ν+

1
2
+ℓ)j02(α+1+ℓ)k∥ηjV ∥L1

≲ 2−αj02(ν+
1
2
+α+ℓ)(j0+k)2(−ν+ 1

2
)(j+k)∥V ∥Ḣ0,ν

<L
.

Finally, to prove (44), we first split

η≥log2 LV =
∑︂

j:log2 L≤j<log2 L+c0+10

ηjV + η≥log2 L+c0+10V.

Observe that the contribution of the first term can be treated using (42) and (43). For the remain-
ing piece, thanks to the spatial separation between the supports of η̆j0 and η≥log2 L+c0+10, (47) implies

∥η̆j0P̃ k(η≥log2 L+c0+10V )∥L∞ ≲N 2
1
2
k2−

N
2
(log2 L+k)∥η≥log2 L+c0+10V ∥L2 . Hence, by Hölder’s inequality,

2(ν+ℓ)j02(α+ℓ)k∥η̆j0P̃ k(η≥log2 L+c0+10V )∥L2 ≲N 2−αj02(ν+
1
2
+α+ℓ)(j0+k)2−(N

2
+ν)(log2 L+k)∥V ∥Ḣ0,ν

<L
.

By choosing N appropriately, (44) follows.

Case 2, Step 1. In this case, L ≃c0 2j0 . We will use the following bound to treat the “nearby input” case:
for j < log2 L,

2(ν+ℓ)j02(α+ℓ)k∥η̆≥j0P̃ k(ηjV )∥L2 ≲ 2−αj02−c|j+k|2−c|j0−j|∥V ∥Ḣ0,ν
<L

. (48)

We defer their proofs for a moment and prove (40) and (41) assuming (48).

Case 2, Step 1.(a). As before, to prove (40), we expand

ϖH∂ℓ
yV =

∑︂
j,k:2j<L

2(ν+ℓ)j02(α+ℓ)kη̆≥j0P̃ k(ηjV ) +
∑︂
k

2(ν+ℓ)j02(α+ℓ)kη̆≥j0P̃ k(η≥log2 LV ) =: Inear + Ifar.

11Recall that |K̃k(y)| ≲N
2k

⟨2ky⟩N .
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This time, the term Inear can be treated using (48), so it only remains to estimate Ifar. By almost orthogo-
nality (in case α+ ℓ = 0) or interpolation (in case α+ ℓ > 0), it is straightforward to prove

∥
∑︂
k

2(ν+ℓ)j02(α+ℓ)kη̆≥j0P̃ k(η≥log2 LV )∥L2 ≲ 2(ν+ℓ)j0∥η≥log2V ∥
1−α
ℓ+1

L2 ∥∂ℓ+1
y (η≥log2V )∥

ℓ+α
ℓ+1

L2 ,

which is acceptable.

Case 2, Step 1.(b). To prove (41), we expand

[ϖ,H]∂ℓ
yV =

∑︂
k≥−j0−5

2(ν+ℓ)j02αk[η̆≥j0 , P̃ k]∂
ℓ
y(η≥log2 L−c0−10V )

+
∑︂

k<−j0−5

2(ν+ℓ)j02αk[η̆≥j0 , P̃ k]∂
ℓ
y(η≥log2 L−c0−10V )

+
∑︂

j,k:j<log2 L−c0−10

2(ν+ℓ)j02αk[η̆≥j0 , P̃ k]∂
ℓ
y(ηjV ) =: I′ + II′ + III′.

For I′, we argue as in term I in Case 1, Step 1.(b) using the commutator structure and bound

∥I′∥L2 ≲ 2−αj0
∑︂

k≥−j0−5

2(ν+ℓ)j02−(1−α)(j0+k)∥∂ℓ
y(η≥log2 L−c0−10V )∥L2 ≲ 2−αj0(∥V ∥Ḣ0,ν

<L
+ ∥V ∥Ḣℓ,ν

<L
).

For II′, we expand the commutator expression and write

II′ =
∑︂

k<−j0−5

2(ν+ℓ)j02αkη̆≥j0P̃ k∂
ℓ
y(η≥log2 L−c0−10V )−

∑︂
k<−j0−5

2(ν+ℓ)j02αkP̃ k(η̆≥j0∂
ℓ
y(η≥log2 L−c0−10V )).

We simply bound 2αk ≲ 2−αj0 , then use almost orthogonality to estimate

∥II′∥L2 ≲ 2−αj02(ν+ℓ)j0∥∂ℓ
y(η≥log2 L−c0−10V )∥L2 ≲ 2−αj0(∥V ∥Ḣ0,ν

<L
+ ∥V ∥Ḣℓ,ν

<L
).

For III′, we simply observe that, by the support properties of η̆≥j0 and ηj ,

III′ =
∑︂

j,k:j<log2 L−c0−10

2(ν+ℓ)j02αkη̆≥j0P̃ k∂
ℓ
y(ηjV ),

which can be treated using (48).

Case 2, Step 2. It remains to prove (48). Recall that L ≃c0 2j0 and j < log2 L. We first split

η̆≥j0 =
∑︂

j:log2 L≤j<log2 L+c0+10

ηj η̆≥j0 + η≥log2 L+c0+10η̆≥j0 .

Each summand in the first sum obeys the same properties as η̆j , so its contribution may be treated by (42)
and (43). Let us abbreviate the second term by η̆≥log2 L+c0+10. Thanks to the spatial separation property,

(47) implies ∥η̆≥log2 L+c0+10P̃ k(ηjV )∥L2 ≲N 2
1
2
k2−

N
2
(j0+k)∥ηjV ∥L∞ . Hence, by Hölder’s inequality,

2(ν+ℓ)j02(α+ℓ)k∥η̆≥log2 L+c0+10P̃ k(ηjV )∥L2 ≲N 2−αj02(ν+α+ℓ−N
2
)(j0+k)2(−ν+ 1

2
)(j+k)∥V ∥Ḣ0,ν

<L
.

By choosing N appropriately, (48) follows.

5 Estimates on U

In this section, we improve the improved bootstrap bounds in Lemma 3.6 that involve U .
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5.1 Non-top-order forcing term estimates

To prepare for the ensuing analysis, we establish some bounds for the forcing term involving H and L.
Lemma 5.1. Assume the hypotheses of Lemma 3.6. Then the following L2 bounds hold:

e−µs
⃦⃦⃦
∂(j)
y H(U)(s, ·)

⃦⃦⃦
L2

≤ CAe−µs for 1 ≤ j ≤ 2k + 2, (49)

e−s
⃦⃦⃦
∂(j)
y L

(︂
U + e(b−1)sκ

)︂⃦⃦⃦
L2

≤ C(1 + κ0)e
−(2+(j− 3

2
)b)s for j ≥ 0. (50)

Moreover, the following pointwise bounds hold:

e−µs ∥H(U)(s, ·)∥L∞(−4,4) ≤ C(A+ κ0)e
−µ0s, (51)

e−µs
⃦⃦⃦
∂(j)
y H(U)(s, ·)

⃦⃦⃦
L∞

≤ CAe−µs for 1 ≤ j ≤ 2k + 1, (52)

e−s
⃦⃦⃦
∂(j)
y L

(︂
U + e(b−1)sκ

)︂⃦⃦⃦
L∞

≤ C(1 + κ0)e
−(2+(j−1)b)s for j ≥ 0. (53)

These bounds will be useful for the proof of essentially all non-top-order estimates (with the sole exception
of the weighted L2-Sobolev bound (IB4)). On the other hand, to estimate ∂2k+3

y U , we shall rely instead on
the dispersive/dissipative property of Γ/Υ and appropriate commutator estimates; see Lemmas 5.4 and 5.5
below.

Proof. Bounds (50) and (53) for e−sL immediately follow by combining (36) and (37), respectively, with
Lemma 3.11. On the other hand, to prove (49) and (52), note that, by (B1), we have ∥U ′∥L∞ ≤ C. Moreover,
by (B2) (for |y| ≤ 1) and (B4) (for |y| ≥ 1), we have

∥U ′∥L2 ≤ CA. (54)

Recall also that ∥∂2k+3
y U∥L2 ≤ 2A by (B3). Therefore, (49) and (52) follow from (38) and (39), respectively.

To prove the remaining bound (51), we apply Lemma 4.2. By introducing a smooth partition of unity
(in the variable y′) subordinate to {|y′| < 16} ∪ {8 < |y′| < 2ebs} ∪ {ebs < |y′|} and using the bounds for Ks

and ∂yKs in Lemma 4.2, we may estimate

e−µs|H(U)(s, y)| ≤ e−µs

⃓⃓⃓⃓∫︂ ∞

−∞
Ks(y − y′)∂yU(s, y′) dy′

⃓⃓⃓⃓
≲ e−µs

∫︂
|y′|≤16

|y − y′|−max{α,β,0}|∂yU(s, y′)| dy′ + e−µs

∫︂
8≤|y′|≤2ebs

|y′|−max{α,β,0}−1|U(s, y′)|dy′

+e−µs

∫︂
|y′|≥ebs

|y′|−max{α,β,0}−1|U + e(b−1)sκ|(s, y′) dy′

≲ e−µs∥∂yU∥L∞ + e−µs∥|y|−
1

2k+1U∥L∞(8,2ebs)

∫︂
8≤|y′|≤2ebs

|y′|−max{α,β,0}−1+ 1
2k+1 dy′

+e−µse−( 1
2
+max{α,β,0})bs∥U + e(b−1)sκ∥L2 .

In the second inequality, we used integration by parts and the property that |y − y′| ≃ |y′| for |y′| ≥ 8 (since
|y| ≤ 4). When max{α, β, 0} ≠ 1

2k+1 , by (B1), (B2), (B4), (35) and (28),

e−µs |H(U)(s, y)| ≲ e−µs
(︂
1 + max{1, e(

1
2k+1

−max{α,β,0})bs}+ e−( 1
2
+max{α,β,0})bse(

3
2
b−1)s

)︂
≲ e−min{µ, 2k−1

2k
}s.

Indeed, note that µ = 1−max{α, β, 0}b. Therefore,

−µ+ ( 1
2k+1 −max{α, β, 0})b = −1 + max{α, β, 0}b+ 1

2k −max{α, β, 0}b = −2k−1
2k ,

−µ− (12 +max{α, β, 0})b+ (32b− 1) = −1 + max{α, β, 0}b− 1
2b+max{α, β, 0}b+ 3

2b− 1

= −2 + b = −4k+2k+1
2k = −2k−1

2k .

Since µ0 = min{µ, 2k−1
2k } in this case, (51) follows. On the other hand, in case max{α, β, 0} = 1

2k+1 , the same
computation applies except that the second term is bounded instead by CAbs; however, such a modification
is acceptable since 0 < µ0 <

2k−1
2k .
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5.2 Estimates on ∂yU

Next, we proceed to obtain pointwise estimates for the low derivative ∂yU using the method of characteristics.
It is important that the bounds proved below (in particular, items 3–4) are independent of A. On the other
hand, we need not obtain sharp pointwise bounds for ∂yU at this point, as they would follow from the
weighted L2-Sobolev bounds (IB4) and (IB5) (cf. derivation of (34) in the proof of Theorem 3.1).

Lemma 5.2. There exist ϵ0, A, y0, γ, σ0 such that if the initial data conditions (D1)–(D4) are satisfied and
the bootstrap assumptions (B1)–(B7) hold for s ∈ [σ0, σ1], then the following conclusions hold.

1. For all s ∈ [σ0, σ1], and all |y| > y0, we have (by + (1 + esτs)U(s, y))y > 0 (the flow is repulsive).

2. (IB1) and (IB2) hold.

3. For |y| ≥ 4 and s ∈ [σ0, σ1], we have

−U ′(s, y) ≤ 5

6
. (55)

4. There exist C, r > 0 independent of A, y0, γ such that, for all y ∈ R, and for all s ∈ [σ0, σ1], we have

|∂yU(s, y)| ≤ Cmax

{︃
1

(1 + |y|)r
, Ae−rs

}︃
. (56)

Proof of Lemma 5.2. We prove each item in order.

Proof of 1. We need to show that there exists a choice of y0 and σ0 (depending on A, see Remark 3.7) such
that the following holds in the interval s ∈ [σ0, σ1]:

U(s, y) > − b

1 + esτs
y if y > y0, U(s, y) < − b

1 + esτs
y if y < −y0,

Let us focus on the first claim, the second being analogous. By the fundamental theorem of calculus and
the bootstrap assumptions (B1)–(B2), we have that

U(s, y)− U(s, 0) =

∫︂ y

0
U ′(s, y)dy ≥ −y0(1 + 2y0)− (y − y0)

(︃
1− y2k0

4

)︃
.

Then, we have, for y > y0,

(1 + esτs)U(s, y) + by > (b− (1 + esτs)(1− y2k0 /4))y − y0(1 + esτs)(1 + 2y0) + y0(1 + esτs)(1− y2k0 /4).

The claim follows by choosing y0 small enough, and then by choosing σ0 large enough to control the factors
containing the modulation parameter τ (recalling that the bootstrap assumptions (B6) hold true).

Proof of 2. We now show that we can restrict to y0 small and σ0 ≫ 1 (depending on A, see Remark 3.7)
such that the following inequalities hold true:

⃓⃓⃓
U(s,±y0)±y0 ∓

1

2k + 1
y2k+1
0

⃓⃓⃓
≤ y2k+1

0

4(2k + 1)
for all s ∈ [σ0, σ1] (57)⃓⃓⃓

U(σ0, y)+y− 1

2k + 1
y2k+1

⃓⃓⃓
≤ |y|2k+1

4(2k + 1)
for all y ∈ (−1/4,−y0) ∪ (y0, 1/4), (58)⃓⃓⃓

U ′(s,±y0)+1−y2k0

⃓⃓⃓
≤ y2k0

4
for all s ∈ [σ0, σ1], (59)⃓⃓⃓

U ′(σ0, y)+1−y2k
⃓⃓⃓
≤ y2k

4
for all y ∈ (−1/4,−y0) ∪ (y0, 1/4), (60)

U ′(σ0, y) ≥ −1 +
y2k0
2

for all |y| ≥ y0. (61)
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Note that the above inequalities imply (on initial data and at |y| = y + 0) bounds which are strict
improvements of (IB1) and (IB2). For instance, from (60) it follows that 0 ≥ U ′(σ0, y) ≥ −1 + 3

4y
2k ≥

−1 + 3
4y

2k
0 , for all y ∈ (−1/4,−y0) ∪ (y0, 1/4), and similarly for the bounds (59), as well as (61).

Bounds (58), (60) and (61) follow easily from our choice of initial data at σ0 and the expression for the
profile (with the choice (10) concerning the (2k+1)st derivative at y = 0), upon choosing y0 to be small and
consequently σ0 to be large.

More precisely, we have, recalling the equation Ů = −y− 1
2k+1 Ů

2k+1
, and letting R := Ů+y− 1

2k+1y
2k+1,

R
(︂
1 +

1

2k + 1
Σ
)︂
=

1

(2k + 1)2
y2k+1Σ,

where Σ =
∑︁

h+j=2k Ů
h
yj . Since, for |y| ≤ 1/4, |Ů | ≤ 1

4 we also have that |Σ| ≤ 2k
4k
. The claim then follows

from the inequality
(︂
1− 1

2k+1 |Σ|
)︂−1

1
(2k+1)2

|Σ| ≤ 1
5(2k+1) , which is valid for all k ≥ 1. Thus, for the profile,

we have inequality (57) with improved constant 1
5(2k+1) on the RHS. The bound for U(σ0, ·) then follows

from this bound for the profile Ů and the bootstrap assumptions, after taking σ0 to be large.
The proofs of (57) and (59) are similar, so we will just focus on showing (59). Using Taylor expansion

with integral remainder and Sobolev embedding, we have

⃓⃓⃓
U ′(s, y0) + 1− y2k0 −

2k+1∑︂
j=1

W (j)(s, 0)
yj−1
0

(j − 1)!

⃓⃓⃓
≤ Cy2k0

∫︂ y0

0
|U2k+2(s, y)|dy ≤ CAy2k+1

0 . (62)

Note that the two principal terms on the LHS of the previous estimate arise from our choice of the
profile in display (10). Moreover, to bound the term |U2k+2(s, y)| in display (62), we used the bootstrap
assumption (B3) and interpolation. We then notice that the coefficients W (j)(s, 0), j = 0, . . . , 2k decay by
(B6) (some of them are identically zero by (21)), and |W (2k+1)(s, 0)| ≤ 4 by the bootstrap assumptions (B7).
We then first choose y0 to be small, and then choose σ0 accordingly to be large to conclude that (59) holds
true (see Remark 3.7).

Recall the equation for U ′ from (14); we arrange the equation as follows:

∂sU
′ + U ′+(U ′)2 + (by + (1 + esτs)U)∂yU

′

=
(︂
ebsξs − (1 + esτs)e

(b−1)sκ
)︂
U ′′ − esτs(U

′)2

+(1 + esτs)
(︂
e−µsH(U ′) + e−s∂yL(U + e(b−1)sκ)

)︂
=: E(1).

(63)

By (B1)–(B2) for U ′, (B3) and (54) for U ′′, (B6) for the modulation terms and Lemma 5.1 for the forcing
terms, we have

∥E(1)∥L∞ ≤ CAe−γs, (64)

where we take A sufficiently large compared to κ0 if necessary.
We will first focus on showing (IB2). We now define Lagrangian coordinates for the flow of equation (63).

The flow can either start from a point on the half line s = σ0, y ≥ y0 or from a point on the half line
s ≥ σ0, y = y0. Distinguishing between these two cases, we consider Lagrangian maps X1(s, ỹ), X2(s, s̃)
which are defined by solving the following initial value problems (s̃ and ỹ are the Lagrangian parameters):

∂sX1(s, ỹ) = bX1(s, ỹ)+(1 + esτs)U(s,X1(s, ỹ)), X1(σ0, ỹ) = ỹ, for all ỹ ≥ y0, (65)

∂sX2(s, s̃) = bX2(s, s̃)+(1 + esτs)U(s,X2(s, s̃)), X2(s̃, s̃) = y0, for all s̃ ≥ σ0. (66)

We now rewrite equation (63) in Lagrangian coordinates, to obtain, letting Ũ
′
be the composition

Ũ
′
(s, ỹ) = U ′(s,X1(s, ỹ)):

∂sŨ
′
+ Ũ

′
+ (Ũ

′
)2 = E(1)(s,X1(s, ỹ)). (67)
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Note that the following bound holds for all s ≥ σ0 and all y:

U ′(s, y) ≤ 1

2
. (68)

Indeed, recalling the form of the initial data (D1), as well as the bounds on the initial data from Section 3.4,
we have that the following bound holds: U ′(σ0, y) ≤ 1

4 upon choosing σ0 to be large. We then integrate

equation (67), using the upper bound on initial data we just obtained12, and recalling that E(1) decays
exponentially, to obtain (68).

Let us for a moment assume that there exists š such that Ũ
′
(š, ỹ) ≥ −1

2 . Integrating (67), and using
the bound (64), it is then easy to show that13, upon choosing σ0 to be large (depending only on y0 and A),

|Ũ ′
(s, ỹ)| ≤ 3

4 for all s ≥ š. This implies (IB2) on the half line {y > 0} in this case.

Hence it suffices to show (IB2) under the additional assumption that Ũ
′
(š, ỹ) ≤ −1

2 . By the repulsivity
of the flow, we always have that |X1(s, ỹ)| ≥ |y0| for s ≥ σ0. Hence, for s ≥ σ0, we can apply the bootstrap

assumption (B2) (i.e., Ũ
′ ≥ −1 +

y2k0
4 ), which yields the following bound:

−Ũ
′ − (Ũ

′
)2 ≥

(︃
1− y2k0

4

)︃
y2k0
4

≥ y2k0
8

, (69)

by virtue of the fact that y0 is chosen to be small. We now choose σ0 to be sufficiently large for the following
inequality to be valid14, in view of (64):∫︂ σ1

σ0

|E(1)(s,X1(s, ỹ))|d s ≤
y2k0
8

. (70)

We then integrate (67), taking into account the bounds (69) and (70), as well as the bound (64). We
deduce, recalling (68):

|U ′(s,X1(s, ỹ))| ≤ 1− 1

2
y2k0 , for σ0 ≤ s ≤ σ1, |ỹ| ≥ y0. (71)

Essentially repeating the same argument for the X2 trajectories, we have

|U ′(s,X2(s, s̃))| ≤ 1− 1

2
y2k0 , for σ0 ≤ s̃ ≤ σ1, s̃ ≤ s ≤ σ1. (72)

Combining the bounds (71) and (72) yields (IB2) on the half line {y > 0}. Arguing in the same manner on
{y < 0}, we obtain (IB2).

Finally, (IB1) follows from (IB2) and Taylor expansion about y = 0, following a similar reasoning as in
inequality (62).

Proof of 3. To prove (55), we first show a quantitative lower bound on the time the Lagrangian trajectories
X1, X2 stay in y ∈ [−4, 4]. Recall the definition of Lagrangian coordinates X1 and X2 in (65) and (66).
Define now Ũ i, for i ∈ {1, 2} as follows:

Ũ1(s, ỹ) = U(s,X1(s, ỹ)), Ũ2(s, s̃) = U(s,X2(s, s̃)).

We then have the following coupled system for (Ũ i, Xi):

∂sŨ i = (b− 1)Ũ i + E(0)(s,Xi),

∂sXi = bXi+(1 + esτs)Ũ i.

12Note that, for the nonlinear ODE ẋ = −x− x2, the equilibrium point x = 0 attracts all orbits originating in (−1,∞).
13This shows a lower bound. The upper bound comes from (68).
14Note that this choice can be made independently of σ1.
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Here, we recall that

E(0) =
(︂
−esτsU + ebsξs − (1 + esτs)e

(b−1)sκ
)︂
U ′ − e(b−1)sκs

+(1 + esτs)
(︂
e−µsH(U) + e−sL(U + e(b−1)sκ)

)︂
We let Ai = Xi + Ũ i, which diagonalizes the system up to a perturbative term on the RHS:

∂sŨ i − (b− 1)Ũ i = E(0)(s,Xi), (73)

∂sAi − bAi = esτsŨ i + (1 + esτs)E
(0)(s,Xi). (74)

Let us now specify to the case i = 1. The RHS of (73) and (74) decays exponentially as s → ∞ as long as
|X1(s, ỹ)| ≤ 4. Indeed, using Lemma 5.1, as well as the fact that |U(s, y)| ≤ 2|y| for all y ∈ [−4, 4], and the
bootstrap assumptions (B6), we have

e−µs∥H(U)∥L∞(−4,4) ≤ CAe−µ0s,

e−s∥L(U + e(b−1)sκ)∥L∞ ≤ C(1 + κ0)e
(−2+b)s,

es|τsŨ i(s, ỹ)| ≤ 8e−γs.

This implies directly that, as long as |X1(s, ỹ)| ≤ 4,

|E(0)(s,Xi)|+ |esτsŨ i + (1 + esτs)E
(0)(s,Xi)| ≤ CAe−c#s, (75)

where c# is a positive constant depending on µ0, γ.
Let us first restrict to the case y0 ≤ |ỹ| ≤ 1. We integrate (73)–(74) between σ0 and s, and we obtain,

taking (75) into account, ⃓⃓⃓
U(s,X1(s, ỹ))e

−(b−1)(s−σ0) − U(σ0, ỹ)
⃓⃓⃓
≤ |U(σ0, ỹ)|,⃓⃓⃓

A1(s,X1(s, ỹ))e
−b(s−σ0) −A1(σ0, ỹ)

⃓⃓⃓
≤ 1

2
|A1(σ0, ỹ)|.

(76)

Note that the above inequalities hold by choosing σ0 large as a function of y0. Indeed, due to our choice
of initial data for U at σ0, by possibly choosing σ0 large, we have that, for all ỹ ∈ [−1,−y0] ∪ [y0, 1],
|U(σ0, ỹ)| ≥ 1

2 |U(σ0, y0)| ≥ y0
4 . It then suffices to choose σ0 to be large so that, for all ỹ ∈ [−1,−y0]∪ [y0, 1],∫︂ σ1

σ0

e−(b−1)(s−σ0)|E(0)(s,X1(s, ỹ))|d s ≤
y0
4
.

This shows that the first inequality in (76) holds, up to choosing σ0 based on y0. A similar reasoning holds
for the second inequality in (76).

Display (76) implies, due to our choice of initial data at σ0,

|U(s,X1(s, ỹ))| ≤ 2|ỹ|e(b−1)(s−σ0),

|A1(s,X1(s, ỹ))| ≤
3

2
(|ỹ|2k+1 + esτs)e

b(s−σ0).

We recall the bootstrap assumptions (B6), which in particular imply that |esτs| ≤ Ae−γs. This allows us to
deduce that, for all times s ∈ [σ0,−2k log(|ỹ|) + σ0],

|U(s,X1(s, ỹ))| ≤ 2,

|A1(s,X1(s, ỹ))| ≤ 2− 1

4
=⇒ |X1(s, ỹ)| ≤ 4.

(77)
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The reasoning for X2 is completely analogous, and we deduce that, for all times s ∈ [s̃,−2k log(y0) + s̃],

|U(s,X2(s, s̃))| ≤ 2,

|X2(s, s̃)| ≤ 4.
(78)

We are now in shape to do an L∞ estimate for U ′ in the near region. Let us recall the relevant equation:

∂sU
′ + U ′ + (U ′)2 + (by + (1 + esτs)U)∂yU

′ = E(1).

In Lagrangian coordinates with respect to X1, the above equation reads, letting Ũ
′
= U ′(s,X1(s, σ0)):

∂sŨ
′
+ Ũ

′
+ (Ũ

′
)2 = E(1)(s,X1(s, ỹ)). (79)

Let us now suppose by contradiction that, for all s ∈ [σ0, σ0 − 2k log(|ỹ|)],

U ′(s,X1(s, ỹ)) ≤ −4

5
. (80)

Combined with the bootstrap assumption (B2), display (80) yields the bound |Ũ ′
+ (Ũ

′
)2| ≤ y2k0

8 , which in
turn implies, since the RHS of (79) decays exponentially15, upon choosing σ0 to be larger, and recalling the
definition of µ′ from (64),

∂sŨ
′

Ũ
′
+ (Ũ

′
)2

+ 1 ≤ µ′

4
e−sµ′

2 .

This implies

∂s log
(︂ −Ũ

′

1 + Ũ
′

)︂
+ 1 ≤ µ′

4
e−sµ′

2 .

By integration, since
∫︁∞
σ0

µ′

4 e
−sµ′

2 ds < log 2, and denoting Q = 2 −Ũ
′
(σ0,ỹ)

1+Ũ
′
(σ0,ỹ)

> 0, we have

U ′(s,X1(s, σ0)) >
−Qe−(s−σ0)

1 +Qe−(s−σ0)
.

We now calculate this expression at s = s∗ = σ0 − 2k log(|ỹ|). We notice that, for ϵ0 sufficiently small,

Ũ
′
(σ0, ỹ) ≥ −1, and 1 + Ũ

′
(σ0, ỹ) ≥ 1

2 ỹ
2k, hence 0 ≤ Q ≤ 4ỹ−2k. Since e−(s∗−σ0) = ỹ2k, it follows that

U ′(s∗, X1(s∗, σ0)) > − 4

4 + 1
= −4

5
.

This contradicts (80), and yields, for all ỹ such that y0 ≤ |ỹ| ≤ 1, the existence of s(1) ∈ [σ0, s∗] such that

U ′(s(1), X1(s
(1), ỹ)) ≥ −4

5
. (81)

Moreover, in the case |ỹ| ≥ 1, the existence of s(1) in the conditions above follows immediately by our choice
of initial data. Indeed, by possibly choosing σ0 to be larger and ϵ0 smaller,

U ′(σ0, X1(σ0, ỹ)) ≥ −4

5
(82)

for all ỹ such that |ỹ| ≥ 1.
A completely analogous reasoning shows that for all s̃ ≤ σ1 + 2k log(|y0|), there exists s(2) ∈ [s̃, s̃ −

2k log(|y0|)] such that we have

U ′(s(2), X2(s
(2), s̃)) ≥ −4

5
. (83)

15This follows from bound (64) on E(1).
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We now combine the bounds (81), (82) and (83) with the bounds on the Lagrangian trajectory (77) and (78)
to obtain the existence of s(1), s(2) (depending resp. on ỹ and y0), such that

U ′(s(1), X1(s
(1), ỹ)) ≥ −4

5
, |X1(s

(1), ỹ)| ≤ 4, for all ỹ : y0 ≤ |ỹ| ≤ 4,

U ′(s(2), X2(s
(2), s̃)) ≥ −4

5
, |X2(s

(2), s̃)| ≤ 4.

(84)

We now repeat the reasoning in part 2. integrating equation (67), with the difference that the starting
time of integration is now s(1) (resp. s(2)), and we use the bounds (84). Recall that the RHS of (67) is
perturbative everywhere by (64). Repeating the same argument on {y < 0}, we deduce (55) valid for |y| ≥ 4,
σ0 ≤ s ≤ σ1.

Proof of 4. We only consider the case of the half-space {y > 0} in detail, as the other case is dealt with
similarly. We define Lagrangian trajectories X1 and X2 as in (65) and (66), respectively, but now with y0
replaced by y = 4. By U(s, 0) = 0, (IB1), (IB2) and (55), we may deduce the simple bound |U(s, y)| ≤ y by
integration. By (B6) and taking σ0 sufficiently large, it follows that

∂sXi = bXi + (1 + esτs)Ũ i ⇒ 1

2
∂sX

2
i ≤ 2bX2

i ⇒ |Xi| ≤ e2b(s−s̃)|ỹ|, (85)

where (s̃, ỹ) = (σ0, ỹ) or (s̃, 4) when i = 1 or 2, respectively.

Next, we again recall the equation for U ′ in Lagrangian coordinates, which yields, letting Ũ
′
= U ′(s,Xi(s, ỹ)),

∂sŨ
′
+ Ũ

′
+ (Ũ

′
)2 = E(1)(s,Xi(s, ỹ)).

Multiplying by Ũ
′
and using (55) plus Cauchy–Schwarz, we have (recall that 0 < γ < 1)

1

2
∂s(Ũ

′
)2 ≤ − γ

10
(Ũ

′
)2 + (E(1)(s,Xi(s, ỹ)))

2.

Recalling (64) for E(1), it follows that

∂s

(︂
e

γ
10

s(Ũ
′
)2
)︂
≤ CAe(

γ
10

−γ)s.

Integrating this equation, we obtain that, for a constant C > 0,

|Ũ ′| ≤ Ce−
γ
10

(s−s̃)|U ′(s̃, ỹ)|+ CAe−
γ
10

s. (86)

In case i = 2, we have (s̃, ỹ) = (s̃, 4), and the desired bound (56) with r = γ
20b follows from (55), (85) and

(86). On the other hand, in case i = 1, the desired bound with r = γ
20b follows from (32), (85) and (86),

where we simply bound e−
γ
10

(s−σ0)|ỹ|−
2k

2k+1 ≤ C|y|−r and e−
γ
10

(s−σ0)e−σ0ϵ0 ≤ CAe−rs.

5.3 Estimates on ∂2
yU

As a preparation for closing the bootstrap assumption on ∥∂2k+3
y U∥L2 , we first prove a uniform bound for

∥∂2
yU∥L2 . The key ingredients are the method of characteristics in the region close to y = 0, as well as the

a-priori pointwise bounds for U ′ proved in Lemma 5.2.

Lemma 5.3. There exist ϵ0, A, y0, γ, σ0 such that if the initial data conditions (D1)–(D4) are satisfied
and the bootstrap assumptions (B1)–(B7) hold for s ∈ [σ0, σ1], then the following inequality holds true for
all s ∈ [σ0, σ1]:

∥∂2
yU(s, ·)∥L2 ≤ C. (87)

Here, C > 0 is a constant independent of A, y0, and σ0.
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Proof of Lemma 5.3. We begin by recalling (15) with j = 2 for U ′′, which we rewrite as follows:

∂sU
′′
+ (1 + b+ 3U ′)U ′′ + (by + (1 + esτs)U)∂yU

′′

= −3esτsU
′U ′′ +

(︂
ebsξs − (1 + esτs)e

(b−1)sκ
)︂
U ′′′

+(1 + esτs)
(︂
e−µsH(U ′′) + e−s∂2

yL(U + e(b−1)sκ)
)︂
=: E(2).

(88)

Upon restricting to small y0 and consequently to large σ0, the following properties are a consequence of
Taylor expansion about 0, the Taylor coefficients of the profile at y = 0, and the hypotheses on initial data
at s = σ0 from displays (D1)–(D4) (exactly as in the reasoning around (62)):

⃓⃓⃓
U ′′(s,±y0)∓ 2ky2k−1

0

⃓⃓⃓
≤ y2k−1

0 for all s ≥ σ0,⃓⃓⃓
U ′′(s, y)− 2ky2k−1

⃓⃓⃓
≤ |y|2k−1 for all y ∈ (−1/4,−y0) ∪ (y0, 1/4).

We remark that, in order to ensure this condition, we first need to first choose y0 to be small, and as a
function of that, we need to choose σ0 to be large, cf. Remark 3.7.

Let us recall the definition of the Lagrangian trajectories X1 and X2 from (65)–(66). Let us first focus

on X1, and we define Ũ
′′
:= U ′′(s,X1(s, ỹ)). Assume that ỹ is such that y0 ≤ ỹ ≤ 1

4 , the negative ỹ case
being analogous. We easily have, from (88) (using moreover (B2)) that

∂sŨ
′′
+ (b− 2)Ũ

′′ ≤ E(2)(s,X1(s, ỹ)).

We now notice, similarly to (64), that

∥E(2)(s, y)∥L∞ ≤ CAe−γs. (89)

Hence, restricting to σ0 possibly larger (and treating the terms on the RHS as perturbative), we have, for
s ≥ σ0, upon integration

0 ≤ U ′′(s,X1(s, ỹ)) ≤ (2k + 2)e(2−b)(s−σ0)ỹ2k−1. (90)

We notice that we have the following easy consequence of (B2) in the region y ∈ (y0, 2), s ∈ [σ0, σ1] (upon
choosing σ0 large as a function of A and y0):

U(s, y) ≥ −(b− 1)y.

We now go back to the definition of the Lagrangian trajectories (65), and we immediately deduce that, for
ỹ ∈ (y0,

1
4), as long as |X1(s, ỹ)| ≤ 2,

X1(s, ỹ) ≥ e(b−1)(s−σ0)ỹ.

We now have that, for s such that s− σ0 = −2k log ỹ, the following holds:

X1(s, ỹ) ≥ 1. (91)

Inequality (90), now gives that, for all s such that s− σ0 ≤ −2k log ỹ, and all ỹ ∈ (y0,
1
4):

|U ′′(s,X1(s, ỹ))| ≤ (2k + 2)e−(2−b)2k log ỹỹ2k−1 ≤ 2k + 2, (92)

since (2− b)2k = 2k − 1.
Similarly, turning now our attention to X2, we have, for s ≥ s̃, and ỹ such that y0 ≤ ỹ ≤ 1

4 :

0 ≤ U ′′(s,X2(s, s̃)) ≤ (2k + 2)e(b−2)(s−s̃)y2k−1
0 . (93)
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We moreover have that, for s such that s− s̃ = −2k log ỹ, the following holds:

X2(s, s̃) ≥ y0e
−(b−1)2k log ỹ = 1. (94)

Combined with inequality (93), this implies that, for all s such that s− σ0 ≤ −2k log ỹ,

|U ′′(s,X2(s, s̃))| ≤ 2k + 2. (95)

Combining previous inequalities (91), (92), (94), and (95), we conclude that

|U ′′(s, y)| ≤ 2k + 2 (96)

for |y| ≤ 1
4 , and s ∈ [σ0, σ1]. This concludes the bounds in the “near” region.

We now proceed to show an L2 bound in the “intermediate” region: y : 1
4 ≤ |y| ≤ y2, where y2 is chosen

depending on ζ > 0 using Lemma 5.2 in a way that, for all y : |y| ≥ y2, s ∈ [σ0, σ1],

|U ′(s, y)| ≤ ζ.

We are going to first show a weighted L2 estimate on U ′′, where the weight is exponentially decaying in y.
Although the estimates for this part are carried out on the whole real line, one should think of them as just
useful to the “intermediate region” (|y| ≤ y2). In the final part of the proof of this lemma, we are going to
deal with the “far” region using the smallness arising from point 3. in lemma 5.2.

We now multiply equation (88) by the weight e−λyU ′′, to obtain a weighted L2 estimate in the region

|y| ≥ 1
4 . We integrate by parts on the set S = [−1/4, 1/4]c. We have, denoting by ∥f∥w := ∥e−

λ
2
yf(y)∥L2(S),

1

2
∂s∥U ′′(s, ·)∥2w +

∫︂
S

(︁
1 +

b

2
+

5

2
U ′ − 1

2
esτsU

′(s, y)
)︁
(e−

λ
2
yU ′′(s, y))2 dy

+
λ

2

∫︂
S
(by + (1 + esτs)U(s, y))(e−

λ
2
yU ′′(s, y))2 dy

≤ 2e−
λ
4

(︂ b
4
+

1

4

)︂
(2k + 2)2 + ∥U ′′(s, ·)∥w∥E(2)(s, ·)∥w,

where we used the bootstrap assumptions and the bounds (96) on U ′′ to control the boundary terms. Now,
for y ≥ 1

4 , possibly choosing σ0 to be large, by − U ≥ b−1
8 , and |U ′(s, y)| ≤ 1. Hence, it suffices to choose λ

to satisfy (16)−1λ(b − 1) − 2 ≥ 1 to obtain (after using the inequality ab ≤ 1
20a

2 + 5b2 to bound the term

∥U ′′(s, ·)∥w∥E(2)(s, ·)∥w on the RHS, and restricting to σ0 large):

1

2
∂s∥U ′′(s, ·)∥2w + ∥U ′′(s, ·)∥2w ≤ 2(2k + 2)2 + ∥E(2)(s, ·)∥2w,

Together with the assumptions on initial data, and the bounds (89), this implies ∥U ′′(s, ·)∥2w ≤ Ck for all
s ≥ σ0, where Ck is a constant depending only on k. Possibly redefining the constant Ck, we also have the
unweighted bound

∥U ′′(s, ·)∥L2([−y2,y2]) ≤ Ck. (97)

(recall the definition of y2 from lemma 5.2).
We finally perform estimates in the “far away” region |y| ≥ y2. Again we consider equation (88),

we multiply by U ′′ and integrate by parts. We have, adding a multiple of the bound (97), and letting
S2 = R \ [−y2, y2], possibly redefining the constant Ck,

1

2
∂s∥U ′′(s, ·)∥2L2(R) +

∫︂
S2

(︁
1 +

b

2
+

5

2
U ′ − 1

2
esτsU

′(s, y)
)︁
(U ′′(s, y))2 dy

≤ Ck + ∥U ′′(s, ·)∥L2(R)∥E(2)(s, ·)∥L2(R),

(98)
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Recall now that, choosing ζ appropriately, in particular |U ′(s, y)| ≤ 1
4 for |y| ≥ y2, so that

1 +
b

2
+

5

2
U ′ − 1

2
esτsU

′(s, y)− 1

4
≥ 1

4
.

Using this observation, we deduce, from (98),

1

2
∂s∥U ′′(s, ·)∥2L2(R) +

1

4
∥U ′′(s, ·)∥2L2(R) ≤ Ck +

1

4
∥U ′′(s, ·)∥2L2(R) + 4∥E(2)(s, ·)∥2L2(R) ≤ Ck + 4∥E(2)(s, ·)∥2L2(R).

(99)
Here, the second inequality is obtained using bound (97).

Finally, by (B1)–(B2) for U ′, (B3) and (54) for U ′′ and U ′′′, (B6) for the modulation terms and Lemma 5.1
for the forcing terms, we have

∥E(2)∥L2 ≤ CAe−γs.

Combining the above bounds with inequality (99), we obtain (possibly choosing σ0 large as a function of A)
(87) on R as desired.

5.4 Top order L2 estimate

We are now ready to close the bootstrap assumption (B3) on the top order L2 norm.

Lemma 5.4. There exist ϵ0, A, y0, γ, σ0 such that if the initial data conditions (D1)–(D4) are satisfied and
the bootstrap assumptions (B1)–(B7) hold for s ∈ [σ0, σ1], we have

∥∂2k+3
y U(s, ·)∥L2 ≤ C,

where C > 0 is a constant independent of A, y0 and σ0. Hence, (IB3) holds.

Proof of Lemma 5.4. Let j = 2k + 3 and consider equation (15). We multiply this equation by ∂
(j)
y U and

integrate by parts. Let ⟨·, ·⟩ the standard L2 inner product on R. We have (cf. (8)–(9)), for a function
f ∈ H1(R),

⟨f, e−sΓ(ebsDy)e
bs∂yf⟩ = 0,

⟨f, e−sΥ(ebsDy)f⟩ ≥ 0.

We obtain the following inequality:

1

2
∂s∥U (j)∥2L2(R) +

∫︂
R

(︁
(1− b) + jb+ (j + 1)(1 + esτs)U

′)︁ (U (j))2 dy

− 1

2

∫︂
R
(b+ (1 + esτs)U

′)(U (j))2 dy

≤ (1 + esτs)∥M (j)∥L2(R)∥U (j)∥L2(R).

This implies

1

2
∂s∥U (j)∥2L2(R) +

∫︂
R

(︃(︃
1− 3

2
b

)︃
+ jb+

(︃
j +

1

2

)︃
(1 + esτs)U

′
)︃
(U (j))2 dy

≤ ∥M (j)∥L2(R)∥U (j)∥L2(R).

Note the following inequalities, valid for b > 2, a ≥ 2:

∥U (b)∥L2(R) ≲ ∥U ′′∥1−θ1
L2(R)∥U

(j)∥θ1
L2(R),

∥U (a)∥L∞ ≲ ∥U ′′∥1−θ2
L2(R)∥U

(j)∥θ2
L2(R),
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where θ1 = (b− 2)/(j − 2) and θ2 = (a− 3/2)/(j − 2).
The general form of a term appearing in M (j) is U (a)U (b), with a, b ≥ 1 and a+ b = j + 1. We estimate,

when a ≤ b, ∫︂
R
|U (a)U (b)U (j)|dy ≤ Cj∥U ′′∥1−θ1−θ2

L2(R) ∥U (j)∥1+θ1+θ2
L2(R) ≤ Cj∥U (j)∥

2− 1
2(j−2)

L2(R) ,

where Cj is a constant which depends only on j (here, we used the bound ∥U ′′∥L2(R) ≤ C from Lemma 5.3).
Combining the previous inequalities, and substituting 2k + 3 for j,

1

2
∂s∥U (2k+3)∥2L2(R) +

∫︂
R
(j +

1

2
)esτsU

′(U (2k+3))2 dy

+

(︃
b− 1

2
− Ck∥U (2k+3)∥

− 1
4k+2

L2(R)

)︃
∥U (2k+3)∥2L2(R) ≤ 0.

Here, Ck is a constant that depends only on k. It then follows, using the bootstrap assumptions (B6), as
well as choosing σ0 sufficiently large, that

1

2
∂s∥U (2k+3)∥2L2(R) +

(︃
b− 1

4
− Ck∥U (2k+3)∥

− 1
4k+2

L2(R)

)︃
∥U (2k+3)∥2L2(R) ≤ 0.

From this inequality and the assumptions on initial data it follows that, for all s ≥ σ0, the following bound
is propagated:

∥U (2k+3)∥L2(R) ≤ 2
(︂ 4Ck

b− 1

)︂4k+2
.

For A large, this proves the improved bound (IB3).

5.5 Weighted L2 estimates on U

Finally, we improve the bootstrap assumptions (B4) and (B5) concerning weighted L2 estimates on ∂yU and
∂2k+3
y U , respectively.

Lemma 5.5. There exist ϵ0, A, y0, γ, σ0 such that if the initial data conditions (D1)–(D4) are satisfied and
the bootstrap assumptions (B1)–(B7) hold for s ∈ [σ0, σ1], the improved inequalities (IB4) and (IB5) hold
true.

Proof of Lemma 5.5. We begin the proof with a basic, abstract computation. Consider a first-order operator
of the form

T = ∂s + v∂y + q.

We decompose T into its anti-symmetric and symmetric parts, i.e., T = T a + T s, where

T a = 1
2(T − T †) = ∂s + v∂y +

1
2(∂yv), T s = 1

2(T + T †) = q − 1
2(∂yv).

Let ϖ2 = ϖ2(s, y) be a nonnegative weight. If we multiply T V by ϖ2V and integrate over [s1, s2]× R, we
have ∫︂ s2

s1

∫︂
(T V )(ϖ2V ) dyds

=
1

2

∫︂
ϖ2V 2 dy

⃓⃓⃓⃓s2
s=s1

+
1

2

∫︂ s2

s1

∫︂
(ϖ2T V )V dyds+

1

2

∫︂ s2

s1

∫︂
V T †(ϖ2V ) dyds

=
1

2

∫︂
ϖ2V 2 dy

⃓⃓⃓⃓s2
s=s1

+
1

2

∫︂ s2

s1

∫︂
([ϖ2, T a]V )V dyds+

1

2

∫︂ s2

s1

∫︂
(ϖ2T s + T sϖ2)V V dyds

=
1

2

∫︂
ϖ2V 2 dy

⃓⃓⃓⃓s2
s=s1

−
∫︂ s2

s1

∫︂
(T̆ ϖ)ϖV 2 dyds.

(100)
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where

T̆ ϖ := ∂sϖ + v∂yϖ +
1

2
(∂yv)ϖ − qϖ.

As in the proof of Lemma 4.3, we introduce a nonnegative smooth partition of unity {ηj}j∈Z on R subordinate
to the open cover {Aj = {y ∈ R : 2j−3 < |y| < 2j+2}}j∈Z, and also the shorthand η≥j =

∑︁
j′≥j ηj′ .

Step 1. Our goal is to prove (IB4) concerning U ′. In view of (56) in Lemma 5.2, it suffices to bound the
expression

sup
j∈Z, 2j<ebs

(︄∫︂
2j−1<|y|<2j

η2≥i0

(︁
|y|

1
b
− 1

2U ′(s, y)
)︁2

dy

)︄ 1
2

+ e(1−
1
2
b)s

(︄∫︂
|y|> ebs

2

η2≥i0U
′(s, y)2 dy

)︄ 1
2

, (101)

where the cutoff parameter i0 > 0 is to be determined below. As a preparation for the proof, we introduce

T1 = ∂s + v∂y + q1,

where
v =

(︂
by + (1 + esτs)U − ebsξs + (1 + esτs)e

(b−1)sκ
)︂
, q1 =

(︁
1 + (1 + esτs)U

′)︁ ,
and define T̆ 1 := ∂s + v∂y +

1
2(∂yv)− q1. Recall, from (14), that U ′ obeys

T1U ′ = (1 + esτs)
(︂
e−µsH(U ′) + e−s∂yL(U + e(b−1)sκ)

)︂
. (102)

Let j1 := ⌊bσ0 log 2⌋. For each integer j ≤ j1, we introduce the weight

ϖj(s, y) = e(1−
1
2
b)(s−σ0)ϖj,0(ye

−b(s−σ0)), ϖj,0 =

{︄
2(

1
b
− 1

2
)jηj for j < j1,

2(
1
b
− 1

2
)j1η≥j1 for j = j1.

(103)

Observe that each ϖj solves the equation(︃
∂s + by∂y +

1

2
b− 1

)︃
ϖj = 0,

where, as we will see, the LHS is a good approximation of T̆ 1ϖj .
We are now ready to begin the proof of (IB4) in earnest. For each j ≤ j1, we apply (100) withϖ = η≥i0ϖj ,

which leads to

1

2

∫︂
η2≥i0ϖ

2
jU

′(s, y)2 dy =
1

2

∫︂
η2≥i0ϖ

2
jU

′(σ0, y)
2 dy +

∫︂ s

σ0

∫︂ (︂
T̆ 1(η≥i0ϖj)U

′ + η≥i0ϖjT1U ′
)︂
η≥i0ϖjU

′dyds.

Thanks to (103), if we take the supremum in j ≤ j1, then the contribution of the LHS is equivalent to (101),
whereas that of the first term on the RHS is bounded by a constant C as a consequence of (31). It is then
straightforward to derive the estimate

sup
s∈[σ0,σ1]

sup
j≤j0

(︃∫︂
η2≥i0ϖ

2
jU

′(s, y)2 dy

)︃ 1
2

≤ C + C sup
j≤j0

∫︂ σ1

σ0

(︂
∥η≥i0ϖjT1U ′∥L2 + ∥T̆ 1(η≥i0ϖj)U

′∥L2

)︂
ds.

We claim that, for some c > 0 and σ0 sufficiently large depending on A,

sup
j≤j0

∫︂ σ1

σ0

(︂
∥η≥i0ϖjT1U ′∥L2 + ∥T̆ 1(η≥i0ϖj)U

′∥L2

)︂
ds ≲ 2(

1
b
+1)i0 + 2−ci0A+ e−cσ0A.

From this claim, (IB4) would follow by taking i0, A, and σ0 large enough (in this order).
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To bound the contribution of η≥i0ϖjT1U ′, we use (102). Using (B6) for esτs, (40) in Lemma 4.3 for
e−µsH(U ′) (with ϖ = η≥i0ϖj , ℓ = 0 and ν = 1

2 −
1
b ) with (B4)–(B5), and (50) for e−s∂yL(U + e(b−1)sκ), we

have

∥η≥i0ϖjT1U ′∥L2 ≲ (1 + e−γsA)
(︂
e−µsA+ 2(

1
b
− 1

2
)je(1−

1
2
b)(s−σ0)(1 + κ0)e

−(2− 1
2
b)s
)︂

≲ (1 + e−γsA)
(︁
e−µsA+ (1 + κ0)e

−s
)︁
,

where on the last line, we used the fact that 2j ≲ 2j1 ≃ ebσ0 . Therefore,

sup
j≤j0

∫︂ σ1

σ0

∥η≥i0ϖjT1U ′∥L2 ≲ e−cσ0A,

for some small c > 0, A sufficiently large and σ0 sufficiently large (determined in this order).
Next, we bound the contribution of T̆ 1(η≥i0ϖj)U

′. We compute

T̆ 1(η≥i0ϖj) = vη′≥i0ϖj + η≥i0(v − by)ϖ′
j −

1

2
η≥i0(1 + esτs)U

′ϖj .

To proceed, we note, From its definition (103), that the s-support of ∥η′≥i0
ϖj∥L∞ is at most of length O(1)

independent of i0 and j (we remark that this property is also geometrically clear from the transport equation
obeyed by ϖj). Moreover, by (56) and U(s, 0) = 0,

|U ′(s, y)|+ |y|−1|U(s, y)| ≲ max{(1 + |y|)−r, Ae−rs}. (104)

Then, using also (B6),

|v − by| = |(1 + esτs)U − ebsξs + (1 + esτs)e
(b−1)sκ| ≲ |y|max{(1 + |y|)−r, Ae−rs}+ e−γsA.

Finally, observe that η≥i0ϖj and η≥i0 |y|ϖ′
j are supported in {|y| ≳ 2jeb(s−σ0)}∩{|y| ≳ 2i0} and are bounded

by C2(
1
b
− 1

2
)je(1−

1
2
b)(s−σ0)1>2i0−5(2jeb(s−σ0)), where 1>2i0−5 is the characteristic function of {|y| > 2i0−5}.

Putting all these together, we may arrive at∫︂ σ1

σ0

∥T̆ 1(η≥i0ϖj)U
′∥L2 ds ≲ 2(

1
b
+ 1

2
)i0∥U ′∥L2(supp η′≥i0

)

+

∫︂ σ1

σ0

(︂
2−rje−rb(s−σ0)1>2i0−5(2jeb(s−σ0)) +Ae−rs

)︂
∥U∥Ḣ1

<ebs
dσ

≲ 2(
1
b
+1)i0 +

(︁
2−ri0 +Ae−rσ0

)︁
A.

where we used (IB1), (IB2) and (B4) on the last line. Taking 0 < c < r and e(r−c)σ > A, the last line is
bounded by the right-hand side of the claim, as desired.

Step 2. Now we turn to the proof of (IB5) concerning U (2k+3). To simplify the notation, let us write
U = U (2k+3). In view of Lemma 5.4, it suffices to bound the expression

sup
j∈Z, 2j<ebs

(︄∫︂
2j−1<|y|<2j

η2≥i0

(︁
|y|

1
b
+2k+ 3

2U(s, y)
)︁2

dy

)︄ 1
2

+ e(1+(2k+ 3
2
)b)s

(︄∫︂
|y|> ebs

2

η2≥i0U(s, y)
2 dy

)︄ 1
2

, (105)

where the cutoff parameter i0 > 0 is to be determined below. Like in Step 1, we introduce

T2k+3 = ∂s + v∂y + q2k+3,

where v is as before and
q2k+3 =

(︁
1 + (2k + 2)b+ (2k + 4)(1 + esτs)U

′)︁ .
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Recall, from (15), that U obeys

T2k+3U = −(1 + esτs)M
(2k+3) + (1 + esτs)

(︂
e−µsH(U) + e−s∂2k+3

y L(U + e(b−1)sκ)
)︂
.

Let j1 := ⌊bσ0 log 2⌋ and for each integer j ≤ j1, we introduce the weight

ϖj(s, y) = e(1+(2k+ 3
2
)b)(s−σ0)ϖj,0(ye

−b(s−σ0)), ϖj,0 =

{︄
2(

1
b
+2k+ 3

2
)jηj for j < j1,

2(
1
b
+2k+ 3

2
)j1η≥j1 for j = j1.

For each j ≤ j1, we apply (100) with ϖ = η≥i0ϖj , which leads to

1

2

∫︂
η2≥i0ϖ

2
jU(s, y)2 dy =

1

2

∫︂
η2≥i0ϖ

2
jU(σ0, y)2 dy +

∫︂ s

σ0

∫︂ (︂
T̆ 2k+3(η≥i0ϖj)U + η≥i0ϖjT2k+3U

)︂
η≥i0ϖjUdyds.

To avoid the derivative loss, we further write out the contribution of η≥i0ϖjT2k+3U as follows:∫︂
η≥i0ϖjT2k+3Uη≥i0ϖjU dy =

∫︂
(1 + esτs)e

−µsη≥i0ϖjH(U)η≥i0ϖjU dy

+

∫︂
(1 + esτs)e

−sη≥i0ϖj∂
2k+3
y L(U + e(b−1)sκ)η≥i0ϖjU dy

−
∫︂

(1 + esτs)η≥i0ϖjM
(2k+3)η≥i0ϖjU dy

= (1 + esτs)e
−µs

∫︂
H(η≥i0ϖjU)η≥i0ϖjU dy

+

∫︂
(1 + esτs)e

−µs[η≥i0ϖj ,H]Uη≥i0ϖjU dy

+

∫︂
(1 + esτs)e

−sη≥i0ϖj∂
2k+3
y L(U + e(b−1)sκ)η≥i0ϖjU dy

−
∫︂

(1 + esτs)η≥i0ϖjM
(2k+3)η≥i0ϖjU dy.

Observe that the first term on the far RHS is nonnegative, by the dispersive/dissipative property of Γ/Υ,
respectively. Returning to the weighted energy identity, we take the supremum in j ≤ j1 and in s ∈ [σ0, σ1],
then use (31) to bound (︃∫︂

η2≥i0ϖ
2
jU(σ0, y)2 dy

)︃ 1
2

≤ C.

In conclusion, we arrive at

sup
s∈[σ0,σ1]

sup
j≤j0

(︃∫︂
η2≥i0ϖ

2
jU(s, y)2 dy

)︃ 1
2

≤ C + C sup
j≤j0

∫︂ σ1

σ0

(I + II + III + IV) ds, (106)

where

I = (1 + esτs)e
−µs∥[η≥i0ϖj ,H]U∥L2 ,

II = (1 + esτs)e
−s∥η≥i0ϖj∂

2k+3
y L(U + e(b−1)sκ)∥L2

III = (1 + esτs)∥η≥i0ϖjM
(2k+3)∥L2 ,

IV = ∥T̆ 2k+3(η≥i0ϖj)U∥L2 .

We claim that, for some c > 0 and σ0 sufficiently large depending on A,

sup
j≤j0

∫︂ σ1

σ0

(I + II + III + IV) ds ≲ 2(
1
b
+2k+3)i0 + 2−ci0A+ e−cσ0A.
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Since the LHS of (106) is equivalent to (105), (IB5) would follow from the claim by taking i0, A, and σ0
large enough (in this order).

To bound the contributions of I and II, we use Lemma 4.3 and (50) (as well as (B4), (B5), and (B6)) to
estimate

sup
j≤j0

∫︂ σ1

σ0

I ds ≲ e−µσ0A, sup
j≤j0

∫︂ σ1

σ0

II ds ≲ e−σ0(1 + κ0).

Both right-hand sides are bounded by e−cσ0A if we take 0 < c < min{µ, 1}, A sufficiently large and σ0
sufficiently large (in this order). To treat III, we begin by noting that

∥η≥i0ϖjM
(2k+3)∥L2

≲ ∥U ′∥L∞(Ãj)

(︂
2(2k+

3
2
+ 1

b
)j2((2k+

3
2
)b− 1

2
)(s−σ0)∥U (2k+3)∥L2(Ãj)

+ 2(
1
b
− 1

2
)j2(1−

1
2
b)(s−σ0)∥U ′∥L2(Ãj)

)︂
,

where Ãj is a slight enlargement of suppϖj . Indeed, this inequality is proved by first writing

η≥i0ϖjM
(2k+3) = η≥i0ϖj

2k+2∑︂
ℓ=2

1

2

(︃
2k + 4

ℓ

)︃
U (ℓ)U (2k+4−ℓ) = η≥i0ϖj

2k+2∑︂
ℓ=2

1

2

(︃
2k + 4

ℓ

)︃
∂ℓ−1
y (η̃jU

′)∂2k+3−ℓ
y (η̃jU

′)

then applying the usual Gagliardo–Nirenberg inequalities to η̃jU
′; here, η̃j is a smooth bump function such

that supp η̃j ⊆ Ãj , |∂N
y η̃j | ≲N 2−Nj (for any N ≥ 0) and η̃j = 1 on suppϖj . Then using (104), (B4), and

(B5) (as well as (B6)), we obtain ∫︂ σ1

σ0

III ds ≲ (2−ri0 +Ae−rσ0)A,

which is bounded by 2−ci0A+ e−cσ0A if we take 0 < c < r and e(r−c)σ0 > A. Finally, the contribution of IV
is handled similarly as the term T̆ 1(η≥i0ϖj) in Step 1, where we use Lemma 5.4 and (B4)–(B5) instead of
(IB1)–(IB2) and (B4), respectively. We may show that∫︂ σ1

σ0

IV ds ≲ 2(
1
b
+2k+3)i0 + (2−ri0 +Ae−rσ0)A,

which is bounded by the right-hand side of the desired claim if 0 < c < r and e(r−c)σ0 > A. This completes
the proof.

6 Estimates on modulation parameters and unstable coefficients

In this section, we analyze the ODE’s satisfied by the modulation parameters and the coefficients W (j)(s, 0).
We prove the bootstrap assumptions in Lemma 3.6 involving the modulation ODE’s and W (2k+1)(s, 0), as
well as Lemma 3.9 in its entirety.

6.1 Control of the modulation parameters and w2k+1

We establish sharp bounds on the ODE’s for modulation parameters, which improve (B6).

Lemma 6.1 (Control of the modulation parameters). Assume the hypotheses of Lemma 3.6. Then we have

|esτs| ≤ CAe
−min{2γ,µ}s, (107)

|ebsξs − (1 + esτs)e
(b−1)sκ| ≤ CAe

−min{2γ,µ}s, (108)

|e(b−1)sκs| ≤ CAe
−min{2γ,µ0}s. (109)

In particular, if σ0 is sufficiently large (depending only on A, y0, κ0), (IB6) holds.
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Proof. For τs, by (23), we have

|esτs| ≤
|F (1)(s, 0)|+ |w2(e

bsξs − (1 + esτs)e
(b−1)sκ)|

1− |F (1)(s, 0)|
.

By (B6), (T) (in the case k ≥ 2 for w2), (52) and (53) with j = 1, |F (1)(s, 0)| ≤ CA

(︁
e−µs + e−2γs

)︁
(since

0 < µ < 2), which implies that

|esτs| ≤ 2CA(e
−µs + e−2γs + Ce−2γs) ≤ CAe

−min{2γ,µ}s,

thereby showing (107).
For ξs, we use (24) to bound

|ebsξs − (1 + esτs)e
(b−1)sκ| ≤ 1

(2k)!− 1

(︂
|N(2k)|y=0|+ (1 + |esτs|)|F (2k)(s, 0)|

)︂
,

where we crucially used (B7) to ensure that (2k)! + w2k+1 ≥ (2k)! − 1 > 0 in the denominator. By (T)
and (21), we have |N(2k)|y=0| ≲ e−2γs. On the other hand, by (52), (53) with j = 2k, and (107), we have

|F (2k)(s, 0)| ≤ CAe
−µs (since 0 < µ < 2). At this point, (108) follows.

Finally, for κs, we use (22) to bound

|e(b−1)sκs| ≤ |ebsξs − (1 + esτs)e
(b−1)sκ|+ (1 + |esτs|)|F (0)(s, 0)|.

By (51) and (53) with j = 0, we have |F (0)(s, 0)| ≤ Ce−min{µ0,2−b}s = Ce−µ0s (since 2 − b = 2k−1
2k ).

Combined with the previous bounds (107) and (108) for |esτs| and |ebsξs − (1 + esτs)e
(b−1)sκ|, respectively,

(109) follows.
Finally, since γ < min{2γ, µ, µ0} by (27), (IB6) follows from (107)–(109) provided that σ0 sufficiently

large.

Next, we study the ODE satisfied by W (2k+1)(s, 0) and improve (B7).

Lemma 6.2 (Control of the stable coefficient). Assume the hypotheses of Lemma 3.6. Then (IB7) holds
true for σ0 sufficiently large.

Proof. Using equation (17) with j = 2k + 1, we have the equation for w2k+1 = W (2k+1)(s, 0) (since

Ū
(2k+1)

(0) = (2k)! and Ū
(2k+2)

(0) = 0):

∂sw2k+1 + (1 + esτs) N(2k + 1)|y=0

+
(︂
−ebsξs + (1 + esτs)e

(b−1)sκ
)︂
w2k+2 − esτs ((2k)!− (2k + 2)w2k+1)

= (1 + esτs)F
(2k+1)(s, 0).

(110)

Hence all terms in display (110) other than ∂sw2k+1 decay exponentially as s increases. Let us analyze the
terms one by one. First,

|(1 + esτs)N(2k + 1)| ≤ CAe
−γs

thanks to the trapping assumption (T), the improved bound (IB6), and the bounds |W (2k+1)(s, 0)| ≤ 1 as
well as |W (2k+2)(s, 0)| ≤ CA (this last bound follows from the estimate (88) in Lemma 5.3 and (B3) plus
Sobolev embedding).

In addition, ⃓⃓⃓ (︂
−ebsξs + (1 + esτs)e

(b−1)sκ
)︂
w2k+2

⃓⃓⃓
≤ CAe

−γs,

which follows by (IB6) and (IB3).
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Moreover, by (IB6), (52) and (53), we have |(1 + esτs)F
(2k+1)(s, 0)| ≲A e−µs. Finally, recall from (29)

that the initial data at σ0 are such that |∂(2k+1)
y W (σ0, 0)| ≤ Cϵ0e

−(1+2kb)σ0 . Therefore, we obtain an equation
of the following type for w2k+1:

∂sw2k+1 − esτs(2k + 2)w2k+1 = h#(s), (111)

where |h#(s)| ≤ CA exp(−min{γ, µ}s). Integrating (111) in time, we can prove the improved bootstrap
bound (IB7) upon choosing σ0 sufficiently large, as desired.

6.2 Control of the unstable coefficients: proof of Lemma 3.9

The purpose of this subsection is to prove Lemma 3.9 (shooting lemma), which is relevant when k > 1.
We start by establishing the key outgoing property of the unstable ODE near the boundary of the trapped
region:

Lemma 6.3. Under the hypotheses of Lemma 3.6, there exists c0 > 0 such that, for σ0 sufficiently large
(depending only on k, µ, γ and A), the following holds. For any s ∈ [σ0, σ1] such that

1

2
e−γs < w⃗(s) < e−γs. (112)

we have
∂s|w⃗(s)|2 > 2c0|w⃗(s)|2.

Proof. We recall the vector w⃗(s) = (w2, . . . , w2k−1)(s), which satisfies the following system of ODEs16:

∂sw⃗(s)−Dw⃗(s) + (1 + esτs)N (w⃗(s)) = Mw⃗(s) + f⃗(s), (113)

Here D = diag (λ2, . . . , λ2k−1) with λj = 1− j−1
2k , so that 1 > λ2 > . . . > λ2k−1 > 0. We put

c0 =
1

2
λ2k−1.

We now evaluate ∂s|w⃗(s)|2 using (113):

1

2
∂s|w⃗(s)|2 −Dw⃗(s) · w⃗(s) + (1 + esτs)N (w⃗(s)) · w⃗(s) = Mw⃗(s) · w⃗(s) + f⃗(s) · w⃗(s).

The contribution of Dw⃗(s) gives the main positive term 4c0|w⃗|2 for a suitable choice of c0, since D =
diag (λ2, . . . , λ2k−1), with λj > 0 for all j. We claim that the contribution of the remaining terms is
bounded below by −2c0|w⃗|2 if σ0 is sufficiently large. First, for N , we have, by (T)

|N (w⃗(s))| ≤ Ck|w⃗(s)|2 ≤ Cke
−γs|w⃗(s)| ≤ c0

4
|w⃗(s)|,

for σ0 sufficiently large.
Next, concerning the term Mw⃗(s), we have

|M | ≤ Cke
−γs,

which follows from (IB6). Finally, by (52), (53) for j ≥ 2, (IB6) and (112), we have

|f⃗ | ≤ Ck,Ae
−µs ≤ 2Ck,Ae

−(µ−γ)s|w⃗(s)|.

Recalling from (27) that γ < µ0 ≤ µ, the contribution of f⃗(s) decays exponentially, which concludes the
proof of the lemma.

16Recall display (25), where D and M are defined, and moreover recall that N (w⃗(s)) is a vector with quadratic entries as

functions of the entries of w⃗, and f⃗ is the vector ((1 + esτs)F
(2)(s, 0), . . . , (1 + esτs)F

(2k−1)(s, 0)).
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Finally, we are ready to prove Lemma 3.9.

Proof of Lemma 3.9. For each |w⃗0| ≤ e−γσ0 , denote by Uw⃗0
(s, y) the solution with initial data at s = σ0

induced by w⃗0 and W0, and write w⃗w⃗0
(s) for the vector (∂2

yUw⃗0
(s, 0), . . . , ∂2k−1

y Uw⃗0
(s, 0)). For the pur-

pose of contradiction, suppose that for all w⃗0 satisfying |w⃗0| ≤ e−γσ0 , Uw⃗0
does not remain trapped for-

ever. By Lemma 3.6 and a standard bootstrap argument, there exists a unique σtrap(w⃗0) ≥ σ0 such that
|w⃗w⃗0

(σtrap(w⃗0))| = e−γσtrap(w⃗0) while |w⃗w⃗0
(s)| < e−γs for all σ0 ≤ s < σtrap(w⃗0) (see the discussion following

Definition 3.8). The key step in the proof is to establish the following:

Claim. The map H : B0(e
−γσ0) → ∂B0(1), w⃗0 ↦→ eγσtrap(w⃗0)w⃗w⃗0

(σtrap(w⃗0)) is continuous.

Assuming the claim, we first conclude the proof of the lemma. Note, first, that for w⃗0 ∈ ∂B0(e
−γσ0),

we trivially have σtrap = σ0 and w⃗w⃗0
(σtrap) = w⃗0; hence H is equal to the identity when restricted to the

boundary ∂B0(e
−γσ0). Hence, by composing with B0(1) → B0(e

−γσ0), v⃗ ↦→ e−γσ0 v⃗, we obtain a continuous
map from B0(1) into ∂B0(1) that is equal to the identity map on ∂B0(1) (i.e., a continuous retraction
B0(1) → ∂B0(1)). As is well-known (cf. proof of Brouwer’s fixed point theorem), such a map does not exist,
which is a contradiction.

It remains to establish the claim. Fix w⃗0 ∈ B0(e
−γσ0). By definition, (T) holds for s ∈ [σ0, σtrap(w⃗0)], so

Uw⃗0
obeys (IB1)–(IB7) on s ∈ [σ0, σtrap(w⃗0)]. By a standard argument involving analysis of the linearized

system, it can be shown that v⃗ ↦→ Uv⃗ is Lipschitz continuous17 near w⃗0 in Cs(I;H
2k+2), where I is a fixed

open interval containing [σ0, σtrap(w⃗0)]. By Sobolev embedding, it follows that w⃗v⃗(s) depends continuously
on (s, v⃗) ∈ I × Bw⃗0

(δ) for some δ > 0. To establish the continuity of H at w⃗0, it therefore only remains to
show that that v⃗ ↦→ σtrap(v⃗) is continuous at v⃗ = w⃗0.

To prove the continuity of σtrap, we begin by using the outgoing property near the boundary (Lemma 6.3)
to make the following observation: for an arbitrary sufficiently small number ϵ > 0, if Uv⃗ is trapped on
[σ0, σ1) and w⃗v⃗(σ1) > e−γσ1−c0ϵ then |σtrap(v⃗)− σ1| < ϵ. When w⃗0 ∈ ∂B0(e

−γσ0), the continuity of σtrap at
w⃗0 follows immediately by applying the preceding statement with σ1 = σ0, since ϵ > 0 may be arbitrarily
small. When w⃗0 ̸∈ ∂B0(e

−γσ0), we have σtrap(w⃗0) > σ0. Clearly, there exists σ1 ∈ (σ0, σtrap(w⃗0)) such
that e−γσ1−c0ϵ < w⃗w⃗0

(σ1) < e−γσ1 and |σ1 − σtrap(w⃗0)| < ϵ. By Lemma 3.6 and the strict inequality
w⃗w⃗0

(σ1) < e−γσ1 , for v⃗ sufficiently close to w⃗0, the corresponding solution Uv⃗ is trapped on [σ0, σ1] and
obeys e−γσ1−c0ϵ < w⃗v⃗(σ1) < e−γσ1 . Hence, |σtrap(v⃗)− σtrap(w⃗0)| ≤ |σtrap(v⃗)− σ1| + |σtrap(w⃗0)− σ1| < 2ϵ,
which implies the desired continuity of σtrap.
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[12] P. Constantin and J. Wu. Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic
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