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ABSTRACT: Herein, we report the development of a Cu-catalyzed
aminoallylation of aldehyde electrophiles through reductive coupling by
circumventing the problematic competitive reduction of the aldehyde
electrophile by a CuH catalyst. This leads to a highly diastereo- and
enantioselective process for the synthesis of chiral 1,2-aminoalcohols
containing secondary alcohol substitution. Cleavage of the N substituents
on the reaction products was performed, allowing access to the other
diastereomer of the aminoalcohol, which was investigated in the context of
a synthesis of eligulstat.

Catalysis is an enabling technology for complex molecule
organic synthesis due to the ability to access previously

unknown reactivity via the catalytic process and to control
important reaction parameter outcomes (e.g., stereoselectivity,
regioselectivity, and chemoselectivity) by modulation of the
catalyst.1 These features enable access to new synthetic
pathways that were previously unattainable to allow for
improvements in synthetic efficiency and atom economy to
promote environmental sustainability of the chemical enter-
prise.2 Important late transition metal-catalyzed reactions (e.g.,
cross-coupling,1e hydrogenation,3 hydroformylation,4 metathe-
sis1c) were largely pioneered utilizing catalysts derived from
the second and third row of the d block (e.g., Pd, Pt, Rh, Ir).1

However, due to the low natural abundance of these precious
elements (1 ppb in the earth’s crust5), there are obvious
benefits (e.g., cost, sustainability) to developing these same
powerful transformations utilizing nonprecious metal catalysts
derived from the first row of the transition series (e.g., Fe, Ni,
Co, Cu) instead since these metals have ≥4 orders of
magnitude higher natural abundance in the earth’s crust5 (Fe,
56300 ppm; Ni, 90 ppm; Co, 30 ppm; Cu, 68 ppm). As a
result, development of nonprecious metal-catalyzed organic
transformations has garnered considerable interest from
research groups over the years.6

Arguably, one of the most powerful methods in organic
synthesis is the reductive allylation of carbonyl electrophiles
using unsaturated hydrocarbons (Scheme 1).7 This area has
largely been pioneered by the Krische group7 utilizing allenes
(1) (Scheme 1A),8 enynes,9 or 1,3-dienes10 as the allyl
nucleophile precursors with H2 or a H2 surrogate as the
terminal reductant. While these processes are transformative,
they require the use of precious metal catalysts derived from Ir,

Rh, or Ru. More recently, the Buchwald group11 has developed
Cu-catalyzed versions of these processes utilizing silane as the
terminal reductant (Scheme 1B) that are attractive due to the
low cost, low toxicity,12 and high availability of Cu. Notably,
the techniques of Krische (Scheme 1A) and Buchwald
(Scheme 1B) are orthogonal, whereby precious metal-
catalyzed reductive allylation primarily works well with
aldehydes, with numerous published examples,7−9 whereas
ketones are more problematic, with only four known
examples13,14 (Scheme 1A). In contrast, the Cu-catalyzed
processes work well with ketone electrophiles,11a−d yet
aldehydes are problematic (two reported examples)11e,15 due
to competitive reduction of the aldehyde by the CuH catalyst
(Scheme 1B).
Our group16 has been interested in developing reductive

allylation reactions utilizing allenamides (4) as a tool to access
important chiral 1,2-aminoalcohol motifs through amino-
allylation17,18 (Scheme 1C). We have strategically focused on
Cu-catalyzed processes due to the improved sustainability of
Cu over catalysts derived from precious metals.5,6,12 Ketone
electrophiles can be employed to provide 1,2-aminoalcohols 5
bearing a tertiary alcohol motif under either chiral catalyst
control16a,b or through auxiliary control.16c−f
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However, there are cases where the aminoalcohol product
having secondary alcohol substitution (i.e., 6) may be desired
that would require the use of an aldehyde electrophile, which
may not be straightforward with CuH catalysis due to
competitive aldehyde reduction (vide supra). While there is a
single known example of an asymmetric aminoallylation of
aldehydes,17 the protocol utilizes an N-phthaloylallenimide
under Ir catalysis through the hydrogen autotransfer
technique; low catalyst loadings of Ir were not reported (5
mol % Ir loading employed), and a high reaction temperature
was required (100 °C). The ability to conduct an asymmetric
aminoallylation process with the nonprecious metal Cu as the
catalyst has significant advantages from a sustainability
perspective and warrants investigation. Herein we disclose
the development of a Cu-catalyzed enantioselective amino-
allylation of aldehydes that occurs under mild conditions (−40
to 40 °C) with high stereoselectivities.19

To realize a CuH-catalyzed aminoallylation of aldehydes,
competitive reduction of the aldehyde over hydrocupration of
the allene must be circumvented. One solution may be to
utilize the allene in large excess to increase the rate of
hydrocupration over aldehyde reduction through a concen-
tration effect. While use of large excesses of allene is not
practical from an atom economy perspective, the same effect
can be achieved through slow addition of the aldehyde.11e

Accordingly, as the test reaction, a solution of anisaldehyde
(7a) in toluene was added to the reaction mixture containing
allenamide 8 using a syringe pump (Table 1).20 Gratifyingly,
the desired aminoallylation product 9a was obtained by this

approach. Survey of a variety of chiral bis(phosphine) ligands
(entries 1−5)20 led to relatively modest enantioselectivities,
with the Walphos family of ligands being optimal, withW3 and
W12 affording 68 and 80% ee, respectively (entries 1 and 3).
Interestingly, use of J2 that proved optimal in previous
reactions using ketone electrophiles afforded only modest
enantioselection (39% ee; entry 5).16a Additional optimization
identified that reaction temperature had the most significant
impact on enantioselectivity (entries 6−10). While W12
generally afforded higher levels of enantioselection compared
to W3 when the reactions were conducted at ≥0 °C (entries 3
and 7 vs 1 and 6), similar enantioselectivities were obtained at
≤ −40 °C (entry 8 vs 9). However, at temperatures ≤ −40 °C,
W3 afforded a better reaction yield. While reducing the
reaction temperature to −78 °C led to the highest observed
enantioselectivity (94% ee), the yield was reduced compared to
the reaction performed at −40 °C (entry 10 vs 8). As a result,
the conditions in entry 8 were identified as optimal.
The aldehyde scope in the Cu-catalyzed aminoallylation

reaction was next investigated (Scheme 2). Electron-rich
aldehydes (9a, 9e−h) performed well in the reaction,
generating products in good yields and enantioselectivities.
In contrast, electron-deficient aldehydes (9b−d) generally
afforded products in lower yield due to increased amounts of
aldehyde reduction byproducts. Notably, sterically hindered
ortho-substituted aldehydes (9f, 9g) and heteroaryl aldehydes
(9i−o) performed well in the reaction. Finally, aliphatic
aldehydes (9p−u) could also be employed, but these
noticeably performed better with the use of W12 as the ligand
and required higher reaction temperatures (22−40 °C).

Scheme 1. Enantioselective Reductive Allylation Table 1. Cu-Catalyzed Aminoallylation of Aldehydesa

entry ligandd T (°C) yield (%)b ee (%)c

1 W3 22 74 68
2 W8 22 47 6
3 W12 22 79 80
4 J1 22 69 14
5 J2 22 78 39
6 W3 0 81 76
7 W12 0 92 84
8 W3 −40 92 92
9 W12 −40 40 88
10 W3 −78 65 94

aConditions: 8 (0.375 mmol), Me(MeO)2SiH (0.500 mmol),
Cu(OAc)2 (5 mol %), and ligand (6 mol %) in toluene (0.25 mL)
followed by addition of 7a (0.250 mmol/0.5 mL of toluene) by
syringe pump over 9 h (0.05 mL/h) followed by an additional 15 h;
see the Supporting Information for details. In all cases, a single
diastereomer of 9a was obtained (1H NMR spectroscopic analysis).
bDetermined by 1H NMR spectroscopy on the unpurified reaction
mixture using dimethyl fumarate as a standard. cThe value for the anti
diastereomer was determined by HPLC. dLigand structures:
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Subsequent reactions of the N substituents of 9 were next
investigated (Scheme 3). An additional convenient feature of
the methodology developed herein over existing asymmetric
aminolallylation17 is the presence of the more easily cleavable
N-Boc group that could be removed using TFA. The resultant
aminoalcohol was converted to carbamate 10 followed by
PMB removal to afford 11, which was compared with known20

enantioenriched material to confirm the absolute and relative

stereochemistry of 9b. Notably, the anti diastereomer (9b)
could be transformed to an opposite diastereomeric arrange-
ment through inversion21 of the secondary alcohol stereo-
center by neighboring group participation of the N-Boc group
when activating with SOCl2, affording carbamate 12. The
observed relative stereochemistry obtained in the Cu-catalyzed
aminoallylation process conforms to our previously reported16a

stereochemical model for ketone electrophiles with acyclic
allenamides favoring the anti diastereomer through chairlike
transition structures (TS-anti vs TS-syn). Formation of the
minor syn diastereomer of the product through TS-syn is
proposed to be inhibited through shielding of the aldehyde
approach vector by the N-Boc group, which is twisted out of
plane due to A1,3 strain.16a,22

Taking the above stereochemical observations into consid-
eration, the aldehyde aminoallylation reaction was demon-
strated in the context of an asymmetric synthesis of the
important Gaucher’s disease treatment eligulstat23 (15)
(Scheme 4). The aminoallylation could be performed on a

1.0 mmol scale to provide 9h with identical results. Subsequent
inversion21 of the hydroxyl stereocenter of 9h using SOCl2
afforded 13 in excellent yield and enabled access to the correct
relative stereochemistry required for eliglustat. Finally,
oxidative cleavage of the alkene of 13 using a reductive
amination workup24 with pyrrolidine afforded 14 as a potential
protected precursor toward 15.
In conclusion, we have reported the first enantioselective

Cu-catalyzed aminoallylation of aldehydes by circumventing
competitive aldehyde reduction by the CuH catalyst through
the slow addition of the aldehyde. The anti selective process
provides reaction products in good to excellent enantiose-

Scheme 2. Aldehyde Scopea

aThe reaction utilizes 0.250 mmol of aldehyde in 0.5 mL of toluene
added by syringe pump over 9 h (0.05 mL/h) followed by an
additional 15 h; see the Supporting Information. Yields represent
isolated material. bThe reaction was performed at 0 °C. cThe reaction
was performed at 40 °C. dThe reaction was performed at 22 °C. eThe
reaction was performed using W12 as the ligand.

Scheme 3. Stereochemical Determination

Scheme 4. Application toward Eligulstat
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lectivities, and the other diastereomer of the aminoalcohol can
be obtained through an inversion process utilizing the N-Boc
group.
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