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In biomedical research the analysis of disease prevalence is of critical im-
portance. While most of the existing prevalence studies focus on individual
diseases, there has been increasing effort that jointly examines the prevalence
values and their trends of multiple diseases. Such joint analysis can provide
valuable insights not shared by individual-disease analysis. A critical limi-
tation of the existing analysis is that there is a lack of attention to existing
information, which has been accumulated through a large number of stud-
ies and can be valuable especially when there are a large number of diseases
but the number of prevalence values for a specific disease is limited. In this
study we conduct the functional clustering analysis of prevalence trends for
a large number of diseases. A novel approach based on the penalized fusion
technique is developed to incorporate information mined from published ar-
ticles. It is innovatively designed to take into account that such information
may not be fully relevant or correct. Another significant development is that
statistical properties are rigorously established. Simulation is conducted and
demonstrates its competitive performance. In the analysis of data from Tai-
wan NHIRD (National Health Insurance Research Database), new and inter-
esting findings that differ from the existing ones are made.

1. Introduction. In biomedical research the analysis of prevalence has had a pivotal role.
There have been extensive studies on the “snapshot” values of disease prevalence and their
associated factors. Quite a few other studies are on disease prevalence trends, and such anal-
ysis can assist prioritizing diseases (e.g., those with fast increasing prevalence should receive
more attention), identifying new risk factors for etiology (which can facilitate developing pre-
vention and treatment strategies), and managing diseases in clinical practice (e.g., by making
proper resource planning and allocation). Most of the existing prevalence studies focus on
individual diseases (or small classes of preselected, tightly connected diseases). On the other
hand, there has been increasing effort that jointly analyzes the prevalence values of two or
more diseases (Joffres et al. (2013), Romanowski et al. (2015), Jadhav et al. (2021)). For
example, a prospective observational study conducted in the U.S. examines the prevalence of
chest pain and acute myocardial infarction (MI) and shows that patients without chest pain
on presentation represent a large segment of the MI population and have an increased risk
for delays in seeking treatment (Canto et al. (2000)). Another example is the examination
of the prevalence values and trends of multiple cancers under the metastasis networks (Chen
et al. (2009)). Also, using the Taiwan NHI (National Health Insurance) data, studies have
been conducted on diseases sharing similar prevalence trends with HIV/AIDS (Lai (2015))
and amyotrophic lateral sclerosis (Tsai, Hu and Lee (2019)).
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The growth in joint prevalence analysis fits the paradigm shifting in biomedical research
from individual-disease to pan-disease analysis. One of the early breakthroughs is the human
disease network (HDN) analysis, which examines the interconnections among diseases based
on their genetic risk factors (Goh et al. (2007)). The phenotypic HDN (pHDN) analysis has
been subsequently conducted and differs from the molecular HDN analysis by focusing on
clinical phenotypes (Zhou et al. (2014)). With the consideration that both molecular basis and
disease phenotypes are not “close enough” to clinics, pan-disease analysis of the interconnec-
tions between disease clinical treatment measures, such as treatment cost (Ma et al. (2020))
and inpatient length of stay, has been conducted. Here we note that disease prevalence trend
is correlated with the aforementioned variables (e.g., a disease with low prevalence is likely
to have limited treatment cost and inpatient stay) but cannot be fully derived from them. As
such, this work is expected to complement but not strongly overlap with the aforementioned
ones.

In this study we examine the interrelationships among diseases in terms of prevalence
trend. To fix ideas, in the upper-left panel of Figure 1, we present the prevalence trends of 10
diseases. In the upper-right panel, we move the curves vertically and find four clusters, with
those in the same cluster having similar patterns. Although functional clustering has been ex-
tensively conducted (Jacques and Preda (2014)), its application to disease prevalence trends
has been very limited but can have important implications. First, the temporal variations
of disease prevalence can be largely attributed to the development of prevention programs,
improvement in diagnosis, change in environmental conditions, and other time-dependent
influential factors. As such, if multiple diseases have similar temporal trends, it is sensi-
ble to hypothesize that they share time-dependent risk factors and/or are affected by similar
prevention/diagnosis/treatment programs. Identifying such shared factors can advance our
understanding of diseases and inform clinical practice. For example, epidemiologic studies
suggest that cognitive dysfunction and type 2 diabetes are “correlated,” which is manifested
in the shared patterns of their prevalence trends (Luchsinger et al. (2007)). Motivated by such
observations, researchers have examined the micro-relation of glycemic status with different
domains of cognitive functions and found a number of vascular and neurodegenetive mech-
anisms through which type 2 diabetes and cognitive function are interconnected. Second,
clustering analysis can lead to a new/alternative way of disease classification and character-
ization. Different classifications are needed to serve different purposes (Zhou et al. (2018)),
and the classification, as exemplified in the upper-right panel of Figure 1, has a basis different
from those based on organ, symptom, and genetics. It can be “closer” to public health as well
as medical care management and planning. Third, clustering analysis can lead to simpler data
structures and more accurate estimation, as estimation only needs to be done at the cluster (as
opposed to individual) level.

Among the existing studies, the most relevant is Jadhav et al. (2021), which also conducts
the functional clustering analysis of disease prevalence trends and analyzes the NHI data. The
present study advances from Jadhav et al. (2021) in multiple important aspects. As exempli-
fied in the upper-left panel of Figure 1, for each disease the number of measurements (usually
one prevalence value per year) is limited. Combined with the large number of diseases, this
leads to a lack of information and hence unreliable estimation and unsatisfactory clustering.
Many diseases have been extensively studied in published literature, and quite a few studies
have touched on the “interconnections” among diseases. In Figure 2, for selected diseases, we
present the numbers of published studies that have mentioned disease pairs (more details on
information extraction is presented in Section 2.2). For example, our information extraction
identifies 1431 publications that have mentioned both bipolar and dementias. Information
as sketched in Figure 2 has been accumulated through a large number of studies and can
be valuable. Methodologically, this study significantly advances from Jadhav et al. (2021)
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FIG. 1. Upper-left: Original prevalence trends of 10 diseases. Upper-right: Clustering without incorporating
existing information. Center-left and lower-left: Two existing information scenarios. Center-right and lower-right:
Information-incorporated clusterings.

by developing a novel strategy to incorporate existing information. Borrowing strength from
outside information is not a new concept, however, limitedly pursued in functional clustering.
In the middle and lower panels of Figure 1, we show two scenarios of existing information
and the corresponding estimates when such information is incorporated, which suggests that
incorporating information does have an impact on clustering. A foreseeable significant chal-
lenge is that information obtained from mining published studies can be partially correct
or even incorrect. This is highly likely when it is not possible to accurately scrutinize each
piece of information. For example, a study that mentions the interconnection between two
diseases may derive that on a molecular basis. In this case the information is partially rel-
evant. Consider another example where a study mentioning a disease pair actually suggests
that they are not related. In this case this information will be included in Figure 2, however,
is incorrect for the interconnection between the two diseases. To accommodate such scenar-
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FIG. 2. Existing information. Left: Barchart of literatures counts. Right: Heatmap of literature count for 50
selected diseases.

ios, significant methodological developments are needed. Another significant advancement
from Jadhav et al. (2021) and some other studies is that rigorous theoretical development
is conducted. This can be nontrivial, as estimation needs to accommodate the partial cor-
rectness and incorrectness of existing information. Other methodological advancements, for
example, the adoption of a different base penalty, are described below. Under the Bayesian
paradigm, functional clustering using external information—such as publication results and
published data—as prior has been developed (Biau et al. (2017), Isci et al. (2014), Ray and
Mallick (2006)). The prior information and estimation strategies adopted in these studies are
significantly different from those in this study.

Overall, the goal of this study is to conduct the clustering analysis of disease prevalence
trends, with the assistance of information contained in published literature. This study ad-
vances from the existing ones in the following important aspects. First, the analysis scheme
is significantly different and novel. More specifically, it differs from that limited to the preva-
lence of a single disease or a small number of diseases by conducting pan-disease analysis.
It also differs from the HDN, pHDN, and pan-disease clinical treatment studies by analyzing
prevalence. Second, the analysis technique significantly differs from the existing ones. The
proposed approach is based on penalization fusion, which is relatively more recent and has
notable advantages over many other functional clustering techniques. For example, it com-
bines estimation and clustering and can conveniently determine the number of clusters. In
principle, it can accommodate clusters as small as size one. Third, as described above, this
study significantly advances from its closest competitor in Jadhav et al. (2021) both method-
ologically and statistically. Last but not least, it delivers a new way of extracting useful infor-
mation from the NHIRD and other medical claims (record) databases.

2. Data. Two sources of data (Figure 3) are collectively analyzed. The first comes from
the medical claims database and generates the prevalence values. The second comes from
text mining and provides information on disease interconnections reported in the literature.

2.1. NHI data. In Taiwan basic health insurance coverage is provided by NHI, which was
launched on March 1, 1995. By the end of 2014, almost 99.9% of the Taiwan population were
covered. As NHI is also convenient and as uninsured and commercially insured healthcare
is expensive, almost all hospital/clinic-based disease treatments have been going through
NHI. In 2000, Taiwan established NHIRD, which contains detailed information on diagnosis,
treatment, and outcome. We refer to the literature (Hsieh et al. (2019)) for more information
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FIG. 3. Flowchart of data preparation.

on NHI and NHIRD. The NHI data has multiple unique characteristics: almost the whole
population is covered; comprehensive information is available on all inpatient and outpatient
treatment episodes; all data have been collected and stored under the same protocol, and
extensive data processing has been conducted by NHIRD staff.

Data on one million randomly selected subjects is first extracted from NHIRD for the pe-
riod of 2000–2013. Disease diagnosis and hence period prevalence information is collected
from both outpatient and inpatient treatments, using the NHIRD CD (ambulatory care expen-
diture by visits) and DD (inpatient expenditure by admissions) files. For disease definition
the ICD-9-CM code version 1992 is converted into the 2001 version. Records with the ICD-
9-CM codes E and V (external causes of injury and supplemental classification), 630–679
(pregnancy, childbirth, and puerperium complications), and 760–999 (symptoms, signs, and
ill-defined conditions) are excluded from analysis. The resulting dataset contains records on
986,650 patients, and disease period prevalence values are computed based on 173,355,725
outpatient and 1,381,749 inpatient treatment episodes. To avoid sparse data caused by too
many diseases under ICD-9-CM, we apply the Phenome-Wide Association Study (PheWAS)
vocabulary approach and group the 14,000 ICD-9-CM diseases into 1723 disease phecodes.
We further select diseases based on the following considerations. We first identify diseases
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that have high prevalence and/or high mortality, such as diseases of the circulatory system,
certain cancers, diseases of the respiratory system, and others. We then also consider dis-
eases that have high clinical significance (e.g., those with long inpatient length of stay, no
effective treatment or clear causes), such as rare cancers, certain diseases of the blood and
blood-forming organs, acquired coagulation factor deficiency, and others. Overall, 405 dis-
eases are included in analysis (detailed information provided in the Supplementary Material
(Ma et al. (2024))), and it is noted that this number is considerably larger than in many peer
studies. These diseases have different types of trends (Figure 4).

2.2. Information extraction. There are multiple ways of defining and extracting existing
information. The pan-disease perspective, variable of interest, and study population make our
analysis unique. As such, it is unlikely the desired information can be obtained from a single
or a few publications. We take a broad search strategy via text mining. Specifically, we adopt
PubMatrix (pubmatrix.grc.nia.nih.gov), a web-based text mining tool tailored to PubMed,
with the understanding that alternative tools such as VxInsight, MedMiner, and UALCAN
may also be applicable. PubMatrix searches PubMed and returns the cooccurrence frequency
of (i.e., number of publications that simultaneously contain) any pair of two keywords (e.g.,
“type 2 diabetes” and “melanoma”). We refer to Becker et al., 2003 and many publications
that adopt this tool for details on how it functions. When considering all possible disease
pairs, we can obtain results as exemplified in Figure 2. More detailed results are presented in
the Supplementary Material S5. Here we note that this information extraction may be coarse.
For example, different publications may call the same disease differently, and PubMatrix is
not able to detect that. On the other hand, it is noted that the ICD-based disease phecode ap-
proach is standard. Our data analysis results suggest that a large number of publications can
be identified using the PubMatrix-based text mining. It is possible to apply more advanced
tools, which may be more complex, to refine the information; this may lead to improved esti-
mation. As the proposed approach can accommodate partially correct information, this is not
pursued. It is also noted that there are alternative ways of defining/extracting existing infor-
mation on disease interconnections, for example, based on keywords of professional books,
information related to clinical complications, cross-sectional epidemiological data, and so
on. In Figure S2 (Supplementary Material), we also present the existing information based
on the calculated disease prevalence correlation coefficients, where we see some similarities
but also significant differences. The proposed information extraction can have notable advan-
tages: it is based on a huge number of published studies and likely to be comprehensive and
“less biased,” and it can avoid the “using the same data twice” problem. We note that, in the
literature, there is no optimal way of information extraction. As this is not our focus, we do
not examine further.

3. Methods. Denote n as the number of diseases (sample size), T as the number of
observations per disease, yi(tj ) as the prevalence value of disease i at the j th time point, and
Yi = (yi(t1), . . . , yi(tT ))� as the vector of observed prevalence values for disease i. Consider
the model

(1) yi(tj ) = ai + fi(tj ) + εij , i = 1, . . . , n, j = 1, . . . , T ,

where tj ∈ T , ai ’s represent the average levels, fi(t)’s are unknown smooth functions of t

(with proper mean constraints for identifiability), and εij ’s are random errors. Let f 0
i denote

the true value of fi . Assume that all curves can be classified into K clusters G1, . . . ,GK , and
curves i and j belong to the same cluster if and only if f 0

i = f 0
j . Let G = {G1, . . . ,GK}. The

goal is to simultaneously recover the structure of G and estimate the unknown fi ’s. In what
follows, we assume that normalization has been properly conducted, and ai ’s are omitted.

http://pubmatrix.grc.nia.nih.gov
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3.1. Penalized fusion. We first briefly describe the penalized fusion analysis, as con-
ducted in Jadhav et al. (2021), which is a building block of the proposed analysis. Consider
the basis expansion

yi(tj ) ≈
p∑

l=1

βilxl(tj ) + εij , i = 1, . . . , n, j = 1, . . . , T ,

where x1(t), x2(t), . . . , xp(t) are known basis functions and βil’s are unknown regression
coefficients. There have been extensive developments on choosing the form, number, and
constraints of the basis functions (Schumaker (2007)), which are also applicable to this study.
We adopt the B-spline basis in all our simulation and data analysis.

Denote X =
[ x1(t1) ··· xp(t1)

...
. . .

...
x1(tT ) ··· xp(tT )

]
, βi = (βi1, . . . , βip)�, and β = (β�

1 , . . . ,β�
n )�. Consider

the loss function

(2) Q(β;Y ,X) = 1

2T

n∑
i=1

‖Y i − Xβi‖2,

where Y = (Y�
1 , . . . ,Y�

n )� and ‖ · ‖ is the �2 norm. We note that including covariance can in
theory improve efficiency. However, our exploration suggests that, with penalization, the co-
variance estimates may be unsatisfactory, leading to overall inferior performance. As shown
below, this loss function can lead to consistent clustering and estimation.

Consider the penalization fusion approach, which is abbreviated as “Fusion” in our nu-
merical study. The penalized loss function is

(3) Qλ(β;Y ,X) = Q(β;Y ,X) + ∑
i<j

p
(‖βi − βj‖, λ

)
,

where p(·, λ) is a concave penalty with a data-dependent tuning parameter λ > 0. In our
numerical study, we adopt the minimax concave penalty (MCP, Zhang, 2010), defined by
p(t, λ) = λ

∫ |t |
0 (1−x/(aλ))+ dx, and note that some other penalties are also applicable. Here

(x)+ = xI (x > 0), and a is the regularization parameter. It is noted that Jadhav et al. (2021)
adopts Lasso, which may have inferior properties compared to MCP. Denote the minimizer

of (3) as β̂
λ = (β̂

λ�
1 , . . . , β̂

λ�
n )�. Diseases i and j are concluded as in the same cluster if and

only if β̂
λ

i = β̂
λ

j . We refer to Ma and Huang (2017) and follow-up studies for developments
on penalized fusion.

3.2. A new approach to incorporate existing information. We propose a two-step ap-
proach to incorporate existing information on the interconnections among diseases:

In Step 1, consider the objective function

(4) Qη(β;Y ,X,W ) = Q(β;Y ,X) + η
∑
i<j

wij‖βi − βj‖2,

where η > 0 is a tuning parameter and W = (wij )n×n is the weight matrix that describes
existing information. In our numerical analysis, we set wij = log(1+ countij ), where countij
is the number of publications that simultaneously include diseases i and j . Denote the min-
imizer of (4) for disease i as β̂

p

i , compute the predicted value as Ŷ
p

i = Xβ̂
p

i , and denote

Ŷ
p = (Ŷ

p�
1 , . . . , Ŷ

p�
n )�.

This is a weighted penalized estimation. In (4) if two diseases have more evidence of being
interconnected, they are encouraged to have similar estimates. Similar strategies have been



1042 C. MA ET AL.

developed in the literature, although under significantly different contexts. As the goal of
this step is not to generate clustering, ridge-type penalization is imposed, which is compu-
tationally much simpler than penalized fusion. As can be seen from Figure 2, the distribu-
tion of the number of publications is quite skewed, which can be caused by research selec-
tion/publication bias, as opposed to the true amount of evidence. With this consideration and
also to stabilize estimation, the logarithm transformation is taken.

In Step 2, we propose the objective function

(5) Qλ,τ

(
β;Y , Ŷ

p
,X

) = (1 − τ)Q(β;Y ,X) + τQ
(
β; Ŷp

,X
) + ∑

i<j

p
(‖βi − βj‖, λ

)
,

where 0 ≤ τ ≤ 1 is a tuning parameter. λ has the same implication as in the standard penal-
ized fusion. Simple derivation shows that the first two terms of (5) are equal to Q(β; Ỹ ,X)

plus a term that does not depend on β , where Ỹ = (1 − τ)Y + τ Ŷ
p

. With a slight abuse of
notation, denote the minimizer of (5) as β̂ . The clustering structure can be fully obtained by
examining β̂ .

Objective function (5) has a very lucid interpretation. The loss balances between what is
obtained from the data (the first term) and its counterpart if the existing information is cred-
ible (the second term). τ is introduced to balance between these two terms. Intuitively, if the
information is of low quality, then with τ → 0, and the proposed analysis can reduce to that
based on the observed data only. On the other hand, τ → 1 leads to the analysis heavily rely-
ing on the existing information. Assisted by this tuning, the proposed approach can flexibly
accommodate a varying quality of existing information. For sparse linear regression, a related
information-incorporation strategy has been developed by Jiang, He and Zhang (2016) from
which this study advances by analyzing prevalence trends, conducting functional clustering,
and extracting information in a different way.

In the proposed analysis, Jiang, He and Zhang (2016) and some others, the same data is
analyzed in both steps. Our numerical and theoretical developments below as well as those
in the published studies suggest that this is valid and sensible. We conjecture that it is also
possible to split data and use one half for each step. When the number of subjects (for gener-
ating the prevalence data) is large enough, the two approaches are expected to have minimum
differences.

3.3. Statistical properties. Consider model yi(tj ) = fi(tj ) + εij for i = 1, . . . , n and
j = 1, . . . , T . Let εi = (εi1, . . . , εiT )�. Without loss of generality, assume T = [0,1].
With the r th order B-spline basis functions x1(t), . . . , xp(t), we have the approximation
fi(t) ≈ ∑p

l=1 βilxl(t). Here p = m + r , and m is the number of interior knots satisfy-
ing 0 = κ0 < κ1 < · · · < κm < κm+1 = 1. By Corollary 6.21 of Schumaker (2007) and
(C1)–(C3) listed below, there exists a spline approximation

∑p
l=1 β0

ilxl(t) to f 0
i such that

supi,t |f 0
i (t) − ∑p

l=1 β0
ilxl(t)| = O(m−q), where β0

i = (β0
i1, . . . , β

0
ip)�. Define nk = |Gk|,

Gmin = min1≤k≤K nk , where |Gk| is the size of Gk . Let ρ(t) = λ−1p(t, λ) and BG = {β : βi =
βj for any i, j ∈ Gk,1 ≤ k ≤ K}. For a vector a = (a1, . . . , as)

� ∈ R
s , let ‖a‖1 = ∑s

l=1 |al|
and ‖a‖∞ = max1≤l≤s |al|. Assume the following conditions:

(C1) For each f 0
i (i = 1, . . . , n), f 0

i ∈ Cq[0,1] is a qth order continuously differentiable
function defined on [0,1], and r ≥ q .

(C2) Let δ = max0≤l≤m(κl+1 − κl). Assume that there exists a constant M > 0 such that
δ

min0≤l≤m(κl+1−κ1)
≤ M , max1≤l≤m |κl+1 + κl−1 − 2κl| = o(m−1), and m = o(T ).

(C3) For deterministic design points ti ∈ [0,1], i = 1, . . . , T , assume that there ex-
ists a distribution function G with a positive continuous design density g(·) such that
supt∈[0,1] |Gn(t) − G(t)| = o(m−1), where Gn(·) is the empirical distribution of t1, . . . , tT .
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(C4) Assume that ε1, . . . ,εn are independent, E(εi ) = 0, and maxi,j E(ε2
ij ) ≤ σ 2. There

exists C0 > 0, such that E[exp{(T −1ε�
i εi )

1/2}] ≤ C0 and T −1 ∑T
t=1

∑T
t ′=1 |E[εit εit ′ ]| ≤ C0

for i = 1, . . . , n.
(C5) ρ(t) is a symmetric function of t and is nondecreasing and concave in t for t ∈ [0,∞)

with a continuous derivative ρ ′(t) on (0,∞). In addition, ρ′(0+) is independent of λ. There
exists a constant 0 < a < ∞ such that ρ(t) is a constant for all t ≥ aλ.

(C1)–(C3) are standard assumptions for B-spline functions (Zhou, Shen and Wolfe (1998)).
Condition (C4) gives the boundedness condition for the error terms (Chu, Li and Reimherr
(2016)). Condition (C5) implies the choice of penalty functions and is common in the lit-
erature on high-dimensional variable selection (Fan and Lv (2011)). Both MCP and SCAD
satisfy this condition.

First, consider the oracle estimator β̂
or

that incorporates the existing information,

β̂
or = arg min

β∈BG

1

2T

n∑
i=1

‖Ỹ i − Xβi‖2,

where Ỹ i = (1 − τ)Y i + τ Ŷ
p

i with Ŷ
p

i = Xβ̂
p

i . Let supk ‖ 1
nk

∑
i∈Gk

(β̂
p

i − β0
i )‖ = Op(ψn).

Note that this term reflects the reliability of the existing information.

THEOREM 3.1. Suppose that Conditions (C1)–(C4) hold. Then we have

sup
i

∥∥β̂or

i − β0
i

∥∥ = Op

(
(1 − τ)φn + τψn

)
,

where φn = m−q+1 + m
√

K/(GminT ).

Let f 0
i = (f 0

i (t1), . . . , f
0
i (tT ))� and bn = infi∈Gk,j∈Gk′ ,k �=k′ 1√

T
‖f 0

i − f 0
j‖. The follow-

ing theorem shows that the oracle estimator β̂
or

is a strict local minimizer of the objective
function with probability approaching one.

THEOREM 3.2. Suppose that Conditions (C1)–(C5) hold. If max(m−q,m−1/2λ) =
o(bn), (1 − τ)φn + τψn = o(λ), G−1

min[(1 − τ)m−1/2 logn + τm−1 supi ‖β̂
p

i − β0
i ‖] = op(λ),

and λ = o(1), where φn and ψn are given in Theorem 3.1, then there exits a strict local
minimizer β̂ of the objective function Qλ,τ (β;Y , Ŷ

p
,X) in (5) satisfying

P
(
β̂ = β̂

or) → 1 as n → ∞.

Furthermore, supi
1√
T
‖f̂ i −f 0

i ‖ = Op((1− τ)m1/2(m−q +√
K/(GminT ))+ τ(ψn +m−q)).

The above theorems show that, under mild conditions (including that on the estimate gen-
erated in Step 1 and hence the existing information), the proposed approach has clustering
and estimation consistency. It can “automatically” determine the number of clusters. In line
with Jiang, He and Zhang (2016), the assumed conditions and theoretical results are more
complicated with functional data. Proof is provided in the Supplementary Material S1.

3.4. Computation. In the Supplementary Material S2, we develop an effective ADMM
(alternating direction method of multipliers)-based algorithm. Information on tuning param-
eter selection is also presented.
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3.5. Simulation. In the Supplementary Material S3, we conduct comprehensive simula-
tion, evaluate performance of the proposed approach, and compare against multiple alter-
natives. It is observed that, when the existing information has moderate to high quality, the
proposed approach significantly outperforms with higher clustering accuracy. When the ex-
isting information is of low quality, the alternative approach that fully trusts such information
(i.e., Step 1 of the proposed analysis) may have inferior performance, while the proposed
approach, with its flexibility, can correct for it to a large extent.

4. Data analysis. The NHIRD disease prevalence data and existing information ex-
tracted from PubMed, as described in Section 2, are analyzed. With selected τ = 0.40, the
proposed approach identifies 47 clusters with sizes at least 2. The nontrivial cluster sizes
range from 2 to 28, with a median of 6. In addition, there are also eight diseases forming
clusters with size 1. Detailed clustering information is provided in the Supplementary Mate-
rial S5. For the nontrivial clusters, the unnormalized prevalence trends of their diseases are
shown in Figure 4, where different colors correspond to different prevalence levels.

In general, we observe increasing trends in clusters 1–20. However, different clusters have
different increasing patterns. For example, cluster 19 has increasing rates higher than the
other clusters. This cluster includes atopic/contact dermatitis due to other or unspecified
causes. This is a relatively common skin condition that affects a large number of children
and adults in industrialized countries. It is estimated that about 19.5% of the general popu-
lation in North America and Western Europe are affected. However, data has been relatively
lacking for Taiwan. Environmental factors, which are often time-dependent, play an impor-
tant role in the development of atopic/contact dermatitis, and aeroallergens are a trigger for
exacerbations. The deterioration of air quality and other environmental factors in Taiwan has
been well noted, which can explain the fast increase. Other diseases also included in clus-
ter 19 include acute sinusitis, type 2 diabetes, reflux esophagitis, and mixed hyperlipidemia,
whose increases over time have been reported for Taiwan in the literature. Similar sensible
findings are also made with the other clusters with increasing trends. Representative exam-
ples include periodontitis in cluster 18, dysthymic disorder in cluster 16 as well as malignant
and unknown neoplasms of brain and nervous system in cluster 3. Clusters 21–24 contain 50
diseases within general decreasing trends. Among these diseases neoplasm of uncertain be-
havior of breast has the sharpest decreasing trend, followed by disorders of esophageal motil-
ity and umbilical hernia. Some of the observed decreases can be explained by the discovery
of advanced treatments, computerized devices, and improvements in healthcare services. For
example, the decrease in the prevalence of viral hepatitis, particularly in industrialized na-
tions, can be attributable to the effort in hepatitis vaccination, screening of blood products,
screening and postexposure prophylaxis of healthcare workers, and increased availability of
safe injection materials. A total of 96 diseases with relatively flat prevalence and small fluc-
tuations are included in clusters 25–30. Their incidence may not be strongly influenced by
time-dependent risk factors and prevention/diagnosis/treatment interventions. A total of 36
diseases in clusters 31–36 in general show reverse “V” shapes. Their prevalence values first
rise to peaks and then decrease. The causes of such shapes have also been provided in the
literature. Consider, for example, HPV. Invasive cervical cancer is one of the leading causes
of cancer-related death among women. HPV vaccines were licensed in 2006 and then be-
came widely available in many counties/regions including Taiwan. As such, a decrease in
the prevalence of HPV infection and/or cervical cancer is sensible after the broad availability
of vaccination. Diseases in clusters 37–38 have similar trends: their prevalence values first
decrease and then stay relatively flat. In contrast, the prevalence values of diseases in clusters
39–40 first increase and then stay relatively flat. A total of 21 diseases with “irregular” trends
are included in clusters 41-46. The “irregularity” can be caused by disease outbreaks, changes
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FIG. 4. Clustering results using the proposed approach.

in prevention and control measures, and interference with other related factors. The eight dis-
eases forming their individual clusters are noninfectious gastroenteritis, gingivitis, essential
hypertension, dental caries, acute gastritis, asthma with exacerbation, influenza, acute upper
respiratory infections of multiple or unspecified sites. Most of these diseases are common,
such as acute upper respiratory infections of multiple or unspecified sites, dental caries, and
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gingivitis. Their high prevalence values may “amplify” variations, making them difficult to
be clustered together with other diseases.

Although the above examination of individual prevalence trends for a large number of
diseases is of interest, the key advancement of this study lies in the clustering analysis of
diseases. A closer examination of the clustering results suggests their sensibility, with many
of the interconnections reported in the literature (although in a very scattered manner). For
example, it has been suggested that, because of shared genetic and other risk factors, the
trends of the following diseases tend to be similar: HIV infection and hemangioma and lym-
phangioma (any site), which are coclustered in cluster 10 (Wiegand et al. (2008)), and renal
failure NOS, thrombocytopenia, hypertensive heart and/or renal disease, and nephrotic syn-
drome without mention of glomerulonephritis, which are coclustered in cluster 13 (Kressel
et al. (1981)). Another sensible finding is that disorders of function of stomach, gastritis and
duodenitis, and peptic ulcer (excluding esophageal) are coclustered in cluster 44. It has been
suggested by Sipponen and Hyvärinen (1993) that the pathogenesis of peptic ulcer and gas-
tric cancer is closely associated with H. pylori gastritis and its subsequent atrophic sequelae
(atrophic gastritis). Cellulitis is a spreading bacterial infection of the skin and tissues im-
mediately beneath the skin (Gabillot-Carré and Roujeau (2007)). With this cause other local
infections of skin and subcutaneous tissue and cellulitis and abscess of arm/hand are clus-
tered together in cluster 45. Acute bronchitis and bronchiolitis and acute pharyngitis are the
only two diseases in cluster 36, and they have very similar prevalence trend patterns. This is
because acute bronchitis and bronchiolitis often develops from other upper respiratory tract
infections, such as acute pharyngitis. Beyond those with strong support from the literature,
there are also new disease coclusterings that have not been suggested in the literature. For
example, it is found that schizoid personality disorder and dissociative disorder share similar
patterns and are coclustered in cluster 8, although published studies suggest that their inter-
connections are inconclusive (Modestin, Hermann and Endrass (2007)). Another example is
that cancer of lip and allergic purpura, which are coclustered in cluster 1, have similar preva-
lence patterns but do not have support from published literature. It is noted that the prevalence
values are computed based on a large number of individuals. Their credibility is expected to
be high, and as such, the observed similarity in prevalence patterns is expected to be true. The
above new findings on coclusterings and those alike suggest new directions for identifying
interconnections underneath diseases.

Data is also analyzed using the following alternatives, which are also considered in simu-
lation and described in more detail in the Supplementary Material S3. [OLS] Each preva-
lence curve is first estimated separately. Then diseases i and j are clustered together if
‖β̂i − β̂j‖ ≤ κ . Here κ is determined in a similar way as for the proposed approach (Sup-
plementary Material S2). [kmeans] This approach first fits each prevalence curve separately.
Then the vectors of regression coefficients are clustered using the kmeans approach. [distK]
This approach first computes distance correlation between the observed prevalence values
and then use the Kmeans method to generate clusters. It is implemented using the R func-
tions dcor and kmeans. [funFEM] This method is based on mixture modeling and takes func-
tions as input. As such, we first implement a smoothing method to obtain functions passing
through the observed discretized points. This method is implemented using the R package
funFEM. [FClust] The FClust approach is implemented using the R package fdapace and con-
ducts functional clustering and identification of data substructures for longitudinal and other
functional data. [funHDDC] The funHDDC method is implemented using the R package
funHDDC and conducts model-based clustering and identification of functional subspaces.
[waveclust] This method is based on a wavelet decomposition of signal and a mixture model
that integrates random effects and implemented with the R package curvclust. [fitfclust] This
is a functional clustering method with special attention to sparsely sampled data and available
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through the R package funcy. [Fusion] This is the approach described in Section 3.1. [Prior]
This approach generates estimates as described in Step 1 of the proposed approach and then
conducts clustering in the same way as the OLS approach.

The clustering results using the alternatives are presented in Figures S3–S12 (Supple-
mentary Material S4) and the Supplementary Material S5. The resulted numbers of clusters
are 22 (OLS), 10 (kmeans), 10 (distK), two (funFEM), 10 (Fclust), three (funHDDC), 10
(waveclust), 10 (fitclust), 35 (Fusion), and 17 (prior). In Table S5 (Supplementary Material
S4), we present the discrepancy (which is the normalized “clustering error”) between any
two methods and observe small to large discrepancy values. Here we note that, with a large
number of disease pairs, a small discrepancy value can correspond to notable differences in
clustering, which can be partly reflected in the number of clusters and numbers of diseases
in clusters. With respect to the proposed approach, the Fusion approach leads to the most
similar findings (with a discrepancy value of 0.06), and the funHDDC approach leads to the
most discrepant findings (with a discrepancy value of 0.9). This is reasonable as the analysis
frameworks of the proposed and Fusion approaches are closest, while funHDDC has a highly
different framework.

We take a closer look at Fusion. The moderate τ value and relatively small discrepancy
value seem to suggest a small impact of the existing information. However, a closer look sug-
gests that Fusion and the proposed approach have significant differences in clustering struc-
tures (e.g., number of clusters, number of diseases in individual clusters, and disease member-
ships). A representative example is in Figure S13 (Supplementary Material S4). Specifically,
under the Fusion approach, eight diseases are clustered together in cluster 7. Incorporating
the existing information, they belong to four different clusters—along with other diseases—
under the proposed approach (detailed information available from the authors). Another ex-
ample is that the proposed approach clusters malignant and unknown neoplasms of brain and
nervous system with cancer of brain in cluster 3. However, under Fusion, they belong to dif-
ferent clusters. One more example of a similar kind is reticulosarcoma and benign neoplasm
of adrenal gland, which are coclustered in cluster 29. This interconnection can be partly ex-
plained by p53 tumor-suppressor gene and Li-Fraumeni syndrome. Germline mutations in
p53 have been identified in families with the Li-Fraumeni syndrome, a rare familial cancer
syndrome characterized by an unusually high incidence of multiple cancers such as sarco-
mas, adrenocortical carcinomas, and other diverse neoplasms. Families with Li-Fraumeni
syndrome have been described as including a proband with a sarcoma diagnosed early in life
(Malkin et al. (1992)).

To gain further insights, we also conduct evaluation. First, we use the first 13 observations
of all diseases for clustering analysis and estimation. Then, based on the models, the last ob-
servation of each disease is predicted. The mean squared error values are 1.29× 10−5 (OLS),
8.32 × 10−6 (Fusion), 1.12 × 10−5 (Prior), and 7.28 × 10−6 (proposed), respectively. Here
we note that the other alternatives do not generate explicit regression models and hence can-
not be directly used for prediction. This evaluation demonstrates that, as it generates models,
the proposed analysis can also be used for prediction. As it is not the focus of this analysis,
we do not further pursue this aspect. In addition, we conduct an evaluation of the stability
of clustering. Specifically, we randomly select 2/3 of the diseases and apply the proposed
and alternative approaches. We then compare the clustering with the randomly sampled data
against that using the whole data and compute the discrepancy value. Note that this calcu-
lation is limited to diseases that are selected. With 500 resamplings the resulted stability
measure (1-discrepancy) values are 0.966 (OLS), 0.973 (Fusion), 0.962 (Prior), and 0.977
(proposed), respectively. Overall, the proposed approach has competitive prediction and sta-
bility performance.
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5. Discussion. In this study we have conducted the functional clustering analysis of dis-
ease prevalence trends, taking advantage of the uniquely valuable NHI data. Similar analysis
schemes have been limitedly pursued in the literature, and as discussed above, the findings
can have high practical value. Methodologically, this study has significantly advanced from
Jadhav et al. (2021) and other functional clustering analyses by flexibly incorporating exist-
ing information obtained from mining a large number of PubMed publications. The proposed
approach is intuitive and will be directly applicable to some other types of existing infor-
mation. Also different from Jadhav et al. (2021), the MCP penalization, which has been
shown as more effective than Lasso, is adopted. Significant theoretical development has been
conducted, which is highly nontrivial with the complex data structure, penalized fusion esti-
mation, and existing information that is not guaranteed to be accurate. Simulation shows that
when existing information has reasonable quality, the proposed approach has superior perfor-
mance. When existing information is of very low quality, which is highly unlikely in practice,
the proposed approach, with its great flexibility, can still have competitive performance.

In the analysis of NHI data, clustering results different from the alternatives have been
generated. It is also found that incorporating the existing information has a moderate impact
on the results. For a few cases, for example, the one related to HPV, we have identified solid
evidence from the literature to support our findings. Here we note that although for some
diseases published studies have suggested their similarity in prevalence trends and underneath
interconnections, this study is among the first to systematically do so at the pan-disease level.
It is also noted that a drawback of pan-disease analysis is that, with a huge number of disease
pairs, it is impossible to examine the underlying causes one by one. Rather our findings can
serve as the ground stone for researchers interested in individual diseases. Although with
many advantages, the NHI data also has limitations. In particular, the covered population
is dominatingly Chinese. In addition, with data access limitation, more recent data is not
available. With the dependence of disease prevalence on population and time, the broader
applicability of our findings may warrant additional scrutinization.

Software and data. The R program implementing the proposed method is available at
www.github.com/shuanggema. The data that support the findings in this paper are obtained
from the National Health Insurance Research Database at https://nhird.nhri.org.tw/en/.
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SUPPLEMENTARY MATERIAL

Supplementary Material S1–S5 (DOI: 10.1214/23-AOAS1821SUPPA; .pdf). The sup-
plement provides more details on the proofs of the theoretical results (Supplementary Mate-
rial S1), details on computation (Supplementary Material S2), simulation design and results
(Supplementary Material S3), and additional data analysis results (Supplementary Material
S4 and S5).

Source code (DOI: 10.1214/23-AOAS1821SUPPB; .zip). R programs for implementing
the proposed method.
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