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A set of measurements of azimuthal asymmetries in the production of pairs of identified hadrons in
deep-inelastic scattering of muons on transversely polarised ®LiD (deuteron) and NH3 (proton) targets
is presented. All available data collected in the years 2003-2004 and 2007/2010 with the COMPASS
spectrometer using a muon beam of 160 GeV/c at the CERN SPS were analysed. The asymmetries provide
access to the transversity distribution functions via a fragmentation function that in principle may be
independently obtained from eTe~ annihilation data. Results are presented, discussed and compared to

Keywords: existing measurements as well as to model predictions. Asymmetries of 77 77~ pairs measured with the
SIDIS proton target as a function of the Bjorken scaling variable are sizeable in the range x > 0.032, indicating
Di-hadron non-vanishing transversity distribution and di-hadron interference fragmentation functions. As already
Spin pointed out by several authors, the small asymmetries of w+7~ measured on the 6LiD target can be
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interpreted as indication for a cancellation of u and d-quark transversity distributions.
© 2023 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The description of the nucleon spin structure remains one of
the main challenges in hadron physics. For a polarised nucleon, a
leading-twist description comprises eight transverse-momentum-
dependent (TMD) parton distribution functions (PDFs), describ-
ing the distributions of longitudinal and transverse momenta of
partons and their correlations with nucleon and quark polarisa-
tions [1]. After integration over quark intrinsic transverse momen-
tum kg, three PDFs fully describe the nucleon, ie. the momen-
tum distribution function ff (x), the helicity distribution function
g‘lz (x) and the transversity distribution function h? (x), where x de-
notes the Bjorken scaling variable. For simplicity, the latter will
be referred to as “transversity” throughout this paper. While the
momentum and the helicity distribution functions have been mea-
sured with good accuracy, the knowledge on transversity is inferior
but steadily increasing. Unlike ff and g‘f, transversity is not ac-
cessible at leading twist in inclusive deep-inelastic scattering (DIS)
because it is related to soft processes correlating quarks with op-
posite chirality, making it a chiral-odd function. Transversity can
be accessed through observables that conserve chirality, i.e. when
it is coupled to a chiral-odd partner. In this regard, measuring
semi-inclusive deep-inelastic scattering (SIDIS) is advantageous as
transversity is coupled to the chiral-odd fragmentation functions
(FFs) that describe the hadronisation of a transversely polarised
quark g into unpolarised final-state hadrons.

https://doi.org/10.1016/j.physletb.2023.138155

The major source of information on transversity has been mea-
surements of transverse-spin-dependent asymmetries (TSAs) in
single-hadron production in SIDIS (¢{NT — ¢’hX), where transver-
sity is coupled to the Collins FF [2]. Transverse-spin asymmetries
define the size of the transverse-target-spin-dependent azimuthal
modulations of the SIDIS cross section. The first measurement of
the Collins asymmetries was performed by the HERMES Collabo-
ration [3] using a transversely polarised hydrogen target. Sizeable
asymmetries were observed, suggesting non-zero transversity and
Collins FFs. A major step forward came from measurements by
the BELLE experiment [4,5] at the KEK eTe~ collider, which de-
tected azimuthal correlations of hadrons produced in opposite jets.
This correlation involves the products or convolution of two Collins
functions and was interpreted as a direct measure of the Collins
effect. Later on the experiment performed measurements probing
dihadron fragmentation functions [6,7], which play an important
role in general understanding of hadronization processes and in
the phenomenological extractions of the transversity PDFs. Further
measurements have been provided by the BABAR [8,9] and the BE-
SIII [10] experiments. The COMPASS Collaboration has the highest
statistics data in this field, e.g. 28 M pion pairs taken with the NH3
(proton) target and 4 M pion pairs taken with the 6LiD (deuteron)
target. The COMPASS collaboration has delivered a full set of mea-
surements, ie. both TSAs for unidentified charged hadrons [11]
as well as pions and kaons [12] using the transversely polarised
deuteron target, and TSAs for unidentified charged hadrons [13,14]
as well as pions and kaons [15] using the transversely polarised
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proton target. The TSAs measured with the polarised proton tar-
get showed a non-zero signal for Collins asymmetries with high
statistics and a wide kinematic coverage. The TSAs measured with
the polarised deuteron target are compatible with zero indicating a
possible cancellation between up and down quark contributions to
transversity. Despite the lower accuracy of these data, they were
shown to play a key role in the extraction of flavour-dependent
transversity distribution functions and remain the only SIDIS mea-
surement ever performed using a transversely polarised deuteron
target. In order to complete the COMPASS programme [16], a new
high statistics measurement of TSAs using a transversely polarised
deuteron target was performed in the last data taking campaign,
in 2022.

A promising alternative approach to access transversity is the
measurement of TSAs in semi-inclusive production of pairs of
hadrons of opposite charge (¢ NT — ¢’hth~X). Following this ap-
proach, in this work w*7~ and K*K~ as well as 7K~ and
K*m~ pairs will be studied. In this case, transversity is cou-
pled to the chiral-odd interference fragmentation function (IFF)
Hf [17-19], which describes the hadronisation of a transversely
polarised quark into a pair of unpolarised hadrons. At leading
twist, and after integration over total transverse momentum, the
differential cross section on a transversely polarised target com-
prises two terms and can be written as [20]
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Here o is the fine-structure constant, D1,q(z, M7, cosf) is the

spin-independent dihadron fragmentation function (DiFF), y is the
fraction of the lepton energy in the laboratory frame transferred
to the exchanged virtual-photon and Q2 the negative square of
the four-momentum transfer. Here, z is the fraction of the virtual-
photon energy carried by the hadron pair, My, its invariant mass
and 6 the polar angle of the positive hadron with respect to the
two-hadron boost axis in the two-hadron rest frame. The symbol
S, denotes the component of the target spin vector S perpendicu-
lar to the virtual-photon direction, with ¢s the azimuthal angle of
the initial nucleon spin, ¢s/ the azimuthal angle of the spin vector
of the fragmenting quark and ¢rs = ¢r — s = ¢r + ¢s — 7. The
azimuthal angle ¢r is given as

_ (gxD-R (qx1)-(qxR)
= arccos (2)
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where 1 is the incoming lepton momentum, q the virtual-photon
momentum and R the relative hadron momentum defined as R =
(z2p1 — 71P2)/(z1 + 22)), and 1 (2) denotes the positive (negative)
hadron of the pair. The TSAs are experimentally accessible through
the measured number of hadron pairs written as
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where f(x,y) is the target polarisation dilution factor, Pt is
the transverse polarisation of the target nucleons and Dy, the
transverse-spin transfer coefficient. A more detailed discussion
about the theoretical framework can be found in Ref. [21]. As
shown in Ref. [21], the asymmetry
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is proportional to the product of the transversity distribution func-
tion h‘ll (x) and the polarised two-hadron interference fragmenta-
tion function Hffq(z, Mﬁh, cosf), summed over the quark flavours
q with charge eg.

Transverse-spin-dependent asymmetries of hadron pairs were
first measured by the HERMES Collaboration [22] for pion pairs
using a transversely polarised hydrogen target. A sizeable signal
was seen as a function of x, indicating a sizeable u-quark transver-
sity and non-vanishing interference fragmentation functions. The
COMPASS collaboration has published measurements of transverse
spin asymmetries for pairs of unidentified hadrons produced on
polarised deuterons [21] and polarised protons [23]. The COMPASS
results obtained with the proton target showed significantly size-
able asymmetries and a clear slope in their x-dependence thanks
to the high accuracy of the proton data set, while those extracted
from deuteron-target data were found to be compatible with zero.
An intriguing similarity between Collins-like single-hadron asym-
metries for the positive and negative hadrons extracted from the
SIDIS hadron-pair data and the standard Collins asymmetries is
observed as a function of x, suggesting that both single hadron
and hadron-pair transverse-spin dependent fragmentation func-
tions are generated by the same elementary mechanism, as pre-
sented and discussed in Ref. [24].

In this paper, we present a new measurement of TSAs for iden-
tified hadron-pairs using the full data set collected by the COM-
PASS Collaboration on transversely polarised deuteron (2003-2004)
and proton (2007 and 2010) targets. The paper is organised as fol-
lows. Only a brief description of the experimental setup and data
analysis are given in Sec. 3, as the same setup and methods of
data cleaning, selection and extraction of TSAs as in previous COM-
PASS analyses [21,23] are used. The measured asymmetries are
presented in Sec. 3 and discussed in Sec. 4.

2. Experimental data and analysis

The analysis presented in this paper is based on data collected
in the years 2003-2004 and 2007/2010 using the COMPASS spec-
trometer [25] by scattering the naturally polarised u* beam of
160 GeV/c delivered by the CERN SPS off transversely polarised
6LiD and NHj3 targets, respectively. For 8LiD, the average dilution
factor calculated for semi-inclusive reactions is {f) ~ 0.38 and the
average polarisation is (Pt) ~ 0.47, while for NH3 the correspond-
ing values are (f) ~ 0.15 and (Pt) ~ 0.83, respectively. The target
consisted of two or three cylindrical cells assembled in a row,
which can be independently polarised. In 2003-2004, two cells
were used, each 60 cm long and 3 cm in diameter, separated by a
10 cm gap. In 2007 and 2010, the target consisted of three cells of
4 cm diameter, with gaps of 5 cm in between. The middle cell was
60 cm long and the two outer ones 30 cm long each. From 2006
on, a new solenoidal magnet was used to polarise the target with
a polar angle acceptance of 180 mrad as seen from the upstream
end of the target, while in the earlier measurements with the 6LiD
target the polar angle acceptance was 70 mrad. For the measure-
ment of transverse spin effects, the target material was polarised
along the vertical direction. In order to reduce systematic effects,
neighbouring cells were polarised in opposite directions allowing
for simultaneous data taking with both target spin directions to
reduce flux-dependent systematic uncertainties. Furthermore, the
polarisation was destroyed and built up in reversed direction ev-
ery four to five days, in order to cancel residual acceptance effects
associated with the longitudinal position of the target cells (i.e. po-
sition along the beam line). For the data collected using a proton
target, in the analysis, the central cell is divided into two parts,
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Fig. 1. Distributions of invariant mass My, for 2003-2004 deuteron data (top row) and combined 2007/2010 proton data (bottom row): 7 Tz~ pairs (1% column), KT K~

pairs (2" column), 7tK~ and K+7~ pairs (3™ column).

providing four data samples with two different orientations of po-
larisation. Note that for the measurements in 2007 and in 2010 a
similar spectrometer configuration was used.

In the analysis, events with incoming and outgoing muons and
at least two reconstructed charged hadrons originating from the
interaction vertex inside the target cells are selected. Equal flux
through the whole target is obtained by requiring that the extrap-
olated beam tracks pass through all three cells. In order to select
events in the DIS regime, requirements are applied on the squared
four-momentum transfer, Q2 > 1 (GeV/c)?, and on the invariant
mass of the final hadronic state, W > 5 GeV/cz. Furthermore, the
fractional energy transfer to the virtual photon is required to be
y>0.1 and y < 0.9 to remove events with poorly reconstructed
virtual-photon energy and events with large radiative corrections,
respectively.

For a selected DIS event, all reconstructed hadrons originating
from the interaction vertex are considered. Only hadrons produced
in the current fragmentation region are selected by requiring z >
0.1 for the fractional energy and xp > 0.1 for the Feynmann-x
variable. The two-hadron sample consists of all combinations of
oppositely charged hadrons built from the same DIS event. Exclu-
sive dihadron production is suppressed by requiring the missing
energy for each hadron pair to be greater than 3 GeV. As the az-
imuthal angle ¢r is only defined for non-collinear vectors R and q,
a minimum value is required on the component of R perpendicular
to q, i.e. R; > 0.07 GeV/c. After the application of all requirements,
0.56 x 107 h*h~ combinations remain for the deuteron data and
3.5 x 107 h*h~ pairs for the proton data.

The RICH detector information is used to identify charged
hadrons as pions or kaons in the momentum range between the
Cherenkov threshold (about 2.6 GeV/c and 9 GeV/c, respectively)
and 50 GeV/c. The detector set-up after the upgrade of 2005 and
the particle identification (PID) procedure are fully described in
Ref. [26], while details on the likelihood PID method and the purity
of identified samples are explained in Ref. [12] and Ref. [15] for
deuteron and proton targets, respectively. In the kinematic domain
of the COMPASS experiment, about 67% of the final-state charged

Table 1
Final statistics for unidentified and identified charged-hadron pairs in deuteron
(2003-2004) and proton (2007 and 2010) data.

Year Number of pairs (x106)

h*h- #tm~ mtK- Ktm~ KK~
2003-2004 (deuteron)  5.65 3.97 0.26 0.30 0.10
2007 (proton) 1091 741 0.38 0.53 0.22
2010 (proton) 3456  20.60 110 153 0.60

hadrons are identified as pions and about 10% as kaons. The re-
maining particles are either protons, electrons or not clearly iden-
tified. About 60% are pion pairs (7w 77t ~), about 2% are kaon pairs
(KTK™) and about 8% are mixed pairs (7 *K~, K*7 ™). The miss-
ing fraction refers to cases where at least one of the two hadrons
cannot be accurately identified. The resulting statistics for uniden-
tified and identified hadron pairs after applying all requirements
are shown in Table 1.

The invariant-mass distributions for the four opposite-charge
combinations that can be formed using identified charged pi-
ons and kaons (r*mw~, K*K—, s*K~, K*m~) are shown in
Fig. 1 for deuteron and proton targets. In the w7~ spectrum,
the mass signatures of some mesons decays, such as K° around
500MeV/c2,! p° around 770MeV/c?, fo around 980 MeV/c? and
fo around 1270MeV/c?, respectively, are clearly visible in both
deuteron and proton data as expected from Ref. [27]. Other de-
cays with more than two hadrons in the final state (like the de-
cays of w, n and n’) generate broader peaks and contribute less
to the overall pion-pair invariant-mass spectra [27]. The KTK~
invariant-mass distribution shows a very pronounced signal of the
¢(1020) resonance close to its production threshold. The ¢ meson
can also contribute to the pion pair spectra via the two-step de-
cay ¢(1020) - pmw — wtx~ 70 The invariant-mass distribution

! The width and the number of the reconstructed K° are biased because in this
analysis the pions are requested to come from a common interaction vertex inside
the target.
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Fig. 2. Hadron-pair transverse-spin-dependent asymmetries as a function of x, z and
Mpy, extracted from the full data set collected with the ®LiD (deuteron) target. Sys-
tematic uncertainties are shown by the grey bands.

of K*K~ pairs in the proton data shows indications of further
broad peaks around 1300MeV/c? and 1500 MeV/c2, which might
be caused by f>(1270) and f}(1525). The invariant-mass distribu-
tions of 7K~ and K*7~ also show in each case one dominant
channel caused by the decays of K*(892). Further possible candi-
dates for peaks in the My, spectra of the 7K~ and K™~ pairs
are K*(1430) and K} (2045).

3. Results

The asymmetries were evaluated in bins of x, z and My, as
given in Table 2. Several tests were performed to estimate the sys-
tematic uncertainties [23,15] which were evaluated to be at most
0.6 times the statistical ones. As in previous analysis [14,28,29],
systematic effects due to a possible dependence of the efficien-
cies on the kinematic variables were estimated to be negligible and
were not included. The asymmetries extracted from °LiD and NH3
targets are presented in Figs. 2 and 3, respectively. The error bars
indicate the statistical uncertainties while the grey bands show the
systematic uncertainties. Numerical values of the asymmetries are
available upon request.

For SLiD, no significant asymmetry is observed in any variable
for all pair combinations. For NH3, large negative asymmetries up
to —0.07 are obtained for w+7~ pairs in the region x > 0.03,
which implies that both transversity distributions and polarised
two-hadron interference fragmentation functions do not vanish, as
already observed in Refs. [22,23]. For x < 0.03, these asymmetries
are compatible with zero.

The asymmetry measured with the ®LiD target is compatible
with zero within uncertainties over the whole x range. For both
targets, no clear dependence on z can be observed, and for the
NH3 target the asymmetry is observed to be negative in the whole
range. For both targets, the My,-dependence shows negative asym-
metry values in the region of the p® mass.

For KT K~ pairs, the proton data show negative asymmetries in
all three variables, while the deuteron data show indications for a
positive signal. In particular the Mp,-dependence shows opposite
signs for the asymmetries measured with the NH3 and 6LiD tar-
get, with an indication of a mirror-symmetric shape. In the case
of 7K~ and K*m~ pairs, the deuteron data show asymmetries

Physics Letters B 845 (2023) 138155
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Fig. 3. Hadron-pair transverse-spin-dependent asymmetries as a function of x, z and
M, extracted from the full data set collected with the NH3 (proton) target. Sys-
tematic uncertainties are shown by the grey bands.
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Fig. 4. Comparison of w+7~ pair asymmetries measured by the HERMES Collab-
oration [22] (blue open squares) with the results of the COMPASS Collaboration
re-evaluated in the x > 0.032 region (black dots).

compatible with zero, while the proton data show slightly negative
asymmetries.

The HERMES Collaboration measured TSAs for 7+ 7~ pairs us-
ing electron-proton scattering [22]. Given the wider kinematic
coverage by COMPASS, the 77~ COMPASS asymmetry was re-
evaluated in the region x > 0.032 to allow for a direct comparison.
The comparison is shown in Fig. 4. The results are in very good
agreement within statistical uncertainties.

4. Interpretation of the results

The dihadron fragmentation functions entering the SIDIS cross
section in Eq. (1) are non-perturbative objects. As such, they can
not be calculated from first principles. Two classes of models have
been proposed to describe them. In spectator-jet type models a
mechanism different from that of the Collins FF is invoked to pro-
duce a non-vanishing H 14 function. Such a mechanism involves the
interference between the amplitudes of two competing channels
for the production of the hadron pair, e.g. either the amplitude
for direct production and the amplitude for resonance production
[30,27], or the two amplitudes for the production of two different
resonances [18]. A different approach is followed by the recur-
sive string+3Py model of polarised quark fragmentation [31]. It
is implemented in the StringSpinner package [32] for the simu-
lation of the Collins effect for pseudoscalar mesons produced in
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Table 2
Bin limits of the variables x, z and My, (in units of GeV/c?) for the four types of pairs.
x bin limits
T 0.003 0.008 0.013 0.020 0.032 0.050 0.080 0.130 0.210 0.7
T K/Kmx 0.003 0.013 0.020 0.032 0.050 0.080 0.130 0.7
KK 0.003 0.008 0.013 0.020 0.032 0.080 0.7
z bin limits
T 0.20 0.25 0.30 0.35 0.40 0.50 0.65 0.80 1.0
7 K/Km 0.20 0.30 0.35 0.40 0.50 0.65 1.0
KK 0.20 0.40 0.50 0.65 0.80 1.0
Mpp, bin limits
T 0.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 12 1.6 10
T K/Km 0.0 0.8 0.9 1.0 12 10
KK 0.9 1.05 115 130 150 10
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Fig. 5. The string+> Py mechanism of polarised quark fragmentation [34]. The closed =

(open) circles represent quark (antiquarks) at the string ends. The circular arrows
above quarks show the orientation of their spins whereas the arrows at each string
breaking L,, L3 ... represent the orientation of the relative orbital angular momenta
of the qq pairs. The straight arrows indicate the quark transverse momenta.

the fragmentation of transversely polarised quarks in SIDIS with
the PYTHIA 8 event generator [33].

The classical string+3 Py model for the fragmentation of a trans-
versely polarised quark qa is illustrated in Fig. 5. The string is
stretched between the scattered quark q4 and the target remnants
along the quark direction and the string fragmentation occurs via
tunnelling of quark-antiquark pairs in the 3Pq state, i.e. with spin
S =1 and relative orbital angular momentum L = 1, such that the
total angular momentum J is zero. Given the polarisation of qg,
taken here along the normal to the figure plane, at the string
breakings the spin and the transverse momentum of the quark
and antiquark, as well as the transverse momentum of the pro-
duced hadron are fixed. The rank r indicates how far the hadron
h; is produced from the fragmenting quark g4, with h; being the
hadron which contains gq4. For odd (even) r the hadron h; is emit-
ted to the left (right) with respect to the plane spanned by the
momentum and polarisation vectors of the fragmenting quark. As
an example, if the flavor of the fragmenting quark is g4 = u and
hi=m", it can be h = 7~ and opposite Collins asymmetries for
oppositely charged hadrons are generated. Also, a dihadron asym-
metry with the same sign as for positive hadrons is produced.
StringSpinner uses the quantum mechanical formulation of this
model, in which the spin effects depend on a complex parame-
ter, tuned as in Ref. [32]. The initial quark polarisation is given
by a parametrisation of the transversity PDF for valence u and d
quarks. For this work we have used the default parametrisations,
which were tuned to reproduce the 7+ and 7~ Collins asymme-
tries measured by COMPASS on an NHj3 target. The simulations
were performed neglecting the intrinsic transverse momentum of
the quarks, but it was checked that the dihadron asymmetries are
not affected [34].

In Fig. 6 the measured dihadron asymmetries (closed points)
are compared to the simulated asymmetries (open points) for pro-
ton data. As can be seen, the simulation describes the data partic-
ularly well for 77~ and KK~ pairs, in all kinematic variables.
The trend of the asymmetries as a function of x is mainly driven by
the x-shape of the implemented transversity PDFs, while the z and
My, dependences are predictions of the model. The large signal
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Fig. 6. Comparison between 7n+x~, w*K~, K*¥7~ and KTK~ asymmetries for
proton data (closed points) and results from simulations using StringSpinner (open
points).

for 7T~ and KK~ pairs can be understood in the approxima-
tion of u-quark dominance considering the fact that 7+ or K+ are
most likely produced at rank one, whereas 7~ or K~ are produced
at rank two. Regarding the 77K~ and K*7~ pairs, the simulated
asymmetries are small and compatible with the data within uncer-
tainties. This is expected considering the fact that, e.g., the 7+ and
the K~ of a w ™K~ pair are most likely produced at rank one and
three separated by a rank two neutral kaon. Thus the 7" and the
K~ are most likely emitted on the same side producing a small
dihadron asymmetry.

In corresponding simulations for deuteron data, dihadron asym-
metries compatible with zero were found for all types of hadron
pairs. This is in agreement with the data and is expected from the
fact that the transversity PDFs for valence u and d-quarks have al-
most the same size but opposite sign.

5. Conclusions

In this paper we present the results of a new measurement of
transverse-spin-dependent asymmetries in hadron pair production
in DIS of 160 GeV/c muons off transversely polarised deuteron
(5LiD) and proton (NH3) targets. The measurement covers all pos-
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sible combinations of oppositely charged pions and kaons observed
in the COMPASS kinematic range.

The deuteron data used in the analysis were collected dur-
ing 2003 and 2004, while the proton data include two separate
parts collected in 2007 and 2010. Both data sets were already
used earlier to extract the Collins and Sivers asymmetries for semi-
inclusively measured single hadrons, with separate publications for
charged hadrons as well for identified pions and kaons. These two
data sets are the largest ones available on this process, including
e.g. 28M (4M) pion pairs in the proton (deuteron) data, and they
provide important input for global analyses.

The proton data show significant non-zero asymmetries. For
7t~ pairs, values reach —7% in the region x > 0.032 and —2.5%
in the invarinat-mass region around the p°-meson mass. Slightly
negative asymmetries are observed for K™K~ and K+z~ pairs.
The deuteron data show for all hadron combinations asymmetries
compatible with zero, within statistical uncertainties.
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