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Multiparticle correlations, cuamulants, and moments sensitive to fluctuations in rare-probe
azimuthal anisotropy in heavy ion collisions
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Correlations of two or more particles have been an essential tool for understanding the hydrodynamic behavior
of the quark-gluon plasma created in ultrarelativistic nuclear collisions. In this paper, we extend that framework
to introduce a mathematical construction of multiparticle correlators that utilize correlations between arbitrary
numbers of particles of interest (e.g., particles selected for their strangeness, heavy flavor, and conserved charges)
and inclusive reference particles to estimate the azimuthal anisotropies of rare probes. To estimate the fluctuations

and correlations in the azimuthal anisotropies of these particle of interest, we use these correlators in a system
of cumulants, raw moments, and central moments. Finally, we introduce two classes of observables that can
compare the fluctuations in the azimuthal anisotropies of particles of interest with reference particles at each

order.

DOLI: 10.1103/PhysRevC.108.064901

I. INTRODUCTION

The quark-gluon plasma (QGP) is a state of hot nu-
clear matter created in the collisions of nuclei at the Large
Hadron Collider (LHC) and the Relativistic Heavy Ion Col-
lider (RHIC); for a recent review see Ref. [1]. The fluid
nature of this matter has been confirmed using collective flow
measurements at both colliders [2-4]. The early stages of
heavy ion collisions produce predominately elliptical shapes
due to the nature of the geometry of these collisions but other
geometrical shapes are possible due to quantum-mechanical
fluctuations of the quarks and gluons within the nucleus. Due
to the asymmetric pressure gradients caused by these geo-
metrical shapes, the fluid nature of the QGP converts these
geometrical shapes into collective flow patterns in momen-
tum space. These collective properties manifest as azimuthal
anisotropies in the distribution of particle angles ¢ and are
quantified by v,,, the Fourier harmonics for the distribution of
particle yields around W,, the nth order event-plane:

d—N0(1+2§:v cos [n(¢p — V,)] Q8
n=1
where nonzero harmonics v,, attest to collectivity within the
strongly interacting, nearly perfect fluid nature of the QGP.
The cumulant framework [5—8] has also been used extensively
to measure v,[9-16]. One particular advantage of using cu-
mulants is that these measurements can provide sensitivity to
both the root mean square (rms) values of the anisotropies,
((v,2)"/?, over some collection of events, but also to higher-
order fluctuations present in the distribution of event-by-event
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v,. Measurements of v, are essential for constraining transport
coefficients within relativistic viscous fluid dynamics using
Bayesian analyses [17-21] and are one of the standard bench-
marks that models must reproduce [22,23]. Previous work
has demonstrated that experimental measurements of flow
fluctuations [16,24-27] can play a crucial role in constraining
initial-state models [28-30].

Up until this point we have discussed generic collective
flow harmonics that are measured using a nearly inclusive set
of particles dominated by those at low transverse momenta
(pr) reference particles. However, a number of useful signals
of the QGP come from particles of interest (POIls), a class
of either identified particles (e.g., protons) or high-pr parti-
cles that generally do not significantly overlap with reference
particles. Typically these differential classes of particles have
insufficient statistics from just POI angles to simply mea-
sure v/ using the same techniques as measurements of v,
using charged particles. Thus, the azimuthal anisotropies that
characterize the distributions of exclusively POIs are mea-
sured using “differential” correlators and cumulants which
rely on correlations between POI and reference particles
[5.7].

Quantum-chromodynamics (QCD) and thereby the QGP is
required to locally conserve quantities such as electric charge,
baryon number, and strangeness. Realistic handling of these
quantities is necessary to accurately compare theoretical mod-
els to experimental data. The study of fluctuations of v, for
conserved quantities is still in its infancy; however, recent
work that includes baryon stopping in the initial conditions
[31] and other work that includes gluon splittings into quark
antiquark pairs [32,33] would allow one to study the fluctua-
tions of conserved charges in the azimuthal anisotropies; these
studies may shed light on the effects of event-by-event fluctu-
ations of baryon stopping and/or charge diffusion transport
coefficients.
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Additionally, jets are of great interest in heavy ion col-
lisions [34]. They are created in large momentum transfer
processes in the very early stages of the collision prior to
the fluid formation; thus, they experience the same collision
evolution as the fluid but they are not equilibrated with it be-
cause the associated momentum scale is much larger than the
temperature of the fluid. Jets are sensitive to the short-length-
scale properties of the QGP and the average suppression of
jets in the QGP can be used to constrain the strength of jet
quenching [35-38].

In the case of jets, the value of v), is understood to be
sensitive to the path-length dependence of the interaction be-
tween the jets and the QGP [39,40] and measurements have
been made which show positive values for these v, quan-
tities [41-43]. Theoretically, hydrodynamical models have
been used to elucidate decorrelations between the event plane
angles W, and W, for reference particles and for POI respec-
tively, as well as for event plane angles between two different
harmonics [44-46]. This decorrelation of POI event planes
from the reference particle event plane is important when con-
sidering event-by-event fluctuations in v,. However, current
techniques and observables do not provide a comprehensive
way to study these jet-by-jet fluctuations in energy loss [47].

Measurements of mesons containing heavy, charm, and
bottom quarks may provide interesting insight to various
phenomena unique to heavy flavor particles. At high mo-
mentum, heavy quarks come from jet production and suffer
energy loss [48,49]. At intermediate momenta, heavy quarks
are understood to undergo Langevin-like diffusion as they
move through the QGP [48,50]. Additionally, hadronization
of heavy quarks is thought to be modified in heavy ion col-
lisions with recombination processes playing an important
role [51-53]. Due to all these effects, it is of great interest
to measure the azimuthal anisotropies and their fluctuations
of hadrons containing heavy quarks to constrain theoretical
models [54-57].

Finally, both jets and heavy flavor lead to ambiguous sig-
nals in proton-nucleus collisions where positive v/, values for
high-pr particles are measured [58] but, there is no signifi-
cant suppression [59-62]. Thus, studies of the fluctuations of
v, could provide new information in these small systems to
understand the origin of the observed v),.

In this work, we focus on the development of observables
that utilize angular correlations between arbitrarily many ref-
erence particles with one or more POI. The POI selection
varies with the physics of interest and could include high-pr
jets, heavy-flavor hadrons, or some other object classification.
Our explicit intent is to derive observables that are sensitive
to not just the rms of the v, Fourier coefficients for POI,
((v.*))172 but also higher-order fluctuations displayed by v,.

Generally, we expect the fluctuations of v) in POI to be
affected by both the initial geometry of the collision, as for
the reference particles, and by additional process specific
fluctuations. Measurements of these quantities could pro-
vide unique information about the mechanism of jet energy
loss [63]. Therefore, we qualitatively expect the fluctuations
in v, to be larger than those observed in the soft sector.
This is illustrated in Fig. 1, which shows a typical example
of a differential two-particle estimate for v, : v,{2} as a

~.0.25
& B
& = - =
= L . o §0.15_ p = 40 GeV
0.2 S
- -o- -o- K
B < 0.1
- _Q_
015~ . -e- 0.05
r u 2u
o~ -@- vn/{2}
0.1— . :
i .
- 20 1 e
0.0Sj% 03 pT_ZGeV ++
LS -y
L &£ 0.2 _+__+_
0_— 0.1
L % T 1
= v,{2}
_005 1 1 | | 1 1 || |
1 10 10
p,[GeV]

FIG. 1. Cartoon of v,{2}(pr) as a function of pr. Insets show
examples of the distributions of v,{2}(pr) for low-pr particles (dom-
inated by reference particles) and high py (particles of interest).

function of pr for hadrons. The plotted v5{2} values are
the average over the events in that particular event selec-
tion, typically a centrality bin in heavy ion collisions. The
insets show example distributions of event-by-event v, values
relative to the mean. The goal of this work is to suggest
experimental observables using multiparticle correlations to
provide experimental access to these underlying fluctuation
distributions.

Given the impact of these types of measurements in the
soft sector, it is very likely that fluctuations of v, can provide
new insight into the processes discussed above. The very large
data samples at the LHC [64], the forthcoming upgrades at
the LHC, and the very large data samples projected from
sPHENIX [65], provide new opportunities to make these mea-
surements. Up until today, only a handful of experimental
papers have explored multiparticle cumulants that contain one
POI [66-71]. We expect this field to expand significantly with
upcoming data.

In this paper we derive the formalism to study different
types of multiparticle cumulants with an arbitrary number
of POI in azimuthal anisotropy measurements for jets, and
other rare probes. We generalize the following observables to
include one or more POI: differential cumulants developed
in Refs. [5,6], higher-order moments of v), multiharmonic
cumulants developed by Moravcova et al. [72], and asym-
metric cumulants developed by Bilandzic et al. [73]. Finally,
we propose central moments of arbitrary order in POI angle
dependence, and two observables to estimate the contribution
to a cumulant or moment for an arbitrary number of particles.
Finally, we summarize our work by discussing features of
each specific observable and what types of fluctuations and
POISs they are most ideal for measuring.
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II. AZIMUTHAL ANISOTROPY AND CORRELATORS

The event-by-event azimuthal anisotropies of particles in
heavy ion collisions are studied using a Fourier expansion for
the distribution of particle angles around the beam axis, where
v, represents the contribution of the nth harmonic to the net
particle yield:

Z—Z x 1+ 2’12:1: v, cos [n(¢p — W,)]1, (2)

where the detector angle ¢; for each of the N particles is
compared with the nth order event plane; an azimuthal angle
about which the distribution of n¢; is symmetric [74]. When
using the symbol v,, we specifically refer to the azimuthal
anisotropy coefficients for reference particles, typically all
measured charged particles.

Likewise, we can define a related quantity, v), as the
Fourier coefficient for the distribution of POI angles. This
quantity is an analog to v, but generally relies on different
approximation methods than v, due to properties of the probe
in question:

dN'
dy

o 142 v cosln(y — ¥))]. 3)

n=1

where the multiplicity of POI is labeled by N’ for a single
event, and each POI is denoted with angle v; with respect to
their theoretical event plane W/, about which the angles ny;
are symmetric.

Using a Fourier expansion, we rewrite the explicit defini-
tion of both v, and v}, [5,6]:

vy = (e"@7)) = (cos [n(¢ — W,)]), )

1 (=W W
v, = (") = (cosln(y — W)]), (5)
where angle brackets () indicate an average taken over all
particle angles within a single event. Flow harmonic vectors
that contain information about v,, and the nth-order event
plane and can be defined as

Vi = v, (6)
V) = e ©)

within a single event. The definition of these vectors allows
for a more concise way to express the evaluation of v, and v,

J

(K'+m +k+m),

k
= <expi|:Zno,¢a +
a=1

k+k'

B=k+1

K-k +m+m’
SR SRR o wD

to different powers using multiparticle angular correlations, as
detailed in the next section.

A. Correlators

Multiparticle correlations can determine v, and v/, to dif-
ferent powers, a more accurate and computationally effective
process than approximating the event plane, and measuring
v, and v, as they are defined in Egs. (4) and (5) [75,76]. To
measure correlations, we rely on the assumption that reference
particles and POI are distributed symmetrically around W,, and
W' respectively, which is accurate in the limits of N, N’ >> 1.
If this assumption holds for the reference particles, it has been
shown that we can correlate n-tuples of particle angles to
approximate powers of v, for different harmonics [8,77,78].
The correlation among reference particles can be written as a
product of v, coefficients with an exponential dependence on
event planes, or as a product of unconjugated and conjugated
complex flow vectors V,, V,*:

(k +m),,

AAAAA T |kt 15 oos Pk
= (ei(n1¢1+--.+nk¢k*nk+1¢k+1*---*ﬂm+k¢m+k)> (8)
=, - vnmei(m‘l’nl-*-...-&-nkq’nk —Ngest Wy —m—nk+m‘1’nk+,,,) )
fr DY * DRI *
- V”l V"k Vnk+1 Vﬂm’ (10)

for an arbitrary number k + m of correlated particles. Each
reference particle is labeled with angle ¢,, numbered one
through N, and the average on the right-hand side (RHS) is
taken over all k + m tuples of particles. The indices ny, . . ., n;
indicate that the particles are “positively correlated;” their
azimuthal angles have a positive sign in the exponential in
the above equation. The indices ng1, ..., ngy, that follow
the vertical bar | indicate “negatively correlated” harmonics,
which are subtracted in the above equation’s exponential. We
require the sum of the positively and negatively correlated
harmonics to be zero: for any (k 4+ m) we must have

k m
E ni = E Mt j»
i=1 j=1

otherwise the resulting quantity is isotropic and will aver-
age to zero due to symmetry of particles around each event
plane.

To measure v/, and correlations between v/, and v, within
an event, we apply the same assumption about event plane
symmetry for POIs, and incorporate their angles into correla-
tions in the same way as in Eq. (8), generalizing to correlators
that use k' + m’ POIs and k + m reference particles:

(1)

/ /
""" Ttk T ! ot k! et
k+k'+m

y=k+k'+1 S=k+k'+m+1

where we have in particular &k’ positively correlated POI harmonics, m’ negatively correlated POI harmonics, k positively
correlated reference particle harmonics, and m negatively correlated reference particle harmonics. Each reference particle index
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iterates through all N reference particles in the event with angle ¢, and likewise each of the N’ POI angles v, is iterated through

by POI indices.

Plugging Egs. (2) and (3) into Eq. (12), we can convert the correlator with &’ 4+ m’ arbitrary POI angles and k + m reference
particle angles into an approximation for v, and v/, at arbitrary power and harmonic number:

<k/ + m/ + k + m)n] ..... TN

,
Mg Mo 11

/ ,
""" etk 4 T gt Tk !

k k+k' k+k'+m k+k'+m+m’'
_ ing Vg ’ injy \% 1_[ —in, U, l—[ / —infW§
[ Lonem T] ()¢ (1L)e
a=1 B=k y=k+k'+1 S=k+k'+m+1
— PR ! PRI / * ... * % ... /%
= Va, Vi Vﬂk+| Vnk+k’ V"A- +k'+1 Vnk +k'+m Vnk+k’+m+] V”k+1<’+m’+m : (13)

Similar to the condition in Eq. (11), we require that the sum
of harmonics produces an anisotropic quantity:

k k+k' k-+k'+m k+k +m+m’

! /
E n; + E n; = E ng + E n, (14)
i=1 j=k+1 g=k+k'+1 h=k4-k'4+m+1

for Eq. (13) to be used. Otherwise, Eq. (13) will yield values
consistent with zero due to the symmetry planes.

Evaluating (k" + m’ + k + m) will generally produce some
dependence on the angle between the event planes for v, and
v;, at each of the different harmonics n;, defined by the event
plane angle in the exponential. When considering any two
flow vectors V,, and V.7, for either POI or reference particles,
we can understand that this angle dependence is simply the
dot product of the various vectors. An example of a multihar-
monic correlation between v} and the product of v, and vy is
demonstrated below:

(2 + 2)2.43.3 = v204(v3)* cos QW5 + 4Wy — 6W3)
— (ei(2¢1 +4¢2—3l/f3—31//4))

= VVa(V'})% (15)

(k' +m +k+m)

’ / / / k
_ (N—k—m)! (N —k _m)!ZeXpi Zna¢a

N! N

a=1

where in this case we assume that there are no POI that are
also considered reference particles, which we expect to be a
reasonable definition in most analyses. For a more general
treatment with non-negligible overlap between reference par-
ticles and POI, see Appendix A.

Calculating a (k' +m’ + k 4+ m)-particle correlation by
iterating over k' +m’ + k + m tuples can be computation-
ally challenging for higher-order correlations. However, in
Refs. [7,8] a much faster method to calculate these correlators
using polynomials of the event Q,, vector is introduced, which
makes the calculations of these correlators much easier, but
more complex to write analytically. Traditionally, a Q, vector
is defined by averaging all of the particle angles within an
event:

N
Q=) " (18)
p=0

(

where the harmonics n; . .. n4 obey the condition in Eq. (14).
Also, we remind the reader that the subscripts in ¢; ... ¢4
indicate the indices for the particles being correlated, not the
harmonics.

To evaluate Eq. (8) using experimental data, an average is
taken over all k + m tuples with unique particle angles at each
index—indicated by a primed summation }_" [8,78]:

/

(N —m —k)!
(k +m) = N Z
1,..k+m
X ei("1¢|+---+nk¢k—nk+l¢k+1—---—’lk+m¢k+m) (16)

where the normalization factor (N — k — m)!/N! is the recip-
rocal of the number of k + m tuples of unique particles in
an event with N total particles. Likewise, in keeping with the
evaluation of correlators using one POI index in Ref. [78], we
can construct the same summations with arbitrary dependence
on particles of interest, using N reference particles and N’ POI
by writing Eq. (12) as a primed summation:

k+k' k+k'+m k+k'+m+m’
/ /
Y s — Y me,— Y sl (D
B=k+1 y=k+k+1 S=k+k'+m+1

(

where each reference particle has angle ¢, with respect to the
event plane W,. In Appendix B we introduce an algorithm
to recursively write a correlation of the form (k' + m’ + k +
m) using Q, vectors, analogous to the method described in
Ref. [8], but incorporating arbitrary POI dependence.

While mathematically the correlators defined in this sec-
tion evaluate products of v, as described in Eq. (13), their
values can be biased by sensitivity to nonflow fluctuations that
contribute to v, in the form of correlations due to small subsets
of particles produced in heavy ion collision such as jets or
resonance decays. These highly correlated particles fluctuate
event-by-event and do not necessarily reflect the collectivity
induced by initial-state geometry in the QGP. Additionally,
because single event measurements fluctuate due to finite
statistics, and the varying initial geometry of the QGP, it
is more common to measure event by event averages of v,
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and associated quantities. In the next section, we express the
event-by-event averages of the correlations developed above,
as the raw moments of a multivariate distribution over events,
describe the stochastic variables that comprise the multivariate
distribution, and relate them to existing observables.

B. Raw moments

Due to quantum-mechanical fluctuations of the nucleons
(or quarks and gluons) within the nucleus, as well as impact-
parameter fluctuations, there are fluctuating v,, values on an
event-by-event basis for a fixed centrality class [28,74,79—-83].
The distribution of v, values for reference particles in a fixed
centrality class has already been measured experimentally
[11]. The use of various underlying probability distributions
to fit experimentally determined distributions for v, have been
studied [79], and used to parametrize these experimental mea-
surements, as well as simulation data, such as Gaussian [84],
Bessel Gaussian [68,75], elliptic Gaussian, and elliptic power
distributions [85,86]. As of yet, no attempts have been made
to experimentally measure the underlying distribution for v;,.
Since a distribution and its fluctuations can be constrained by
its moments or cumulants, we focus on methods to obtain mo-
ments and cumulants of v, to attempt to extract the underlying
distribution.

To better understand these distributions and their event-by-
event fluctuations, we first consider the raw moments of v,,.
Raw moments provide significant insight into various proper-
ties of the distribution’s symmetry and tail behavior, and, more
importantly, can always be used to express more conventional
measures of fluctuations like central moments, or cumulants,
which we will define later in the paper.

J

(K +m' k)

!
nk+1~“”k+k/‘”k+k’+l

The most natural way to define the raw moments in
terms of the quantities already defined in the previous sec-
tion would be to simply take event-by-event averages of
(k' +m’ + k + m). Since (k' + m' + k + m) measures a prod-
uct of V,, ---V’, .., we understand the stochastic variables
measured in these moments will also be a product of some
collection of r vectors: Vn, . The exact determination
of each stochastic variable represented in such a raw moment
is addressed in depth in the next section. Given an arbitrary
collection of stochastic variables Xi, ..., X, the raw moment
w of order v; in each stochastic variable X; is defined as

LX) = <]l[xi”f>, (19)

where an average over all events is shown.

Earlier, we have defined multiparticle correlations, which
specifically correlate k + m reference particle angles at vary-
ing harmonics, and k' +m’ POI at varying harmonics in
Eq. (13) [8]. The expectation value of the correlator from
Eq. (13)—a raw moment—is then obtained by averaging over
an ensemble of events with index i, and weighting W;, which is
often uniform, based on total pr, or total number of particles
produced. This is indicated by the double brackets (()):

Y Wik +m' + k + m),
> Wi ’

and on the RHS, we also consider the single bracket () to be a
weighted average taken over events:

(k' +m' +k+m)) = (20)

, /
..... Pk i T kgt = Tk et

k+k' k+k'+m k+k' +m+m’
’ ’ : L. !
| |vno, ing Wy | | mﬁ\llﬁ | | vnye’”y% | | (v;lg)emglll(X , (21)
y=k+k'+1 S=k+k'+m+1

where we have shown the full subindex of the correlator in
Eq. (21) but suppressed it in Eq. (20) for simplicity’s sake.

As a special case of this method, we note that correlators
for exclusively reference particles, and correlators using one
POI angle index have been defined explicitly in Refs. [6,7],
using angle v, for POI angles. The one POI differential corre-
lator approximates the joint moment of order 2k — 2 in v, and
first order in VV*. These correlators are used extensively in
differential flow analyses with generating function cumulants
to estimate values of v/, [9,14,87]:

(1/ + 2k — 1) — (ein(‘/fl+¢l--¢k—l_¢k_---_¢2k—l)>

/
— (N —2k+1)! Z ein(T//]+¢]--¢k—l*¢k*---*¢2k—l)
N'(NV) ’

(22)

where in the above equation we assume there is no overlap
between POI and reference particles. After averaging this

(

correlator over an ensemble of events,

-1 (v, VaVi) = (U 42k = 1)), (23)

we can write it as a raw moment of the variabes v2, and V'V,
As another example, we create a raw moment from the ex-

ample in Eq. (15) by averaging the correlator (2 + 2); 43,3

(2 +2) 2433 = (0262Y2)(v4e™) (Ve P5)%)
= (v2v4(V})* cos QW + 4Wy — 6W})),
(24)

where we find that the condition in Eq. (14) is satisfied just as
before. This raw moment identifies one of the contributions of
V2, V4, and V5 to a multivariate distribution. We address how
to determine the variables in the multivariate distribution and
address how to determine what correlations the above types of
raw moments actually measured in the next section.
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C. Stochastic variables and normalization

Raw moments of a distribution often scale with the mean
value of their distributions, (v)') ~ (v,)", making their com-
parisons difficult. For example, if stochastic variables X and
Y are distributed normally with wy(X) = us(Y) =135, but
©1(X)=10.05 and p;(Y) = 3, the magnitude of their “fluc-
tuations” relative to their mean are very different, despite both
distributions having the same second raw moment. We define
a normalized moment for a collection of stochastic variables
X1, ..., Xy, denoted N, .y, (X3, ..., Xp):

My, ..., v,,(leu-vXn)
[T (X" '

where the scaling of w,, ..., (Xi,...,X,) that comes from
(X;)" for each i is canceled by explicitly dividing by (X;)"i. If
each stochastic variable X1, . . ., X, is statistically independent
of the others, then normalizing the raw moment will give
unity; N, ., Xi, ..., X,) =1, and normalized moments
that differ significantly from one indicate correlation or an-
ticorrelation between the variables X, ..., X,,.

Normalizing in this way is consistent with the existing nor-
malization technique for symmetric cumulants (SCs), which
use the stochastic variables X; = v, and X, = v2 to correlate

n’

the Fourier coefficients of two harmonics [8,88,89]:

v,,(Xl’ ey Xn) = (25)

.....

SC(UI%’ Uyzn) = (Uiv,ﬂ — <v5)(v2>, (26)
NSC(v2,02) = %

It is clear that SC is normalized by dividing SC by each
stochastic variable that it takes as an argument. It becomes
intuitive to normalize raw moments of other stochastic vari-
ables the same way. We can now write NSC(vZ, v2) as a sum
of a normalized raw moment and 1:

27

NSC(vi,vy) = (vt —1=Npi(vy,v5) — 1, (28)
n m (U%)(U%) ’ n m
where, when considering quantities like (v2,v2) = ((2+

2))m.njm.n» it is clear that X; = v2 and X, = v2, allows for con-
sistency with the normalization for SC, as further discussed in
Ref. [73]. However, for quantities like the correlator defined
in Eq. (15), it is less clear how to select the correct stochastic
variables. Additionally, for a correlator such as ((2" + 1))» 24
with odd numbers of particles, it is not well defined how to
select the variables of interest in a manner consistent with
Egs. (26)—(28).

As shown in Eq. (21), a raw moment of the form ((k’ +
m' 4+ k + m)) evaluates the event-by-event averages of prod-
ucts of flow vectors V, = v,e”¥ and V! = "% It is tempting
to use these flow vectors as stochastic variables, but they
cannot work within the normalization scheme, because (V)
and g (V))) are isotropic quantities and will average to zero,
leaving the normalized raw moment in Eq. (25) undefined.

Instead, we use “nontrivial” stochastic variables that are
selected by factoring out subsets of vectors for which the
harmonics of vectors in the subset add to zero. If (k' +m’ +

k + m) evaluates to a product of flow vectors,
(k' +m +k+m)
=V,..V,V, ..V vr yr yx v

... , ,
T Ny Mk! M/ 41 Mkl em Mkl pmg1 - KK +mtm’

(29)

we consider any disjoint subset of those vectors that produce
a nonisotropic quantity to be a viable stochastic variable for
our formalism. These groups can be represented by differ-
ent correlators with fewer indices, X; = (ki + m] + k; + m;),
and since they are disjoint, the product of each stochastic
variable yields: X; - ... X, = (k' +m’' 4+ k + m). To validate
that the correlators ((k' + m’' + k + m)) are actually expecta-
tion values of the raw variables X; = (k] + m] + k; + m;), we
relate ((kK' +m’' + k +m)), X;, and p,, _,, (X1, ...X,) in the
equations

.....

(K +m +k+m)) = <H(k; +m; + k; +mi>>» (30)

X = (k| + m] + k; + my), 31)

M., v,,(Xla ~-Xn):<1_[Xl-Vi>: ((k’+m/+k+m)),
(32)
where subscripts with each harmonic, n;, n,, .. ., are dropped

for clarity. Clearly, v2 and v both remain consistent with
this definition, since (2),, = v and (2),, = v2 are both
isotropic quantities.

When only considering nontrivial stochastic variables,
there exist many ((k' +m’ + k + m)) that cannot be further
normalized if no smaller group of indices within ((k" + m’ +
k + m)) can be isolated that will add to zero. Most notably,
((2))n)n cannot be normalized further; it functions well as
a stochastic variable, but it does not contain any “smaller”
nontrivial stochastic variables. Additionally, there exist cor-
relators with more than one way to normalize, or select
stochastic variables. The actual selection of stochastic vari-
ables is arbitrary, and can be changed for each individual
analysis. For example, we can find two possible selections
of stochastic variables for ({2 + 3))» 2, 13,2, although the raw
moment will return the same value for each, the meaning of
(2" + 3)) will change based on normalization:

)
2"+ 312223

=N VIV, (V3VaV)),
(<1/+1)>2/|2<<1/+2>>1Y2|3/ /"L].l(( 2 2) ( 3V2 1))

(33)
(2" 4+ 312203
(202 (2" + 1))y 23

where we see that the raw moment is valid according
to Eq. (14), and likewise 2 =2, 2+ 1 =3 ensuring that
the stochastic variables are nontrivial. In the top equation,
stochastic variables are selected to examine the correlation
between V,V,* and V';V,V;, which has greater sensitivity to
the difference between W, and W, than the quantities in
the bottom equation: v3, and V;V,V;. A more intentional
choice of stochastic variables and harmonics can prove useful
for explicitly isolating correlation and decorrelation between

=Nui(v3, (VW) (34)
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event planes. This can be seen clearly when considering four-
particle correlators that share the same harmonic:

(2 + 2202 = w11 (v3, 03), (35)
(2" +2)) 2 2 = Ha[Vyvs cos 4(W) — W), (36)

where, in the first case, the stochastic variables must be v,?
and véz because in order to satisfy Eq. (14) the POI and refer-
ence harmonics (7', n) add to zero separately: 2’ + (=2') =
0 =2+ (—2). Likewise, in the second case, the stochas-
tic variable must be vjv; cos 2(¥', — W,) because the only
groups of harmonics that add to zero are 2’ + (—2) =0,
which is included twice. It is clear from the above equa-
tion that changing the position of 2 and 2’ relative to the bar
allows us either to create a moment sensitive to the covariance
in the magnitudes of V, and V;, or to create a moment sensitive
to the variance of the dot product of these vectors., V, V', a
quantity that is strongly sensitive to W, — W, the difference
in angle between the differential event plane, and the reference
particle event plane.! Choices of this nature have been in-
strumental in isolating dependence on the angular fluctuations
between event-plane angles for reference particles and POI
[44,46,73,90,91] or to exclude event-plane dependence and
analyze exclusively the magnitude fluctuations between POIs
and reference v, and v/, coefficients [68].

D. Relation to existing observables

Common observables measured in heavy ion collisions are
two-particle correlations used to estimate v, and v),. These can
be easily recovered within the framework of POI correlators
and raw moments defined in this section. The two-particle
correlation to measure v, is defined in Ref. [6] as

Wa(2D)? = (2D = (v2), (37)

where {2} indicates a two-particle estimate for v,. Likewise,
a two-particle estimate for v, can be defined using a similar
two-particle correlation, but one reference particle index with
a POI index:

oy = D W) oy )
<<2>)n|n <vl%>
U202} = (U 4+ Dl = V) (39)

where the approximation in Eq. (38) is valid in the limit
that ¥, = W,,. More complicated v;, and v, cumulants require
sums of more specific correlations and will be used to moti-
vate more general cumulants in Sec. III B.

"Exploiting this subtlety has given rise to the observable A/ =
(va’ﬁ cos 2n(V¥, — ‘ll,l))/(vgv’g) in Ref. [68]. Generalizing this prac-
tice can be a useful alternative normalization scheme when trying
to isolate decorrelations between reference and differential event
planes.

III. DIFFERENTIAL MOMENTS AND CUMULANTS
A. Fluctuations

An important reason for studying fluctuations in v, and
related observables in heavy ion collisions is to measure
event-by-event fluctuations in the initial geometry of the col-
lision [75] and in the shape of the resulting QGP. Measuring
the fluctuations of v/, for various probes, and relating them
to fluctuations in v, will provide information about the sen-
sitivity of these probes to the path length they travel through
the QGP—and how fluctuations in their path length produce
fluctuations in their own abundance, angular distribution, and
energy.

If there were no statistical limitations, one could simply
analyze the similarities in the probability distributions p(v,,)
and p(v, ). For the azimuthal anisotropy of reference particles,
the distribution p(v,) has been studied and compared with
existing parametrizations for initial-state anisotropy [79]. In
general, we expect the event-by-event distribution for differ-
ential azimuthal anisotropies, p(v,) to be different from the
event-by-event distribution of reference Fourier coefficients
p(v,): we expect both the means and relative fluctuations
to be different between p(v,) and p(v,). While there may
not be sufficient particles of interest to approximate an
event-by-event distribution for p(v/,), measuring raw moments
constrain the distribution p(v;) and can also measure angle
and magnitude correlations between v), and v, [68]. Both of
these correlations can be used to understand the path-length
dependence of energy loss.

While the raw moments as described above can help ap-
proximate correlations and constrain distributions, they can be
combined into functions with more interpretive value. A mea-
surement of the raw moment (., (X1, ..., X)) still retains
some dependence on smaller moments v,y (X1, ..., X,),
where U; < v;. To isolate the genuine contribution of order
v; for each stochastic variables X; to a joint distribution
F(Xy,...,X,), we use functions of the raw moments to con-
struct cumulants according to the generating functions used
in Refs. [6,72], and the cumulant formalism introduced in
Ref. [73]. Additionally, we introduce central moments that
can be used to discern correlations between the “spread” or
distance from the mean between different stochastic variables.

B. Generating function cumulants

In Refs. [5,6], a set of cumulants for estimating v, and its
fluctuations are defined using a unique generating function.
Aside from the prevalence of these cumulants in literature, and
well understood measurements [16,66,90], a benefit of using
these “generating function cumulants” is that they estimate
the mean and fluctuations for various powers of v,, and v},
while suppressing sensitivity to nonflow contributions. These
cumulants are derived from a generating function following
the formalism outlined by Kubo in Ref. [92], although they
do not meet some of the convenient properties for cumulants
specified in Ref. [92] (specifically the properties of statistical
independence, reduction, semi-invariance, and homogeneity
[8,73]). However, cumulants derived from these generating
functions have been used effectively for the estimation of
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Uy, v, and their fluctuations in experimental and theoreti-
cal contexts [66,75,78]. Moreover, in Ref. [73], the authors
recommend the continued study of generating function cumu-
lants, under the understanding that these quantities are not true
statistical cumulants according to the formalism introduced
in Ref. [92]. The evaluation of generating functions using a
higher number of POI angles as defined in this section can al-
low for an easy comparison with existing results for reference
particles. Finally, the generating function cumulants defined
here are the primary quantities which we discuss that can
be interchanged to approximate v), directly, or approximate
correlations between v,, and v,,.

The cumulants of any distribution are defined as coeffi-
cients in the Taylor expansion of the multivariate moment
generating function around z = 0, for some complex variable
z. For azimuthal angles in heavy ion collisions, the generating
function below [93] was used as a moment-generating func-
tion to obtain cumulants:

M
G,(z2) = <l_[(1 4+ 7*emdi 4 Zeill¢f)>’ (40)
j=1
where ¢; corresponds to the jth reference particle angle of M
reference particles produced in an event. Taking the event-by-
event average (G, (2)):

Lzl (M (M~ k
k=0
x <<ei’1(¢l+"'+¢k_¢k+l—"'—¢72k)>>’ 41)

generates every possible combination of correlations between
reference particle angles of a given order when expanded.

The cumulant-generating function C,(z) and differential
cumulant-generating function D), (z) are defined in reference
to G,(2) [5,6]. C,(z) is used to estimate univariate generating
function cumulants for v, at different powers:

Ca(2) = In ((Ga(2))), (42)

where, for fixed multiplicity M in the limit of M >
1, we see that the above yields approximately C,(z) =
M[{(Gn(2)))M — 1], as described in Refs. [6,85]. The
cumulant-generating function approximating the natural log
of the moment-generating function is a result fundamental
to the definition of multivariate cumulants. In the differential
regime, D,/,(z) is used to estimate v; for particles of interest:

(€™ Gu(2))
(Gn(2))

where we see that D,/,(z) represents the event-by-event cor-
relation between POI angles and G,(z). To calculate the
cumulants, the generating functions can be decomposed into
a power series of correlators and powers of z and z*, as shown
below:

Dp/n (Z) = s (43)

sk m

C@ =3 ke mn, e ()

o k!m! _k/_/ ———

m

Likewise, differential cumulants can be expressed as a
power series in z and z*, with slightly different angular

correlations:
D@ = Y S k)
p/n —k‘m ) p,n,.;.,l’lll’l,...,l/h
(45)

where the averaged quantities (()) are simply raw moments
defined in Eq. (21). Correlators where k # m are isotropic and
average to zero for C,(z), so we only consider the case when
m = k. Matching orders in |z|> between Egs. (42) and (44)
give the expression for the cumulant c,{2k} in terms of the
correlators defined in the previous section. For example, we
can see easily from Eq. (44) that the correlator of first order in
|z]? is simply

cnf2} = (™79 = (v7), (46)

n

which is the two-particle correlation from Eq. (37). The rep-
resentations of generating function cumulants for up to 14
particles (k = m = 7) can be found in Ref. [72]. Likewise,
differential correlators where m — k # p also average to zero.
Again, by matching orders of |z|*> between Egs. (43) and
(45) it is possible to construct the “differential cumulants”
dy{m + k + 1}.

Here, we propose cumulant generating functions for dif-
ferential cumulants with two, and arbitrary POI dependence,
respectively. These generating functions produce cumulants
with a dependence on angle tuples with a set number of POI
angles and an arbitrary number of reference particle angles.
The two POI differential cumulant )/, (z) is defined similarly
to D, (z) but correlates G,(z) with a pair of POI angles,

<eiP(W1 ﬂ//z)Gn ()
(Gn(2)) ’

where ¥, ¥, are POI angles with index 1 and 2, similar to
@1, ¢, from Eq. (41). For generating function cumulants that
correlate arbitrary numbers of POI and reference angles both
positively k" and negatively m’, we can define a more general
differential cumulant generating function:

Fpm(2) = (47)

, ip(P1 AV =Y ==V
(Gu(2))
where k' and m’ continue to indicate the number of separate
positive and negative indices for POI angles. Note that F),/,,(z)
is just a special case of H L/L (z). These multidifferential cumu-
lants can once again be expanded in terms of joint differential
moments, just as was seen for D, (z) and C,(z):

xk m

_ 7%z ,
Fom(z) = ;ﬂj o2 +k+m>>pf,n,..k.,mpf,n, .
(49)
and
Hk’,m’ _ Z*kzm k/ ’ k
bin 0= D S (K '+
k,m
+m>>p’,...,p’,n,...,n|p’,...,p’,n,...,n’
‘/—“\q{—/ — e S———
k/ ”1/ m
(50
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where we can see each raw moment used in the definitions of
Fpm(2) correlates pairs of POI angles, and the raw moments

defining H ’ Jn

orders in |z?|, just as was done for C,(z) and Dp/n(z), we can
obtain an expression for the cumulants f,/,{k" + m' + k + m}
and hk " k' +m’ + k 4+ m} generated by F,,(z) and Hp/n (@)
using correlators Again, for F,(z) we require that k = m. For
Hﬁ'*m’(z) we require that k — m = m’ — k’ to ensure that the
quantity is not isotropic, because in general we will not have
the same number of positively and negatively correlated POI
angles. The first few orders are shown below for F,,/,(2):

Fud2) = (2w (51)

where the two-particle generating function cumulant is simply
a two-particle correlation using only POI. The higher orders
are more complicated:

Fald} = (2 + 2w — (U + U)o (L4 1)) (52)
and
Fal6} = {2 + M) innw — 442"+ 2w g (1 + 1))
F A+ 1N (1 + 17,
= (U + Ui (24 2D nin - (53)

We can see that, in each equation, each term depends on a
correlator with two POI angles. Also note that for each term,
the number of particles correlated in each correlator sum to
the order: for f,{6}, each term has either a six particle corre-
lator, a product of a two-particle correlator and four-particle
correlator, or a product of three two-particle correlators. This
is consistent with existing cumulants for reference flow and
differential flow using up to one POI [6]. Given k' and m'
positive and negative separate indices for POI angles, we can
evaluate 7—[’;,/,'," '(z) in much the same way, by matching terms
in the power series expansion of Egs. (48) and (50).

The coefficients found when evaluating f,{k' +m' + k +
m} at different orders in Eq. (51) correspond exactly to coef-
ficients in the multivariate harmonic cumulants in Ref. [72],
which use generating function cumulants to correlate v, and
vp,. An area for further study would be to construct generating
function cumulants to measure arbitrary powers of v, and v), in
different harmonics, using the full generality of the correlators
defined in Eq. (21).

Now that the evaluation of generating function cumulants

fomlK +m' +k+m} or W™ (k' +m' + k+ m} at each or-

der in terms of raw moments is clear, we show how f,,/,{k’ +
m' + k +m} and hf;/’f,{k’ + m’ + k + m} relate to v, and v/,
and their fluctuations. Using the method in Refs. [6,94], we
calculate the contribution from v, and v/, to the values of
the f,{k' +m’ + k + m} cumulants. First, we define notation,
in which (x)|e, indicates the average of x in all events with
reaction plane angle ®,. While the plane cannot be measured,
we simply used it as a placeholder, varying between zero and
2m:

" (2) rely on k' + m’ POI angles. By matching

1 2 /n

(x) = (x)

dd,, 54
2 ), (54)

indicating the average value of quantity x at angle ®,, before
integrating around the entire transverse plane [24]. We now
use this convention to express v, and v/ o N the equation
below:?

(ein¢>|¢n — ( in(¢p—>o, )>| ind, __ =y, -nq)n’ (55)

(e ll“//” = (e ip(y— <1>n)>|q> P — v/emcb (56)

n

where we consider integrating around the event plane to be
approximately equivalent to an average taken over all particle
angles. Using this notation, we examine (e’”1=¥2)G,(z)), and
(Gu(2)) to evaluate F,/,(z) with the same method as [94], by
decomposing () into an integral:

(eip(llfﬁl//z)Gn(Z))
(Gn(2))
L2 Lip =)
— 21 f() (eP Gn(z)>|¢nd¢n' (57)
(Gu(2))

We now use Eq. (54) to substitute in £e'”*", which im-
mediately cancels, allowing us to remove |U;,/n|2 from the

‘Fp/il(z) =

ipW¥,

numerator. This shows that the power series expansion in z?
of F,,, approximates v/, |*:

p/n
L[PG (2)) |, d D
(G(2))
2L fozn (ePV1=Put PV G (7)), d D,
e .59
(Gn(2))
”p/x_;:/x "(Gu(@)) |0y d D),
]:p/n(Z) =2 (Gn(2))
_EfO@ o
Ga@y

where the above displays consistency with cumulant estimates
from Hp Jn "(z), which will give values of [0/, <" v, [F™,
with varying accuracy depending on the values of k', ', k,
m and the multiplicity of particles in the events being used.
An explicit calculation of the contribution is performed in
Appendix C.

Now that we have established F(z) = |v), |, we can see
it has no z dependence, indicating that, aside from f{2}
(the zeroth order z contrlbutron) the higher-order cumulants
f{2' + 2k} do not scale with v), 2, and instead measure correc-
tions to F,/, that come from the correlations between v,? and
v2. This is not surprising, when considering that Spmld}isa
SC. While f,/,{2" + 2k} does not scale with v,’12 beyond f{2},
different scaling behavior can be selected with different values

| 2

%For this derivation, we use the assumption that W, ~ ‘IJI’, ~ ®d,:
both event planes lie more or less on the reaction plane of the event.
This assumption is reasonable for high multiplicity collisions and
nontrivial v, and v, values, and one required in the derivation for
one POI differential flow cumulants. When this assumption fails, and
event planes decorrelate, we will only measure the real part of v,
projected onto W,

064901-9



ABRAHAM HOLTERMANN et al.

PHYSICAL REVIEW C 108, 064901 (2023)

for k', m', k, and m for HX"

wm » Which is further explained in
Appendix C.

C. Symmetric and asymmetric cumulants

Symmetric and asymmetric cumulants (ASCs) are statis-
tical quantities used to correlate different even powers of v,
and v,,, the azimuthal anisotropies of reference particles at
different orders [8,73]. These quantities obey a number of
fundamental properties as defined in Refs. [73,92], and, thus,
meet the rigorous mathematical definition of a cumulant for
the variables v2 and vZ. The simplest quantity of this form,
the SC, is already descrlbed in Eq. (26).

Cumulants of a set of stochastic variables X, ..., X,
isolate the “genuine” correlation between the variables, sub-
tracting correlations between each subset of the stochastic
variables, as well as the product of the variables. SC is widely
used to measure the correlation between v and v2, and ASC
extends the framework of SC to measure the correlations
between larger sets of Fourier harmonics v; ... v, or higher
orders of dependence, measuring, for example, the correla-
tions between (v2)® and v2.

We generalize the framework of ASC and SC to define
cumulants for a selection of arbitrary variables X, ..., X, as
in Sec. II C, which each may contain arbitrarily many POI. We
show these cumulants are consistent with the existing ASC
and SC and demonstrate how they can be used to interpret
correlations and fluctuations in v

A multivariate cumulant can be expressed as a set of deriva-
tives of the cumulant generating function of a multivariate
distribution with probability density P(X, ..., X,):

CGi,.... &)

—In (/ €($]X'+'"+€“X")P(X] ,

where C(§y,...,&,) is the generating function of a multi-
variate distribution, with dummy variables &, ..., &,, and
stochastic variables X, ..., X,,. Taylor expanding the cumu-
lant generating function around &} = ... = §, = 0 yields the
cumulants

§1=b="=£,=0

M g
Ky, ..., vm=8€lvlag n<CXp<Z§X>>
(61)

where the integral in Eq. (60) is replaced with an expectation
value.

Moreover, it is shown in Ref. [92] that cumulants can be
written as a function of raw moments as follows:

L Xpdxg .. .dx,,), (60)

’

k11X, s Xin)
—Z(m— DDty <1‘[Xi>, (62)
BeP,,|B|= \ieB
where P, is the set of all partitions’ of a subset of in-
tegers {1,...,m}. While it is hard to grasp intuitively

3A partition is a way to divide a set of m unique elements
{1,...,m} into subsets whose union contains the entire set

from the above equation, the cumulant k,, ., (Xi,...,X,)
represents the subtraction of every “smaller” correlation be-
tween subsets of variables X, ...X;, from the raw moment
l‘l/l)] ..... vn(X],...,Xn).

Using Eq. (62), the first few cumulants can be calculated
easily, although it becomes significantly more difficult at
higher orders. We start with {1, 2}:

Py =11}, (2}, {1,2} ¢, (63)
B B

ki1(X,Y) = (XY) —
and then form {1, 2, 3}:

(X)), (64)

Py=q{{1}, {2}, {3}}, {1, 2}{3}, {1, 3}{2}. {2, 3}{1}, {1, 2, 3},
————— ————— ———— ——— ——

By By Bs By Bs
(65)

k111X, Y, Z2) = (XYZ) — (XY W(Z) — (XZ){Y)
—(ZY ) (X) + 2(X) (Y )(Z), (66)

where k1 is an example of a SC and «; ; ; is an example of
a ASC. In these equations we first compute the possible parti-
tions that can be created with the sets {1, 2} and {1, 2, 3}. Then
we evaluate the summation in Eq. (62). The above relations
can quickly be used to create cumulants of higher orders for
specific variables because cumulants demonstrate reduction,
allowing the variables in Eq. (62) to be interchanged and
duplicated, e.g.,

K1..1 Xa~'-7X7Y5--~’Y =Kj,k(X7Y)7 (67)
——

‘f—)
J
as was shown in Refs. [73,92].

While Eq. (62) expresses how to define a cumulant with
first-order dependence on n unique variables, we can see from
this equation that if they are setequal X; = X; = ... = X,,, we
will obtain an nth order cumulant in X,,. This is demonstrated
for the cumulant k, (X):

k11X, X) = Ka(X) = (X?) — (X)?, (68)

which can be compared with the result in Eq. (63). The coef-
ficients obtained from the method for evaluating cumulants
detailed in Egs. (62)—-(68) replicate the coefficients in the

{1, ..., m} but which does not use the same element twice. Then
index i is one “block” of the partition B € P,,, a subset of {1, ..., m}.
For example, given the set {1, 2, 3, 4}, we have {{2, 3}, {1}, {4}} and
{{1, 3,4}, {2}} are partitions, but {{2}, {2, 3, 4}} is not a partition
because 1 is not included in any subset, and 2 is used twice. For
the partition {{1, 3, 4}, {2}}, the blocks i € B a partition are simply
the elements: {2} and {1, 3,4}. The expression |P,| refers to the
cardinality of P,,; the total number of partitions for the set {1, ..., m},
while |B| indicates the number of blocks in each partition B € P,,.
The summation Y B € P, |B| = [ means that the summation is over
all blocks in the partition which have / elements.
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asymmetric cumulants defined in Ref. [73]. We can simply
replace X, Y, Z with the same stochastic variables we could
include in raw moments as defined in Sec. IIC. It has been
shown [92] that multivariate cumulants like those defined
here can always be written as a function of raw multivariate
moments. Furthermore, we can see that «,, __,,, can be written
as a function of raw moments of the same stochastic variables
Hy,....v,- To demonstrate how each cumulant can be written
as a sum of raw moments, we present some lower order
bivariate cumulants of v2 and v'2, and a trivariate cumulant
in Egs. (69)—(71), and Eq. (72), respectively:

eLi(vn ') = (o) = (o)) (69)
k(v v') = (i) = (')

n n

|
~2) + 20203 0)
|

k31 (v2.07) = (80'5) = (S)v'h) = 3{v2v s ){vs)
= 3(upv2)v2) + 6{vi)(v2)v')
+ 6(v202)(v2) — 6(v2) (v2), 1)
e (V2 0 v2) = (v2R's) — (v2u2)v'h) — (2o )v?)

= (o vn) + 2n)). 72

where, using Eq. (21), we can rewrite each average as ex-
pressed above (v24(v',)*v2) = ((2d' + 2b + 2¢))w nmiw nm-
Unsurprisingly, the bivariate asymmetric cumulant of first or-
der in v? and v'2, iy (v2, v'2), forms a symmetric cumulant,
which has been well studied in Ref. [8].

Since cumulants can be written as sums of products of raw

moments, they can also be be normalized according to the
scheme introduced in Sec. II C:
..... (73)
and as a result, normalized cumulants N«,, _,, can be written
a sum of normalized moments Nu,, . ,,. We show the nor-
malization of k5 1 (v2, v'?) using the stochastic variables (v2)
and (v/?), canceling redundant terms in each fraction:

4.2 4 2.2
Nica1 (v2,07) = <”"2” o _ <v”>2 ) <v"v"2) 2, (74)
s ey llv)
=Nua (U,zl, v’i) - Nuz(v,zl)
— 2N (2, 0)7) + 2, 75)

where it can be seen that we obtain a function of normalized
moments, up to a constant +2.

D. Central moments

Like cumulants, central moments also define measures of
fluctuation of the distributions of X;. Central moments in
general do not obey reduction, a property of cumulants, but
they are more straightforward to interpret: they correlate the
distance from the mean (“spread”) in a set of stochastic vari-
ables with the spread in each other stochastic variable. Their

interpretation has been studied often, as kurtosis, variance,
and skewness are all central moments which are often used
to describe properties of probability distributions.

Given nontrivial stochastic variables Xi,..., X, as de-
scribed in Sec. II C, requiring each X; to be some correlator
(k' + m’' + k + m) for which the harmonics that are correlated
and anticorrelated cancel, the central moments for X; ... X,
are defined as follows:

foyo, (X1 X)) = <]"[ X; — <Xi>)“f>. (76)
i=1

In general, these central moments can be expanded to func-
tions of raw moments by using the multinomial theorem and
the fact that (X + ¢) = (X) + (c). Applying the procedure to
Eq. (76) gives the following:

By, = (X = (X)) - (X = (XG)™) (77

v
= (Z < ! ><X1>S‘
) PR )
s=0 Si+. sy =s

X e (X (X 'Xn“"‘“)>, (78)

where we define ), v; = v. The summation ) . . _ is
taken over every combination of positive integers sy, ..., S,
suchthats; +---+s, =s,ands; < v;forall 1 <i < n. The
result in Eq. (78) is obtained by expanding [[,(X; — (X;))"
using multinomial theorem, before averaging the resulting
quantity. In Sec. II, we explicitly write fi for v =2, 3, and
4, for arbitrary random variables X, Y, Z, W. Since Eq. (78)
allows us to express fi as a function of raw moments ©(X;).
Following the same methods used for raw moments and cumu-
lants, we seek to evaluate correlations by normalizing these
central moments. Since each central moment can be written
as a function of raw moments, we can use the normalization
scheme from Eq. (25) and normalize a central moment by
dividing by the average of each stochastic variable X; that it
describes,*

i vl...,un(Xl .. Xn)

_ 7
N:U«v ”(X .. Xn) = m ™ s (79)
et TTe, (X)"

“Note that, conventionally, central moments are normalized not by
the product of their stochastic variables, but by the standard deviation
of their stochastic variables:

WX, X)) = -
[T < (X2 — <Xi>2>

While this practice is well motivated statistically, we prefer to in-
troduce normalization schemes that ensure that even ﬂlll(vfl, v,ﬁ) =
SC(v2, v2) can be normalized in a way that is consistent with ex-
isting normalizations for SC and related variables. Additionally, the
possibility of measuring a raw moment including stochastic variable
Xitp.,..(...X;...) does not guarantee the capacity to accurately
measure its standard deviation, a quantity that generally has greater

dependence on each stochastic variable (X;)2.
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where the stochastic variables X; and their associated depen-
dencies v; are the same as in the definition of central moments
in Eq. (76).

As an example of central moments, we express the mul-
tivariate central moments of order two in V V*, and order
r=20, 1,2inv3:

fuar (VV,E 02) = ((VVE = Vv (v2 = (v2)"), (80)
VIV = (VIVE)) — (VIVR2,
A1 (V,ViE vn) = (V2 05) — (va (Vv
— 2V VAVViur) + 2(un )V, V52,

2 (VVis ) = (V0 ) = 20 v,V )

— 2V VAWV + (2P (Vv
+ AV VO VIV vr) + VIV v
VAR A (81)

where the above quantities correspond to the variance of V, V. *
in the r = 0 case, the extent to which a deviation from the
mean of v? is generally accompanied by a “squared” deviation
from the mean of V,V*, in the r = 1 case. Finally, in the r = 2
case, u(V, V., vﬁ)n represents the extent to which a squared
deviation from the mean of v? is accompanied by a squared
deviation from the mean in V,'V,*.

While a measurement of a cumulant provides useful infor-
mation about the various correlations between each stochastic
variable, a measurement of i by definition expresses how
strongly a departure from the mean (X;) is correlated to de-
partures from the mean for other stochastic variables. This
can be seen in the example above with fi,; and is a more
traditional measure of fluctuation. While cumulants satisfy
more mathematical properties, central moments also by def-
inition include some mathematical properties that we outline
in Appendix D. Additionally, in the univariate case, central
moments like skewness and variance have already been used
to study fluctuations in the distribution of v, [29,63].

IV. FUNCTIONS OF THE MOMENTS (T, ¢)
A. Motivation for I', ¢

When studying fluctuations in differential azimuthal
anisotropy coefficients v), it can be helpful to make a com-
parison to reference azimuthal anisotropy fluctuations in v,
to understand their relative magnitudes. Since each central
moment, cumulant, and generating function cumulant defined
in this paper can be represented as a sum of products of raw
moments, the difference between any cumulants or central
moments that require the same number of particles in their
largest correlator can be rewritten as a function of differences
between raw moments that require the same number of par-
ticles. Central moments, and cumulants with order v < 3 are
unique in that they can always be expressed as a product of
correlations and the averages of stochastic variables, as ex-
pressed in Egs. (77) and (78). This means, when normalized,
they can always be written exclusively as a sum of normal-
ized moments and constants. The difference between any two

central moments that require the same number of particles can
likewise be decomposed into the differences of normalized
raw moments, and possibly constants.

One example of this result comes from the comparison of
two normalized six-particle central moments, of which one
relies on six reference particles, and the other relies on four
reference particles and two POls:

6 4
v v
wi(3) = e 5 )
Wl ()
where the above equation is the normalized third central mo-
ment for v2, and the below equation has dependence on V,/V*:

-2, (82)

(v2(VV)) (v2v, v

) . n'n
N (V) = e~ 22
(V)
YT, 83
Vv >

Clearly, both of the above central moments correlate the
n order harmonics of six particles within an event, but
Niir1(V/V¥, v?) correlates deviations in v? with squared
deviations in V/V*, whereas Nji3(v?) simply measures a
quantity similar to the skewness of v2. A direct subtraction
of these quantities yields the following:

6 20/ *\2
N (02) = Njia 1 (V,VE, 02) = ( (i) _ v >)

2’ (HVVE?
5 U UAUAS)
) (WVIV V)
) {2
)2 (VVE?
(84)

which we can then write as a difference in normalized raw
moments:

Nita(03) = Ni2a(V,V;, 7)
=[N3 (v) = Nuaa (V,V,7 vy)]
= 2[Npa(v) = N (VyV,r, vy)]
— [Nua(vy) = Nua(V V5] (85)

We find that the difference in the normalized raw moments
can easily be grouped by the number of particles required for
each raw moment. Parentheses in the above equation separate
pairs of raw moments containing six, four, and two particles.
Given two raw moments p,, ., (X, ...,X,) and
Koy, Y1, ..., Y,) where Xi,...,X, and Yi,...,Y, are
two sets of nontrivial stochastic variables described in
Sec. II C, with the same dependence (coefficient v;) for each
stochastic variable X; or ¥;, and differing dependence on v/,
we can determine the correlations between X, ..., X,, and
the correlations between Y1, .. ., Y,, as well as remove scaling
with X" by simply normalizing the moments. To compare the
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normalized raw moments of Xj, ...,
introduce I" and ¢:

FU]...Vn(le ..
= Nﬂu]..,u”(Xl .. .Xn)

X, with Y7, ...,Y,, we

Xoh, .. )
=Ny, (Y1 ... Yp), (86)

N/'Lvl...v,,(Xl .. Xn)
NMUI...V,,(YI cee Yn) ’

é‘vl...v,,(Xla-~-Xn;Yla--~Yn)E (87)
where I' is the difference between normalized moments with
the same dependence on (Xj, ..., X,) and (Y, ...,Y,), and ¢
is the ratio between normalized moments with the same de-
pendence on (Xi, ..., X,) and (11, ..., Y,). Since fluctuations
in stochastic variables X, ... X, and Y1, ..., Y, are measured
by the normalized central moments, evaluating differences
in central moments can describe the relative magnitude of
fluctuations in Yj, ..., Y, relative to Xi, ..., X,. By decom-
posing the central moments using the methods above, we can
determine how much of the difference in fluctuations between
Yi,...,Y,and X, ..., X, comes from correlations involving a
specific number of particles. In the example in Egs. (82)—(85)
we can compare how two-particle correlations, four-particle
correlations, and six-particle correlations all contribute to the
difference between fluctuations isolated by Nto 1 (V,V, v2)
and Nji3 (v,%).

B. Applications of " and ¢

Already, there have been cases where I' and ¢ quantities
have been studied. In Ref. [63], the quantity A*" was derived
and is equivalent to A*" = I'; ;(v2, v; V/V*, v2) in our nota-
tion. It was used to evaluate decorrelation and between v,, and
v/, in hydrodynamical models to describe jet energy loss. This
quantity can be expressed as

4 PAVAAVAS
Tz v ViV vl) = (U"l-— (va;v;) : (88)
ERRCHIAZ

where we can see that a positive value for ['p,y 1 (v2; V/V*, v2)
obtained in this context indicates that the correlations in
magnitude between v and V'V are not as great as the con-
tribution of v4 to the dlstrlbutlon P(v ), or essentially that
"M% dlsplays suppressed fluctuations around its mean com-
pared with v2. In this instance, using I to obtain a difference
between these quantities allowed the authors to establish an
absolute scale to compare the fluctuations in v, and v, for
POIs at different values of py and using hydrodynamical
models with different parameters.

Additionally, ALICE [68] developed the correlation M}
that is equivalent to &1 (v2, v? v/ 2, v2) in our notation. It
was used to measure correlatlons between the magnitudes
of v,(pr) and v,, and is expressed below. Writing out
(w2, v2 02, 02),

2,72 2\2
g, 1(1) v v’z,vz) =—<(U v M

" (i) ()

where ¢, l(v vn, v , 2) describes the magnitude of correla-

tion between v2 and v/ /7 in reference to the magnitude of the
correlation of v with 1tself, comparing the two quantities with

(89)

a ratio in this instance allowed for a cleaner comparison of a
wide variety of behavior between theoretical models, as well
as the value of the observable over large regions of centrality
and pr.

The authors of Ref. [68] also developed the correlation A£
that is equivalent to

<<2/ + 2))11’,11’\11,11
<<2/ + 2)>n’,n|n’,n

in our notation. In a manner similar to that detailed in
Egs. (35) and (36), A£ allowed for them to monitor the extent
to which the W] and W, symmetry planes differ for different
pr selections of POIs.

While the motivation for each of these correlations was not
the same, they all fit into the formalism presented into this
paper and its associated interpretive context. By understand-
ing MI, Al, and A" as variations on the same quantity, we
understand more from a comparison of their values. Likewise,
we can understand each quantity as a difference between
NSC, a normalized covariance, or alternately measuring the
four-particle contrlbutlon to arbltrary differences in central
moments between v? and V/V* and v , respectively.

In general, a measurement of r corresponds more closely
to the difference between central moments, as detailed in
Eq. (85), while ¢ as a ratio may be more experimentally
feasible, providing a more stark numerical difference, with
smaller error between the magnitudes of the raw moments
it compares. Additionally ¢ is useful for understanding the
relative magnitude of two raw moments, whereas I" on its
own is more useful for understanding the absolute difference
in magnitude between two central moments. Regardless, both
observables achieve the same purpose: a direct comparison
between the relative fluctuations of X;, ..., X, and Y, ..., Y,
for a fixed number of particles.

V. DISCUSSION

Each of the observables we have discussed in this paper
has its own unique benefits, which may help to answer a
broad class of questions related to measuring fluctuations in
v, correlations between powers of v, and other azimuthal
anisotropy measurements with rare probes. The study of each
rare probe or identified particle imposes different statistical
constraints, and motivations such that it is not guaranteed that
observables that successfully measure fluctuations in heavy
flavor quark v/, are suitable for the study of pr-dependent
POIs. To help discern between their features, we summarize
all the observables we developed here into Table I that dis-
cusses their potential uses as well as caveats due to available
statistics.

First, (k' +m' + k + m), as detailed in Sec. II A can be
used in a given event to evaluate the products of V, and
V. to different powers, and at different harmonics, by using
correlations of azimuthal angles between harmonics. These
estimations for the products of V,, and V, provide the basis for
evaluating event-by-event fluctuations in V,, and V,, so they
are averaged over events to evaluate raw moments.
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TABLE I. A summary of observable quantities defined in this paper, and their prospects for measuring fluctuations in v/, in heavy ion

collisions.
Observables Explanation
Correlators These correlators evaluate multiharmonic products of event flow vectors with arbitrary dependence

(k' +m' +k +m)
Raw Moments

Mul ...,un(Xl, -~~aXn)

(k' +m +k+m))

Generating function cumulant
Sulk +m' +k +
my, Bk 4 m’ 4k 4+ m)
Multivariate cumulants
Kul,.”,vn (Xl, seey Xn)

on POI angles. They can be calculated using Q,, vectors.
Raw moments evaluate the expectation value of a product of flow vectors

’ / . . .
(Vi -+ VnkerVnHm+1 ”k’+m’+m+k> by taking a weighted average over many events. Selection of

stochastic variables X; can be done by considering smaller groups of V,,, -~V for which

>_;nj; = 0. This selection of stochastic variables X; allows for a normalization scheme.
Generating function cumulants use ((k 4+ m’ 4+ k + m)) to approximate v/f‘#’”/ using generating
functions. These observables are analogs of ¢, {2k} and d,,/,{2k}, with higher dependence on
POlIs.
A cumulant of arbitrary order in each variable. Multivariate cumulants generalize the framework of

multiharmonic cumulants introduced in Ref. [73] to a larger set of stochastic variables and POlIs.

These observables in general obey more statistical properties than generating function cumulants
and represent the genuine contribution of a moment at each order to fluctuations by subtracting

autocorrelations.
Multivariate central moment
ﬂvl ..... v,,(le ~--7Xn)

Central moments explicitly describe the correlation between many different variables and are
traditionally used to calculate the higher-order fluctuations in a distribution. They directly

measure correlations of spread around the mean between stochastic variables.

Differences of normalized
moments
Fv] AAAAA v,,(Xls”-vXn;Ylv-”Yn)
Ratios of normalized
moments
gvl AAAAA v,,(Xlsn-’Xn;Ylv-nYn)

The differences between two normalized raw moments can be used to decompose the difference
between two central moments of the same order, but in different variables X; and Y;. Using I, we
can discern the contribution at each order to a difference between central moments.

Taking the ratio of two normalized raw moments of different variables at the same order allows a
better understanding of the relative correlations of each raw moment and its constituent stochastic
variables. These quantities are analogous to I" but may be easier to experimentally determine

because they constitute a ratio.

The joint raw moments with dependence on v/, ((k" +m’ +
k + m)) are necessary to calculate any of the more complex
observables described in this paper. In general, a measurement
of these quantities, as shown in Sec. II B will provide enough
information to additionally calculate and normalize any of
the generating function cumulants, asymmetric cumulants,
central moments, and by extension I'" and ¢{. However, each
one of the above observables requires values for different
((k" +m’ + k + m)) moments; a choice of a more complex
observable will determine which joint raw moments must be
measured.

Generating function cumulants, defined in Sec. IIIB are
unique from the other observables introduced here in that
they can both estimate v), to different powers, or evaluate
correlations between v,, and v, using different orders of de-
pendence on azimuthal angles from POIs. Naturally, these
quantities are suitable for comparison to existing generating
function cumulant measurements of reference v, using the
same number of reference particles v,{2k} and differential
cumulant estimates for v, using only one particle of interest.
Understanding how the contribution from the correlation of
two or more POI azimuthal angles to a measurement of v),
differs from the contribution of one POI will provide unique
and novel information about the azimuthal anisotropy of POlIs.

Asymmetric cumulants do not directly estimate v, or any
differential Fourier harmonic. However, as shown in Sec. III C
they can isolate the genuine correlations between v/, with vy,
and compare with experimental results, which have recently
been studied in a multiharmonic context [95]. Additionally,
since the cumulants k,(X), v > 2 of a Gaussian distribution

are always zero, asymmetric cumulants can be used to evalu-
ate “deviations from Gaussianity” in univariate distributions,
[14].

The central moments we have introduced in Sec. III D bear
many similarities to the asymmetric cumulants and are identi-
cal at low order: «,, ., (X1, ..., X)) = o0, X1s -0, X0),
for ) ,v; < 3. Measuring a central moment is useful for
comparisons with skewness measured in Refs. [29,96] or
variance defined in Refs. [11,63,75]. Additionally, the mea-
surement of a central moment provides knowledge about the
correlations between v, and v), and their dispersion around
their means to different powers.

In Sec. IV, we showed the difference between the
normalized raw moments of two collections of variables,
Ly, &1, oo, X3 11, <. Yy), s more useful for determining
the relative contribution at each order from v), to a large
multivariate distribution of v, and v), at different powers and
harmonics. Additionally, we have shown that the difference
between any two normalized central moments, including the
traditional symmetric cumulant can be written as a linear
combination of I". This means I" can determine the differences
in correlations between stochastic variables including v/, and
stochastic variables relying only on v, as a way of comparing
the fluctuations in v), and v,,.

While ¢, also defined in Sec. IV, cannot decompose the
differences between central moments or cumulants (since it
is a ratio rather than a difference), ¢ is perhaps more eas-
ily measurable experimentally because it is normalized to
one, whereas I" can be both negative and positive. Addition-
ally, ¢y,,..v, X1, ... X3 Y1, ..., Y,) can identify the relative

.....
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magnitude of fluctuations in Yy, ..., Y, versus fluctuations in
Xy, ..., Xy, whereas '), (Xi,...,X,;Y1,...,Y,) can only
describe their absolute differences.

We anticipate the use of these variables to explore differen-
tial phenomena like the event-by-event fluctuations in energy
loss for jets traversing the QGP medium and other related
questions. By evaluating ¢ for sets of stochastic variables
involving the azimuthal anisotropy of jets, we can compare
the fluctuations of jet energy loss—probed by fluctuations and
correlations between the suppression of v} and vs.

VI. CONCLUSION

In this paper we introduce a way to apply existing statistical
correlations and observables of azimuthal anisotropies to the
study of rare probes and identified particles in heavy ion
collisions. To achieve this goal, we allowed for the inclusion
of arbitrarily many unique particle of interest (POI) indices in
differential correlators to provide an arbitrary dependence on
differential azimuthal anisotropies. We lay out the methods
to use these multi-POI differential correlators to construct
raw and central moments of their underlying distribution(s),
generating functions for cumulants, asymmetric cumulants,
and ratios or differences of correlations. We also outline vari-
ous methods for properly normalizing these new observables.
Examples are also provided for certain harmonics and POI
dependence to guide the reader on how to construct these new
observables.

The purpose of these observables is to study rare probes
such as jets and/or heavy mesons as well as identified parti-
cles like strange hadrons. These new observables will provide
a method to constrain the fluctuations in the underlying dis-
tribution that is only now possible experimentally in the
high-luminosity era of the LHC and sPHENIX [64,65,97,98].
In another work, we studied [99] the feasibility of extract-
ing different type of underlying distributions with these new
observables, depending on the type of distribution and the
magnitude of the observable calculated. While future studies
are warranted to determine the statistics required to obtain
precise measurements of these observables, we anticipate that
experimental measurements and theoretical calculations of
these observables will prove useful in understanding proper-
ties of the QGP with identified particles.
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APPENDIX A: NONTRIVIAL OVERLAP BETWEEN POIS
AND REFERENCE PARTICLES

In the analysis of the azimuthal anisotropies of jets and
high-pr particles, the high-pr POIs are rarely included in
the set of reference particles. Likewise for the azimuthal
anisotropies of charm and bottom mesons, the overlap be-
tween charm mesons and reference particles is suppressed
simply due to the scarcity of these mesons. However, in
general, there are some cases in which it is plausible that
scenarios with overlap between POI and reference particles
are of interest. In this instance, the actual computation of
(k" + m + k 4+ m) becomes somewhat more complex. In this
Appendix we discuss these cases.

Using a summation over all m’ 4+ k" + m + k tuples con-
sisting of m + k reference particle angles, and m’ + k' POI
angles, we can see that considering the existence of N, over-
lapping POI and reference particles, we obtain a different
weighting for the value of (k' +m’ + k 4+ m) than seen in
Eq. (17). The summation for a correlator weighs each m + k
tuple of POIs and reference particle angles the same but only
considers tuples in which each angle is distinct from the others
to omit autocorrelations. To calculate the average, we simply
complete the primed summation and divide by the number of
m + k tuples in which each angle is unique. Since there are
N reference particles, N’ POIs, and N, reference particles that
are also considered to be POI, we can evaluate the following:

(1) For k 4 m reference particle indices, the number of
unique tuples is simply the number of ways to arrange
N particles in k 4+ m slots: N!/(N —m — k)!.

(2) Having selected k + m reference particles, we fill
k' +m’ more slots with POI If there is no over-
lap between reference particles and POI, we receive
the same result as before; the number of tuples is
now N'!/(N" — k' —m')!. If there is N, overlap be-
tween POIs and reference particles, then the number
of choices is reduced: the computation in step (1) is
the same, but now there are only N — (k + m)N, POI
to “choose” from. Like always, they are placed into
k' + m’ slots, and, thus, we have

N’ = (k + m)N,
(N — (k +m)N, — k' —m')!

choices.

Since the total number of unique n-tuples is multiplicative,
we obtain the following equation to calculate the correlator
assuming a uniform weighting for each particle:

’ ’ ’
RLaY |nk+k/+ Loeees etk 4m > M et Mk !

k+k' k+k'+m k+k'+m+m’
1_[ e—inyqﬁy 1_[ e—inéi//g (Al)
y=k+k'+1 S=k+k'+m+1
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where we obtain the average by dividing by the total number
of m' + k' + m + k-tuples with unique particles. This result is
corroborated by the computations done in Ref. [78] for (1" +
1>n’|n and <1/ + 3>n/,n|n,n-

APPENDIX B: EVALUATING (k' + m) USING Q, VECTORS

When defining (k' +m' +k+m) using a Q, vector
method, we obtain a more complex recurrence relation but
also can weight each event differently in the calculation. More
importantly, we are able to use far less computation time than
it would take to make and iterate through k' +m’ +k +m
tuples of particle angles. The event Q,,, vector is calculated by
summing over all reference particle angles within the event:

N
_ E r ing;
Qn,t - a)je j’
Jj=1

with a weight ws for each event. Currently ¢ is just a
placeholder, but it gains significance when considering auto-
correlations within an event and, in most instances, it is unity.
A py,., vector, the POI analog to a Q,, vector, can be defined as

(BI)

Py = de (B2)
|
N{k'+m' + k +m)
N,N’ m+k

VU2, U g =1\ i=1
VIFVFE VY o htm

N.N'

Dk +m +k+m)= Z

LI
VIFVFEFEVY o ktm

where the summation in both equations is over all
groups of k' + m’ + k 4+ m particles (of which k' + m’
are POIs and k + m are reference particles), each with
unique index vy, . .., Uy 4m+k+m- FOr each of the k' +
m’ indices for POI particles, the index is allowed to run
from one to N’, and for each of the m + k indices for
reference particles, the index is allowed to run from
one to N.

(3) We can expand the previous equations and substitute in
the various event Q,, vectors. We use the idea that the
sum over each permutation of the product of weighted
particle angles can be written as a product of the sums
over each particle angle:

N.N’'

§ ing, ingy, .
wrl e 1 oo a)rk/+m/+k+me kK +m' +k+m

Flseess Tl ! ktm

k' +m' k+m [ N
l_[ Za) em;,lﬁ, 1_[ (Z w,ei”’¢’>,

h=1 \ i=1 j=1

(B7)

E l_[w em¢v, l_[w e m;%/ 1_[ Wy emh‘/fnh

i=1 h=m+k

with the weighted sum over POI angles . The overlap vector
qn,s can similarly be defined as

E :wt m91

with the weighted sum over the angles 6 labeled as both POIs
and reference particles. Having defined the three different Q,
vectors we will be using, we follow a recursive procedure of
the same nature as outlined in Ref. [8].

(B3)

(1) We begin by writing the (k' + m’ + k + m) correlator
as a ratio of its numerator and denominator, where
D is a normalization factor and N contains the actual
correlations.
N{K' +m' + k + m)

14 "+ k = . B4
(K" +m' +k+m) DI Tkt (B4)

(2) We obtain the value of (k' + m’ + k + m) first by con-
sidering an average over all k' + m’ 4+ k + m tuples of
POIs and reference particle angles in which each index
references a unique particle. Additionally, we add a
weight to each event, in keeping with Ref. [8]:

k' +m+k k'+m'+k+m
1_[ Wy e MV (BS)
h=m+k I=k'+m+k
m-+k k' +m+k kK +m' +k+m
vafl_[wv, [T o IT o (B6)

I=k'+m+k

where the summation contains all permutations of
Tly «« o Fiotm'+k+m> SO SOMe terms must be subtracted,
accounting for the cases in which r; = r; for two-
particle indices. Then we substitute the Q, vectors
introduced in Egs. (B1)—(B3):

N{k' +m + k + m)

Dk’ +m' + k + m)

l_[k+m Qn, 1 l_[]; +1m pn/
k K
H o Qo1 Hj:lm Po,1

— autocorrelations,

(B3)

where the autocorrelations must be subtracted.

(4) To account for autocorrelations, we consider the cases
in which two indices reference the same particle an-
gle. To do this, we recursively iterate through all r
“subcorrelators” with k' + m’ + k + m — 1 harmonics,
from which ng x4+ 1S eliminated, and “added” onto
the rth harmonic:
(K'+m +k+m—1),

44444 ("r+nu+m +k+m)+ T -1

(B9)
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where this correlator considers the cases in
which the angles from particles in the n, and
Ny +m+k+m harmonic overlap. The recursive aspect
to this algorithm means that we can apply the
same procedure to calculate (k' +m +k+m—
L T T TR S by calculating
(k' +m +k+m—2), all the way until there are
no more coinciding harmonics to consider, in the same
manner as described in Ref. [8].

Using this recursive process, we can represent (k' + m’ +
k + m) using Q,, vectors. However, in step 4, it is not trivial
to determine which Q, vector must be selected when repre-
senting the “overlapped” index n, = ny yn+k+m- In general,
we consider four cases, regarding whether each harmonic is
for POISs or for reference particles. Note that in this paper, we
have generally written the reference harmonics n first, and the
POI harmonics n’ second, but this ordering is arbitrary, and it

is possible that any of these four cases might apply:
|

N +m' 4+ k+mp .

(a) n, and Mg 4p4rrm correspond to reference parti-
cle harmonics. In this case Q, ; is replaced by
Qu, 11y im2 When evaluating (K" +m' +k +m —
1 >”1 """ eyt ke ) o k1 *

(b) n, corresponds to a reference particle azimuthal angle,
and My 4+4+m corresponds to a POI angle. In this
case, we replace Qy,.1 With Q4,000 2-

(c) n, corresponds to a POI azimuthal angle, and
Ny +m'+k+m corresponds to a reference particle angle.
As before, we replace p,, ; with Ayt 2

(d) n, and ng 44y 4+k+m both correspond to POI angles. In

this case, we replace p,,.1 With py, 14,0\, 2

We summarize the recurrence relation below, while noting
that the evaluation of N(k’ + m’ 4+ k + m — 1) requires the use
of the rules for each scenario detailed above:

M g1 ”/k+m+k/ [P Pl s P 7 1 P sk m
k+m k' +m’ k' +m' +m+k—1
— _ / ’ _
= 1_[ Qn,u,l l_[ pn},l 2 : Nk +m +k+m ])"1 ----- (et ot )+ 00 ot kg ? (B10)
i=1 j=1 r=1
[
where we show that N(k' +m’ + k + m) can be recursively ~ We now calculate (e?Vi1++Vu=Vvsi=—Vuw)G,(z)) using

evaluated by considering a product of k + m + k' + m for the
Q, vectors and then subtracting a sum of correlators with
one fewer particle angle N(k' + m’ + k +m — 1), where for
the rth subtracted correlator, the k" + m’ + k + mth subscript
N +k+m 18 added to the rth harmonic of the correlator. A
very simple example is shown below, where the two-particle
correlation between particles of interest and reference parti-
cles is written using Q,, vectors:

Qu1Pn1 — 9on2
Qo,1Po.1 — 9022

where this result is consistent with the same definition given in
Ref. [78]. There the weighting for each particle was uniform,
and the denominator was rewritten in terms of N, N’, and N,.

(U4 1)y = (")) = , (Bl

APPENDIX C: CONTRIBUTION OF v,, v',
TO MULTI-POI CUMULANTS

We calculate the contribution of v, and v}, to the evaluation

of hfl,/’;”/{k/ + m’' + k + m}. We start with the definition of the
generating function:
H’;//””'(z) _ (eip(w1+...+wkf—1/w+l—---—x//kf+mf)Gn(Z)>’ n
d (Gu(2))
which was previously discussed in Eq. (48). Using the result
from Refs. [6,94], we can determine the value of (G, (z)) in
terms of v,, which approximates a Bessel function:

M/2 1 M!
G,(2)) = — 0¥ [g)Y &= [h(2Jz|v,).
(Ga(2) jzo;z,...MZ’ a2 Y ki)

(623

the same method we used to evaluate F,/,(z), by expressing
the average as an integral around a fixed angle:

(eip(wl oV =V —..,—W’er’)Gn ()

1 2 )
- (elp(‘/fl+~“+ll/k’ Vs —---—llfk/+m/)Gn (@), d®,.

- 2 0
(C3)

Then, for every eV, we substitute in v/,¢”®", again following
Ref. [6], because the event averaged i angles at @, are not
correlated with the event averaged ¢ angles at ®,,:

<eip(1//1+...+1//k171//kr+1744.71[/k/+m/)Gn(Z)>

v Ko
=5 f KNG () |g,d D, (CH)
0

We then solve the equation on the right, which only has
nonzero solutions if p(k" — m’) = gn for some integer ¢:

2T
f PEI G (o, d D,
0

[(M+q)/2]
I+q.

M‘ (vn)2l+q l

(M —q-2D0Ql+q)! \M ©z

(€5)
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TABLE II. We present the first few central moments, with different combinations of variables.

Central 1 stochastic variable
moments (univariate) 2 stochastic variables 3 stochastic variables 4 stochastic variables
v=>Y.v=2 (X* — (X)? Variance: the (XY) — (X)(Y) Covariance: a
fundamental measure of measure of correlation
fluctuations. between two variables, of
which SC is a special case.
v=3 (X3 —3(X%)(X) +2(x)? (X?Y) — 2(XY)(X) (XYZ) — (XY )(Z)
Skewness: a measure of a — (XYY +2(X)2(Y) —(XZ)(Y) —(YZ){X)
distribution’s asymmetry. Coskewness: correlates + 2(XW(Y)(Z)
linear deviations from the Coskewness: a correlation
mean in Y with nonlinear between deviations from
(squared) deviations from the meanin X Y and Z.
the mean in X.
v=4 (X4 —4(X3)(X) Cokurtosis in two variables ~ (X?YZ) — (X?Y)(Z) (XYZW) — (XY Z)(W)
+6(X2)(X)? —3(X)* can correlate a deviation —(X2Z)(Y) — 2{XYZ)(X) — (XYW)(Z)
Kurtosis: a measure of a from the mean in Y to a +2(XY ) (X )(Z) —(XZW)(Y) — (YZW)(X)
distribution’s tail deviation from the mean + 2(XZ)(X)(Y) +H(XY)Z)(W)
“heaviness.” cubed in X. HXHYWZ) + (YZ)(X)? + (XZ)(Y Y (W)
(X37) = 3(X?Y)(X) cokurtosis: correlating a HXWWYY(Z)
—(X3WY) +3(XY)(X)? squared deviation from the + (YZ)(X)(W)
F3(X2NXWY) —3(X)3(Y) meanin X to a deviation +HYWHX)(Z)
Cokurtosis can also from the mean in Y, and a + (ZWY(X)(Y)
correlate a squared deviation from the mean =3(X)(Y)(Z)(W)

deviation from the mean in
X to a squared deviation
from the meanin Y.
(X2Y?) — 2(X2Y)(Y)
—2(XY?)(X) +(X*)(Y)?
+ HXY Y X)(Y)
+(Y2)(X)* = 3(X)%(Y)?

inZ.

cokurtosis between 4
variables: the correlation
between deviations from
the meanin X, Y, Z,

and W.

Using the result from Ref. [6], we obtain the full expression

expansion coefficients for HE

(z) and express an estimate

for (ePW1t-FVw V=V ) G, (2)): for U/k o p/n
(eip(x/u+...+w—wk/+,—...—wmr)Gn(Z))
APPENDIX D: SOME PROPERTIES
[(M+M) /z] OF CENTRAL MOMENTS
K4/ . .
/p/n o Z Since central moments are not typically used to evaluate
1=0 fluctuations in v,, we demonstrate here some mathematical
M! properties of the central moments that are similar to those of
X (M ~ p(k’+m) _ 21)'“(21 n P(k!+m))‘ cumulants.
/= 1! B!
o1 2 m) (a) Central moments display reduction: if a stochastic
« (v_ P ZHP“ ) variable X; is duplicated j times, the resulting quantity
M is still a central moment, now of order j in X:
p(K —m')
K +m "
~ U ) (2|z|vn)( (C6) )
| | Myy....v, X1a~~-7X11~ ~7Xn
Then, we obtain H* /’" (2): J
1J(k’*m’) (2|Z| vn) M ! ;i . ;i
"y~ z o Koy =([Txi—=xan T &=
Mo, IhQ2lzlv,)  \ Izl P =1 i=j+1

Note that this conclusion is consistent with F(z) as defined in
Sec. III B, because letting k' = m' = 1 returns Fum(@) = v’2

Now that we have an expression for HE o ™ (2), we can also pro-
duce an expression h,/,{k' +m’ + k + m}, the power series

=<(X1 — =k TT -

i=j+1

(Xt>)v’>

X1y .. X,). (D1)

= ﬂ(v1+...+vj)...,u,,
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(b) Central moments display translation invariance: shift-
ing the stochastic variable by some constant factor
does not alter the value of fi. We use the fact that
Xi+c)=X) +c

ﬂvl,”,vg..,v,, (Xl (Xg + c)~-Xn)

= <( [] «- <Xi>)“f>(xg +eo— (X + c>)”g>

i=1,itg

= << [] xi- <X[>>”f>(x,- - <Xg>)”g>

i=1,i#g

= [y, v, (X1 Xg. . X5,).

8

(D2)

(c) Central moments display homogeneity: they scale with
their variables to their order. Using the fact that
(cX) = c(X):

ﬂvl,..,vg..,u,, (0.¢4] (CXg)Xn)

= <( [T - <Xi>>“f><cxg - <cxg>>“s>

i=1,i#g

= <( [T - <x,»>>”f>c”g(xg - <Xg>>”x>

i=1,i#g

= Cvgﬁul,..,vg...vn(xl~Xg-~Xn)~ (D3)

Additionally, central moments of order Zi v; < 3 areiden-
tical to multivariate cumulants of the same order in each
stochastic variable, meaning they obey some useful proper-
ties of cumulants, specifically additivity, and multilinearity:
Kn X +Y, . )=, X,...)+k,;(¥,...).

APPENDIX E: EXPLICIT FORMS
OF CENTRAL MOMENTS

In Table II, we introduce the first few central moments
at orders v =2, 3 and 4, for up to four unique stochastic
variables X, Y, Z, and W, as defined in Sec. IIC. Ad-
ditionally, we briefly explain the various correlations and
fluctuations measured by these central moments, and how they
can be interpreted. The central moments with order v = 2
and v = 3 are also considered cumulants, as described in
Sec. III C.
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