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Online Learning from Evolving Feature Spaces
with Deep Variational Models

Heng Lian, Di Wu, Bo-Jian Hou, Jian Wu, and Yi He*

Abstract—In this paper, we explore a novel online learning setting, where the online learners are presented with “doubly-streaming”
data. Namely, the data instances constantly streaming in are described by feature spaces that over-time evolve, with new features
emerging and old features fading away. The main challenge of this problem lies in the fact that the newly emerging features are
described by very few samples, resulting in weak learners that tend to make error predictions. A seemingly plausible idea to overcome
the challenge is to establish a relationship between the old and new feature spaces, so that an online learner can leverage the
knowledge learned from the old features to better the learning performance on the new features. Unfortunately, this idea does not scale
up to high-dimensional feature spaces that entail very complex feature interplay. Specifically. a tradeoff between onlineness, which
biases shallow learners, and expressiveness, which requires deep models, is inevitable. Motivated by this, we propose a novel
paradigm, named Online Learning Deep models from Data of Double Streams (OLD®S), where a shared latent subspace is discovered
to summarize information from the old and new feature spaces, building an intermediate feature mapping relationship. A key trait of
OLD3S is to treat the model capacity as a learnable semantics, aiming to yield optimal model depth and parameters jointly in
accordance with the complexity and non-linearity of the input data streams in an online fashion. To ablate its efficacy and applicability,
two variants of OLD?S are proposed namely, OLD-Linear that learns the relationship by a linear function; and OLD-FD learns that two
consecutive feature spaces pre-and-post evolution with fixed deep depth. Besides, instead of re-starting the entire learning process
from scratch, OLD®S learns muitiple newly emerging feature spaces in a lifelong manner, retaining the knowledge from the learned and
vanished feature space to enjoy a jump-start of the new features’ learning process. Both theoretical analysis and empirical studies
substantiate the viability and effectiveness of our proposed approach. The code is available online at github.com/X1aoLian/ OLD3S-L.

Index Terms—Data Streams, Online Learning, Streaming Algorithms, Open Feature Spaces

1 INTRODUCTION

Machine learning has become a fundamental building block
in many cyber infrastructures, provides an automated hence
scalable apparatus to analyze the high-dimensional data
streams (e.g., images, texts, videos) pervading all corners
of the Internet [1]-[3]. Examples include multimedia re-
trieval [4], [5], online speech analytics [6], [7], recommender
systems [8]-[12], to just name a few. Generally speaking,
wherever it is infeasible to inspect and process the data
growing in an increasingly unmanageable volume with
manpower, machine learning prevails.

Despite their fashionability, a prominent drawback
shared by most existing machine learning methods is their
limited generalization capability [13]. As a matter of fact,
machine learning models usually do well in practice only if
the data arriving in future tend to follow a nearly identical
distribution as the data they were trained on [14], [15].
This so-called i.i.d. assumption inevitably limits the model
expressiveness to our society that constantly evolves.

To aid the situation, a new learning paradigm termed
online learning from doubly-streaming data has emerged with
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both algorithmic designs [16]-[29] and domain applica-
tions [30]-[34]. Its key idea is to generalize learning models
in two spaces. First, the sample space, where the data in-
stances are generated ceaselessly, requiring to train learners
on-the-fly, making real-time predictions as the data arrive.
As such, if the patterns underlying data changed, an online
learner can be updated instantly to adapt to the shift,
thereby retaining its accuracy over time [35]-[37].

Second, the feature space, where sets of features describ-
ing the arriving data samples evolve, with new features
emerge and old features stop to be generated. To wit, a
smart manufacturing pipeline may employ a set of sensing
techniques to detect unqualified products [38], where each
sensor coheres to a feature. The feature space evolves, when
the old sensors wear out and a batch of new sensors are
deployed [16]. Tangibly, as the new and old sensors (i.e.,
features) often differ in terms of amount, version, metric,
and positions, a new classifier needs to be initialized. Yet,
this new classifier may stay weak and error-prone before
the training samples carrying these new features grows to
a sufficiently large volume. Meanwhile, the old classifier
becomes unusable with the unobserved features, leading to
substantial waste of the data collection and training effort.
A relationship between the pre-and-post evolving feature
spaces must be established, so that the old features can be
reconstructed from the new ones. Online learners can thus
harvest the information embedded in the old classifier to
aid the weak new classifier, enjoying a boosted learning
performance [21], [23], [24], [26]. One more advantage of es-
tablishing such relationship is to avoid waste of multi train-
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ings. Once observing new features, both straightforward
methods which capture a new subspace from all features, or
establish a relationship for each pair of adjacent spaces will
cause a huge waste of computations. Instead, our method
can always re-capture a new latent representation can be
constructed combining existed subspace and new features.
Such an adaptive growing subspace can, simultaneously,
leverage old knowledge and absorb new information.

Unfortunately, all existing studies suffer from a tradeoff
between onlineness and expressiveness. Specifically, on the one
hand, shallow learners (e.g., generalized linear models [39],
Hoeffding trees [40]) possess a faster online convergence
rate, thanks to their simple model structures with a small
number of trainable parameters [41]. However, due to their
limited learning capacity, they usually end up with inferior
performance when dealing with high-dimensional media
streams, of which the feature interplay is often complex.

On the other hand, deep learners (e.g., neural net-
works [42], [43], deep forests [44], [45]) enjoy a low-
dimensional hidden representation to build accurate pre-
dictive models on complex raw inputs. Yet, their large
number of parameters residing in the entangled model
structures invites stochastic updates, leading to a very slow
convergence rate. In an online learning context, more error
predictions tend to be made before the learners converge
to an equilibrium. These additional errors are recognized as
regrets, where the slower the convergence rate, the larger the
learner regrets in a hindsight.

Motivated by this tradeoff, this paper mainly explores
one question: How can we build an online learner that joins
the two merits, namely, 1) converges as fast as shallow models to
minimize the online regrets and 2) learns latent representations
as expressive as deep models from high-dimensional inputs with
complex feature relationships.

Our affirmative answer provides a novel learning
paradigm, termed Online Learning Deep models from Data of
Double Streams (OLD?S). Our key idea is to train an online
learner that automatically adjusts its learning capacity in
accordance with the complexities and temporal variation
patterns of input data stream. Specifically, OLDS is with an
over-complete neural architecture [43], [46], [47] and starts
from using its shallow layers, approximating a simple clas-
sifier to attain fast convergence at initial rounds. Over time,
the deeper layers are gradually mobilized, as more samples
streaming in requires 1) a highly capable classifier that
can learn expressive latent representations and 2) a precise
delineation of complex feature interplay. Knowledge reuse
is enabled in both aspects i) the shallow-to-deep model
switch via representations sharing and ii) the pre-and-post
evolving feature spaces via reconstructive mapping and
ensemble learning [48]. This benefits our approach by expe-
diting the convergence rate in a temporal continuum, so as
to maximize its online efficiency and efficacy when learning
from doubly-streaming data.

Specific contributions of this paper are as follows:

i) This is the first study to explore the doubly-streaming
data mining problem in an online deep learning con-
text, where the high-dimensional data streams with
feature space evolution tend to incur a tradeoff between
convergence rate and learning capacity. Section 3 man-

ifest the technical challenges from empirical evidence.

ii) A novel OLD®S approach is proposed to tackle the
problem, where a modeling architecture with its depth
learned from data is devised to adapt to minimize the
online classification regrets and precisely approximate
the feature-wise relationship on-the-fly. Detailed analy-
sis can be found in Section 4.

iii) A theoretical analysis substantiates that OLD®S can
provably lead to performance improvement over in
two aspects i) online learners with fixed depths and
ii) a single classifier without feature space ensembling.
Details are presented in Section 5.

iv) Real-world high-dimensional datasets covering do-
mains of machine translation and image classification
are employed to benchmark our approach. Results
suggest the viability and effectiveness of our proposal,
documented in Section 6.

2 RELATED WORK

Our learning problem relates to two research threads i)
Online Learning with Doubly-Streaming Data and ii) Deep
Learning with Adaptive Capacity, with the relationship
and differences between the prior study efforts and our
proposed approach discussed in this section as follows.

Online Learning with Doubly-Streaming Data
Online learning algorithms were devised for data stream
processing [49], [50], where the reality of learning is in an
on-the-fly setting hence lifts the memory constraint for data
analysis at scale. In addition to allowing data to grow in
terms of volume, in an orthogonal setting, hoping the features
describing input data to stay strictly unchanging is unreal-
istic over long time spans. As a response, the pioneering
studies [51]-[55] explored a setting of incremental feature
learning, allow the arriving data instances to carry different
sets of features yet later instances are assumed to include
monotonically more features than the earlier ones. Subse-
quent works that strive to learn evolving feature spaces [16]-
[24], [27]-[29] further relaxed the monotonicity constraint
on the feature dynamics, enable effective learning when
later instances stop carrying old features that appeared
theretofore. A key technique shared by these methods is
to establish a mapping relationship between two feature
spaces. As such, once the old features fade away, their in-
formation can be reconstructed via the mapping, aiding the
weak learner trained on insufficiently few instances carrying
new features, join to make highly accurate predictions.
Despite their effectiveness in various settings, these
methods all prescribe a linear model to fit the mapping,
which is unfortunately not capable to deal with complex
real data, e.g., images in an evolving spectrum domain,
documents written in different languages. We are aware of
a very recent work [26] that does not use linear but copula
model to fit a non-linear mapping with statistical guaran-
tees. However, this work requires to deem each feature as
a copula component, and hence cannot scale up to a high-
dimensional space (e.g., images or natural languages). Our
proposed OLD?S approach does not suffer this restriction by
discovering a latent feature space in which the original data
dimension is largely condensed, thereby being generalizable
to a wider range of real applications.
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Deep Learning with Adaptive Capacity

Neural networks have emerged for several decades to ap-
proximate underlying functions with arbitrary complex-
ity [56]-[58]. However, their universal approximation capa-
bility is grounded on an assumption of an infinitely wide
hidden layer, which cannot be satisfied in practical mod-
eling. The advent of Deep Neural Networks sidestepped
this issue by imposing a hierarchical representation learning
procedure [59]-[61], trading in width for depth, so as to fit
complex decision functions underlying data. However, this
hierarchical design introduces over-parameterization, where
the large number of learnable parameters request massive
rounds of training iterations over huge datasets to converge.
Implementing deep learning for online decision-making
thus becomes seemingly impossible.

A key question to solve the challenge is how to choose
the network depth (representing the entire model capacity)
in accordance with the underlying function in an adaptive,
automated, and data-agnostic fashion. Huang et al. [62]
firstly theorized and implemented the concept of stochastic
depth, a training procedure that trains shallow networks
and tests with deep networks, randomly dropping a subset
of layers to quickly identify key layers. A method of de-
ducing which layers can be trimmed is therefore needed.
Larsson et al. [63] later identified a strategy to construct
deep networks structured as fractals. This confers the ability
to regularize co-adaptation of subpaths, effectively allowing
for the isolation of high performing layers within a larger
architecture. We can now judge values of groups of layers,
making a delineation of value more concrete. Sahoo et
al. [43] and He et al. [25] demonstrated a Hedge Backprop-
agation mechanism for online/lifelong deep learning, where
the model depth is deemed as a trainable semantic metric,
jointly with the layer parameters to decide the function
complexity learned from data streams in a dynamic way.

Passive-Aggressive (PA) Algorithms. As the crux for
HBP is to adjust the learning capacity of model, astute read-
ers may correlate it with PA algorithms [64] [52] [65], which
also possess the capability of adjusting model learning effi-
cacy in accordance with data complexity. We supplement a
discussion to clarify the differences between our work and
PA algorithms. In particular, PA algorithms enabled more
aggressive updates of model parameters, if error predictions
are made, and remain unchanged otherwise. HBP training
differs from PA algorithms in two aspects. First, PA algo-
rithms focused on adjusting the updating steps to encourage
fast convergence, whereas their models are with a fixed
learning capacity. Second, PA algorithms are mainly tailored
for linear classifiers, which mostly fail to deal with streaming
media data, typically residing in high-dimensional spaces
and with complex patterns. As such, HBP and PA algo-
rithms are tackling different optimization objectives, thereby
encountering disparate technical challenges.

Progressive Learning (PL) Algorithms. We also note that
another recent work termed as Progressive Learning [66]
which presents some similarities with our OLD?S. How-
ever, there are two fundamental differences between two
works. First, our work introduces a problem that the task
is described by an evolving feature space with dimensional
alterations. In contrast, PL endeavors to grapple with a se-

quence of tasks with the varying distributions. Second, both
methods initialize new models upon receiving new data,
yet their approaches to utilizing prior model knowledge
differ. Our OLD’S speed up the convergence of the new
model by extracting knowledge from old models, while PL
freezes prior models, allowing them solely to extract data
representations without participating in training updates.
Hence, although both PL and OLD?S attempt to leverage old
knowledge, PL can not be implemented for our problem.

Unfortunately, all these deep methods fail to take the
feature space evolution into account, a factor that can largely
affect the non-linearity of the resultant learning function.
As a result, they cannot be adapted to learn the doubly-
streaming data. To fill the gap, we propose to bring together
the two fragmented subfields of online deep learning and
doubly-streaming data mining. In particular, we respect
that the mapping relationship between the pre-and-post
evolving feature spaces can be massively more complex
than the previously explored linear models, and must be
gauged by a neural approximator that grows its capacity
autonomously and adaptively.

3 PRELIMINARIES

There are three parts in this section. We formulate the
problem in Section 3.1, present the challenges in Section 3.2,
and outline the key design ideas in Section 3.3.

3.1 Problem Statement

Let {(x¢,4) | t = 1,2,...,T} denote an input sequence,
where x; is the data instance observed at the t-th round,
accompanied with a ground truth label y;, € {1,2,...,C}.
It is worth noting that our online classification problem is
formulated in a multi-class regime with in total C class
options, which excels our competitors [16], [19], [24], [52]
that focus on binary classification only.

In the context of doubly-streaming data, we follow the
pioneer [16], consider the set of features describing x; to
evolve with the following regularity, illustrated in Figure 1.

Instances first observed during timespan 7; are from the
feature space Si. In the overlapping period 7, the data
distribution in S; starts to evolve to a new distribution in
Ss, and instances from different spaces but with the same
labels can be observed at the same time. When it comes to
T2, only instances from Sy are observable. Specifically, three
timespans are described as:

e In the timespan ¢; € 71 := {1,...,T1}, the classifier
can only observe the instances described by the feature
space S; while S, is unobservable, i.e., x;, € S; C R%,
each of which is a d;-dimensional vector.

o In the timespan ¢, € 7, :== {T1 + 1,...,Tp}, the feature
space evolves, and the classifier observes the two fea-
ture spaces S; and S; simultaneously, with each data
instance being x;, = [bel,fo]T € 81 x Sy C Rtdz,

e In the timespan to € Ty := {T + 1,...,T>}, the old
feature space S; opts out, and the classifier can observe
the evolved S only. Each data instance is x;, € Sy C
R%, a dy-dimensional vector.

Note, such feature space evolving from S; to Sz can be
easily generalized to infinitely more spaces (e.g., S2 to Ss,
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Fig. 1: Illustration of doubly-streaming data. Only in a very
short timespan | 7,| < |71] or | 72|, the samples are described
by the two feature spaces concurrently.

then S3 to Sy), wherein all spaces can have disparate prop-
erties and semantic meanings and the mapping relationship
between any two spaces can be arbitrarily complex. Such
dynamism in the doubly-streaming data makes a prefix of
learner capacity close to impossible.

At any time instant t = {t1,1p,t2}, the learner f; ob-
serves x; and makes a prediction §; = fi(x¢). The true
label y; is revealed thereafter, and an instantaneous loss
indicating the discrepancy between y; and g, is suffered.
Based on the loss information, the learner updates to fi11
using first-order [67]-[70] or second-order [71]-[74] oracles,
getting prepared for the next round. Our goal is to find a
sequence of classifiers { f1, ..., fr} that minimize the empir-
ical risk [75] over T rounds: miny, . f. 7 S Cye, (%)),
where £(-, -) denotes the loss metric and often is prescribed
as convex in its argument such as square loss or logistic loss.

3.2 Opportunities and Challenges

A common practice to enable online learning with doubly-
streaming data is to leverage the overlapping timespan
Ty to learn a reconstructive mapping ¢ : Sz — Si, such
that once the features of S; are not observed during 7s,
their information can be reproduced, allowing the learner
to harvest the old information learned during the 7; time
period for better ferformance [16], [19], [24], [26].

Let f; = {f°*, f°2} denote the learner with f7' and
12 being the two classifiers corresponding to the S; and Sy
feature spaces, respectively. During 75, instead of predicting
the observed instance as ftS ?(x¢), the learner exploits the
unobserved information from S; to make prediction as:
fr(xe) = M- f70(Fe) + Xo - £ (x0), with %, = ¢(x¢) € Si
being the reconstructed data vector in the S; space. With
delicately tailored ensemble parameters A; and A, this
reconstruction-based method enjoys a provably better pre-
diction performance than using the classifier £’ only. Un-
fortunately, this method is not able to scale up to cope with
real-world media data streams because of two challenges.

Challenge I — Train Deep Models On-The-Fly

The real-world media data carrying non-linear patterns
often request deep learners (e.g., neural network models)
for effective processing. However, different from linear clas-
sifiers which are widely employed in previous studies [16]-
[26], it is more difficult to train deep models in an online
fashion. The large number of trainable parameters and com-
plex model architectures tend to make deep learners data-
hungry and converge slowly. In an online learning context,
since each instance requiring an immediate prediction is

—— CIFAR: 32¥32*3 = 3072
—=— FashionMNIST: 28+28 = 784
300 —— Adult: 14
Magic0d: 10

—+— Depth=1 ,V
—=— Depth=3
—— Depth=5
Depth = 7
| —— Depth=10

041

Reconstruction Loss

10° 10° 10
# of instances

2000 4000 6000 8000 10000
# of instances

Fig. 2: Two challenges underlie the OLD?S problem. Left: The
deeper the learning model, the slower the convergence rate.
Right: The higher the data dimensionality, the more inferior
the feature relationship captured by linear mappings.

presented only once, the deep learners tend to regret [75],
making substantial errors before converging to equilibria.
To verify this problem, a simple example reduced from the
CIFAR experiment is illustrated in the left panel of Figure 2,
where neural network models with different depths are
trained on the same task in one-pass.

This example suggests that, as the model depth goes
deeper, the learner suffers from a flatter convergence rate.
Although such deep learners can end up with high online
classification accuracy (OCA), they constantly underper-
form shallower models before given sufficient instances,
thereby regretting largely. Notably, a learner with an im-
properly ultra-deep architecture (cf. depth = 10) may even
fail to converge in an online setting. The reason can be
possibly attributed to the diminishing feature reuse [62],
[63] where the semantic meanings of raw inputs tend to be
washed out by the layer-by-layer feedforward with massive
randomly initialized parameters; No expressive representa-
tions can be learned online.

Challenge II — Learn Complex Reconstructive Mapping in
Short Overlapping Timespans

In practice, an overlapping phase 7, in which the two fea-
ture spaces &1 and S; coexist is very short. Revisit the smart
manufacturing example, where we can construct 7, by pre-
deploying a batch of new sensors before the old sensors
expiring their lifespans — a too long 7, is economically not
affordable. This constraint blocks several seemingly plausi-
ble methods, e.g., online transfer learning [76], [77], domain
adaptation [78], [79], to work well, as they all require a
sufficiently long overlapping phase to align the features
before and after the evolution.

Prior studies [16], [19], [24] have advocated de-
ducing linear functions to approximate the mapping
relationship ¢ between the old and new features
in a short 7, with the 2objective formulated as:
min, Zz;b:nH H(b(xf}f) - xil , where ¢(-) = W' .. Un-
fortunately, this linear reconstructive mapping ¢ cannot
work for media data streams with nonlinear feature in-
terplay. An empirical evidence is presented in the right
panel of Figure 2, in which we observe that, the higher the
data dimension, the more complex the mapping relation-
ship between two feature spaces, and hence the larger the
reconstruction loss that a linear mapping suffers.
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Fig. 3: An architectural illustration of our OLD?S computational network during the overlapping 7, timespan. Instances x*

and xfz are encoded by two independent L-layer VAE models as zfl and zf"‘ and decoded to f{fl and

~So

Xy, respectively. In

each layer, variational codes z‘tS1 and zts2 are forced to align in one shared latent subspace, and are predicted by classifiers
51 and f;2, respectively. The final prediction g is the ensemble of results of two classifiers.

3.3 Our Thoughts

To overcome the two challenges, our key idea is to discover
a set of shared latent features that summarize information
from the pre-and-post evolving feature spaces S; and So.
Compared with learning the mapping ¢ : Sy — S; directly
in the short 7, our idea can exploit the long 77 timespan
to learn a latent feature subspace from &; independently at
first, and then align it with that from S, to expedite learning
efficiency. Specifically, we employ variational inference [80]
to model the underlying distribution of S; stream as:

Q (a5 Ixu, i =1, 1) = [V (5% |, (07)?) . (O
i=1

where Q indicates the conditional probability density, and
N is a normal (Gaussian) distribution with corresponding
mean 5! and variance (07')2. Thus, a variational code
z51 € R* is drawn from a multivariate Gaussian that
surrogates the data instances streaming from the original
feature space S; [81]. Later in the overlapping 7, phase,
a new variational code z%2 € R? is extracted from the Ss
stream, similar as Eq.(1) and omitted for simplicity. The
two surrogate Gaussians that approximate the S; and S
distributions (from which z5' and z5? were drawn) are
enforced to be identical, such that they can be deemed as
the shared latent subspace that connects the old and new
feature spaces. We intermediately reconstruct the S; data
representations from the shared surrogate statistics.

To make this process online, we propose a neural archi-
tectural design which can learn the optimal depth from data
streams autonomously, starting from shallow and gradually
turning to deep if more complex variational feature map-
ping relationships are required to be approximated. The
more accurate this reconstructive mapping is approximated,
the better the learner can leverage the old classifier trained
on the S stream, and hence the higher the online classifi-
cation accuracy can be obtained by ensembling the old and
new classifiers. The details are in the next Section 4.

4 OUR APPROACH

Overview. In a nutshell, our proposed OLDS approach can
be conceptually framed in a learning objective as follows.

[Z (L'VI(¢) + ﬁREC(¢)) + Z ECLF(ft,qb)}.

t1,tp

min
ft,¢ 1EP

In this section, we scrutinize this learning objective in
sequence. The variational inference loss Ly; and the re-
construction loss Lrgc together determine how the shared
latent subspace is learned, presented in Section 4.1. The
classification loss Lcrr synopsizes how the old and new
classifiers are ensembled to expedite convergence for better
prediction performance in Section 4.2. We end this section
by elaborating how this minimization problem is realized by
an elastic neural network model that automatically adjusts
its depth in an online, data-driven fashion in Section 4.3.

4.1

To discover the latent subspace Z, we employ the Vari-
ational Auto-Encoder (VAE) [81]-[83] to summarize the
observed data instances into latent variational codes. As il-
lustrated in Figure 3, two independent VAEs are established,
trained by minimizing the loss term:

Variational Latent Subspace Discovery

L35 = B e [log Plxe | 20]+KL(Qz | x1) || Plz2)

@
where t € 71 U7, and ¢t € Ty for the VAEs on two feature
spaces S; and Sy, respectively.

Intuition 1: The physical meanings of minimizing
Eq.(2) are as follows. i) Minimizing the first term equates
to maximizing the data generation quality, namely, the
likelihood that the original data observations can be
decoded from the extracted latent codes. Let the tuple
(Enc, Dec) denote the encoder and the decoder networks
in a VAE, the first term encourages X Dec(z¢)
where z; Enc(x¢). i) The second term gauges the
Kullback-Leibler (KL)-divergence [82], [84] between the
underlying posterior Q(z; | x;) and the latent marginal
P(z:) = N(0,I). With the posterior calculated by Eq. (1),
for the extracted latent code z;, we denote its i-th entry
with z; and is drawn from a Gaussian with mean p,; and
variance o2. To make the variational inference differentiable,
reparameterization is employed as z; = p; + o; - ¢ with
¢ ~ N(0,1) being normal noises. A reconstruction loss is
then imposed to regularize the two independently learned
latent spaces, from which a shared latent feature subspace
is discovered during the overlapping timespan 7p:

~
~

Crec = £ [x57, Dec” (29| +KL(Q(z5) | x50 | Q22 | x52)).
3
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Intultlon 2: In the first term of Eq. (3), a new decoder
network Dec?!(-) which takes in the latent code from S,
to reconstruct the data of S; approximates our desired
reconstructive mapping ¢. The second term gauges the KL-
divergence between the posteriors that were independently
drawn from different variational distributions. Minimizing
this term encourages the different variational distributions
— the surrogate Gaussians to have similar probability den-
sities, as conceptually illustrated in the middle panel of
Figure 3. We note that this term is asymmetric, where the
variational density of Sy is required to resemble that of S;
but not the opposite. This makes an intuitive sense as the
variational distributions of S; have been learned from 7;
over a long time horizon, which is more likely to yield an
accurate approximation of the underlying data distribution
than that from a much shorter 7, only.

The two losses in Egs. (2) and (3) together discover the
shared latent feature subspace Z. In the subsequent 75
timespan in which only the S» space can be observed,
an arriving instance x;, is embedded into Z by its cor-
responding VAE as z;, = Enc(x,), from which a recon-
structed data representation of the &; space is decoded,
ie., 5(}521 = ¢(x¢,) = Dec®’(z,). Compared with linear
models, this VAE architecture tends to learn a complex
nonlinear mapping relationship between S; and S», which
is common in high-dimensional media streams. Hence, van-
ished features are better reconstructed with new features,
and information embedded in the old classifier is better
harvested to assist the weak new classifier. As a result, after
the overlapping period 75, OLD?S makes less errors in an
online fashion.

4.2 Online Prediction with Ensembled Learners

Once the old features of S; vanish, the learner f; is not likely
to make accurate predictions on the arrlvmg instances by
relying on S solely. Let f, = 521 denote the learner
at the begmnmg of T, when S ]ust emerges As Ty is short,
the f°? part of the learner corresponding to the new features
of Sy have been trained with very few instances hence is not
likely to converge. Relying on f{ to predict the instances
in 73 would incur substantial regrets.

To aid, we leverage the old f' part that has been
trained with a much larger number of instances during 7;.
Thanks to the reconstructive mapping ¢ approximated by
the VAEs in Section 4.1, we can realize an online ensemble
classification to yield accurate predictions when f{2 is not
ready, defined as follows.

Lerr = L(ye, §t) = — Zyulogytc VteT,UT2,  (4)

)+( _p)'ft (Xt)7

where Eq.(4) employs cross-entropy loss function [3] to
gauge the multi-class learning loss, with y; . and g . being
the ground truth and predicted probability that x; belongs
to the c-th class, respectively.

Intuition 3: The idea behind Eq.(5) is to let the
ensemble coefficient p € (0,1) decide the impacts of the
observed x; and its reconstructed version X;' in making
predictions. At the beginning of 7, when the feature space
just evolved, the old classifier ft should be largely helpful

Ge=p- fHE xt € Sz, (5)

with large p. Over time, the value of p decays because of two
reasons 1) the new classifier ft ? becomes stronger and 2) the
old classifier f can be less useful due to the distribution
drift. An updating strategy is needed to echo this intuitive
process, where the new classifier takes over gradually as the
old classifier conveys less discriminative power.

In this work, we update the ensemble coefficient with
exponential experts [75], where the empirical risks of using
the old and new classifiers to make independent predictions
are accumulated as:

T T

Sl SEEN), B =Y

t=T1+1 t=T1+1

E(ye, 12 (xt)).
)

The smaller the cumulative empirical risk is suffered, the
better predictions the classifier makes, and hence the higher
its corresponding coefficient is uphfted exponentlally The

S1
RT -

updating rule is defined as p = e ks /(e” nRr' | omnEy’ ),
where 7 is a tuned parameter with its value assignment
discussed in Theorem 2 of Section 5.

4.3 Adaptive Model Depth Learning with HBP

With the reconstructive mapping and the ensemble predic-
tion, the information conveyed by the unobserved S; can be
reaped to better the learning performance. The remaining
problem is how to realize the mapping and the classifiers
with models of appropriate depths that are most likely to
produce the optimal solutions. Unfortunately, fixing such
depths beforehand is impossible without prior knowledge
of how the data streams evolve in the sample space (e.g.,
distribution drift that may require classifiers with various
discriminant power to avoid overfitting) and the feature
space (e.g., a diversity of feature mapping relationships
requires VAEs with disparate architectures). As it is unre-
alistic to rely on human experts to provide such knowledge
constantly over long timespans, this problem boils down
to the desire of a model architecture that can learn the best
depth from data autonomously.

To this end, we leverage the Hedge Backpropagation
(HBP) [25], [43] mechanism to incorporate the model depth
as a learnable semantic that shall be determined in a data-
driven manner through optimization. Instead of evaluating
the loss based on the output from the last network layer
only (as most deep learning models do), the main idea
of HBP is to evaluate the losses on all the intermediate
hidden representations yielded from the network layers
from shallow to deep. Specifically, given an overcomplete
network with L hidden layers in total, the output of the
l-th encoder layer of the VAE is recursively denoted as
ZEZ) = Enc® (Zilfl)), with ZEO) = x4, where t € T UT,
and t € T, U T for the VAEs corresponds to S; and Sa,
respectively. The objective of HBP is defined as follows.

S a3 (0 + ) + X c]. @

t1,tp ty,t2

mll'l
(e},

where the loss terms EVI , ﬁREC, and E(CIEF are evaluated on

zgl) at the [-th layer as shown in Figure 3. In particular,

1) Evaluated by ﬁ vi is how well the latent code z( ) can
summarize the raw inputs with a surrogate Gaussian via
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Fig. 40 Two straightforward solutions to build lifelong
learners with multiple feature spaces, where S;, Sz, and S3
are three feature spaces appear in sequence along the time
horizon. (1): a latent subspace shared by each new pair of
observed feature spaces is learned, namely, Z L2 for §; and
S, and 223 for Sy and Ss. (2): a latent subspace is learned
for all observed features, namely, Z 123 for Sy, S, and Ss.

using Eq.(2); For instances of S, it is evaluated over T;
and 7, timespans, and for instances of Sy, it is evaluated
over 7, only. 2) Evaluated by El({l]gc is how precisely the
reconstructive mapping is learned so that the S; feature
space can be reconstructed from the data instances of S via
using Eq.(3); It is only evaluated during the overlap}‘iing
phase T, where S§; and Sy coexist. 3) Evaluated by E(ClLF is
how accurately the ensemble of both old and new classifiers
can make online predictions via using Eq. (4); It is evaluated
during 7, and 75 as the ensemble prediction is used only if
the features of Sy become observed.

Intuition 4: The crux of HBP lies in finding the
equilibrium that minimizes the three loss terms in Eq.(7)
into a Pareto optimum. To do this, we update the hedge
weight ) that determines the impact of the I-th layer in a
boosting fashion [85]: ozgl — Norm(agl)ﬁﬁ\(lﬂﬁtEGCLF), where
B € (0,1) is a discounting rate and /Js,ll) ) scacrp Accumulates
the three losses in Eq. (7) suffered at the ¢-th round. Denoted
by Norm(-) is a normalization function that reweighs each
o)) by the sum of all L layers, ensuring o)) € (0,1). The
idea is straightforward: the layer of which the output incurs
large losses should be penalized and takes a discounted
weight in the next round. Otherwise, if a layer is in an
optimal depth, it approaches the minimizer of Eq.(7) with
the incurred losses very small, such that the remaining
layers (i.e., those deeper than this hidden layer) cannot
identify and learn meaningful gradient directions. Their
hedge weights would stay in small values. Hence, when a
few instances arrive in at the beginning, only the first several
layers are activated with larger weight parameters. The
shallow model converges faster than a fixed-depth model.
With more instances observed, the requirement of higher
learning capacity gradually assigns larger parameters to the
deeper layers, which generates better data representations.
The elastic model can reduce the number of prediction
errors at both early and later periods in an online fashion.

4.4 Lifelong Learning from Streaming Feature Spaces

Thus far, we have explored the problem of discovering the
variational latent subspace Z between two feature spaces
S1 and S2. A natural generalize of it would be to learn
multiple disparate feature spaces that evolve and appear in
a lifelong manner. As delineated in Section 3.1, given a new
feature space S3 that evolved from Ss, a seemingly plausible
solution is to repeat the entire learning procedure detailed in
Sections 4.1, 4.2, and 4.3, in order to deduce another shared
latent space. To clarify, we denote this newly learned space
between Sy and S3 as Z2'3, and the previously learned space
as Z12. Figure 4(1) conceptually illustrates this solution.

Despite straightforward, this solution suffers from two
prominent drawbacks. First, it incurs high computational
cost. Assume, for showcase, a sequence of evolving feature
spaces denoted as {S,, | » = 1,2,..., N}, the learning
process will be repeated N — 1 times, and all features
appeared in the middle are learned twice (e.g., S2 has been
learned twice for the pairs of spaces (S;, S2) and (S, S3)
repeatedly). Second, after learning all /N spaces, only one
shared latent space ZV 1V is resultant, whereas the previ-
ously learned knowledge is missed out along with the van-
ished feature spaces — a phenomenon coined as catastrophic
forgetting in the lifelong/continual learning literature [25],
[86], [87]. In our case, if a data instance described by any of
the vanished feature spaces (i.e., Si,...,Sy_2) arrives, the
online learner is most likely to make erroneous predictions.

To aid the forgetting issue, one may think to train a
model that learns from all observed features once a new
feature space emerges, as shown in Figure 4(2). Namely,
once S3 emerges, the instances that are described by S» and
83 are aligned with those instances described by S; and
&> to co-train a shared latent space Z 12,3 that harmonizes
information from all three feature spaces Si, Sz, and Ss.
Alas, this idea is memory intensive, as it requires to store
instances that are with all observed feature spaces. As
in a doubly-streaming setting the new features constantly
emerge without stopping, storing all instances would soon
exhaust the memory and make the learning infeasible.

To counter the forgetting issue without bottlenecked by
the memory constraint, we draw insight from the recent
advances in [88] to tailor a lifelong learning extension of
OLD?®S, named OLD?S-L. The key idea of OLD®S-L is to
insist on using one shared latent space to harmonize all
emerging feature spaces. Specifically, each feature space is
assigned a VAE model to generate its own corresponding
latent subspace firstly. In addition to the first subspace, we
deem the recently learned latent space as a regularization
term imposed on the newly emerged feature space, enforc-
ing it to integrate the information in both the old and new
data representations, as demonstrated in Figure 6. Suppose
a new feature space S3 emerges, and now the learner starts
to observe instances described by S; and Ss in a short
timespan, namely x; € S x S3 C R%*%%_ The regularizer
imposed on Eq. (3) is devised as follows,

Q27 83) = € [x152, Dec(zy®) |+ K L(Qz152 | x152) || Q(z5® | x75%)).

®)
where Dec(-) here refers to a decoder combining knowl-
edge of all three feature spaces, S1,S2,S3. Then we can
reconstruct the data based on the subspace Z%3. The
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OS:

So S,

Fig. 5. Illustration of how the new OLD?S-L leverages the
vanished feature space (S1) to regularize its updating step
(along a negative gradient direction). The three contours
conceptually represent the parameter spaces from which
the optimal VAEs corresponding to the feature spaces Sy,
82, and 83 are searched. The red points are the centers of
contours, namely, the optima. ©%* denotes the (random)
initialization of the VAE model learning latent representa-
tion of the new feature space Ss. V1,273®S3 and V2,3@53
demonstrate the updating steps of OLD?S-L (which retains
the knowledge from S;) and OLD®S (which forgets S; and
focusing on S, and S3 only), respectively.

process how the third model VAES: generates a shared
latent subspace by constraining its parameters is in detail
illustrated as Figure 5, where ©? is its initial parameter in
a parameter space which expands with the appearance of
the newly feature space and model.

First, the gradient update on the parameters of VAE®:
is only constrained by the newly parameter space it causes.
Because the first step of a VAE model is to capture a sub-
space only containing the information of the feature space it
belongs to as described in Figure 6. For the straightforward
method described in Figure 4(1), to include knowledge of
&y, the initial parameter ©%s starts to be constrained by the
second parameter space as well, and gradually approaches
the optimal point where the model could express informa-
tion of both S; and S3. Since information contained in Sy is
not considered, ©% will move away from the space caused
by Si. All above constraints determine the corresponding
gradient optimization direction V3 30 together. Similarly,
the second model VAE®? can learn its shared latent subspace
and find its optimal point represented as ©%.

Our method OLD’S-L decides its gradient direction
V172,3@S3 to harmonize all emerging feature spaces in an-
other way. Specifically, under the same constraint of the
newly parameter space, the initial parameter ©°? is updated
to approach ©°2. Since ©52 is achieved by the constraints of
the first two spaces, the constraint information will be trans-
ferred back with the approximation of it and parameters of
VAE®? are constrained by three parameter spaces gradually.
The subspace integrate information from &; and S; brought
by ©°2 with itself. Therefore, the initial point ©5 will be
updated along the direction Vi 2305 to move closer to

TsE Thel @s @@
Enc Dec Enc Dec Enc L) Dec
e

o =
< ¢

Zl 21,2 31‘2,3

Fig. 6: Illustration of the proposed OLD’S-L, where one
latent subspace is learned in an incremental manner to
harmonize information from new feature spaces that ar-
rive continuously like a stream. The novelty lies in that it
does not require to store all observed instances that were
described by the vanished features.

both &1 and Ss. The optimal parameter of VAESs will arrive
in a position where all feature spaces are harmonized.

Note, our OL task possesses different focus over con-
tinual learning (CL) in terms of performing predictions on
a data sequence. In CL, the overarching goal is to retain
knowledge from all seen tasks, where each task contains
a data subset with unique distribution. Thus, a CL learner
trained later on must be able to make accurate predictions
on instances from any previous task anytime. In OL, on the
contrary, the prediction is conducted in a one-pass setting,
where the learner strives to be accurate on newly arriving
instances with minimized regret. As a result, OL learners do
not necessarily keep their performance on past data over
long time spans. More specifically, our OLD?S-L setting
differs from traditional CL in two aspects. First, OLD?S-L
and CL tend to deal with disparate data evolving patterns,
where CL mainly counters against distribution drift and
OLD?S-L copes with feature space evolution. Second, our
OLD’S-L focuses on assisting the weak learner initialized
for new feature space with knowledge learned from the
vanished feature spaces in an ensemble manner. Thus, the
shared latent subspace strives to capture knowledge from
learned data instances being informative for building pre-
dictive models in new feature space. Revisit the example
shown in Figure 4(2): we hypothesize that our OLD*S-L can
enjoy a better performance on the new Ss space if Ss is
evolved from S; and S; on a space continumum hence is
correlated with Sp; otherwise if S3 and S; become inde-
pendent, the OLDS-L variant boils down to OLD’S as the
latent subspace only establishing relationship between S;
and S3 would suffice to yield good prediction performance
in S3. We validate this hypothesis with empirical study, with
results documented in Q7 of Section 6.2.

5 THEORETICAL ANALYSIS

We analyze the theoretical properties of the proposed
OLD?®S approach, aiming to answer two research questions.

Q1. How does the learning performance of our OLD’S learner
compare to the learners of arbitrary depths?

This question naturally arises as, at the first glance, our
OLD?®S learner uses the outputs of all hidden layers in a
weighted combination, wherein several layers may yield
less expressive latent codes (e.g., the too shallow or too deep
layers) to detriment the learning performance. Although
such layers are discounted due to their inferiority, it is
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important to know what is the cost of using HBP to learn
the optimal model depth. The answer is provided as:

Theorem 1. Over T rounds, our OLD?S suffers cumulative loss:

L InL
Lops <Cp- mm { Z EVI+REC+CLF} 1 + 1-5 )

where Cg =1n(1/5)/(1
scalar.

— B) > 0 is a monotonically decreasing

Proof: Before our analysis, two loss formulas need to be
introduced. For [-th layer, its cumulative loss over T rounds
is defined as: ﬁ&,ll)JrREC +CLE = Zthl 6,(5”. And the loss is
denoted as £® in the follows for simplicity

Similarly, let Loy g = 1y Sp2, P (l)f(l) Sl
as the total cumulative loss suffered by our algorithm.

Different from the formal content, a new parameter p is
introduced to represent Norm(-), where p; is a vector
including parameters p of all layers, and allocated by cor-
responding weight parameter oy = [agl), . 7aEL)]T. In
particular, the relationship between them and the updating
rule of parameter « is described as follows.

O] a® Q) O
v =o B, Pe= - (10)
POt ai )
To conduct further proof, we here introduce:
Lemma 1 (Freund and Schapire, 1997 [85]). 5" < 1—(1—7),

for 8= 0andr € [0,1].
Then, combined with Eq. (10) and Lemma 1, this implies

ZatH = Z Dpp

=1
off (1-(1-p)8").

(l)

Mh

< (11)

~

1

(Z D)= =Bpe ).
Applying repeatedl; fort =1,...,T yields
T
ZaT+1 1;[ B)pi - 1),
<eXp(— —ﬁ);pt-ft)

= €xXp ( - (1- B)‘COLDSS)’

since 1 +x < e” for all z and Ly 35 = Zthl Pt Uy
Then, we get the follow formula,

In (ZO‘T+1) SInexp (=(1 = B)Lorpss)

—In <Zl 1 aT+1)
1-p3 ’

12)

<

£OLD3S

Next, going back to Eq. (10),

) z“)
QApiq = al | I B
t=1

(13)
B['(l)
and for all layers, we get,

- )

ZaT+1 = Zail)BL )
=1 i (14)

> 6max16LE(l) Z Oégl).
=1

By now, all preparations for analyzing Theorem 1 are
complete. Combined Eq. (13) and Eq. (14),

—In (ZleL agl)) — (InB) max;ep, LD
1-5
This is a general bound statement where all layers are

be considered. For any [ € {1,..., L}, we achieve a special
case:

<

OLD’S (15)

—lna

—£WOInp
1-06 ’
The bound 16 state that our OLD?S only perform a little

bit worse than the best /-th layer among the sequence. The

difference lies in the choice of 3 and the initial weight agl)

of each layer. If every weight is set equally such that a( ) =

1/L, then this bound becomes:
min; £V In(1/8) + In L
1-p5 '

The bound given in Eq. (17) can be written as:

Loips < (16)

Loips < (17)

l t L lnL
Lops < Cp - mm { Z £\(/I+REC+CLF} 1 + 15

where Cg =1n(1/5)/(1 — 8) > 0 as stated in Theorem 1. O

Remark 1. A hindsight optimal model of which the opti-
mal depth [* that yields the least learning loss over T'
rounds, presented at the RHS of Eq. (5), provides a natural
upper bound of our OLD’S model. Theorem 1 suggests
that our model is comparable to this optimal model (cf.
limg 1 Cg = 1, InL/(1 — B) < 0). As in practice the
optimal [* is unknown and can vary according to datasets, it
is not realistic to conduct a set of experiments to decide the
optimal depth for each dataset. Instead, our HBP method
can help the model automatically learn the optimal depth
at each round and achieve the comparable cumulative loss.
Hence, our OLD’S learner strictly enjoys a lower online
learning loss than any neural network models with their

depth fixed in ad-hoc, i.e., Q1 answered.
Q2. How helpful is the ensemble learning method of our OLD’S
that reconstructs the old feature space Sy, compared of using

81 or Sy independently?

We derive the risk bound to analyse the asymptotic
property of our OLD?S approach. Specifically, in timespans

Ty and 7> when features from Sy appear:
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Theorem 2. Withn = 8+/1/InT and T = |T, U T2|, we have

1 . s s 1 In2
Eior[€(ys, 9t)] < T mln{RT1 , RTQ} + \/ﬁ + T InT,
(18)

where R;l and R;Q denote the cumulative risks of using inde-
pendent Sy and Sy classifiers over T rounds as defined in Eq. (6).

Proof: Here, we define R;l ="y, 57"), and R;Q =
Zle ((yq, 5;?) with the same parameter T = | T, U T3|.
Then, a quantitative variable Q)7 is introduced as:

Qr = exp (—nRy' ) +exp (—nRY' ),

and it is easy to verify that Q; = €” + €° = 2 because there
is no loss for both classifiers in the first round.
Over T iterations, we have

In (%)

=In (exp (—nR;I) + exp (—nR;Z) ) —In2,
>1In (max {exp (—nR;I) , €Xp (—nRiz)} ) —In2, (20)

= max {—nR;I , —nR;? } —In2,

(19)

= —nmin {R;l , R;z } —In2.

At the Tt iteration, we have

(o)
:ln( eXp(—nR;I)—&-eXp( nRT) )

exp (—nRy ) +exp (—nRY )
:ln(exp(W(R;1_1+f§))+exp( n(Ry 1+£T)))7

nR7 ) +exp (—nR7 )

—77€T ))7

exp (—

S
=1In (pexp (=nly) + (1 —p)exp(
21
=/ (yT,Q;l) and 6;2 =/ (yT,Q?) denote
the instantaneous losses suffered by making predictions on
xp and Z7 at the T™ iteration, respectively. And,

oo ()
exp (—nR?) + exp (—nR;Q)

is a defined parameter.
To conduct further proof, we here introduce the Hoeffd-
ing Inequality:

S1
where (.,

p= 6[071]

Lemma 2 (Hoeffding Inequality [75]). Let X be a random
variable with a < X < b. Then for any s € R,

s2(b—a)?

InE(e*X) < sEX +

Suppose the instantaneous losses are normalized at each
. . S1 S
iteration, s.t. V¢, , £,~ € [0, 1] can be relaxed to:
2

< —n (plr +(1—p)ir ) + %,
< —n [ (yr.pir' + (=i )] + %f @)

2

N n
= _776 (?JTJJT) + §7

Feature Evolving

\/

Feature Space S; € R% Feature Space Sy € R%

Ty X sigmoid(WTx51)

Fig. 7: lllustration of Evolving Features for Tabular Datasets.

TABLE 1: Statistics of the 10 datasets. |S;| and |Sz| are the
dimensions of the old and new feature spaces, respectively.

No. Dataset | # Samples |S1 ] |Sa| # Classes
1 magic04 36,119 10 30 2
2 adult 61,559 14 30 2
3 EN-FR 34,758 21,531 24,892 6
4 EN-IT 34,758 21,531 15,506 6
5 EN-SP 34,758 21,531 11,547 6
6 ER-IT 49,648 24,893 15,503 6
7 FR-SP 49,648 24,893 11,547 6
8 CIFAR 95,000 3072 3072 10
9 Fashion 114,000 784 784 10
10 SVHN 139,257 3072 3072 10
based on the convexity of the loss function #(-).
Again, over T iterations, we have:
ln( Qr )—|—ln(QT_1) —|—...—|—ln(@>,
Qr-1 Qr—2 Q1
( Qr QTfl.”_@) In (QT)
Qr-1 Qr-2 Q1 @1
2

< =0l . 9r) + £ @ros o)+ L) + LT,

T
= —UZE (Yt, 0e) +
t=1

(23)
Chaining the inequalities Eq. (20) and Eq. (23) yields:
L s S n In 2
Zﬂ(yt,@t) gmin{RTl,RTz} 8T+ (24)
t=1

Now, the bound is decided by the value of . Specifically,
with n = 84/1/InT, the upper bound becomes:

Ze (v 30) < min { Ry, By }+T/VIn T+ (n2/8)VIn T
(25)
Now, the Theorem 2 holds immediately. O

Remark 2. The LHS of Eq. (18) provides the empirical predic-
tion risks of our OLD’S approach, upper-bounded by The-
orem 2 with a sub-linear slackness ©(v/T/T) = 1/vInT +
(In2/8T)v/InT. We can verify that limy_,., O(VT/T) =
0, which suggests that our OLD®S with ensembling out-
performs an independent learner trained on S; or So,
whichever yields smaller risk, i.e., Q2 answered.

6 EXPERIMENTS

Empirical results are presented to verify the viability and
effectiveness of our OLD?S approach. Detailed experimental

Authorized licensed use limited to: Old Dominion University. Downloaded on June 06,2024 at 20:21:59 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3326365

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 2022 11

setups are elaborated in Section 6.1 and the results and
findings are extrapolated in Section 6.2.

6.1 Evaluation Setup
6.1.1 Dataset Preparation

We benchmark our OLD®S approach on 10 real-world
datasets covering three domains to verify its versatility.
Statistics of the studied datasets are summarized in Table 1.

e UCI Data Science (No. 1-2): The two datasets have
only one feature space S; at first, and we artificially create
a new feature space Sy = sigmoid(W ' S;) with a random
Gaussian W and a nonlinear sigmoid function. Thus, the
original feature space evolved with a nonlinear relationship
during the overlapping period as shown in Figure 7. The
two feature spaces are concatenated as the shape shown in
Figure 1 to simulate the doubly-streaming data.

o Multilingual Text Categorization (No. 3-7): A set
of documents are described by four languages including
English (EN), French (FR), Italian (IT), and Spanish (SP).
By treating each document as a bag of words (features), the
vocabulary of each language can be deemed as a feature
space. At each time, a document is presented and our model
aims to classify it into one of the six categories. To simulate
doubly-streaming, the language describing the documents
shifts over time, e.g., EN-FR, where the model learned to
classify English documents is soon presented with French
after a short overlapping 7, timespan, requiring to approx-
imate the translation relationship between languages. To
exacerbate the non-linearity of the mapping between two
languages, we apply the sigmoid function on the S space.

o Ounline Image Classification (No. 8-10): Images are
typical media data of high dimensionality and low informa-
tion density. To simulate doubly-streaming data, we follow
the preprocessing steps suggested by [25], [89] to create
an evolved space by transforming the original images with
various spectral-mapping, shearing, rescaling, and rotating.
Images are presented one at a step, and the model needs to
learn the complex pixel transformation online.

6.1.2 Dataset Visualization

We visualize data distributions of the first 1,000 instances
with label 0 and 1 from S; and S in the overlapping period
Ty via T-SNE [90], as shown in Figure 8. Red and blue points
indicate Label 0 and 1 in S; respectively; Green and yellow
are for 0 and 1 in Sy, respectively. We can observe that the
evolving data distribution of Sy deviates slightly from the
original distribution of S;, as shown in Figure 8e and 8f.
Some of datasets even display a disjoint distribution for
&3, as shown in Figure 8a and 8b. A model learned from
the old feature space S; will present poor performance for
data with new distribution from Ss. Only for FashionMNIST
shown in Figure 8j, it seems feasible to learn one classifier
for data from both spaces. While only observing instances
from S;, the large margin between red and blue points
would allow multiple optimal classifiers for S;. However,
most of these classifiers become sub-optimal for So when
the distance between green and yellow instances decreases,
thereby leading the poor generalization performance as
well. As a result, the models learned from S; can not be
directly used for data with different distribution from Ss ,

without establishing a mapping relationship.

We take the dataset adult as an example to show how
our method approximates two disjoint distributions in the
latent subspace, as shown in Figure 9. Figure 9a illustrates
the original data distribution, where red and blue points
indicate Label 0 and 1 in S, respectively; Green and yellow
points indicate Label 0 and 1 in Sy, respectively. We can ob-
serve that instances from different feature spaces display a
disjoint distribution. As discussed above, the model learned
from &; cannot be used for Sy directly. Figure 9b, 9¢, 9d,
and 9e show the latent distributions of four hidden layers of
well-trained VAEs, respectively. As the model goes deeper,
we can observe that yellow points are far away from red
points and start to approach blue points. This indicates
that the model learns better shared subspaces, where the
latent representations of instances with Label 1 are indeed
approximating to each other, even though they reside in
different feature spaces. As shown in Figure 9d, it becomes
possible to use one classifier to make accurate predictions
for both §; and S;. HBP enables our elastic model to
only output the prediction made with the optimal shared
representation.

6.1.3 Compared Methods

Three state-of-the-art competitors tailored for processing
double-streaming data are employed for comparative study,
with their main ideas presented as follows. FOBOS [91] is
a canonic online learning baseline that operates over first-
order oracles with a projected subgradient that encourages
sparse solutions. To make it work for doubly-streaming
data, zeros are padded to the new features and vanished old
features. OLSF [51] is the first study to tackle an incremental
feature space, where new features constantly emerging are
carried in all subsequent data instances. OLSF updates the
online learners in a passive-aggressive fashion, where the
learning coefficients of old features are re-weighed to new
features only if these new features convey significant infor-
mation that changes the decision boundary. FESL [16] is the
pioneer work to deal with doubly-streaming data, which
nevertheless employed linear functions to learn classifiers
and to approximate a mapping relationship between feature
spaces. A comparison with FESL rationalizes our design
of adaptive deep learner and variational feature mapping
approximator. For the ablation study, two variants of our
OLD®S approach are proposed, named OLD-Linear and
OLD-FD. They differ from our original OLD®S design by:
1) OLD-Linear employs a linear mapping to approximate
the feature mapping relationship and 2) OLD-FD trains a
deep neural network with a fixed depth. We craft the two
variants to necessitate the designs of a non-linear, VI-based
feature mapping approximator and the HBP that allows
model depth to be learned from data autonomously.

6.1.4 Evaluation Metric

As the traditional classification accuracy is ill-conditioned
in online learning, we employ the Online Classification
Accuracy (OCA) and Averaged Cumulative Regret (ACR)
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(a) magic04 (b) adult (c) Reuter-EN-FR (d) Reuter-EN-IT (e) CIFAR

(f) SVHN (g) Reuter-EN-SP (h) Reuter-FR-IT (i) Reuter-FR-SP (j) FashionMNIST

Fig. 8: The change of data distributions before and after the evolving. Red and Blue points indicate Label 0 and 1 in &;,
respectively; Green and Yellow points are for Label 0 and 1 in S, respectively.

(a) Original (b) Hidden 1 (c) Hidden 2 (d) Hidden 3 (e) Hidden 4

Fig. 9: Disjoint distribution of original data in adult dataset is approximated in the shared latent subspace. The latent
representations of the third hidden layer (Hidden 3) is chosen to made the prediction by the elastic model. Red and Blue
points indicate Label 0 and 1 in Sy, respectively; Green and Yellow points are for Label 0 and 1 in S», respectively.

TABLE 2: Comparative results of averaged cumulative regret (ACR £ mean variance) benchmarked on 10 datasets, where
the lower the value, the better the method performs. The best results are bold. The bullet e indicates that our OLD’S
approach outperforms the competitors with a statistical significance supported by the paired t-tests at 95% confidence level.

Dataset |  FOBOS | OLSF \ FESL | OLD-Linear | OLD-FD | OLD’S
magic04 119 £ .022e 335 £.021e .110 £ .016e .075 £ .018 .076 = .021 .052 + .017
adult .076 £ .064 .225 £ .019e .067 +.044 .055 £+ .017 .068 £ .018 .049 + .019
EN-FR .326 £ .064e .324 £ .018e 345 £ .044e .168 &= .030e 137 £ .030e .068 + .025
EN-IT .318 £ .060e .314 £ .019e .337 £ .040e .197 £ .028e 143 £ .033e .083 £.024
EN-SP .302 £ .060e 322 £.021e .335 £ .037e .197 £ .036e 136 £ .027e 077 +.024
FR-IT 278 .047e 301 £ .013e .314 £+ .037e 195 £ .031e .147 £ .030e .084 + .026
FR-SP 272 £ .046e .310 £+ .014e .336 = .040e .201 £ .029e .155 £ .026 .102 £.027
CIFAR 468 £ .017e .504 £+ .014e 463 £ .013e .166 £ .032 .232 £ .038e .150 £.030
Fashion .305 £ .033e .294 £+ .016e 247 £ .023e .160 £ .033e .123 £ .019e .056 £.015
SVHN .808 £ .011e .604 £ .014e .806 £ .011e .144 £ .038e .120 £ .025 .089 £ .018
w/t/l | 9/1/0 | 10/0/0 | 9/1/0 | 7/3/0 |  6/4/0 | —
to measure the performance. Specifically, they are defined: ~ ing the OCA differences between f; and f* over 1" rounds.

¢ The smaller the value of ACR was, the less largely the
OCA(f)=1— é Z lyi # fi(x))], T=|TiUTyUTsl learner regrets, and the better the online classification was.

T e 6.1.5 Experiment Setup
ACR = %Z [n}a*ux OCA(f*) — OCA( ft)] Tunable parameters in our paper can be divided into two
t=1 types: one is updated automatically, and the other needs to
Intuitively, OCA dynamically measures the accuracy of a be decided and fixed in advance.
classifier f; at the ¢-th round, evaluated at the most recent o The ensemble coefficients p and 1 — p in Eq. (5) is used
B instances. ACR evaluates how large the online learner to balance the weights of old and new classifiers in the
regrets comparing to a hindsight optimum f* by accumulat- ensemble result. Initialized values are set as 0.5 to 0.5.
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The value of p is updated automatically according to the
classifier’s cumulative empirical risk defined as Eq. (6).
The relative analysis and updating process can be found
in Section 4.2.

o The choice of tuned parameter 1 ensures that the en-
semble method is better than using old or new clas-
sifier independently. We give its optimal value n =
84/1/InT in Theorem 2 of Section 5, and it is in inverse
proportion to the dataset size 7.

o The hedge weight o) of each layer is also updated
automatically according to the cumulative loss of corre-
sponding layer classifiers defined as Eq. (7). Besides, the
sum of all hedge weights equals to 1 by a normalization
function according to Intuition 4. Both can be found in
Section 4.3.

o The discounting rate 3 is used to control the updating
rate of the hedge weight a(!). When the value of 3
approximates 1, our model is comparable to this opti-
mal mode with fixed depth, discussed in Theorem 1 of
Section 5. We did a grid search within the range of [0.3,
.35, 0.5, .55, 0.7, .75, 0.9, .95], and 0.9 is chosen because
of its best performance among most datasets.

o The optimizers are selected as SGD and Adam for
datasets UCI Data No. 1-2, and all other datasets No.
3 - 10, respectively. The learning rate is set as 0.001 for
both optimizers, and two coefficients in Adam used for
computing the averages of gradient and its square is set
as 0.9 and 0.999.

o We employ the convolutional neural network as our
model backbone for imagery datasets (CIFAR, SVHN,
and FashionMNIST). For other high-dimensional in-
puts, we build the over-complete network with multi-
layer perceptron with six hidden layers. We use ReLU
as the activation function.

To achieve a robust result, each experiment is repeated
10 rounds while keeping all tunable parameters consistent.
The average results are presented in Table 2 and Figure 10.
At all rounds, the model is initialized in the same way. To
enable cross validation, we randomly shuffle the data input
sequences for different rounds.

6.2 Results and Findings

We present the experimental results in this section aiming
to answer research questions (Q3 — Q8).

Q3. How does our OLD?S compare to the state-of-the-arts?

From the comparative results presented in Table 2 and
Figure 10, we make three observations as follows. First,
our OLD’S achieves the best ACR performance. This result
rationalizes our proposal of learning deep learners with
complex feature relationships, as the competitors mainly
relying on linear models manifest inferior performances.

Second, our OLD?S outperforms FOBOS by 73% on av-
erage. In addition, FOBOS suffers the largest performance
drop in terms of OCA when the old features become unob-
served, as shown in Figures 10a, 10b, 10c, 10g, 10h, and 10i.
Particularly for Reuter, as shown in Table 5, re-training
FOBOS while encountering new data lead to the decrease
by an average of 52%. This is because that FOBOS does
not correlate the old and new feature spaces thus can be
equated to initializing a new learner for the newly emerged

features. Our approach excels as we learned the feature
correlation to boost the learning performance on the new
features, and then enjoys a much smoother learning curve
while the feature space evolves.

Third, compared to OLSF, our approach wins by 77%
on average. The reason can be attributed to that OLSF is
tailored for dealing with an incrementally increasing feature
space only, and does not possess the mechanism to handle
the fading away features. The learned knowledge of the
old feature space is hence wasted. Our approach aids the
situation by learning a reconstructive mapping between the
two feature spaces, letting the learner enjoy the information
conveyed by the old and unobservable features, thereby
attaining better ACR and sharper OCA curves with the time.

Q4. How helpful is the deep learner enabled by the VI mapping?

The comparison among four algorithms: FOBOS, FESL,
our OLD®S approach and its OLD-Linear variant amounts to
the answer. First, our OLD®S outperforms FESL and OLD-
Linear by ratios of 74% and 44% on average, respectively.
This performance gap indicates the non-linear mapping
relationship between feature spaces must be respected,
as FESL and OLD-Linear both employed linear functions
to approximate the reconstructive mapping. Second, more
significant OCA drops are observed from OLD-Linear in
Figures 10b, 10c,and 10e. This result suggests that the low-
dimensional latent space resulted from the variational en-
coding does not suffice to simplify the complex feature
reconstruction relationships to an extent that they can be
approximated by linear functions.

Third, we observe that FESL may even underperformed
FOBOS in terms of ACR, despite that FESL suffers a smaller
performance drop of OCA overtime. This observation advo-
cates that FESL learned the feature relationship at a certain
level, but the linearity of the mapping function does suffice
to fully capture the complex feature interactions, such that
the linear reconstruction of old features is helpful at the
beginning of 72 (smaller OCA drop) but soon becomes
less useful overtime (slower learning rate), and eventu-
ally becomes noises which negatively affect the prediction
accuracy, ending up with inferiority to FOBOS. In other
words, it is better to initialize a new learner than trying to
reconstruct old and unobservable features inaccurately with
an insufficiently capable linear mapping.

Q5. In which cases does an adaptive learning capacity excel?

A comparison between our OLD’S with the OLD-FD
variant answers this question. We observe that 1) OLD’S
excels and significantly outperforms OLD-FD in six settings
2) OLD’S converges faster with steeper OCA curves in all
settings, especially for Reuter datasets. These two obser-
vations validate the tightness of Theorem 1 in the sense
that, although OLD-FD may end up with higher OCA
with increasingly more arriving instances (e.g., Figures 10d
and 10g), its slower convergence rate incurs larger online
prediction errors before the parameters are readily trained.
This makes the usage of HBP to expedite the online learning
efficiency become a better choice. In addition, from Fig-
ures 10d and 10e, we observe that OLD-FD learns slower
as the learning task becomes more difficult. (The objects
in CIFAR impose more complex visual concepts than the
street-view house numbers in SVHN, where the hindsight
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TABLE 3: Runtime of six methods on ten datasets.

Dataset | FOBOS | FESL | OLSF | OLD-Linear | OLD-FD | OLD’S
magic04 24 65 17 230 160 264
adult 49 136 30 384 266 331
EN-FR 30 100 102 417 237 336
EN-IT 30 99 96 412 231 329
EN-SP 30 98 94 414 235 327
FR-IT 43 142 170 586 332 466
FR-SP 42 140 164 585 337 468
CIFAR 25 1820 18 2820 2932 3083
Fashion 24 286 16 3372 4588 4653
SVHN 54 2298 21 4543 4310 4236

TABLE 4: Results of extra errors made by two variants on ten datasets.

Dataset | magic04 | adult | EN-FR | EN-IT | EN-SP | FR-IT | FR-SP | CIFAR | Fashion | SVHN |
OLD-Linear | 863 | -1146 | 6982 | 7726 | 8000 | 11460 | 10496 | 1291 | 2504 | 5764 |
OLD-FD | 882 | 1232 | 4826 | 4270 | 4180 | 6426 | 5916 | 7427 | 1778 | 3783 |

TABLE 5: OCA of FOBOS and OLD?S pre-and-post observing new features on ten datasets.

Dataset

| magic04 | adult | EN-FR | EN-IT | EN-SP | FR-IT | FR-SP | CIFAR | Fashion | SVHN |

FOBOS (pre) .790 782 .746 .760 .756 774 770 228 .660 141
FOBOS (post) .644 .760 226 .280 270 210 216 204 .575 132
OLD’S (pre) .864 .832 .838 .840 .808 .824 .800 .595 .870 .859
OLD?’S (post) .822 .766 .796 .802 .810 .828 .836 611 .824 .854

optimal OCAs in CIFAR and SVHN are 72.7% and 93.3%,
respectively). Our OLD’S is invariant to the inherent com-
plexity of the datasets and manifests a fast online learning
rate. This finding advocates the adaptive model capacity of
our OLD®S is generalizable to more learning tasks, without
requiring prior knowledge of the underlying distribution

or learning complexity of the doubly-streaming data of
interest.

Q6. What is the tradeoff between runtime complexity and algo-
rithm efficacy?

To answer this question, we conducted the experiment to
compare the runtime between our OLD®S and five other
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|—+— FOBOS —— OLSF —=— FESL OLD-Linear —+— OLD-FD —=— OLD’S]

Fig. 10: The trends of OCA of six methods on 10 datasets in the doubly-streaming setting. The blue-shadowed areas indicate

the overlapping 7, timespans.

Authorized licensed use limited to: Old Dominion University. Downloaded on June 06,2024 at 20:21:59 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3326365

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 2022 15

TABLE 6: Average number of errors made by OLD?S-L and
OLD?’S on six datasets. The best results are bold. OLD?S-L
is the lifelong learning extension of OLD’S.

Alg, | EN-FRIT | EN-ITSP | EN-SP-FR
OLD’S 15576 + 130 15726 + 125 15784 + 125
OLD®S-L 15058 + 115 15224 +130 15092 + 120
Alg. | CIFAR | Fashion | SVHN
OLD?S 62141 £ 320 27825 £ 200 35795 £ 280
OLD®S-L 58753 + 240 26451 + 170 34270 + 250
0.7 1.00
—e— OLD3S —e— OLD3S
0701 —— OLD3s-L as) — OLO3SL
< 0.65 <
] Q 0.90
O 0.60 o
0.55 085

.5 i
00 25000 50000 75000 100000 125000 .80

# of instances

(a) CIFAR

10000 20000 30000 40000 50000
# of instances

(b) Reuter-EN-FR-IT
Fig. 11: The trends of OCA of two methods on two datasets

in the doubly-streaming setting. The two blue-shadowed
areas indicate two overlapping 7 timespans.

TABLE 7: Statistics of SUSY and Epsilon. |S;| and |Sz| are
the dimensions of the old and new feature spaces.

No. Dataset | #Samples |5 |S2|  # Classes
1 SUSY ‘ 200,000 50 200 2
2 Epsilon | 100,000 2,000 3,000 2
1.0 1.0
0.9 0.9
0.8 \ 0.8
< \ <
g o7 \ Jo7
0.6 0.6
05 05
045 100000 200000 300000 046 50000 100000 150000
# of instances # of instances
(a) SUSY (b) Epsilon
—+— FOBOS —— OLSF —=— FESL OLD-Linear —— OLD-FD —A— OLDBS‘

Fig. 12: The trends of OCA of six methods on SUSY and Ep-
silon in the doubly-streaming setting. The blue-shadowed
areas indicate the overlapping 7, timespans.

competitors. We benchmark all experiments on virtual ma-
chine, configured as 4 x Intel(R) Xeon(R) Gold 6148 CPU,
one Nvidia V100 GPU, and 16GB RAM. From results pre-
sented in Table 3, we can draw two observations. First, the
runtime of all linear models FOBOS, OLSF, and FESL are
faster than deep models, e.g. OLD’S and its two variants
OLD-FD and OLD-Linear on all datasets. However, this is
at the cost of their worst performance, which can be found in
Table 2 and Figure 10. Second, when comparing three deep
models, OLD3S 1) describes a nonlinear relationship yet is

faster than OLD-Linear on all Reuter datasets, 2) calculates
and updates the hedge parameters iteratively yet is faster
than OLD-FD on the SVHN dataset. This indicates that
OLD?’S enjoys a comparable runtime performance with its
two deep variants while presenting the best accuracy.

To further illustrate the advantage of OLD?S over its two
variants, we conducted one more experiment to compare
OLD?S with OLD-Linear and OLD-FD to present how many
less errors OLD’S made. Results can be found in Table 4,
from which we can draw two observations. First, OLD’S
always makes less errors than its two variants in addition
to OLD-Linear in dataset adult. With the help of two mecha-
nisms, OLD’S present better performance than OLD-Linear
and OLD-FD in general. Second, while only implementing
one mechanism, the cases where either OLD-Linear or OLD-
FD prevails may vary across different datasets. For exam-
ple, thanks to HBP, OLD-Linear makes 6136 fewer errors
than OLD-FD in CIFAR even if a linear relationship is ap-
proximated in a nonlinear image dataset. This observation
indicates both mechanisms we proposed are indispensible,
and can jointly improve the model performance without
sustaining complexity overhead.

Q7. What are the gains by learning lifelong streaming feature
spaces instead of repeating the entire learning procedure?

To answer this question, we conduct experiments imple-
menting OLD?S and OLD?S-L on six datasets. Experimental
results are shown in Table 6 where OLD?S-L make less errors
on all datasets, from 502 on Reuter-EN-IT-SP to 3388 on
CIFAR. We can conclude that OLD®S-L leveraging knowl-
edge learned from all vanished feature spaces has the better
performance than OLD?S which only learns mapping from
two consecutive spaces.

An interesting observation from Table 6 is that the per-
formance of OLD?S-L on imagery datasets is better than
that on Reuter datasets in general. Two examples, the trends
of OCA in CIFAR and Reuter-EN-FR-IT, are shown in Fig-
ure 11. We can observe the accuracy gap after the second
overlapping period on CIFAR is more evident than that
on Reuter-EN-FR-IT. The possible reason is that, although
knowledge from two previous spaces is distilled by our
lifelong method OLD?S-L in both datasets, the evolving
relationship between FR and IT is relatively independent
from the relationship between EN and FR. Translating FR
into IT requires little EN knowledge, and the mapping rela-
tionship learned to translate EN to FR is less helpful for tha
learned to translate FR to IT. In CIFAR, the second mapping
mapping relationship S — Ss is intentionally constructed
upon the mapping of S — Sa. Specifically, images after the
first complex pixel transformation are then processed with
a different transformation. Hence, the evolving relationship
between S and Ss inherits from, thus is highly correlated
to the previous relationship between &; and Ss. Taking
advantage of knowledge of the first relationship will help
capture the second relationship.

Theses experimental results can validate our hypothesis
that the lifelong variant OLD’S-L outperforms the naive
repeating method OLD®S if S; is evolved from S; and So
on a space continuum.

Q8. Does the method OLD?S retain high performance on larger
scale datasets?
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TABLE 8: Comparative results of averaged cumulative regret (ACR + mean variance) benchmarked on SUSY and Epsilon,
where the lower the value, the better the method performs. The best results are bold.

Dataset | FOBOS | OLSF | FESL | OLD-Linear | OLD-FD | OLD’S
SUSY | .075+.024 | .3194.024 | .105+.026 | .043+£.021 | .1934.036 | .031+.019
Epsilon | .279+.025 | .329+.021 | .284+.024 | .149+.028 | .257+.027 | .144+.027

To answer this question, we conducted experiments on two
dataset SUSY and Epsilon with larger scale. The statistics
are presented in Table 7 experimental results are shown in
Table 2 and Figure 10. We can observe that our OLD’S still
presents the best performance than all other competitors
with the the lowest ACR value with 3.1% and 14.4% respec-
tively, from Table 2. Besides, compared with its two variants,
OLD?S always holds the faster convergence rate than OLD-
FD. As shown in Figure 12a, OLD-FD shows a sudden drop
on the dataset SUSY after observing about 150,000 instances
in multiple rounds of experiments. This fixed-depth deep
model performs even worse than linear models after the
overlapping 7T,. We extrapolate that this SUSY dataset has
a highly nonlinear evolving relationship, making a data-
demand OLD-FD suffer from low convergence rate. The
slow convergence trend also appears in the dataset Epsilon,
as shown in Figure 12b. OLD-FD tends to converge after
observing nearly 75,000 instances, while OLD-Linear and
OLD?’S only needs about 10,000 instances. The significant
declines of OLD-Linear and OLD®S on Epsilon after T,
indicate the failure of leveraging old knowledge. To wit,
we can observe that OLD?S needs about 10,000 instances to
converge while the overlapping period only contains 10,000
instances. As a result, a deep VAE model fails to capture a
latent subspace of S; and force it to approximate that of Sy
in a short overlapping period.

7 CONCLUSION

This paper proposed a new online learning paradigm,
named OLD?S, which enables a deep learner to make on-
the-fly decisions on data streams with a constantly evolving
feature space. The key idea is to establish a mapping rela-
tionship between the old and new features, such that once
the old features vanish, they are reconstructed from the new
features, allowing the learner to harvest both old and new
feature information to make accurate online predictions via
ensembling. To realize this idea, the crux lies in the harmo-
nization of model onlineness and expressiveness. To respect
the high dimensionality and complex feature interplay in
the real-world data streams, our OLD®S approach discov-
ered a shared latent subspace using variational approxi-
mation, which can encode arbitrarily expressive mapping
functions for feature reconstruction. Meanwhile, as the real-
time nature of data streams biases shallow models, (which
converge faster hence regret less when learning just begins),
our approach enjoyed an optimal depth learned from data,
starting from shallow and gradually becoming deep if more
complex patterns are required to be captured in an online
fashion. Theoretical results indicated that our approach can
provably benefit from an adaptively learned model depth
and an online ensemble prediction. Theoretical and compar-

ative studies evidenced the viability of our approach and its
superiority over the state-of-the-art competitors.
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