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Abstract

Sparse online learning has received extensive attention dur-

ing the past few years. Most of existing algorithms that

utilize ℓ1-norm regularization or ℓ1-ball projection assume

that the feature space is fixed or changes by following ex-

plicit constraints. However, this assumption does not always

hold in many real applications. Motivated by this observa-

tion, we propose a new online learning algorithm tailored for

data streams described by open feature spaces, where new

features can be occurred, and old features may be vanished

over various time spans. Our algorithm named RSOL pro-

vides a strategy to adapt quickly to such feature dynamics

by encouraging sparse model representation with an ℓ1- and

ℓ2-mixed regularizer. We leverage the proximal operator of

the ℓ1,2-mixed norm and show that our RSOL algorithm en-

joys a closed-form solution at each iteration. A sub-linear

regret bound of our proposed algorithm is guaranteed with a

solid theoretical analysis. Empirical results benchmarked on

nine streaming datasets validate the effectiveness of the pro-

posed RSOL method over three state-of-the-art algorithms.

Keywords: online learning, sparse learning, streaming fea-

ture selection, open feature spaces, ℓ1,2 mixed norm

1 Introduction

Data streams can nowadays be generated from real
applications in high velocity, thanks to advances in
and ubiquity of sensing techniques [4–10]. These data
streams provide a real-time description of our commu-
nities, cities, and natural and societal environments
that constantly evolve. Online Learning (OL) that en-
ables to train decision-making models on-the-fly in ac-
cordance with the evolving patterns of data thus leads
to many powerful algorithms for streaming data analyt-
ics [6, 8–10, 37]. The initial focus of OL algorithms was
to deal with an incremental sample space, where the
instances of training data emerge one after the other
and are processed in a single pass. All data instances
are posited to reside in a fixed feature space. How-
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ever, this assumption can be too restrictive in prac-
tice. To wit, consider an urban disaster monitoring sys-
tem aided by OL, where streaming data are sent from
crowd-sensing devices such as smart phones and sensor
kits/sites that scatter across a geographically wide re-
gion in real time [2]. Fixing the set of features to be
used in a prior is next to impossible for two reasons.
First, new users join the sensing effort would commit
data collected by their own devices (e.g., a new-brand
cellphone), thus introducing new sensory features. Sec-
ond, as users may stop sending data for reasons like
battery exhaustion or network malfunction, any pre-
existing features can become unobserved in later time
snapshots. Another example is spam filtering, where
new features (e.g., new words, hashtags, and URLs) rel-
evant to classification tend to appear over time [32]. In
extreme cases, the original set of features can become
totally irrelevant for subsequent use in the learning task.
We coin such data inputs as streaming data in open fea-
ture spaces (SDOFS).

To enable learning in an SDOFS setting, recent
studies have proposed new OL models [1, 11, 16, 17, 19,
22, 28, 39, 44], with their shared idea being to estab-
lish a mapping relationship between old and new fea-
tures. As such, for any new feature just emerging, its
learning coefficient can be better initialized to expedite
convergence; for old features turned unobservable, their
learned coefficients can still be leveraged via reconstruc-
tion, thereby saving learning cost.

However, the previous SDOFS studies all suffer one
limitation – to maximize their learning performance, all
emerged features must be remembered in their mod-
els. This is impractical in data applications where new
features are generated in wild velocities. For example,
social opinion mining, where hundreds of millions of
new features on social media, such as hashtags, buz-
zwords, or topics, are emerging, trending, and then van-
ish within short time spans [27, 29]. Keeping all fea-
tures would result in an OL model with prohibitively
huge size and dimension, eating up memory resources,
slowing down computing speed, and usually ending up
with inferior classification performance. Moreover, the
possibly very large feature space, even of unknown or
infinite sizes, can make the resultant OL model non-
interpretable, where the features being relevant to learn-
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ing tasks are overwhelmed by other irrelevant features.
Specifically, we propose a novel OL approach that

encourages a sparse model solution in an SDOFS setup,
termed Robust Sparse Online Learning in open feature
spaces with ℓ1,2-Norm Constraint (RSOL, for short).
Our key idea is two-fold. First, to tame the feature
space dynamics, we tailor an online passive-aggressive
(PA) program based on the margin-maximum principle.
The proposed PA program reweighs the learning weights
at each iteration only if the increment or decrement of
feature space would incur prediction loss. Second, to
encourage model sparsity, we impose an ℓ1,2-norm con-
straint on the PA program and solve it with a closed-
form solution. We leverage an incremental matrix with
memory of the learned feature weights and apply the
sparsity-preserved operator on it to stabilize the resul-
tant sparse solution. In the matrix, the learning weights
of a feature should be set to zero consistently over the
memory length, if the feature is irrelevant. We show
that our RSOL enjoys a closed form solution, which
lends itself amenable for implementation. Theoretical
and empirical studies are carried out to substantiate
the effectiveness of our proposed methods.

2 Related Work

We relate our proposed RSOL approach to two research
threads: online learning in open feature spaces, which
performs OL in the same data environment as we do,
and sparse online learning, which aims to reduce the
OL model dimension but mostly in fixed feature spaces,
while ours are open.

Note, we are aware of another thread of studies
termed online streaming feature selection (OSFS) [26,
33, 35, 36], which are seemingly similar to our study
but essentially different in two aspects. First, OSFS
allows incremental feature input but posits a fixed
instance space, i.e., all instances are given in advance
before feature selection starts. In our setting, however,
the data instances are presented one after the other
like normal streams. Second, OSFS decouples feature
selection and learning, i.e., it selects a set of highly
relevant features at first and then trains and evaluates a
predictive model on it in an offline fashion. Our setting
is more challenging as we need to perform learning and
feature selection jointly in an online fashion.

2.1 Online Learning in Open Feature Spaces
In OL, a given learning algorithm tries to infer a
prediction model from sequentially appearing instances.
OL algorithms can be distinguished into first-order
and second-order, where first-order algorithms use first-
order information for the update, e.g., the Perceptron
algorithm [14] or Online Gradient Descent [42]. Second-

order algorithms aim to make use of the underlying
structure between features [7, 38].

However, traditional OL methods cannot learn from
open feature spaces since they assume the feature space
remains constant. To alleviate this restriction, pioneer
studies considered an increasing feature space [15, 32,
39], with the crux lying in initializing the learning
weights of new features with an educated guess, such
that the online learner can enjoy a jump-start with
faster convergence over random initialization on new
features. Later studies further relaxed this setting into
an arbitrarily open feature space [1,16,18–22,40], where
new features can emerge and any pre-existing features
may stop to be observed at any time. Linear ensemble
models became a core technique of these approaches.
Its idea is to establish feature relationship, such that
the learner can reconstruct the old features to leverage
their learned weights for better prediction performance
in cases where they become unobserved.

Unfortunately, such ensembled linear models would
soon grow to unmanageably large size as new features
keep emerging. To reduce the dimension, recent stud-
ies [17, 28] suggested to extract complex feature inter-
plays in latent space. Alas, this latent model repre-
sentation would inevitably sacrifice model interpretabil-
ity, which is critical in various domains such as finance,
medicine, and security. Our proposed RSOL approach
excels in the sense that our sparse model solutions are
directly associated with the original features. The lever-
aged ℓ1,2-norm would consistently encourage the model
weights converging to a limited number of entries while
setting others to zero. The higher its weight, the more
relevant this feature is to the prediction. The model
interpretability is thus preserved in an online process.

2.2 Sparse Online Learning The goal of sparse
online learning is to induce sparsity in the weights of
online learning algorithms [3, 43], ensuring the predic-
tion model only contains a limited size of active fea-
tures. The following algorithms, thus, have the poten-
tial to achieve better performance and interpretability
as well. The existing solutions for sparse online learn-
ing can be categorized into two main groups: truncation
gradient based methods and regularized dual averaging
based methods. The former group follows the general
idea of subgradient descent with truncation. For ex-
ample, Langford et al. [24] propose a simple yet effi-
cient modification of the standard stochastic gradient
via truncated gradient (TG) to achieve sparsity in on-
line learning. Duchi and Singer [12] further propose a
forward-backward splitting (FOBOS) algorithm to solve
the sparse online learning problems. However, with
high-dimensional streaming data, the TG and FOBOS
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methods suffer from slow convergence and high variance
due to heterogeneity in feature sparsity. To the end, Ma
and Zhang [30] introduce a stabilized truncated stochas-
tic gradient descent (STSGD) algorithm. Chen et al. [3]
extend TG to cost-sensitive OL via truncated gradient
(CSTG) and make it cost-sensitive and scalable for im-
balanced and high-dimensional data streams.

The latter group focuses on the dual averaging
methods that can explicitly exploit the regularization
structure. One representative method is the regularized
dual averaging (RDA) proposed in [34], which learns
the variables by solving a regularized optimization prob-
lem that involves the average of all past subgradients
of the loss functions. Lee and Wright [25] further ex-
tend the RDA algorithm to RDA+ by using a more
aggressive truncation threshold. Tang et al. [45] pro-
pose a dual perspective of online learning algorithm,
which concerns using a window method to achieve spar-
sity and robustness. The Fenchel conjugates and gra-
dient ascent are used to perform online learning op-
timization process. Ushio and Yukawa [31] propose
the projection based regularized dual averaging (PDA)
method to exploit a sparsity-promoting metric and a
sparsity-promoting regularizer simultaneously. Zhou et
al. [41] propose an online algorithm GraphDA for graph-
structured sparsity constraint problems using the dual
averaging method. Chen et al. [7] develop a second-
order projection dual averaging based online learning
(SPDA) method to effectively handle high-throughput
streaming data. By fully exploiting the regularized dual
averaging optimization, the second-order information,
and an optimal projection operator, SPDA converges
fast with fairly optimal solutions.

Unfortunately, none of these methods can be gen-
eralized to an open features. Specifically, for a new fea-
ture, its weight either is initialized as zero, which can
be interpreted as irrelevant, or is randomly initialized,
which would require a sufficiently large number of in-
stances to converge. Likewise, for an old feature becom-
ing unobserved, no gradient information is available on
its entry, thus its weight is not updated. Both cases lead
to statistical bias. Our RSOL approach outperforms
the prior studies by leveraging a passive-aggressive (PA)
learner that 1) apportions the weights from other exist-
ing features to a new feature for its better initialization
and 2) redistributes the weight of an unobserved old
feature to other features. Closed-form solutions1 are
available for both cases, which lends our RSOL an ad-
vantage of fast convergence and be integrative to the
tailored sparsity constraints.

1All detailed proofs are provided at the link: https:
//www.dropbox.com/scl/fi/v5o5hrlw0wuwzamm4fhn6/

SDM24 Appendix.pdf?rlkey=797oeccx0ivzlvnwuekb1tn6u&dl=0

3 Proposed Method

In this section, we first formulate the learning problem
(in Section 3.1) and then present our proposed RSOL
algorithm. In particular, in Section 3.2, we elaborate
the PA learner that deals with the feature space incre-
ment and decrement; in Section 3.3, we introduce the
ℓ1,2-norm regularization and how it encourages model
sparsity.

3.1 Problem Statement We start with a typical
SDOFS modeling. Write an input sequence {(xt, yt) |
t ∈ [T ]}. Each data instance xt ∈ Rdt received at
the t-th round is a vector of dt-dimension, associated
with a true class label yt ∈ {−1,+1}. We hereby
follow prior art [16, 20] to restrict our interest in a
binary classification problem, as multi-class setups can
be trivially reduced to binary cases with One-vs-One or
One-vs-Rest strategies [1].

At each round, the learner observes xt and returns
a prediction ŷt = sign(w⊤

t xt). The true label yt is
then revealed, and the learner suffers a risk if the
prediction was incorrect, e.g., gauged by hinge loss
ℓt(wt, (xt, yt)) = max (0, 1− yt(w

⊤
t xt)). The learner

then is updated to wt+1 based on the loss information
and gets ready to the next round. Our goal is to find an
updating strategy A that minimizes empirical risk and,
more importantly, yields a sparse model solution over T
rounds, namely:

(3.1) min
wt∈Rdt

Et∈[T ] [ℓt(wt, (xt, yt))] + ∥wt∥0,

where the ℓ0-norm counts the number of nonzero entries
in weight vector wt.

The main challenge is imposed by the fact that
the feature space is open and can be either decremen-
tal (dt+1 ≤ dt) or incremental (dt+1 ≥ dt), due to
newly emerging features or unobserved old features, re-
spectively. The survived features are represented by
xs
t+1 = xt ∩ xt+1 or ws

t+1 = wt ∩ wt+1, the van-
ished features are represented by xv

t+1 = xt \ xt+1 or
wv

t+1 = wt \wt+1, and the new features are represented
by xn

t+1 = xt+1 \ xt or w
n
t+1 = wt+1 \wt.

3.2 Online Passive-Aggressive Feature
Reweighing If the feature dimension is decreased from
the t-th round to the (t+ 1)-th round (i.e., dt ≥ dt+1),
then we decompose the instance xt = [xs

t ;x
d
t ] and

the corresponding weight vector wt = [ws
t ;w

d
t ], where

xs
t ∈ Rdt+1 is the vector with survival features and

xd
t ∈ Rdt−dt+1 is the vector with vanished features.

That is, xs
t and ws

t have the same dimension as xt+1

and wt+1. Moreover, to make the model robust to the
noise, we use the soft-margin technique by introducing

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited183

D
ow

nl
oa

de
d 

06
/0

6/
24

 to
 1

28
.8

2.
17

.4
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://www.dropbox.com/scl/fi/v5o5hrlw0wuwzamm4fhn6/SDM24_Appendix.pdf?rlkey=797oeccx0ivzlvnwuekb1tn6u&dl=0
https://www.dropbox.com/scl/fi/v5o5hrlw0wuwzamm4fhn6/SDM24_Appendix.pdf?rlkey=797oeccx0ivzlvnwuekb1tn6u&dl=0
https://www.dropbox.com/scl/fi/v5o5hrlw0wuwzamm4fhn6/SDM24_Appendix.pdf?rlkey=797oeccx0ivzlvnwuekb1tn6u&dl=0


a slack variable ξ into the optimization problem. In this
case, we extend the passive-aggressive (PA) algorithm
to update wt+1 by solving the following optimization
task:

(3.2) wt+1 = argmin
w∈Rdt+1 ,ℓt+1≤ξ,ξ∈R

1

2
∥w −ws

t ∥22 + µξ2

where µ > 0 is a penalty parameter that can tradeoff
the rigidness and slackness of the online model. A larger
value of µ implies a more rigid update step, and ℓt+1 =
ℓt+1(w, (xt+1, yt+1)) = max (0, 1− yt+1(w

Txt+1)) is
the loss at round t+1. Then, we derive the closed-form
solution for the above equation in Theorem 3.1.

Theorem 3.1. (Closed-form Solution of Eq. (3.2))
The closed-form solution for minimizing Eq. (3.2) is

wt+1 = ws
t+γtyt+1xt+1, where γt =

ℓt+1(w
s
t ,(xt+1,yt+1))

∥xt+1∥2
2+

1
2µ

.

If the feature dimension is increased from the t-th
round to the (t + 1)-th round (i.e., dt ≤ dt+1), then
we decompose the instance xt+1 = [xs

t+1;x
n
t+1] and

the corresponding weight vector wt+1 = [ws
t+1;w

n
t+1],

where xs
t+1 ∈ Rdt is the vector with survival features

and xn
t+1 ∈ Rdt+1−dt is the vector with newly-observed

features. That is, xs
t+1 and ws

t+1 have the same
dimension as xt and wt. In this case, similarly, we
extend the PA algorithm to update wt+1 by solving the
following optimization task:

wt+1 = argmin
w=[ws;wn]∈Rdt+1 ,ℓt+1≤ξ,ξ∈R

1
2∥w

s −wt∥22 + 1
2∥w

n∥22 + µξ2(3.3)

where µ > 0 is a penalty parameter, and ℓt+1 =
ℓt+1(w, (xt+1, yt+1)) = max (0, 1− yt+1(w

Txt+1)) =
max (0, 1− yt+1((w

s)Txs
t+1)− yt+1((w

n)Txn
t+1)) is the

loss at round t + 1. Then, we derive the closed-form
solution for the above equation in Theorem 3.2.

Theorem 3.2. (Closed-form Solution of Eq. (3.3))
The general update strategy is the closed-form
solution of Eq. (3.3), wt+1 = [ws

t+1;w
n
t+1] =

[wt + γtyt+1x
s
t+1; γtyt+1x

n
t+1], where γt =

max (0,1−yt+1w
T
t xs

t+1)

∥xs
t+1∥2

2+∥xn
t+1∥2

2+
1
2µ

=
ℓt+1(wt,(x

s
t+1,yt+1))

∥xs
t+1∥2

2+∥xn
t+1∥2

2+
1
2µ

=

ℓt+1([wt;0],(xt+1,yt+1))

∥xt+1∥2
2+

1
2µ

, and [wt;0] ∈ Rdt+1 .

Hence, using the above two strategies with closed-
form solutions, we can alternately update the online
model in an SDOFS setup with widely evolving vanish,
survival, and new features.

3.3 Memory-aware ℓ1,2-Norm Model Sparsify-
ing In this section, we consider the problem setting

of the online binary classification task for SDOFS and
present the RSOL method to achieve sparse solution by
leveraging the ℓ1- and ℓ2-mixed regularizer. We observe
that when using the ℓ2 norm as the regularization func-
tion, we obtain an all zeros vector if ∥w∥2 ≤ λ (The-
orem 3.3). The zero vector does not carry any gener-
alization properties, which surfaces a concern regarding
the usability of these norms as a form of regularization.
This seemingly problematic phenomenon can, however,
be useful in the incremental online setting. In many ap-
plications, the set of weights can be grouped into sub-
sets where each subset of weights should be dealt with
uniformly. For example, in the sparse online learning
problem for SDOFS, each sliding window is associated
with a different weight vector wl ∈ Rdl (l = 1, 2, · · · , L).
The prediction for a new instance x is a vector ⟨w1,x⟩,
⟨w2,x⟩, · · · , ⟨wL,x⟩, where L is the length of a spe-
cific sliding window. The predicted class is the index of
the inner-product attaining the largest of the L values,
argmaxl∈{1,2,··· ,L}⟨wl,x⟩. Since all the weight vectors
operate over the same instance space, in order to achieve
a sparse solution, it may be beneficial to tie the weights
corresponding to the input features. That is, we would
like to employ a regularization function that tends to
zero the row of weights wl

1, w
l
2, · · · , wl

dl
(l = 1, 2, · · · , L)

simultaneously. In these circumstances, the nullification
of the entire weight vector by the ℓ2 regularization be-
comes a powerful tool.

Formally, let W ∈ Rd×L represent a d × L ma-
trix where the l-th (l = 1, 2, · · · , L) column of the
matrix is the weight vector wl, where d is the to-
tal number of all evolvable features. Thus, the i-th
(i = 1, 2, · · · , d) row corresponds to the weight of the
i-th feature with respect to all instances. The mixed
ℓ1,2-norm of W , denoted ∥W ∥ℓ1,2 , is obtained by com-
puting the ℓ2-norm of each row of W and then applying
the ℓ1-norm to the resulting d dimensional vector, i.e.,
∥W ∥ℓ1,2 =

∑d
i=1 ∥wi∥2. Thus, in a mixed-norm regu-

larized optimization problem, we seek the minimizer of
the objective function,

(3.4) f(W ) + λ∥W ∥ℓ1,2 .

Given the specific variants of various norms, the
model update for the ℓ1,2 mixed-norm is readily avail-
able. Let wl ∈ Rd denote the l-th (l = 1, 2, · · · , L)
column of the matrix W ∈ Rd×L, i.e., W =
[w1,w2, · · · ,wL], and w̄i ∈ RL denote the i-th
(i = 1, 2, · · · , d) row of the matrix W ∈ Rd×L,
i.e., W = [w̄1; w̄2; · · · ; w̄d]. Analogously to the
standard norm-based regularization, we let Wt =
[[wt−L+1;0], [wt−L+2;0], · · · , [wt;0]] ∈ Rd×L be the in-
cremental matrix with all good feature alignment, where
[wt−l+1;0] ∈ Rd and wt−l+1 ∈ Rdt−l+1 (l = 1, 2, · · · , L),
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which can be obtained by online learning with decre-
mental or incremental features or mixed features (Sec-
tion 3.2). For the ℓ1,2 mixed-norm, we need to solve the
problem,

(3.5) min
W∈Rd×L

{1
2
∥W −Wt∥2F + λ∥W ∥ℓ1,2}

where ∥·∥2F is the Frobenius norm of a matrix and λ > 0
is the regularization parameter.

This problem is equivalent to
(3.6)

min
W=[w̄1;w̄2;··· ;w̄d]∈Rd×L

d∑
i=1

{1
2
∥w̄i − w̄i

t∥22 + λ∥w̄i∥2}

where w̄i
t is the i-th row of Wt. It is immediate to see

that the problem given in Eq. (3.5) is decomposable into
d separate problems of dimension L in Eq. (3.6), each of
which can be solved by the procedures described in the
following Theorem 3.3. The end result of solving these
types of mixed-norm problems is a sparse matrix with
numerous zero rows. In this way, RSOL can not only
alleviate the curse of dimensionality by the incremental
learning strategy, but also promote the sparsity of
decremental and incremental features by considering
feature correlations over time. Hence, RSOL has a
big potential to improve the prediction performance
compared with most existing methods.

Theorem 3.3. (Closed-form Solution of RSOL)
The closed-form solution of the following ℓ2-norm min-
imization: w̄i

⋆ = argminw̄i∈RL{ 1
2∥w̄

i−w̄i
t∥22+λ∥w̄i∥2},

where i = 1, 2, · · · , d, is:

(3.7) w̄i
⋆ =

{
0 if ∥w̄i

t∥2 ≤ λ

(1− λ
∥w̄i

t∥2
)w̄i

t if ∥w̄i
t∥2 > λ

Remark 1: It is worth noting that the ℓ2 regular-
ization results in a zero weight vector under the con-
dition that ∥w̄i

t∥2 ≤ λ. This condition is rather more
stringent for sparsity than the condition for ℓ1 (where
a weight is sparse based only on its value, while here,
sparsity happens only if the entire weight vector has
ℓ2-norm less than λ), so it is unlikely to hold in high
dimensions. However, it does constitute a very impor-
tant building block when using a mixed ℓ1/ℓ2-norm as
the regularization function.

In summary, the pseudo codes of the proposed
RSOL method are present in Algorithm 1.

4 Theoretical Analysis

Clearly, for the online update of decremental features,
the regret of RSOL can be bounded by O(

√
T ) as the

conventional online gradient descent with fixed feature
space. Here, we introduce Lemma 4.1 and derive the
regret bound of RSOL with incremental features in
Theorem 4.1.

Lemma 4.1. Let (x1, y1), (x2, y2), · · · , (xT , yT ) be a se-
quence of training instances, where xt ∈ Rdt , dt ≤
dt+1, and yt ∈ {−1,+1} for all t ∈ [T ]. Let the
learning rate γt for the online learning with incre-
mental features. Then, the following bound holds for
any w ∈ RdT (d1 ≤ d2 ≤ · · · ≤ dt ≤ dT ≤
dT ),

∑T−1
t=0 γt(2ℓt+1([wt;0], (xt+1, yt+1))− γt∥xt+1∥22 −

2ℓt+1(Πwt+1w, (xt+1, yt+1))) ≤ ∥w∥22, where Πwt+1w =
Πxt+1w ∈ Rdt+1 is the sub-vector of w and has the same
dimension as wt+1 and xt+1.

Algorithm 1 The RSOL Algorithm

Online input: streaming instance xt+1; true label
yt+1; regularization parameter λ, penalty parameter
µ, and sliding window size L.

Online output: sparse solution, wt+1.
1: Initialization: w0 = 0 ∈ Rd0 ;
2: for t = 0, 1, . . . , T − 1 do
3: receive xt+1 ∈ Rdt+1 ;
4: if (dt ≥ dt+1) then
5: predict ŷt+1 = sign((ws

t )
Txt+1) and receive

yt+1 ∈ {−1,+1};
6: suffer loss ℓt(wt) = ℓt+1(w

s
t , (xt+1, yt+1));

7: update wt+1 = ws
t + γtyt+1xt+1, where γt =

ℓt+1(w
s
t ,(xt+1,yt+1))

∥xt+1∥2
2+

1
2µ

;

8: sparse update wt+1 = argminw̄i∈RL{ 1
2∥w̄

i −
w̄i

t+1∥22 + λ∥w̄i∥2}(i = 1, 2, · · · , dt+1) through
Eq. (3.7);

9: else if (dt ≤ dt+1) then
10: predict ŷt+1 = sign([wt;0]

Txt+1) and receive
yt+1 ∈ {−1,+1};

11: suffer loss ℓt(wt) = ℓt+1([wt;0], (xt+1, yt+1));
12: update wt+1 = [ws

t+1;w
n
t+1] =

[wt + γtyt+1x
s
t+1; γtyt+1x

n
t+1], where

γt =
ℓt+1([wt;0],(xt+1,yt+1))

∥xt+1∥2
2+

1
2µ

;

13: sparse update wt+1 = argminw̄i∈RL{ 1
2∥w̄

i −
w̄i

t+1∥22 + λ∥w̄i∥2}(i = 1, 2, · · · , dt+1) through
Eq. (3.7);

14: end if
15: end for

Theorem 4.1. (Regret Bound of RSOL) Let
(x1, y1), (x2, y2), · · · , (xT , yT ) be a sequence of training
instances, where xt ∈ Rdt , dt ≤ dt+1, yt ∈ {−1,+1},
and ∥xt∥22 ≤ R2 (R > 0) for all t ∈ [T ]. Let
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(a) codrna (b) covtype (c) dna

(d) ECWdata (e) german (f) ijcnn1

(g) musk (h) poker (i) w8a

Figure 1: Dynamic learning curves in terms of average sparsity of all competing online algorithms.

the learning rate γt = ℓt+1([wt;0],(xt+1,yt+1))

∥xt+1∥2
2+

1
2µ

for the

RSOL with online learning with incremental features.
Then, the following regret bound RT (w) holds for
any w ∈ RdT (d1 ≤ d2 ≤ · · · ≤ dt ≤ dT ≤ dT ),

RT (w) =
∑T−1

t=0 ℓt+1([wt;0], (xt+1, yt+1)) −∑T−1
t=0 ℓt+1(Πwt+1

w, (xt+1, yt+1)) ≤
√
T (∥w∥2

2 +
UT ) + ( 1

2µ + R2)∥w∥22, where UT =√∑T−1
t=0 ℓ2t+1(Πwt+1

w, (xt+1, yt+1)).

Remark 2: Theorem 4.1 indicates that the regret
bound of RSOL is upper bounded by a sub-linear bound
plus ( 1

2µ+R2)∥w∥22. If we assume that for any w ∈ RdT ,

we have ∥w∥22 ≤ C2 (C > 0), we can obtain that
RT (w) ≤

√
T (C2 + UT ) + ( 1

2µ + R2)C2, which implies

that the regret bound of RSOL enjoys O(
√
T ). Hence,

the average regret bound of RSOL is O( 1√
T
), which will

converge to zero as the number of streaming samples
T → ∞.

5 Experiments

5.1 Datasets and Evaluation Protocol Our eval-
uations are conducted on nine benchmark datasets since

these datasets originally contain large-scale instances
and relatively high-dimensional features. The evaluated
datasets span diverse application domains. Table 1 sum-
marizes their statistics. We follow the same protocol of
prior studies [16, 39] to simulate the streaming feature
dynamics, where the later inputs tend to carry incre-
mentally more features and decrementally less features.
We split the original datasets into twenty chunks, where
in the i-th (i = 1, 2, · · · , 10) chunk only the first i×10%
features would be retained, i.e., the first data batch will
retain the first 10% features and so forth. In the i-th
(i = 11, 12, · · · , 20) chunk only (21 − i) × 10% features
would be retained. All the datasets are implemented
with 5% ∼ 25% outliers for the experiments. The Hoyer
sparsity measurement [23] and dynamic error rate are
employed to measure the algorithm performance.

5.2 Experimental Settings We implement RSOL
in Matlab. The implementations of OLSF, OCDS, and
FESL are conducted from [39], [16], and [22], respec-
tively. For a fair comparison, the same experimental
setup is applied to all algorithms. We set λ to be 50,
L to be 103, and µ to be 1. The parameters are chosen
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(a) codrna (b) covtype (c) dna

(d) ECWdata (e) german (f) ijcnn1

(g) musk (h) poker (i) w8a

Figure 2: Dynamic learning curves in terms of online average classification error rate of all competing algorithms.

with cross validation. All the other parameter values
are determined based on [39], [16], and [22]. Twenty in-
dependent runs for each dataset are performed and the
average results of each method are reported.

Table 1: Summary of the datasets.
Dataset #Samples #Features #Classes
codrna2 59, 535 8 2
covtype2 581, 012 54 7
dna3 2, 000 180 2

ECWdata3 5, 000 20 2
german3 1, 000 24 2
ijcnn13 141, 691 22 2
musk3 3, 062 166 2
poker3 25, 010 10 2
w8a3 64, 700 300 2

5.3 Dynamic sparsity comparisons As shown in
Fig. 1, we investigate the dynamic sparsity of all al-
gorithms with the progression of incoming instances.
RSOL significantly achieve much higher sparsity mea-
surement than other methods on the “covtype”, “dna”,

2http://archive.ics.uci.edu/ml/datasets.php
3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

“musk”, and “w8a” datasets. The Hoyer sparsity mea-
surement achieved by RSOL is approximate 0.80, 0.50,
0.55, and 0.75 on these four datasets with relatively
high feature dimension, which is superior to other three
methods. This indicates that our proposed method not
only achieves lower classification error rates for the on-
line updates (Section 5.4), but also obtains a better
sparsity level of the online model for handling streaming
data with varying feature spaces.

5.4 Impacts of RSOL In this section, we dynami-
cally show the real time classification performance of all
competing algorithms when the streaming data comes
sequentially in Fig. 2. The online average error rate
curves of RSOL dominate the corresponding curves of
all other algorithms (without much variation). The
superiority of RSOL over others is evident on “co-
drna”, “dna”, “ECWdata”, “ijcnn1”, “musk”, “poker”,
and “w8a” datasets. It is worth noting that most
of these datasets have relatively high feature spaces.
These results validate the efficiency of RSOL in han-
dling high-dimensional issues compared with competing
online learning algorithms tailored for data streams de-
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Figure 3: The sensitivity analysis of parameters λ and
µ of RSOL on the “covtype” dataset.

scribed by open feature spaces. Moreover, the dynam-
ical average error rate of RSOL is much lower than all
other methods on the “w8a” dataset, where the severe
imbalance ratios of positives and negatives are present.
This indicates that RSOL has the potentials to effec-
tively capture the underlying structure of the minority
classes associated with the ever-evolving distributions
of streaming data.

5.5 Sensitivity Analysis of RSOL To run RSOL,
one needs to specify two regularizaton parameters λ
and µ. Since λ determines the sparsity level of
RSOL and µ is to balance rigidness and slackness,
we investigate how the alterations of λ and µ af-
fect the performance of RSOL by grid search. Tak-
ing the large-scale dataset “covtype” as the example,
we summarize the performance of RSOL when λ and
µ are selected from [10−2, 10−1, 100, 101, 2 × 101, 5 ×
101, 102] and [10−3, 10−2, 10−1, 100, 101, 102, 103], re-
spectively. In Fig. 3, we compare the dynamic aver-
age error rates when varying these parameters. It is
evident that the performances of RSOL are relatively
stable without much variation when µ is in the range
of [10−2, 10−1, 100, 101, 102]. However, the average er-
ror rates of RSOL are fluctuated as proper λ is vital to
determine the sparsity and performance of the model.
When µ is fixed, the average error rates of RSOL signif-
icantly is increased when the values of λ are decreased
from 102 to 10−2. The reason is that a relatively small
λ will promote the sparsity level, however, deteriorate
the classification error rates of RSOL as well. Over-
all, RSOL is relatively robust to the parameter µ but is
somewhat sensitive to the parameter λ.

6 Conclusion

In this paper, we focus on a general and challenging
setting - online learning from SDOFS with dynami-
cally vanished, survived and new features over time by
proposing RSOL. By leveraging the power of the ℓ1,2-
norm constraint, we exploit sparse ’non-zero’ weights
of the memory-aware matrix, resulting in truly sparse
solutions in this complex prediction problem. We theo-
retically prove the regret bound of the proposed RSOL
method with a sub-linear setup. A wide experiments on
multiple benchmark datasets demonstrate the effective-
ness of the proposed RSOL method over three advanced
state-of-the-art online methods.
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