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Abstract—Point-of-Interest (POI) recommendation, pivotal for
guiding users to their next interested locale, grapples with the
persistent challenge of data sparsity. Whereas knowledge graphs
(KGs) have emerged as a favored tool to mitigate the issue, ex-
isting KG-based methods tend to overlook two crucial elements:
the intention steering users’ location choices and the high-order
topological structure within the KG. In this paper, we craft an
Intention-aware Knowledge Graph (IKG) that harmonizes users’
visit histories, movement trajectories, and location categories to
model user intentions. Building upon IKG, our novel Intention-
aware Knowledge Graph Network (IKGN) delves deeper into
the POI recommendation by weighing and propagating node
embeddings through an attention mechanism, capturing the
unique locational intent of each user. A sequential model like
GRU is then employed to ensure a comprehensive representation
of users’ short- and long-term location preferences. An empirical
study on two real-world datasets validates the effectiveness of our
proposed IKGN, with it markedly outshining seven benchmark
rival models in both Recall and NDCG metrics. The code of
IKGN is available at https://github.com/Jungle123456/IKGN.

Index Terms—Knowledge Graph, POI Recommendation, User
Intention, Higher-Order Connectivity

I. INTRODUCTION

Point-of-Interest (POI) recommendation aspires to recom-

mend unvisited locales to users, drawing inference from their

historical check-in data [1]. At its core, a POI recommender

system not only seeks to aid users in identifying relevant

POIs such as shopping centers, eateries, and recreational areas,

but also endeavors to forecast a sequence of POIs, thereby

crafting trajectories reflective of users’ evolving interests. Such

an endeavor weaves spatial and temporal dimensions, where

both the chronology and geographic proximity of POIs play

pivotal roles. Driven by the technological progression in smart

devices and mobile location-based services, users are now

more inclined to share their POI experiences on platforms like

Foursquare and Yelp. This interplay of innovative technology,

user engagement, and spatiotemporal aspects enriches the

research landscape of POI recommendation.

In the nascent phase of POI recommendation research,

seminal studies leveraged traditional Collaborative Filtering

� Corresponding Author: Dr. Xindong Wu (xwu@zhejianglab.com)

and Matrix Factorization algorithms [2], [3], dealing with

static POI matrices only. To respect and capture the temporal

patterns of user interests, later studies employed sequential

models such as Markov chains [4] and Recurrent Neural

Networks (RNNs), laying the groundwork for a series of

subsequent innovations [5]–[10]. These studies unfurled RNN

variants adept at extracting long- and short-term user trajectory

features with various memory mechanisms, further bolstering

POI recommendation efficacy. Despite so, the persistent issue

of data sparsity remains a prominent challenge.

To mitigate this challenge, knowledge graphs (KGs) [11],

[12] with extensive semantic contents has been incorporated

into POI recommender systems to provide auxiliary infor-

mation [13]–[16]. To wit, [13] proposed a meta-path-based

random walk algorithm to identify superior neighbors on KGs,

exploiting the topological structure to better the recommenda-

tion accuracy. Another thrust of research focused on learning

KG embeddings [14]–[16], where KGs were trained using

models such as TransR [17] to derive embedding represen-

tations of users and locations, which were then fed into a

Gated Recurrent Unit (GRU) network for sequential modeling.

Nevertheless, while these methods demonstrated performance

enhancements, we argue that current KG-based methods for

POI recommendation suffer two notable limitations: 1) the

lack of consideration for the underlying reasons why users

frequently visit specific location categories and 2) an oversight

of high-order connectivity inherent to the knowledge graphs.

In response to the highlighted issues, we introduce an

Intention-aware Knowledge Graph (IKG) that captures loca-

tion categories intertwined with spatiotemporal user informa-

tion. Our IKG emerges from a rich tapestry of user visit

histories, movement trajectories, and location category data, as

illustrated in Fig. 1. Central to our discourse is the concept of

intention, which we delineate as the underlying reason steering

users’ location preferences. It is intuitive that the nuanced

intentions underpin varied location preferences; consider, for

instance, while User A might predominantly visit parks during

weekends, User B may have a preference for cafés after work

hours on weekdays. This diversity in choices suggests that
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Fig. 1. An example of IKG. IKG includes three types of nodes and three types of relationships. Specifically, the three types of nodes are user nodes (U ),
POI nodes (P ), and location category nodes (C), while the three types of relationships are user visit relationships (R1), spatio-temporal cost relationships
(R2), and category correspondence relationships (R3). The specific construction process of IKG will be detailed in Sec IV-A.

user intentions are intricately woven into the very fabric of

the location categories they frequent. Upon this intuition, we

propose to integrate IKG into POI recommendation through

an end-to-end neural network model, coined Intention-aware
Knowledge Graph Network (IKGN), which strives to cap-

ture the fine-grained user-location dynamics. Specifically, we

leverage TransR [17] to initialize the embeddings of nodes

and their relations. To capture the personalized intention

of a user towards a certain location category, we tailor a

knowledge-aware attention mechanism to further learn the

node and relation embeddings via recursive propagation and

aggregation of neighboring nodes, where the weight of each

node neighbor is automatically learned during the learning

process. Such learned embeddings encapsulate rich insights on

users and locations, which are fed into a GRU network [14]

for identifying both short- and long-term user intentions.

Specific contributions of this paper are as follows:
• This paper explores a novel POI recommendation prob-

lem by taking into account the user intention, striving to

model the spatiotemporal dynamics between users and lo-

cations, aiming to discern the underlying reasons driving

users to repeatedly opt for certain location categories.

• We propose an end-to-end IKGN model, devised around

the Intention-aware Knowledge Graph (IKG). Our model

adeptly captures high-order entity dependencies within

the IKG, alongside user intentions. Using a knowledge

graph-aware attention mechanism, the IKGN discerns

the relative importance of neighboring node information

and optimizes user and location representations, thereby

enhancing the POI recommendation performance.

• Extensive experiments on two widely-used real-world

POI benchmarks substantiate that our proposal markedly

outperforms the state-of-the-art competitors.

II. RELATED WORK

A. Knowledge Graph for Recommendation

Recommendation methods based on knowledge graphs

(KG) can generally be divided into three types: embedding-

based methods, path-based methods, and propagation-based

methods [18]. The embedding-based methods involve using

translation models such as TransE [19], TransH [20], and

TransR [17] to learn vector representations of entities and

relationships. The CKE method [21] utilizes TransE in KG

to obtain entity embeddings, and then these embeddings are

inputted into matrix factorization (FM) to enhance the item

representation. On the other hand, the path-based methods

involve mining various connection relationships between users

and items based on the graph. For instance, the KPRN

model [22] combines the semantics of entities and relation-

ships to infer user preferences based on the order dependency

in the paths, thus generating path representations. In recent

years, propagation-based methods have achieved better results,

which learn the representations of users and items combined

with the above two methods. For example, KGAT [12] com-

bines user-item interactions and knowledge graphs into a

heterogeneous graph and then applies aggregation mechanisms

to it. CKAN [18] uses two different strategies to propagate

collaborative signals and knowledge-aware signals. KGIN [23]

achieves better relationship modeling by identifying user inten-

tion and relational path-aware aggregation in two dimensions.

MetaKG [24] proposes a new framework based on meta-

learning to capture user preferences and entity knowledge to

alleviate cold start recommendation problems.

B. POI Recommendation

As a frequently utilized approach for sequence predic-

tion, initial research on recommending the next point of

interest (POI) primarily relied on collaborative filtering and

matrix factorization models [25]–[28]. Nonetheless, the dy-

namic changes of user preferences has impeded the practical

implementation of such models. In recent years, Recurrent

Neural Network (RNN) has been the foundation for most next

POI recommendation models. STRNN [9] is an example of a

model that captures local spatiotemporal context to improve

the model’s performance. Time-LSTM [8] adds a time gate

to the LSTM structure to model the temporal and spatial
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Fig. 2. Motivations and contributions of the proposed model.

intervals of user transitions. The DeepMove [5] model is

a multimodal RNN model that combines sparse user fea-

tures and attention modules to capture user mobility patterns.

LSPTM [7] proposes a new model that includes a non-

local network for modeling long-term preferences and a geo-

graphically extended RNN for learning short-term preferences.

PLSPL [29] proposes a unified model for joint learning of

users’ preferences, which combines long-term and short-term

preferences based on users’ linear combination units to learn

the personalized weights of different users in different parts.

STAN [30] proposes a spatiotemporal attention network for

location recommendation, which uses a dual-attention system

to learn explicit spatiotemporal correlations within a user’s

trajectory. DRCF [31] is a deep recursive collaborative filtering

framework with a paired ranking function. It utilizes multi-

layer perceptron and recursive neural network architectures to

capture user-place interactions in a CF manner from observed

feedback sequences. ATCA-GRU [32] is an attention-based

GRU model for the next POI category recommendation, which

reduces the negative impact of sparse check-in data, captures

long-distance dependencies between user check-ins, and se-

lectively utilizes attention mechanisms to focus on relevant

historical check-in trajectories in check-in sequences.

In the field of POI recommendation, a small amount of re-

search has combined knowledge graphs to improve recommen-

dation performance. SKGEM [33] is a new Scalable Knowl-

edge Graph Embedding Model that aims to automatically

learn low dimensional node representations to formularize and

merge all heterogeneous factors into a context oriented graph,

and to some extent solve the cold start problem for the next

POI recommendation. ARNN [13] uses the external attributes

of users and POIs to construct a knowledge graph and designs

a random walk process on the KG based on meta-paths to

effectively discover neighbors based on geographic, semantic,

and user preference factors. The recent study, STKGRec [14],

constructs a spatial-temporal knowledge graph (STKG) based

on user movement trajectories and models long-term and short-

term preferences based on STKG. However, these methods do

not consider user intention and do not pay enough attention

to the importance of high-order propagation in KG, so they

fail to fully utilize the rich semantic information in KG as

illustrated in Fig. 2. In this work, we propose a new method

to construct the IKG based on users’ spatiotemporal movement

behavior and POI location categories. We use a knowledge-

aware attention mechanism to obtain node neighbors’ infor-

mation and model high-order entity dependencies to capture

user intention for location categories. Based on this, We update

node representations of users and locations and model long-

term and short-term preferences of users to recommend the

next POI that they may be interested in.

III. PROBLEM FORMULATION

In this section, we will introduce the notation definitions

used in this paper, as well as the basic problem statement

for the Next POI recommendation. Let U={u1, u2, . . . , u|U |}
denote the set of users, P={p1, p2, . . . , p|P |} denote the set

of POIs, C={c1, c2, . . . , c|C|} denote the set of location cat-

egories, where there is a many-to-many relationship between

U and P , and a many-to-one relationship between P and C.

a) Definition 3.1: User Trajectory Sequence. For each

user ui in U , there is a corresponding trajectory sequence

Si={si1, si2, . . . , sin−1, s
i
n}, where sin is the current trajectory

sequence and the others are historical trajectory sequences. For

each s in S, it consists of a consecutive sequence of POI loca-

tions that are visited by the user u. i.e., si={p1, p2, . . . p|si|}.

b) Definition 3.2: Intention-aware Knowledge Graph
(IKG). IKG: G = {(h, r, t)|h, t ∈ ε, r ∈ R}, where ε and

R are sets of entities and relations, respectively.

c) Definition 3.3: Problem Statement. The Next POI

recommendation can be defined: for user ui and a

given trajectory sequence Si, where the current trajectory

sin={p1, p2, . . . , pt−1}(sin ∈ Si) , pt−1 is the most recently

visited POI by ui and the goal is to recommend the top-N

POIs to user ui at the next time step t.

IV. METHOD

In this section, we provide a detailed description of how to

construct IKG and our proposed model, IKGN. IKGN employs

IKG in an end-to-end manner to achieve the next POI rec-

ommendation. Fig. 3 illustrates that the overall framework of

IKGN consists of three primary components: 1) the knowledge

graph embedding layer, which converts entities and relation-

ships in IKG into embedding representations; 2) the intention-

aware aggregation layer, which models higher-order entity

dependencies, recursively propagates embeddings from nodes’

neighbors, and uses a knowledge-aware attention mechanism

to learn the weights of each neighbor during propagation to
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capture the user’s intention towards location categories, ulti-

mately optimizing and updating node representations; 3) the

long-term and short-term preference modeling and prediction

layer, which uses the latest node and relation representations

to explore users’ long-term and short-term preferences from

their complete check-in sequences, ultimately merging vector

representations of different user preferences and outputting

prediction scores.

A. Knowledge Graph Construction Layer

In this paper, we present the IKG, which incorporates se-

mantic information from location categories based on the user-

POI interaction bipartite graph and considers users’ visit histo-

ries and spatio-temporal transition behavior of users to extend

the knowledge graph. IKG: G = {(h, r, t)|h, t ∈ ε, r ∈ R}. ε
and R can be abstracted into three types of nodes and three

types of relationships. Specifically, the three types of nodes

are user nodes (U ), POI nodes (P ), and location category

nodes (C), while the three types of relationships are user visit

relationships (R1), spatio-temporal cost relationships (R2), and

category correspondence relationships (R3). The user visit

relationship (R1) and spatio-temporal transition relationship

(R2) are extracted from the user trajectory sequence. R1

is established between U and P nodes and contains time

attributes, indicating that a user visited a POI location at

a certain time. R2 appears between Pi and Pj nodes and

contains user mapping as well as time and space change

attributes, indicating the time and space cost spent by a user

from Pi to Pj . Lastly, R3 appears between P and C nodes

and does not contain attributes, only indicating that P belongs

to location category C, and the relationship between P and C
is many-to-one.

Thus, the triples in IKG are classified into three types,

specifically P1 = (U, Ti, P ), P2 = (Pi, (Ui,ΔS,ΔT ), Pj),
and P3 = (P,Belong, C), where U , P , C ∈ ε, and Ti,

(U,ΔS,ΔT ), Belong ∈ R. The user’s movement trajectory

in IKG is considered as a combination of T1 and T2, while

the type of location that the user frequently visits can be

observed from T3. By integrating knowledge into the user’s

movement trajectory, the IKGN framework can identify the

user’s intention toward certain types of locations, which can

aid in improving the results of the Next POI recommendation.

It is worth noting that this study follows the methodology

presented in reference [7] which divides time into 48 time

periods. The first 24 time periods correspond to the 24 hours

of weekdays, while the last 24 time periods correspond to the

24 hours of weekends, without distinguishing holidays.

B. Knowledge Graph Embedding Layer

The knowledge graph embedding layer serves to parame-

terize entities and relationships into vector representations. In

this study, we employ TransR [17] on IKG for this purpose.

Specifically, given a triple (h, r, t) in IKG, the rationality score

for the triple is computed using the following formula [17]:

g(h, r, t) = ||Wreh + er −Wret||22, (1)

where the matrix Wr ∈ Rk∗d serves as the transformation

matrix for relation r. A lower score for a triple (h, r, t) signifies

a higher likelihood for the triple to be true and vice versa.

During training, TransR considers the relative order between

valid and corrupted triples, promoting their differentiation via

pairwise ranking loss [17], formatted as follows.

LIKG =
∑

(h,r,t,t′)∈Γ

−lnσ (g(h, r, t′)− g(h, r, t)) , (2)

Where Γ = {(h, r, t, t′) | (h, r, t) ∈ G, (h, r, t′) /∈ G} and

(h, r, t′) is a corrupted triplet constructed by replacing one

entity in a valid triplet at random. Additionally, σ(·) represents

the sigmoid function. This layer models entities and relations

as their initial embedding representation. The reason for select-

ing TransR from the pool of crowdsourced embedding models

lies in its incorporation of entity-relationship constraints. In

TransR, every triplet consisting of a head entity, relationship,

and tail entity necessitates a harmonized representation across

both entity space and relationship space. By imposing such

constraints, TransR facilitates the acquisition of precise em-

bedded representations and enhances the predictive capability

of relationships within the knowledge graph.

C. Intention-aware Aggregation Layer

The intention-aware aggregation layer aims to capture the

correlation between POIs and users’ intentions by mining the

location category attributes on the IKG. This module recur-

sively propagates embeddings from neighboring nodes, mod-

eling the high-order connectivity of IKG. While performing

the propagation, the concept of graph attention networks [34]

is integrated to generate attention weights for cascade propaga-

tion. This integration helps differentiate the impact of various

location categories on users. Furthermore, it empowers the

capability to acquire precise embedding representations for

both users and locations

As an example, user u1 visited p1, p2, p3, and p4, where

p1 and p2 belong to c3, p3 and p4 belong to c1 (c1, c3 ∈
C). The POI nodes take location categories as input to enrich

their characteristics and simulate the intention of user u1 by

propagating information from c1 and c3 to u1.

Regarding the entity h in IKG, it is necessary to define

its neighborhood Qh = {(h, r, t)|(h, r, t) ∈ G}. Here, h
represents the head entity in the IKG, and Qh denotes the

neighborhood of h. The linear combination of h’s neighbors

can be defined through the following equation:

eQh
=

∑
(h,r,t,)∈Qh

∂(h, r, t)et, (3)

Where ∂(h, r, t) is a controlling factor for information propa-

gation, the amount of information transmitted from node t to

h is regulated based on the relationship r. ∂(h, r, t) can be

expressed as follows [12]:

∂(h, r, t) = (Wret)
T tanh(Wreh + er). (4)

911

Authorized licensed use limited to: Old Dominion University. Downloaded on June 06,2024 at 20:25:56 UTC from IEEE Xplore.  Restrictions apply. 



IKG

P1 P2 P3 P4 P6

T1 T3
T2

P5

T4
T5 T6

User

POI

Category

Gym Restaurant Parking Office 
building

Airport

U1 U2

BelongBelongBelong BelongBelong Belong

(u1,
t2, s2)

(u1,
t1, s1)

(u2,
t3, s3)

(u2,
t4, s4)

R2
R3

R1

U2

U3

U1

P10P9

P8

P6

C6

P4

P3

P2
P1

P5

P7

C5

C4

C7

C5

C3

C2

C1

User

Place
Category of 

place

R1
R2

R3

Embedding
Layer

Embedding
Layer

Intention-aware Aggregation Layer

IK
G

 E
m

bedding

Relation
Embedding

Entity
Embedding

eu=e(1)
u+ …+e(m)

u

ep=e(1)
p+ …+e(m)

p

Preference Modeling and Prediction Layer

Softm
ax

Y

Long-Term Preference Modeling

Short-Term Preference Modeling

GRU

GRU

yn
�yn
�

*yn
*yn

~yn
~yn

'yn
'yn

Preference Modeling and Prediction Layer

Softm
ax

Y

Long-Term Preference Modeling

Short-Term Preference Modeling

GRU

GRU

yn
�

*yn
~yn

'yn

U1

C3

P1 P2

Fig. 3. The architecture of the IKGN model. The first part on the left represents an example of IKG, and the three parts on the right form the IKGN model,
which consists of three components: knowledge graph embedding layer, intention-aware aggregation layer, and preference modeling and prediction layer.

Thereafter, the controlling factor is normalized using the

softmax function, formulated as follows.

∂(h, r, t) =
exp(∂(h, r, t))∑

(h,r′,t′,)∈Qh
exp(∂(h, r′, t′))

. (5)

This normalization process allows the final attention score

to determine which neighboring nodes should receive more

attention to capture user intention signals. Subsequently, we

use eQh
and eh to update the high-order representation of

entity h. The embedding representation of entity h at layer m
is recursively defined as follows:

e
(m)
h = f(e

(m−1)
h , e

(m−1)
Qh

). (6)

The definition of e
(m−1)
Qh

is based on Equation (3), while

the aggregation function f [12] acts as an aggregator to

combine the linear combination of h and its neighboring

values. Specifically, this aggregator is defined as follows:

f =LeakyReLU(W1(eh + eNh
))

+LeakyReLU(W2(eh � eNh
)), (7)

where W1,W2 ∈ Rd
′∗d are trainable weight matrices and �

denotes element-wise multiplication.

As a result, the embedding propagation process captures

propagation paths that are similar to u1−p1−c3. Furthermore,

e
(2)
u1 explicitly encodes information from c3, clearly, high-

order embedding propagation injects user intention into the

representation learning process. To facilitate propagation, we

treat the relationships in IKG as bidirectional.

After m layers of propagation, we obtain multiple represen-

tations of user u and location p from eh, which are denoted

as {e(1)u , e
(2)
u . . . , e

(m)
u } and {e(1)p , e

(2)
p , . . . , e

(m)
p }, respectively.

The final representations of the user and location are defined

as follows and are used as input for the preference modeling

and prediction layer:

eu = e(1)u + e(2)u + . . . + e(m)
u , (8)

ep = e(1)p + e(2)p + . . . + e(m)
p . (9)

D. Preference Modeling and Prediction Layer

The backbone of the module is modified by the work of [14]

with an innovative approach. We integrate intention-aware

aggregation to acquire user and location vectors in order to

capture user intention and collaboration signals. This method

produces more accurate representations and inputs them into

the long-term and short-term preference modeling module

of [14], ultimately enhancing the final recommendation results.

After modeling both long-term and short-term prefer-

ences [14] in the layer, we derive the long-term preference

representation y+n , the current sequence representation y∼n ,

the representation of continuous spatial-temporal movement
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y∗n, and the representation of non-continuous spatial-temporal

movement y
′
n. Using this information, we calculate the prob-

ability distribution for predicting POIs as follows [14]:

Ŷ = softmax(WP [y
+
n ||y∼n ||y∗n||y

′
n]), (10)

where || represents a concatenation operation, while WP is a

trainable matrix for all POIs. Therefore, user intends to visit

the POI with highest probability at time t.

To optimize the parameters of the recommendation model,

we employ the logarithmic likelihood function as follows:

LPOI−Intention = −
N∑

k=1

log
(
Ŷk

)
. (11)

Finally, we represent the target loss function using Equa-

tions (2) and (11):

Lloss = LIKG + LPOI−Intention. (12)

Algorithm 1 provides a comprehensive overview of the

detailed process employed in IKGN. During the training phase,

we adopt an alternating optimization approach, optimizing

LIKG and LPOI−Intention iteratively, for optimizing both the

embedding loss and the recommendation loss of IKGN.

Algorithm 1: IKGN

Input: Intention-aware Knowledge Graph G,

Trajectory Sequence S, STKGRec

Algorithm [14]

Output: prediction Result Ŷ
1 while IKGN Not Converge do
2 for triple ∈ G do
3 Calculate triple score ← use Equations (1) and

(2);

4 get eh, er, et;
5 for h, t ∈ ε do
6 e

(0)
h ← eh, e

(0)
t ← et ;

7 for m ← 1 to M do
8 eQh

← use Equations (3), (4), and (5);

9 e
(m)
h , e

(m)
t ← use Equations (6) and (7);

10 eu ← use Equation (8);

11 ep ← use Equation (9);

12 y+n , y∼n , y∗n, y
′
n ← use STKGRec(eu, ep, S) [14];

13 Ŷ ← use Equation (10);

14 return Ŷ ;

15 STKGRec(eu, ep, S)

16 for l ∈ S do
17 y+n ← Long-term Preference Modeling;

18 y∼n , y∗n, y
′
n ← Short-term Preference Modeling;

19 return y+n , y∼n , y∗n, y
′
n ;

V. EXPERIMENTS

In this section, we conduct experiments on two real-world

datasets of Foursquare check-in data to assess the efficacy of

our proposed IKGN model. We aim to answer the following

research questions:

• RQ1: How does IKGN perform compared to the state-

of-the-art POI recommendation methods?

• RQ2: How do key components affect IKGN?

• RQ3: How does IKGN perform on sparser datasets?

• RQ4: How do different hyper-parameter settings (depth

of the intention-aware aggregation layer and embedding

size) affect IKGN?

A. Datasets and Preprocessing

We conduct an evaluation of our model on publicly available

Foursquare check-in datasets1 from two real-world cities: New

York City (NYC) and Tokyo (TKY). These datasets have

been widely utilized in related research papers. The records

from these datasets are collected between April 2012 and

February 2013 and include various data points, such as ID,

POI ID, category ID, category name, latitude and longitude

coordinates, and timestamps. To improve the quality of the

dataset, we remove POIs that are visited less than 10 times in

these two datasets and only include sessions with at least three

check-ins. Users with less than five sessions are removed from

our analysis. We then split the data into training, validation,

and test sets, with the first 80% of each user’s sessions used

as the training set, the most recent 10% as the test set, and

the remaining 10% as the validation set for hyperparameter

tuning. In addition, we also extracted small-scale datasets from

four countries on Foursquare check-in datasets, namely China

(CN), Greece (GR), Panama (PA), and Paraguay (PY). These

datasets are more sparse, and used to verify IKGN’s ability to

mitigate the impact of data sparsity on POI recommendations.

We performed the same processing on these four datasets as

described above. Table I provides a summary of the dataset’s

statistical information.

B. Methods for Comparison

To demonstrate the effectiveness of the model we proposed,

we compare IKGN with the following baselines:

• STRNN [9] is presented as a recursive neural network that

models spatio-temporal context based on time-specific

and distance-specific transformation matrices. This model

takes advantage of the inherent spatio-temporal depen-

dencies in the data and a linear interpolation is applied

for the training of transition matrices.

• DeepMove [5] is described as a model that uses a

recursive neural network to learn user preferences from

historical and current sequences. This model employs an

attention mechanism to calculate the similarity between

the current and historical states, allowing for more accu-

rate preference modeling.

1https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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TABLE I
SUMMARY OF DATASET STATISTICS.

Dataset User POI Category Session
NYC 1020 14085 400 18459
TKY 2232 21139 385 50848
CN 354 5523 397 5440
GR 570 5642 387 8477
PA 369 2661 334 6086
PY 705 5118 386 9858

• STGN [35] is presented as a model that integrates time

and distance intervals by adding gates, enabling it to

capture the spatio-temporal context of the data.

• PLSPL [29] proposes a unified model for jointly learning

users’ long-term and short-term preferences. This model

uses linear combination units to combine long-term and

short-term preferences, enabling it to learn personalized

weights for different users in different parts.

• LSPTM [7] is introduced as a model that integrates

spatio-temporal context features into the RNN framework

to model user mobility between Points of Interest (POIs).

• STAN [30] proposes a spatio-temporal attention network

for location recommendation. This model uses a dual-

attention system to learn explicit spatio-temporal corre-

lations within trajectories.

• STKGRec [14] constructs a spatio-temporal knowledge

graph (STKG) to capture users’ transition patterns in tra-

jectories. This model uses historical trajectory encoding

module and knowledge graph path reasoning to capture

users’ long-term and short-term preferences.

C. Parameter Settings

The IKGN model is implemented in PyTorch2, with an

embedding size of 130. The Adam optimization algorithm is

employed to optimize all model parameters, using a batch size

of 128. For the TKY dataset, the depth of the intention-aware

aggregation layer is set to 2, while the corresponding value for

the NYC dataset is 3. To identify the most optimal learning

rate, a grid search is conducted across a set of learning rates,

specifically 0.00005, 0.0001, and 0.0005.

D. Analysis on Recommendation Effectiveness (RQ1)

The overall performance comparison of different models on

the NYC and TKY datasets is shown in Table II and Fig.

4. We adopt two widely-used evaluation metrics [36], [37]:

R@K (recall@K) and N@K (ndcg@K). Based on our ex-

perimental results, we have drawn the following conclusions:

• The IKGN model outperforms the compared methods on

all metrics across two datasets. Taking the TKY dataset as

an example, considering a class of works using recurrent

neural networks, LSPTM [7] achieves optimal perfor-

mance. However, compared with LSPTM, our model have

achieved 29% higher R@k and 40% higher N@k. Sim-

ilarly, the strongest baseline, STKGRec [14] integrates

2https://pytorch.org

knowledge graphs and recurrent neural networks, but our

model still outperforms it by 10.8% in terms of R@K,

and 13.4% in terms of N@K.

• Our model and the strongest baseline, STKGRec [14],

exhibit a significant improvement over other models. This

may be attributed to the fact that both models incorporate

knowledge graphs. Unlike the general user-item bipartite

graph, knowledge graphs provide a richer source of

semantic information, thereby mitigating issues related

to data sparsity and improving experimental results.

• Our method outperforms STKGRec [14] possibly because

we not only captured users’ fine-grained intention for

location categories but also learned high-order represen-

tations of users and items. This was demonstrated in

subsequent ablation experiments, as shown in Sec V-E.

E. Analysis on Key Components (RQ2)

To confirm the impact of individual components within

IKGN on enhancing performance, we execute two simplified

versions of the model for ablation testing:

• IKGN-IA: This version has removed the location category

nodes from the ontology of IKG while retaining the

embedding layer, intention-aware aggregation layer, and

preference modeling layer.

• IKGN-C: This version is a modified version of IKGN

that retains the embedding representation layer and pref-

erence modeling layer but eliminates the intention-aware

aggregation layer present in IKGN.

Table III presents the results of diverse versions of IKGN

on TKY datasets. Our ablation testing enables us to discover

the following observations:

• In the case of IKGN-C, some indicators have slightly

lower performance than the strongest baseline. The reason

may be that although this version has introduced location

category information in the graph, it lacks an intention-

aware aggregation layer and does not fully capture the

user’s intention.

• The performance of IKGN-IA is generally better than

IKGN-C, but lower than IKGN. The reason may be that

although the KG used in this version does not have

category information, it still captures collaborative signals

and obtains richer node representations of users and POIs

through athen intention-aware aggregation layer.

• The IKGN model is a combination of the IKGN-C and

IKGN-IA models, which demonstrates the best perfor-

mance on two datasets. This indicates that enriching the

knowledge graph with location category information and

capturing user intention based on it have a positive impact

on the next POI recommendation.

F. Analysis on Recommendation Effectiveness with Sparser
Datasets (RQ3)

To confirm the effectiveness of IKGN in alleviating data

sparsity issues, we conduct comparative experiments with the

best baseline (STKGRec) [14] on four smaller and more sparse

datasets, and the results are shown in Fig. 5.
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TABLE II
THE PERFORMANCE COMPARISON ON NYC AND TKY. THE BEST RESULT IN EACH COLUMN IS INDICATED IN BOLD, WHILE THE SECOND BEST RESULT

IS UNDERLINED.

Dataset Metric STRNN [9] DeepMove [5] STGN [35] PLSPL [29] LSPTM [7] STAN [30] STKGRec [14] IKGN

NYC

R@1 0.0921 0.1189 0.0868 0.1171 0.155 0.1123 0.1764 0.1823
R@5 0.1935 0.2511 0.1495 0.2916 0.3683 0.3318 0.3927 0.3945

R@10 0.235 0.3062 0.1758 0.3558 0.4545 0.4726 0.4773 0.4810
N@1 0.092 0.1186 0.0868 0.1171 0.1555 0.1123 0.1764 0.1823
N@5 0.1459 0.189 0.1204 0.2028 0.2665 0.2274 0.2901 0.2938
N@10 0.1593 0.206 0.1289 0.23 0.2946 0.2695 0.3176 0.3219

TKY

R@1 0.1229 0.147 0.1222 0.1278 0.1612 0.1123 0.224 0.2635
R@5 0.2620 0.3066 0.2186 0.3105 0.3608 0.3418 0.4142 0.4552

R@10 0.316 0.3691 0.2612 0.3808 0.4391 0.4512 0.4834 0.5241
N@1 0.1229 0.147 0.1229 0.1278 0.1612 0.1123 0.224 0.2635
N@5 0.1963 0.2314 0.1732 0.223 0.2660 0.2222 0.325 0.3655
N@10 0.2137 0.2517 0.1869 0.2456 0.2914 0.2576 0.3471 0.3879

Fig. 4. The performance comparison on NYC and TKY with all metrics.

Compared to the best baseline [14], IKGN has demon-

strated improvements across all metrics on the four datasets.

This enhancement can be attributed to the richer semantic

and contextual information provided by IKG. Furthermore,

our method incorporates an intention-aware aggregation layer

that effectively combines multiple layers of nodes within the

IKG. This process enhances the representation of nodes and

ultimately alleviates the issue of data sparsity.

G. Analysis on Hyper-parameter Setting (RQ4)

a) Effect of Intention-aware Aggregation Layer Depth:
We vary the depth of the intention-aware Aggregation Layer

to investigate the efficiency of multiple aggregation layers. In

particular, the layer number is searched in the range of 1, 2,

3, 4; we use IKGN-1 to indicate the model with one layer

and similar notations for others. We summarize the results in

Table IV, and have the following observations:

TABLE III
THE PERFORMANCE OF DIFFERENT IKGN VARIANTS ON TKY.

Dataset Metric Best Baseline IKGN IKGN-IA IKGN-C

TKY

R@1 0.224 0.2635 0.2441 0.2271
R@5 0.4142 0.4552 0.4393 0.4142

R@10 0.4834 0.5241 0.5125 0.4822
N@1 0.224 0.2635 0.2441 0.2271
N@5 0.325 0.3655 0.3481 0.3266

N@10 0.3471 0.3879 0.3718 0.3486

TABLE IV
THE PERFORMANCE OF DIFFERENT AGGREGATION LAYERS ON TKY.

Dataset Metric IKGN-1 IKGN-2 IKGN-3 IKGN-4

TKY

R@1 0.2544 0.2635 0.2597 0.2563
R@5 0.4451 0.4552 0.4526 0.4517
R@10 0.5143 0.5241 0.5246 0.5214
N@1 0.2544 0.2635 0.2597 0.2563
N@5 0.3652 0.3655 0.3623 0.3610

N@10 0.3787 0.3879 0.3857 0.3836

915

Authorized licensed use limited to: Old Dominion University. Downloaded on June 06,2024 at 20:25:56 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. The results compared to the best baseline on four datasets with all metrics.

• The performance of the model can be improved by

increasing the depth of IKGN. Specifically, IKGN-2 and

IKGN-3 demonstrate improvements over IKGN-1 in most

metrics, which we attribute to their effective modeling of

higher-order relationships that capture user intention.

• Upon comparing Table II and Table IV collectively, it

is evident that IKGN-1 consistently outperforms other

baseline methods. This further validates the effectiveness

of knowledge propagation through better modeling of

first-order relationships.

• All metrics of IKGN-4 are comparatively weaker than

those of IKGN-3. We argue that although deeper propaga-

tion layers can integrate information from more faraway

connections into node representations, it also introduces

noise. Therefore, maintaining a reasonable depth of prop-

agation layers can better capture user intention.

b) Effect of Embedding Size: We examine the impact of

embedding dimensions on IKGN performance. Experiments

are conducted on the NYC dataset with different embedding

sizes, and the results are shown in Fig. 6.
Initially, increasing the embedding dimensions significantly

improves performance, as larger vector dimensions can encode

more entity and relationship information. When the dimen-

sions reach a certain value, the model tends to stabilize.

Similar trends are observed in the TKY dataset.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a novel IKGN model for the next

POI recommendation, with its crux lying in an intention-

aware knowledge graph enriched with location categories

Fig. 6. The results of NYC dateset with different embedding size.

and spatiotemporal information. Specifically, IKGN comprises

three main building blocks, namely the knowledge embedding

layer, the intention-aware aggregation layer, and the preference

modeling and prediction layer. This design elucidates user

intentions within the knowledge graph, seamlessly extending

it through high-order user and location representations. Exten-

sive experimental results substantiate that our proposed IKGN

outperforms seven state-of-the-art methods in terms of Recall

and NDCG metrics on two real-world datasets.

In the future, we will explore two research directions.

First, while this study centered on intention propagation, the

innate subtlety of user intentions offers room for more explict

extractions from frequently visited POI categories. Second,
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constructing a multimodal KG, which assimilates textual com-

ments, images, and videos related to POIs, represents an

exciting frontier for future POI recommendation research.
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