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Abstract—Point-of-Interest (POI) recommendation, pivotal for
guiding users to their next interested locale, grapples with the
persistent challenge of data sparsity. Whereas knowledge graphs
(KGs) have emerged as a favored tool to mitigate the issue, ex-
isting KG-based methods tend to overlook two crucial elements:
the intention steering users’ location choices and the high-order
topological structure within the KG. In this paper, we craft an
Intention-aware Knowledge Graph (IKG) that harmonizes users’
visit histories, movement trajectories, and location categories to
model user intentions. Building upon IKG, our novel Intention-
aware Knowledge Graph Network (IKGN) delves deeper into
the POI recommendation by weighing and propagating node
embeddings through an attention mechanism, capturing the
unique locational intent of each user. A sequential model like
GRU is then employed to ensure a comprehensive representation
of users’ short- and long-term location preferences. An empirical
study on two real-world datasets validates the effectiveness of our
proposed IKGN, with it markedly outshining seven benchmark
rival models in both Recall and NDCG metrics. The code of
IKGN is available at https://github.com/Jungle123456/IKGN.

Index Terms—Knowledge Graph, POI Recommendation, User
Intention, Higher-Order Connectivity

[. INTRODUCTION

Point-of-Interest (POI) recommendation aspires to recom-
mend unvisited locales to users, drawing inference from their
historical check-in data [1]. At its core, a POI recommender
system not only seeks to aid users in identifying relevant
POIs such as shopping centers, eateries, and recreational areas,
but also endeavors to forecast a sequence of POIs, thereby
crafting trajectories reflective of users’ evolving interests. Such
an endeavor weaves spatial and temporal dimensions, where
both the chronology and geographic proximity of POIs play
pivotal roles. Driven by the technological progression in smart
devices and mobile location-based services, users are now
more inclined to share their POI experiences on platforms like
Foursquare and Yelp. This interplay of innovative technology,
user engagement, and spatiotemporal aspects enriches the
research landscape of POI recommendation.

In the nascent phase of POI recommendation research,
seminal studies leveraged traditional Collaborative Filtering
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and Matrix Factorization algorithms [2], [3], dealing with
static POI matrices only. To respect and capture the temporal
patterns of user interests, later studies employed sequential
models such as Markov chains [4] and Recurrent Neural
Networks (RNNs), laying the groundwork for a series of
subsequent innovations [5]—[10]. These studies unfurled RNN
variants adept at extracting long- and short-term user trajectory
features with various memory mechanisms, further bolstering
POI recommendation efficacy. Despite so, the persistent issue
of data sparsity remains a prominent challenge.

To mitigate this challenge, knowledge graphs (KGs) [11],
[12] with extensive semantic contents has been incorporated
into POI recommender systems to provide auxiliary infor-
mation [13]-[16]. To wit, [13] proposed a meta-path-based
random walk algorithm to identify superior neighbors on KGs,
exploiting the topological structure to better the recommenda-
tion accuracy. Another thrust of research focused on learning
KG embeddings [14]-[16], where KGs were trained using
models such as TransR [17] to derive embedding represen-
tations of users and locations, which were then fed into a
Gated Recurrent Unit (GRU) network for sequential modeling.
Nevertheless, while these methods demonstrated performance
enhancements, we argue that current KG-based methods for
POI recommendation suffer two notable limitations: 1) the
lack of consideration for the underlying reasons why users
frequently visit specific location categories and 2) an oversight
of high-order connectivity inherent to the knowledge graphs.

In response to the highlighted issues, we introduce an
Intention-aware Knowledge Graph (IKG) that captures loca-
tion categories intertwined with spatiotemporal user informa-
tion. Our IKG emerges from a rich tapestry of user visit
histories, movement trajectories, and location category data, as
illustrated in Fig. 1. Central to our discourse is the concept of
intention, which we delineate as the underlying reason steering
users’ location preferences. It is intuitive that the nuanced
intentions underpin varied location preferences; consider, for
instance, while User A might predominantly visit parks during
weekends, User B may have a preference for cafés after work
hours on weekdays. This diversity in choices suggests that
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Fig. 1.

An example of IKG. IKG includes three types of nodes and three types of relationships. Specifically, the three types of nodes are user nodes (U),

POI nodes (P), and location category nodes (C'), while the three types of relationships are user visit relationships (R1), spatio-temporal cost relationships
(R2), and category correspondence relationships (R3). The specific construction process of IKG will be detailed in Sec IV-A.

user intentions are intricately woven into the very fabric of
the location categories they frequent. Upon this intuition, we
propose to integrate IKG into POI recommendation through
an end-to-end neural network model, coined Intention-aware
Knowledge Graph Network (IKGN), which strives to cap-
ture the fine-grained user-location dynamics. Specifically, we
leverage TransR [17] to initialize the embeddings of nodes
and their relations. To capture the personalized intention
of a user towards a certain location category, we tailor a
knowledge-aware attention mechanism to further learn the
node and relation embeddings via recursive propagation and
aggregation of neighboring nodes, where the weight of each
node neighbor is automatically learned during the learning
process. Such learned embeddings encapsulate rich insights on
users and locations, which are fed into a GRU network [14]
for identifying both short- and long-term user intentions.
Specific contributions of this paper are as follows:

e This paper explores a novel POI recommendation prob-
lem by taking into account the user infention, striving to
model the spatiotemporal dynamics between users and lo-
cations, aiming to discern the underlying reasons driving
users to repeatedly opt for certain location categories.
We propose an end-to-end IKGN model, devised around
the Intention-aware Knowledge Graph (IKG). Our model
adeptly captures high-order entity dependencies within
the IKG, alongside user intentions. Using a knowledge
graph-aware attention mechanism, the IKGN discerns
the relative importance of neighboring node information
and optimizes user and location representations, thereby
enhancing the POI recommendation performance.
Extensive experiments on two widely-used real-world
POI benchmarks substantiate that our proposal markedly
outperforms the state-of-the-art competitors.

II. RELATED WORK

A. Knowledge Graph for Recommendation

Recommendation methods based on knowledge graphs
(KG) can generally be divided into three types: embedding-
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based methods, path-based methods, and propagation-based
methods [18]. The embedding-based methods involve using
translation models such as TransE [19], TransH [20], and
TransR [17] to learn vector representations of entities and
relationships. The CKE method [21] utilizes TransE in KG
to obtain entity embeddings, and then these embeddings are
inputted into matrix factorization (FM) to enhance the item
representation. On the other hand, the path-based methods
involve mining various connection relationships between users
and items based on the graph. For instance, the KPRN
model [22] combines the semantics of entities and relation-
ships to infer user preferences based on the order dependency
in the paths, thus generating path representations. In recent
years, propagation-based methods have achieved better results,
which learn the representations of users and items combined
with the above two methods. For example, KGAT [12] com-
bines user-item interactions and knowledge graphs into a
heterogeneous graph and then applies aggregation mechanisms
to it. CKAN [18] uses two different strategies to propagate
collaborative signals and knowledge-aware signals. KGIN [23]
achieves better relationship modeling by identifying user inten-
tion and relational path-aware aggregation in two dimensions.
MetaKG [24] proposes a new framework based on meta-
learning to capture user preferences and entity knowledge to
alleviate cold start recommendation problems.

B. POI Recommendation

As a frequently utilized approach for sequence predic-
tion, initial research on recommending the next point of
interest (POI) primarily relied on collaborative filtering and
matrix factorization models [25]-[28]. Nonetheless, the dy-
namic changes of user preferences has impeded the practical
implementation of such models. In recent years, Recurrent
Neural Network (RNN) has been the foundation for most next
POI recommendation models. STRNN [9] is an example of a
model that captures local spatiotemporal context to improve
the model’s performance. Time-LSTM [8] adds a time gate
to the LSTM structure to model the temporal and spatial
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Fig. 2. Motivations and contributions of the proposed model.

intervals of user transitions. The DeepMove [5] model is
a multimodal RNN model that combines sparse user fea-
tures and attention modules to capture user mobility patterns.
LSPTM [7] proposes a new model that includes a non-
local network for modeling long-term preferences and a geo-
graphically extended RNN for learning short-term preferences.
PLSPL [29] proposes a unified model for joint learning of
users’ preferences, which combines long-term and short-term
preferences based on users’ linear combination units to learn
the personalized weights of different users in different parts.
STAN [30] proposes a spatiotemporal attention network for
location recommendation, which uses a dual-attention system
to learn explicit spatiotemporal correlations within a user’s
trajectory. DRCF [31] is a deep recursive collaborative filtering
framework with a paired ranking function. It utilizes multi-
layer perceptron and recursive neural network architectures to
capture user-place interactions in a CF manner from observed
feedback sequences. ATCA-GRU [32] is an attention-based
GRU model for the next POI category recommendation, which
reduces the negative impact of sparse check-in data, captures
long-distance dependencies between user check-ins, and se-
lectively utilizes attention mechanisms to focus on relevant
historical check-in trajectories in check-in sequences.

In the field of POI recommendation, a small amount of re-
search has combined knowledge graphs to improve recommen-
dation performance. SKGEM [33] is a new Scalable Knowl-
edge Graph Embedding Model that aims to automatically
learn low dimensional node representations to formularize and
merge all heterogeneous factors into a context oriented graph,
and to some extent solve the cold start problem for the next
POI recommendation. ARNN [13] uses the external attributes
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of users and POIs to construct a knowledge graph and designs
a random walk process on the KG based on meta-paths to
effectively discover neighbors based on geographic, semantic,
and user preference factors. The recent study, STKGRec [14],
constructs a spatial-temporal knowledge graph (STKG) based
on user movement trajectories and models long-term and short-
term preferences based on STKG. However, these methods do
not consider user intention and do not pay enough attention
to the importance of high-order propagation in KG, so they
fail to fully utilize the rich semantic information in KG as
illustrated in Fig. 2. In this work, we propose a new method
to construct the IKG based on users’ spatiotemporal movement
behavior and POI location categories. We use a knowledge-
aware attention mechanism to obtain node neighbors’ infor-
mation and model high-order entity dependencies to capture
user intention for location categories. Based on this, We update
node representations of users and locations and model long-
term and short-term preferences of users to recommend the
next POI that they may be interested in.

III. PROBLEM FORMULATION

In this section, we will introduce the notation definitions
used in this paper, as well as the basic problem statement
for the Next POI recommendation. Let U={uy, ug, ..., uy}
denote the set of users, P={p1,pa,...,p|p} denote the set
of POIs, C={ci,ca,...,c|c|} denote the set of location cat-
egories, where there is a many-to-many relationship between
U and P, and a many-to-one relationship between P and C.

a) Definition 3.1: User Trajectory Sequence. For each
user u; in U, there is a corresponding trajectory sequence
Si={st sb ...,st | st} where s is the current trajectory
sequence and the others are historical trajectory sequences. For
each s in .S, it consists of a consecutive sequence of POI loca-
tions that are visited by the user w. i.e., s'={p1,p2, ... p|si|}-

b) Definition 3.2: Intention-aware Knowledge Graph
(IKG). IKG: G = {(h,r,t)|h,t € e,r € R}, where ¢ and
R are sets of entities and relations, respectively.

c) Definition 3.3: Problem Statement. The Next POI
recommendation can be defined: for user wu; and a
given trajectory sequence S;, where the current trajectory
st={p1,p2,...,ps_1}1(s}, € SY), p;_1 is the most recently
visited POI by wu; and the goal is to recommend the top-N
POIs to user u; at the next time step t.

IV. METHOD

In this section, we provide a detailed description of how to
construct IKG and our proposed model, IKGN. IKGN employs
IKG in an end-to-end manner to achieve the next POI rec-
ommendation. Fig. 3 illustrates that the overall framework of
IKGN consists of three primary components: 1) the knowledge
graph embedding layer, which converts entities and relation-
ships in IKG into embedding representations; 2) the intention-
aware aggregation layer, which models higher-order entity
dependencies, recursively propagates embeddings from nodes’
neighbors, and uses a knowledge-aware attention mechanism
to learn the weights of each neighbor during propagation to
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capture the user’s intention towards location categories, ulti-
mately optimizing and updating node representations; 3) the
long-term and short-term preference modeling and prediction
layer, which uses the latest node and relation representations
to explore users’ long-term and short-term preferences from
their complete check-in sequences, ultimately merging vector
representations of different user preferences and outputting
prediction scores.

A. Knowledge Graph Construction Layer

In this paper, we present the IKG, which incorporates se-
mantic information from location categories based on the user-
POl interaction bipartite graph and considers users’ visit histo-
ries and spatio-temporal transition behavior of users to extend
the knowledge graph. IKG: G = {(h,r,t)|h,t €e,7 € R}. ¢
and R can be abstracted into three types of nodes and three
types of relationships. Specifically, the three types of nodes
are user nodes (U), POI nodes (P), and location category
nodes (C'), while the three types of relationships are user visit
relationships (R ), spatio-temporal cost relationships (R2), and
category correspondence relationships (R3). The user visit
relationship (R;) and spatio-temporal transition relationship
(Ry) are extracted from the user trajectory sequence. R;
is established between U and P nodes and contains time
attributes, indicating that a user visited a POI location at
a certain time. Ry appears between FP; and P; nodes and
contains user mapping as well as time and space change
attributes, indicating the time and space cost spent by a user
from P; to P;. Lastly, R3 appears between P and C' nodes
and does not contain attributes, only indicating that P belongs
to location category C, and the relationship between P and C
is many-to-one.

Thus, the triples in IKG are classified into three types,
specifically P, = (U, T;,P), P, = (P;,(U;, AS,AT), P;),
and P; = (P, Belong,C), where U, P, C € ¢, and T;,
(U, AS,AT), Belong € R. The user’s movement trajectory
in IKG is considered as a combination of 7% and 75, while
the type of location that the user frequently visits can be
observed from 75. By integrating knowledge into the user’s
movement trajectory, the IKGN framework can identify the
user’s intention toward certain types of locations, which can
aid in improving the results of the Next POI recommendation.

It is worth noting that this study follows the methodology
presented in reference [7] which divides time into 48 time
periods. The first 24 time periods correspond to the 24 hours
of weekdays, while the last 24 time periods correspond to the
24 hours of weekends, without distinguishing holidays.

B. Knowledge Graph Embedding Layer

The knowledge graph embedding layer serves to parame-
terize entities and relationships into vector representations. In
this study, we employ TransR [17] on IKG for this purpose.
Specifically, given a triple (h, 7, t) in IKG, the rationality score
for the triple is computed using the following formula [17]:

g(hﬂ‘,t) = "WTeh+6T7WTet||ga (D
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where the matrix W, € RF*? serves as the transformation
matrix for relation r. A lower score for a triple (h, r, t) signifies
a higher likelihood for the triple to be true and vice versa.
During training, TransR considers the relative order between
valid and corrupted triples, promoting their differentiation via
pairwise ranking loss [17], formatted as follows.

D

(h,rt t")er

Where I" = {(h,r,t,t') | (h,r,t) € G, (h,r,t') ¢ G} and
(h,r,t') is a corrupted triplet constructed by replacing one
entity in a valid triplet at random. Additionally, o(-) represents
the sigmoid function. This layer models entities and relations
as their initial embedding representation. The reason for select-
ing TransR from the pool of crowdsourced embedding models
lies in its incorporation of entity-relationship constraints. In
TransR, every triplet consisting of a head entity, relationship,
and tail entity necessitates a harmonized representation across
both entity space and relationship space. By imposing such
constraints, TransR facilitates the acquisition of precise em-
bedded representations and enhances the predictive capability
of relationships within the knowledge graph.

£IKG = —lno (g(h’7 T, t/) - g(h7rv t)) ) (2)

C. Intention-aware Aggregation Layer

The intention-aware aggregation layer aims to capture the
correlation between POIs and users’ intentions by mining the
location category attributes on the IKG. This module recur-
sively propagates embeddings from neighboring nodes, mod-
eling the high-order connectivity of IKG. While performing
the propagation, the concept of graph attention networks [34]
is integrated to generate attention weights for cascade propaga-
tion. This integration helps differentiate the impact of various
location categories on users. Furthermore, it empowers the
capability to acquire precise embedding representations for
both users and locations

As an example, user u; visited pi, p2, p3, and py, where
p1 and po belong to c3, p3 and py belong to ¢y (c1,c3 €
C). The POI nodes take location categories as input to enrich
their characteristics and simulate the intention of user u; by
propagating information from c; and c3 to wuy.

Regarding the entity h in IKG, it is necessary to define
its meighborhood @, = {(h,r,t)|(h,r,t) € G}. Here, h
represents the head entity in the IKG, and ();, denotes the
neighborhood of h. The linear combination of h’s neighbors
can be defined through the following equation:

>

(h,r,t,)EQR

€Qn = a(h‘7 T, t)et7 (3)

Where 0(h,r,t) is a controlling factor for information propa-
gation, the amount of information transmitted from node ¢ to
h is regulated based on the relationship r. d(h,r,t) can be
expressed as follows [12]:

A(h,r,t) = (Wye))Ttanh(Wyep, + e,.). 4)

Authorized licensed use limited to: Old Dominion University. Downloaded on June 06,2024 at 20:25:56 UTC from IEEE Xplore. Restrictions apply.



Ul 02 .
- - R2 =
User & « R3

POI

(uy, (uy,

Aty,282) A8 t3,2: Aty A8
Belong * Bel """ Belong Belong ) Belong Y Belong
¥ \ oy ¥ ¥
o @ § B O§ B
Gym Restaurant Parking Office Airport

building

1

N

Embedding
Layer
Intention-aware Aggregation Layer
Relation
= Embedding
- ~ [e3
o?‘?. S Med
= Entity
& - Z Embedding
=3
4]
2
=
=
"

IKG

C6

- XY

[ ] User
@D  Place
Category of
place
— R1
_ R2
— R3

Preference Modeling and Prediction Layer

Long-Term Preference Modeling
GRU

—

e=eV+ ... +e™,

—a() (m)
ep=e p+ ...te P

Fig. 3. The architecture of the IKGN model. The first part on the left represents an example of IKG, and the three parts on the right form the IKGN model,
which consists of three components: knowledge graph embedding layer, intention-aware aggregation layer, and preference modeling and prediction layer.

Thereafter, the controlling factor is normalized using the
softmax function, formulated as follows.

exp(d(h,r,t))
D tryeqy €xp(O(h, 1! 1))

This normalization process allows the final attention score
to determine which neighboring nodes should receive more
attention to capture user intention signals. Subsequently, we
use e, and ej to update the high-order representation of
entity h. The embedding representation of entity A at layer m
is recursively defined as follows:

d(h,rt) = (5)

(m)

f (m-1)

= f(egm_l),th ). (6)
The definition of e(anfl)is based on Equation (3), while
the aggregation function f [12] acts as an aggregator to
combine the linear combination of h and its neighboring
values. Specifically, this aggregator is defined as follows:

| =LeakyReLU (W1 (en + €n,,))

+LeakyRe LU (Wa(en, ® en,)), (N

where Wi, W5 € R? *? are trainable weight matrices and ®
denotes element-wise multiplication.

As a result, the embedding propagation process captures
propagation paths that are similar to u; —p; —c3. Furthermore,
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egl) explicitly encodes information from cs, clearly, high-

order embedding propagation injects user intention into the
representation learning process. To facilitate propagation, we
treat the relationships in IKG as bidirectional.

After m layers of propagation, we obtain multiple represen-
tations of user u and location p from ej,, which are denoted
as {e&l), e, e&m)} and {e,(,1 ,61(72), ce el(am) }, respectively.
The final representations of the user and location are defined
as follows and are used as input for the preference modeling
and prediction layer:

ew=eM e 4. 4elm, (8)
ep = ez(,l) + 61()2) +...+ el(,m). )

D. Preference Modeling and Prediction Layer

The backbone of the module is modified by the work of [14]
with an innovative approach. We integrate intention-aware
aggregation to acquire user and location vectors in order to
capture user intention and collaboration signals. This method
produces more accurate representations and inputs them into
the long-term and short-term preference modeling module
of [14], ultimately enhancing the final recommendation results.

After modeling both long-term and short-term prefer-
ences [14] in the layer, we derive the long-term preference
representation y;", the current sequence representation y”,
the representation of continuous spatial-temporal movement
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v, and the representation of non-continuous spatial-temporal
movement y,,. Using this information, we calculate the prob-
ability distribution for predicting POIs as follows [14]:

Y = softmaz(Wplyt vy llyily,)), (10)

where || represents a concatenation operation, while Wp is a
trainable matrix for all POIs. Therefore, user intends to visit
the POI with highest probability at time t.

To optimize the parameters of the recommendation model,
we employ the logarithmic likelihood function as follows:

N
EPOlflntention = - Zlog (SA/IC) . (] l)
k=1

Finally, we represent the target loss function using Equa-
tions (2) and (11):

‘closs = LIKG + £POI—Intention~ (12)
Algorithm 1 provides a comprehensive overview of the
detailed process employed in IKGN. During the training phase,
we adopt an alternating optimization approach, optimizing
Lixe and Lpor—rntention iteratively, for optimizing both the
embedding loss and the recommendation loss of IKGN.

Algorithm 1: IKGN
Input: Intention-aware Knowledge Graph G,
Trajectory Sequence S, STKGRec
Algorithm [14]
Output: prediction Result Y
1 while /KGN Not Converge do
2 for triple € G do
3 L Calculate triple score <— use Equations (1) and
(2);
get e, e”, et;
for h,t € € do
eglo) — el ego) — et
for m <~ 1 to M do
e, < use Equations (3), (4), and (5);
L (m) olm) ¢ use Equations (6) and (7);
e, < use Equation (8);

eh ) €4
e, < use Equation (9);
uit ys yE, v, < use STKGRec(ey, ¢,, S) [14];
Y <+ use Equation (10);
| return Y;
STKGRec(ey, €5, S)
for [ € S do
y," + Long-term Preference Modeling;
| Yns Yr, y;l <— Short-term Preference Modeling;

e e N N s

10
11
12
13
14
15
16
17
18

’
1 return yb, y, yk, v, s
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V. EXPERIMENTS

In this section, we conduct experiments on two real-world
datasets of Foursquare check-in data to assess the efficacy of
our proposed IKGN model. We aim to answer the following
research questions:

RQ1: How does IKGN perform compared to the state-
of-the-art POI recommendation methods?

e RQ2: How do key components affect IKGN?

e RQ3: How does IKGN perform on sparser datasets?

e RQ4: How do different hyper-parameter settings (depth
of the intention-aware aggregation layer and embedding
size) affect IKGN?

A. Datasets and Preprocessing

We conduct an evaluation of our model on publicly available
Foursquare check-in datasets' from two real-world cities: New
York City (NYC) and Tokyo (TKY). These datasets have
been widely utilized in related research papers. The records
from these datasets are collected between April 2012 and
February 2013 and include various data points, such as ID,
POI ID, category ID, category name, latitude and longitude
coordinates, and timestamps. To improve the quality of the
dataset, we remove POIs that are visited less than 10 times in
these two datasets and only include sessions with at least three
check-ins. Users with less than five sessions are removed from
our analysis. We then split the data into training, validation,
and test sets, with the first 80% of each user’s sessions used
as the training set, the most recent 10% as the test set, and
the remaining 10% as the validation set for hyperparameter
tuning. In addition, we also extracted small-scale datasets from
four countries on Foursquare check-in datasets, namely China
(CN), Greece (GR), Panama (PA), and Paraguay (PY). These
datasets are more sparse, and used to verify IKGN’s ability to
mitigate the impact of data sparsity on POI recommendations.
We performed the same processing on these four datasets as
described above. Table I provides a summary of the dataset’s
statistical information.

B. Methods for Comparison

To demonstrate the effectiveness of the model we proposed,
we compare IKGN with the following baselines:

e STRNN [9] is presented as a recursive neural network that
models spatio-temporal context based on time-specific
and distance-specific transformation matrices. This model
takes advantage of the inherent spatio-temporal depen-
dencies in the data and a linear interpolation is applied
for the training of transition matrices.

DeepMove [5] is described as a model that uses a
recursive neural network to learn user preferences from
historical and current sequences. This model employs an
attention mechanism to calculate the similarity between
the current and historical states, allowing for more accu-
rate preference modeling.

Uhttps://sites.google.com/site/yangdingqi/home/foursquare-dataset
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TABLE I
SUMMARY OF DATASET STATISTICS.

Dataset User POIL Category  Session
NYC 1020 14085 400 18459
TKY 2232 21139 385 50848

CN 354 5523 397 5440
GR 570 5642 387 8477
PA 369 2661 334 6086
PY 705 5118 386 9858

STGN [35] is presented as a model that integrates time
and distance intervals by adding gates, enabling it to
capture the spatio-temporal context of the data.

PLSPL [29] proposes a unified model for jointly learning
users’ long-term and short-term preferences. This model
uses linear combination units to combine long-term and
short-term preferences, enabling it to learn personalized
weights for different users in different parts.

LSPTM [7] is introduced as a model that integrates
spatio-temporal context features into the RNN framework
to model user mobility between Points of Interest (POIs).
STAN [30] proposes a spatio-temporal attention network
for location recommendation. This model uses a dual-
attention system to learn explicit spatio-temporal corre-
lations within trajectories.

STKGRec [14] constructs a spatio-temporal knowledge
graph (STKG) to capture users’ transition patterns in tra-
jectories. This model uses historical trajectory encoding
module and knowledge graph path reasoning to capture
users’ long-term and short-term preferences.

C. Parameter Settings

The TKGN model is implemented in PyTorch?, with an
embedding size of 130. The Adam optimization algorithm is
employed to optimize all model parameters, using a batch size
of 128. For the TKY dataset, the depth of the intention-aware
aggregation layer is set to 2, while the corresponding value for
the NYC dataset is 3. To identify the most optimal learning
rate, a grid search is conducted across a set of learning rates,
specifically 0.00005, 0.0001, and 0.0005.

D. Analysis on Recommendation Effectiveness (RQI)

The overall performance comparison of different models on
the NYC and TKY datasets is shown in Table II and Fig.
4. We adopt two widely-used evaluation metrics [36], [37]:
RQK (recallQK) and NQK (ndcg@K). Based on our ex-
perimental results, we have drawn the following conclusions:

e The IKGN model outperforms the compared methods on
all metrics across two datasets. Taking the TKY dataset as
an example, considering a class of works using recurrent
neural networks, LSPTM [7] achieves optimal perfor-
mance. However, compared with LSPTM, our model have
achieved 29% higher R@k and 40% higher N@k. Sim-
ilarly, the strongest baseline, STKGRec [14] integrates

Zhttps://pytorch.org
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knowledge graphs and recurrent neural networks, but our
model still outperforms it by 10.8% in terms of R@K,
and 13.4% in terms of N@K.

Our model and the strongest baseline, STKGRec [14],
exhibit a significant improvement over other models. This
may be attributed to the fact that both models incorporate
knowledge graphs. Unlike the general user-item bipartite
graph, knowledge graphs provide a richer source of
semantic information, thereby mitigating issues related
to data sparsity and improving experimental results.

Our method outperforms STKGRec [14] possibly because
we not only captured users’ fine-grained intention for
location categories but also learned high-order represen-
tations of users and items. This was demonstrated in
subsequent ablation experiments, as shown in Sec V-E.

E. Analysis on Key Components (RQ2)

To confirm the impact of individual components within
IKGN on enhancing performance, we execute two simplified
versions of the model for ablation testing:

e IKGN-IA: This version has removed the location category

nodes from the ontology of IKG while retaining the
embedding layer, intention-aware aggregation layer, and
preference modeling layer.
IKGN-C: This version is a modified version of IKGN
that retains the embedding representation layer and pref-
erence modeling layer but eliminates the intention-aware
aggregation layer present in IKGN.

Table III presents the results of diverse versions of IKGN
on TKY datasets. Our ablation testing enables us to discover
the following observations:

e In the case of IKGN-C, some indicators have slightly
lower performance than the strongest baseline. The reason
may be that although this version has introduced location
category information in the graph, it lacks an intention-
aware aggregation layer and does not fully capture the
user’s intention.

The performance of IKGN-IA is generally better than
IKGN-C, but lower than IKGN. The reason may be that
although the KG used in this version does not have
category information, it still captures collaborative signals
and obtains richer node representations of users and POIs
through athen intention-aware aggregation layer.

The IKGN model is a combination of the IKGN-C and
IKGN-TA models, which demonstrates the best perfor-
mance on two datasets. This indicates that enriching the
knowledge graph with location category information and
capturing user intention based on it have a positive impact
on the next POI recommendation.

F. Analysis on Recommendation Effectiveness with Sparser
Datasets (RQ3)

To confirm the effectiveness of IKGN in alleviating data
sparsity issues, we conduct comparative experiments with the
best baseline (STKGRec) [14] on four smaller and more sparse
datasets, and the results are shown in Fig. 5.
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TABLE 11
THE PERFORMANCE COMPARISON ON NYC AND TKY. THE BEST RESULT IN EACH COLUMN IS INDICATED IN BOLD, WHILE THE SECOND BEST RESULT
IS UNDERLINED.

ataset etric eepMove B E ec
D Metric  STRNN [9] DeepMove [5]  STGN [35]  PLSPL [29] LSPIM [7/] STAN [30] STKGRec [14] IKGN
R@1 0.0921 0.1189 0.0868 0.1171 0.155 0.1123 0.1764 0.1823
R@5 0.1935 0.2511 0.1495 0.2916 0.3683 0.3318 0.3927 0.3945
NYC R@10 0.235 0.3062 0.1758 0.3558 0.4545 0.4726 0.4773 0.4810
N@1 0.092 0.1186 0.0868 0.1171 0.1555 0.1123 0.1764 0.1823
N@5 0.1459 0.189 0.1204 0.2028 0.2665 0.2274 0.2901 0.2938
N@10 0.1593 0.206 0.1289 0.23 0.2946 0.2695 0.3176 0.3219
R@1 0.1229 0.147 0.1222 0.1278 0.1612 0.1123 0.224 0.2635
R@5 0.2620 0.3066 0.2186 0.3105 0.3608 0.3418 0.4142 0.4552
TKY R@10 0.316 0.3691 0.2612 0.3808 0.4391 0.4512 0.4834 0.5241
N@l 0.1229 0.147 0.1229 0.1278 0.1612 0.1123 0.224 0.2635
N@5 0.1963 0.2314 0.1732 0.223 0.2660 0.2222 0.325 0.3655
N@10 0.2137 0.2517 0.1869 0.2456 0.2914 0.2576 0.3471 0.3879
R@1 R@5 R@10
—m— NYC —m— NYC —m— NYC
0.250 1 e TKY 0.250 9 e TKY 0501 e TKY
0.225 4 0.225 1 0.45 1
0.200 1 0.200 | 0.40 1
0.175 4 0.175 1 0.351
0.150 1 0.150 | 0.30 1
0.125 1 0.125 9 0.25 1
0.100 4 0.100 4 0.20 1
& o5 T & & 95 S & 95 S
oz”' S & B & S
N@1 N@5 040 N@10
—=— NYC —=— NYC ’ —=— NYC
0.250 1 e TKY 0359 e TkY o35 ]~ TRY
0.225 1 )
0.30 1
0.200 4 0.30 1
0.175 1 0.25 7 0.25 1
0.150 1 020
0.125 1 0201
0.100 1 0151 0.15
& T & T & & TS
& S & S & S
Fig. 4. The performance comparison on NYC and TKY with all metrics.
Compared to the best baseline [14], IKGN has demon- TABLE 1II

strated improvements across all metrics on the four datasets.

THE PERFORMANCE OF DIFFERENT IKGN VARIANTS ON TKY.

This enhancement can be attributed to the richer semantic Dataset | Metric  Best Baseline IKGN  IKGN-IA~ IKGN-C
and contextual information provided by IKG. Furthermore, R@] 0.224 0.2635  0.2441 0.2271
thod i t intenti ti 1 R@5 0.4142 0.4552 0.4393 0.4142
our method incorporates an intention-aware aggregation layer xy | R@I0 04834 05241 05125 04822
that effectively combines multiple layers of nodes within the Nel 0.224 0.2635  0.2441 0.2271
IKG. This process enhances the representation of nodes and N@s 0.325 0.3655  0.3481 0.3266
. . . . N@10 0.3471 0.3879 0.3718 0.3486
ultimately alleviates the issue of data sparsity.
G. Analysis on Hyper-parameter Setting (RQ4) TABLE IV

a) Effect of Intention-aware Aggregation Layer Depth:

THE PERFORMANCE OF DIFFERENT AGGREGATION LAYERS ON TKY.

We vary the depth of the intention-aware Aggregation Layer Dataset | Metric IKGN-1 IKGN-2  1IKGN-3 IKGN-4
to investigate the efficiency of multiple aggregation layers. In R@l 02544 02635 02597  0.2563
. . N R@5 0.4451 0.4552 0.4526 0.4517
particular, the layer number is searched in the range of 1, 2, R@10 05143 05241 05246 05214
3, 4; we use IKGN-1 to indicate the model with one layer TRY | Ne1 02544 02635 02597 02563
and similar notations for others. We summarize the results in Nes 03652 03655 03623 03610
N@10  0.3787 0.3879 0.3857 0.3836

Table IV, and have the following observations:
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0.30 0.32 -
0.18 1 0.28 1 0.30 -
0.16 A 0.25 4 0.28 A
0.14 - 0.23 - 0.26 1

0.24 A
0 . 1 2 T T T T 0 . 2 o T T T T T T T T
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Fig. 5. The results compared to the best baseline on four datasets with all metrics.

e The performance of the model can be improved by 05 T o o
. . . R@]
increasing the depth of IKGN. Specifically, IKGN-2 and - @5
IKGN-3 demonstrate improvements over IKGN-1 in most o —e— R@I0
metrics, which we attribute to their effective modeling of ' . : Eg;
higher-order relationships that capture user intention. / = Nelo

e Upon comparing Table II and Table IV collectively, it $o0s - e
is evident that IKGN-1 consistently outperforms other “ / T
baseline methods. This further validates the effectiveness
of knowledge propagation through better modeling of 02
first-order relationships. r~

e All metrics of IKGN-4 are comparatively weaker than o1

those of IKGN-3. We argue that although deeper propaga-

tion layers can integrate information from more faraway

connections into node representations, it also introduces
noise. Therefore, maintaining a reasonable depth of prop-
agation layers can better capture user intention.

b) Effect of Embedding Size: We examine the impact of
embedding dimensions on IKGN performance. Experiments
are conducted on the NYC dataset with different embedding
sizes, and the results are shown in Fig. 6.

Initially, increasing the embedding dimensions significantly
improves performance, as larger vector dimensions can encode
more entity and relationship information. When the dimen-
sions reach a certain value, the model tends to stabilize.
Similar trends are observed in the TKY dataset.

VI. CONCLUSION AND FUTURE WORK
This paper introduced a novel IKGN model for the next
POI recommendation, with its crux lying in an intention-
aware knowledge graph enriched with location categories
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Fig. 6. The results of NYC dateset with different embedding size.

and spatiotemporal information. Specifically, IKGN comprises
three main building blocks, namely the knowledge embedding
layer, the intention-aware aggregation layer, and the preference
modeling and prediction layer. This design elucidates user
intentions within the knowledge graph, seamlessly extending
it through high-order user and location representations. Exten-
sive experimental results substantiate that our proposed IKGN
outperforms seven state-of-the-art methods in terms of Recall
and NDCG metrics on two real-world datasets.

In the future, we will explore two research directions.
First, while this study centered on intention propagation, the
innate subtlety of user intentions offers room for more explict
extractions from frequently visited POI categories. Second,
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constructing a multimodal KG, which assimilates textual com-
ments, images, and videos related to POlIs, represents an
exciting frontier for future POI recommendation research.
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