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Abstract— In this paper, the problem of anti-windup com-
pensator (AWC) design for guidance and control of quadrotors
in an unknown environment is addressed. Quadrotors can be
affected by disturbances (such as wind), which potentially result
in saturation of the propellers. When saturation occurs, the
flight can become unstable, leading to a crash. On the other
hand, designing an AWC to mitigate the saturation effects in the
control system of a quadrotor can be a challenging task due to
the heavy couplings and complex nonlinear dynamics. For this
reason, we propose a new structure to design an AWC-based
control system to solve this problem. Simulation results are
presented in three cases: 1-without saturation, 2-with saturation
- without AWC, 3-with saturation - with AWC. The effectiveness
of the proposed theoretical results are verified by comparisons.

I. INTRODUCTION

Quadrotor unmanned aerial vehicles (UAVs) have been
extensively studied and utilized due to their simple struc-
ture and vertical take-off and landing capabilities [1], [2],
[3]. However, aggressive flight maneuvers and disturbances
might result in actuator saturation, which significantly affects
the flight quality [4]. When actuator saturation occurs, the
UAV’s control response may degrade, affecting its stability,
and potentially leading to a crash. In recent years many
studies have focused on anti-windup compensator (AWC)
design for quadrotors [5], [6], [7], [8].

While the AWC is typically constructed from a linear
(or linearized) model of the plant’s dynamics [9], [10],
[11], [12], [13], this approach is inadequate for a multi-
loop guidance and control architecture such as that presented
in [14]. More precisely, although some recent work on
attitude only control has been successfully applied to the
linearized attitude dynamics about the hover operating point
[15], [16], linearization of the dynamics about the hover
operating point fails to provide a sufficient representation of
the dynamics, especially during aggressive maneuvers and/or
when wind disturbances occur. Therefore, the full nonlinear
vehicle dynamics are necessary for the design of an AWC-
based guidance and control system for quadrotors under these
circumstances, which motivates this study.

In this paper, we present an integrated guidance and
AWC-based control method for a quadrotor in a GPS-denied
environment with no a priori knowledge of obstacle location.
Since the coupled nonlinear dynamics of a quadrotor present
challenges in the AWC design, we propose a new AWC-
based control structure in which the full nonlinear dynamics
can be used. The simulation results show the effectiveness
and advantages of the proposed theoretical results.

The paper is arranged as follows. The problem formulation
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is provided in Section II. The main results are given in
Section III. The simulation results are presented in Section
IV. Finally, a conclusion is drawn in Section V.

II. PROBLEM FORMULATION

First, we present the basic definitions that are needed in
the sequel.

Definition 1: The saturation function sat(·) : Rm → Rm
is defined as

sat(u)uu =


u u < u,

u u ≤ u ≤ u,

u u < u,

(1)

where u and u are, respectively, the upper and lower satura-
tion limits of u.

Definition 2: The deadzone function Dz(·) is defined as
Dzuu(u) := u− satuu(u). (2)

The translational dynamics of a quadrotor with constrained
thrust in the inertial frame are expressed as

ẍ = −satTT (T ) (cϕsθcψ + sϕsψ) /m,

ÿ = −satTT (T ) (cϕsθsψ − sϕcψ) /m,

z̈ = g − satTT (T )cϕcθ/m.

(3)

where m is the mass of the vehicle, T is the total propeller
thrust perpendicular to the plane of the vehicle, sδ = sin δ,
and cδ = cos δ. Note that since T ≥ 0 ∀t, therefore T = 0.
The rotational dynamics of a quadrotor with constrained
body torques in the body frame are described by

Iω̇ + ω × Iω = satττ (τ), (4)

where ω = [ω1, ω2, ω3]
T is the angular velocity vector,

I = diag{I1, I2, I3} is the diagonal inertia matrix, and
τ = [τ1, τ2, τ3]

T is the control torque vector.
Equation (4) can be written as

Iiω̇i = Ωi + satτ i
τ i
(τi), i = 1, 2, 3, (5)

where Ω1

Ω2

Ω3

 =

(I2 − I3)ω2ω3

(I3 − I1)ω1ω3

(I1 − I2)ω1ω2

 .
The vector ω can be expressed as

ω = QΦ̇, (6)
where

Q =

 1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ

 , Φ =

 ϕ
θ
ψ

 , (7)

and Φ is the vector of Euler angles. For all θ ̸= ±π/2, the
vector Φ̇ can be obtained as

Φ̇ = Q−1ω. (8)
Assumption 1: It is assumed that ϕ(t) ∈ (−π/2, π/2) and

θ(t) ∈ (−π/2, π/2) ∀t.
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III. MAIN RESULTS

This section is devoted to a guidance and control approach
for a quadrotor to avoid obstacles and reach a desired des-
tination while accounting for input saturation. The guidance
and nominal control are based upon the multi-loop guidance
and control architecture presented in [14]. In the following,
we first design an AWC-based control for the quadrotor, and
then the guidance method is presented.

A. AWC-based control

In this subsection, we design an AWC-based controller for
the rotational and translational dynamics, respectively.

The structure of the AWC-based attitude controller (see
Fig. 1(a)) is considered as follows:

τi = τβi + τCi + τAi, (9)
where
τβi = −Ωi + Iiω̇di, τCi = −Kωieωi, τAi = −KaiDzτ i

τ i
(τi),

and Kωi,Kai are positive scalars, eωi := ωi − ωdi where
ωdi is the desired angular velocity.

As can be seen, the controller consists of three terms. The
first term, τβ , is for canceling nonlinear terms and generating
error dynamics. The second term, τC , is to guarantee the
asymptotically stability of the error dynamics when there is
no saturation, and the third term, τA, is a static AWC to
account for saturation.

The proof of asymptotic stability of the closed-loop system
is challenging due to the input saturation constraint. In order
to solve this problem, we introduce a new structure to design
the AWC-based controller (see. Fig. 1(b)). Note that since
Dzτ i

τ i
(τβi+τCi+τAi) = Dz

τ i-τβ i
τ i-τβ i

(τCi+τAi), the application
of this identify to (9) does not change the controller.

For the sake of brevity, we define τni := τ i − τβi and
τni := τ i − τβi. Then, according to Fig. 1(b), (5) can be
rewritten as follows:

Iiω̇i = Ωi + τβi + satτni
τni

(τCi + τAi). (10)
Substituting (2) into (10) yields

Iiω̇i = Ωi + τi −Dzτni
τni

(τCi + τAi). (11)
Inserting (9) into (11) leads to the rotational error dynamics:
Iiėωi = −Kωieωi − (Kai + 1)Dzτni

τni
(τCi + τAi). (12)

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

𝜏𝛽𝑖 

𝜏𝐶𝑖 

 

         sat𝜏𝑖−𝜏𝛽𝑖

𝜏𝑖−𝜏𝛽𝑖ሺ𝜏𝐶𝑖 + 𝜏𝐴𝑖ሻ          
Rotational 

dynamics 

   Desired 

commands 

− 

𝜏𝐴𝑖 

+ 
−𝐾𝑎𝑖 

+ 

+ 

Attitude 

controller 

𝜏𝛽𝑖 + 𝜏𝐶𝑖 

 

       sat𝜏𝑖

𝜏𝑖൫𝜏𝛽𝑖 + 𝜏𝐶𝑖 + 𝜏𝐴𝑖൯       

  

Attitude 

controller 

    Desired 

 commands − 

𝜏𝐴𝑖 

+ 

+ 

+ 

ሺ𝑎ሻ 

ሺ𝑏ሻ 

+ 

+ 

Rotational 

dynamics 

−𝐾𝑎𝑖 

Fig. 1. (a) The AWC-based control structure with sat(·), (b) The
proposed AWC-based control structure with the revised sat(·).

Now, let us consider the following Lyapunov function
candidate:

V (eωi) =
1

2
Iieωi

2, i = 1, 2, 3 (13)

Calculating the time-derivative of V (eω) along the solutions
of (12) leads to

V̇ (eωi) = eωiIiėωi
=

eωi[−Kωieωi − (Kai + 1)Dzτni
τni

(τCi + τAi)].
(14)

If Dzτni
τni

(τCi + τAi) = 0, (14) can be simplified to

V̇ (eωi) = −Kωi
e2ωi

. (15)
In this case, the asymptotic stability of the rotational error
dynamics is ensured for Kωi

> 0. In addition, if Dzτni
τni

(τCi+
τAi) ̸= 0, the following sector condition is satisfied for τni >
0 and τni < 0:

satτni
τni

(τCi + τAi)WiDzτni
τni

(τCi + τAi) > 0, (16)
where Wi > 0.
Condition (16) can be rewritten as
[τCi + τAi −Dzτni

τni
(τCi + τAi)]WiDzτni

τni
(τCi + τAi) > 0.

(17)
According to (9), condition (17) can be rewritten as

[−Kωieωi − (Kai + 1)Dzτni
τni

(τCi + τAi)]∗
WiDzτni

τni
(τCi + τAi) > 0.

(18)

By combining (14) and (18), we can deduce that V̇ (eωi) < 0
if

ηTi

[
−Kωi −1

2
(Kai + 1 +KωiWi)

∗ −(Kai + 1)Wi

]
︸ ︷︷ ︸

Υi

ηi ≤ 0, (19)

where ηi = [eωi Dzτni
τni

(τCi + τAi)]
T. Pre- and post-

multiplying both sides of Υi < 0 by diag{1,W −1
i } yields[

−Kωi −1

2
(KaiW

−1
i + W −1

i +Kωi)

∗ −(KaiW
−1
i + W −1

i )

]
≤ 0. (20)

By letting Vi = W −1
i and Yi = KaiW

−1
i , we have[

−Kωi −1

2
(Yi + Vi +Kωi)

∗ −(Yi + Vi)

]
≤ 0. (21)

Finally, the AWC gains are obtained as Kai = YiV
−1
i . It

should be noted that Vi and Yi are positive because Wi and
Kai are positive. Also, by choice of the Lyapunov function
(13), LMI (21) for i = 1, 2, 3 is independent of the system
parameters, so the result of solving it is the same for i =
1, 2, 3.

Remark 1: The sector condition (16) is not satisfied for
the following two cases because satτni

τni
(τCi + τAi) and

Dzτni
τni

(τCi + τAi) do not have the same sign:
• τCi + τAi > τni where τni < 0,
• τCi + τAi < τni where τni > 0.
If the above conditions occur, the following inequality is used
instead of (16):

[λieωi −Dzτni
τni

(τCi + τAi)]WiDzτni
τni

(τCi + τAi) > 0.
(22)

By adding the left-hand side of (22) to (14), we can conclude
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that V̇ (eωi) < 0 if

ηTi

[
−Kωi −1

2
(Kai + 1− λiWi)

∗ −Wi

]
ηi ≤ 0, (23)

and
λiWieωiDzτni

τni
(τCi + τAi)− WiDzτni

τni

2
(τCi + τAi) > 0.

(24)

Letting λi = λiWi in (23) and (24) leads to

ηTi

[
−Kωi −1

2
(Kai + 1− λi)

∗ −Wi

]
ηi ≤ 0, (25)

and
λ̄ieωiDzτni

τni
(τCi + τAi)− WiDzτni

τni

2
(τCi + τAi) ≥ 0. (26)

Therefore, when the sector condition (16) is not satisfied,
the LMIs (25) and (26) need to be solved online. In this
case, Kωi and Kai are the controller and the AWC gains,
respectively.

Now, we want to examine the closed-loop translational
dynamics in the z-direction. Similar to above, the proposed
structure in Fig. 1(b) is used to design an AWC-based thrust
controller as follows:

T = Tβ + TC + TA, (27)
where

Tβ =
m(g − ẇd)

cϕcθ
, TC =

m

cϕcθ
Kwew,

TA = −KāDz
T−Tβ

T−Tβ
(TC + TA).

Kw,Kā are positive scalars, ew := w − wd, and w and wd
are the velocity and desired velocity of in the z direction,
respectively. The desired velocity wd is provided by the
guidance discussed later in Section III-C.

For brevity, we define Tn := T − Tβ and Tn := T − Tβ .
Then the third equation in (3) can be rewritten as:

z̈ = g − Tβ
m

cϕcθ −
satTn

Tn
(TC + TA)

m
cϕcθ.

(28)

Substituting (2) into (28) results in

z̈ = g − T

m
cϕcθ +

DzTn

Tn
(TC + TA)

m
cϕcθ.

(29)

Inserting (27) into (29) leads to

ėw = −Kwew + (
1 +Kā

m
)cϕcθDzTn

Tn
(TC + TA). (30)

We consider the Lyapunov function candidate as:

V (ew) =
1

2
ew

2. (31)

Taking the derivative of V (ew) along the solutions of (30)
yields

V̇ (ew) = ewėw =

ew(−Kwew + (
1 +Kā

m
)cϕcθDzTn

Tn
(TC + TA)).

(32)

If DzTn

Tn
(TC + TA) = 0, (32) can be simplified as

V̇ (ew) = −Kwew
2. (33)

In this case, the asymptotic stability of the translational error
dynamics in the z direction is guaranteed for Kw > 0.
On the other hand, if DzTn

Tn
(TC + TA) ̸= 0, the following

sector condition is fulfilled for Tni > 0 and Tni < 0:

satTn

Tn
(TC + TA)Ŵ DzTn

Tn
(TC + TA) > 0, (34)

where Ŵ > 0.
The above condition is equivalent to

[TC + TA −DzTn

Tn
(TC + TA)]Ŵ DzTn

Tn
(TC + TA) > 0.

(35)
According to (27), condition (35) can be rewritten as

[
m

cϕcθ
Kwew − (1 +Kā)DzTn

Tn
(TC + TA)]∗

Ŵ DzTn

Tn
(TC + TA) > 0.

(36)

Based on Assumption 1, we have (cϕcθ)2 > 0 ∀t. Multiply-
ing (36) by (cϕcθ)2 results in

[mKwew − (1 +Kā)cϕcθDzTn

Tn
(TC + TA)]∗

Ŵ cϕcθDzTn

Tn
(TC + TA) > 0.

(37)

After adding the left-hand side of (37) to (32), we can
conclude that V̇ (ew) < 0 if

ξT

[
−Kw

1

2
[(1 +Kā)/m+mKwŴ ]

∗ −(1 +Kā)Ŵ

]
︸ ︷︷ ︸

Π

ξ ≤ 0, (38)

where ξ = [ew DzTn

Tn
(TC + TA)cϕcθ]

T. Pre- and post-
multiplying both sides of Π < 0 by diag{1, Ŵ −1} results
in [

−Kw

1

2
[(1 +Kā)Ŵ −1/m+mKw]

∗ −(1 +Kā)Ŵ −1

]
≤ 0, (39)

Finally, letting V̂ = Ŵ −1 and Ŷ = KāŴ −1 results in[
−Kw

1

2
[(V̂ + Ŷ )/m+mKw]

∗ −(V̂ + Ŷ )

]
≤ 0. (40)

After solving the above LMI, the AWC gain is calculated
as Kā = Ŷ V̂ −1. It should be mentioned that V̂ and Ŷ are
positive because Ŵ and Kā are positive.

Remark 2: Similar to Remark 1, the sector condition (34)
does not hold for the following two cases:
• TC + TA > Tn where Tn < 0,
• TC + TA < Tn where Tn > 0.
In these cases, the following condition is employed:

[σew − cϕcθDzTn

Tn
(TC + TA)]Ŵ cϕcθDzTn

Tn
(TC + TA) > 0.

(41)
By combining the left hand-side of (41) and (32), we can
deduce that V̇ (ew) < 0 if

ξT

[
−Kw

1

2
[(1 +Kā)/m+ σŴ ]

∗ −Ŵ

]
ξ ≤ 0. (42)

Letting σ = σŴ into (42) and (41), respectively, results in

ξT

[
−Kw

1

2
[(1 +Kā)/m+ σ̄]

∗ −Ŵ

]
ξ ≤ 0, (43)

and
σ̄ewcϕcθDzTn

Tn
(TC + TA)− Ŵ [cϕcθDzTn

Tn
(TC + TA)]

2 > 0.

(44)
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In this case, Kw and Kā are the controller and the AWC
gains, respectively.

Remark 3: Except the cases mentioned in Remarks 1 and
2, all other cases lead to satisfaction of the conditions (16)
and (34).

B. Guidance

In this paper, the guidance method includes two compo-
nents borrowed from [14]:

• Obstacle avoidance (repulsive) component,
• Destination seeking (attractive) component.

These two components make up velocity commands uc, vc,
and wc in the x-, y-, and z-directions, respectively uc

vc
wc

 =

 urep
vrep
wrep

+

 uattr
vattr
wattr

 . (45)

We now present the repulsive and attractive components.
• Obstacle avoidance (repulsive component).

To generate the obstacle avoidance component of the velocity
commands, the following ellipsoids are defined in R3 as:

Ei :=

{
(xi, yi, zi) ∈ R3 :

x2i
a2i

+
y2i
b2i

+
z2i
c2i

≤ 1

}
,

Eo :=

{
(xo, yo, zo) ∈ R3 :

x2o
a2o

+
y2o
b2o

+
z2o
c2o

≤ 1

}
.

(46)

where Ei and Eo are inner and outer ellipsoids of a poten-
tial field, respectively. By using (46), the potential field is
considered as

U(pi) =


0, if pi ∈ R3\Eo,

Umax

(
ro(pi)− ∥pi∥
ro(pi)− ri(pi)

)
, if pi ∈ Eo\Ei,

Umax, if pi ∈ Ei,

(47)

where Umax > 0 is the maximum potential, and pi is the
position of ith obstacle relative to the vehicle’s center of
mass, which is resolved in the body frame. In addition, ri(pi)
and ro(pi) are defined in [14].
Next, the repulsive component is defined as urep

vrep
wrep

 = − 1

ne

n∑
i=1

U (pi)
OTpi
∥pi∥

, (48)

where ne is the number of obstacle points contained in Eo,
and O is the orientation matrix of the body frame relative to
the inertial frame,

O =

 cθcψ cθsψ −sθ
sϕsθcψ − cϕsψ sϕsθsψ + cϕcψ sϕcθ
cϕsθcψ + sϕsψ cϕsθsψ − sϕcψ cϕcθ

 . (49)

• Destination seeking (attractive component).
The destination seeking component of the velocity com-
mands is defined as: uattr

vattr
wattr

 =


sdpg
∥pg∥

, if ∥pg∥ ≥ ds,

sdpg
ds

, if ∥pg∥ < ds,
(50)

where pg is the position of the destination relative to the
center of mass, which is resolved in the inertial frame, sd is
the desired speed, and ds is the stopping distance.

Remark 4: As can be seen from (50), the goal speed is
proportional to its distance to the destination if the quadrotor

is closer than ds to the destination. On the other hand, the
goal speed is constant if the quadrotor is farther than ds from
the destination.

C. Desired commands
The velocity commands uc, vc, and wc from (45) are

passed through low pass filters, which output the desired
translational velocities ud, vd, and wd and their derivatives.
The details of the filters are described in [14]. In addition,
for the nominal closed-loop system, the desired pitch and
roll are determined from

θd = tan−1

[
(u̇d −Kueu) cψ + (v̇d −Kvev) sψ

ẇd −Kwew − g

]
,

ϕd = tan−1

[
(u̇d −Kueu) cθsψ − (v̇d −Kvev) cθcψ

ẇd −Kwew − g

]
,

(51)
where eu := u−ud and ev := v− vd. Also, u, and v, are the
velocities in the x and y directions, respectively, and Ku and
Kv are velocity gains. Note that the desired yaw angle ψd
is typically set to zero and is only nonzero if the quadrotor
requires rotation for pointing the object detection sensor. In
this study, we assume that obstacles can be detected without
the need to rotate the vehicle, therefore, ψd = 0.

The desired angular velocity is calculated from
ωd = Q(Φ̇d −KΦeΦ), (52)

where eΦ := Φ − Φd and Φd = [ϕd, θd, ψd]
T. Subtracting

(6) and (52) leads to
eω = Q(Φ̇− Φ̇d +KΦeΦ) = Q(ėΦ +KΦeΦ). (53)

Since the controller (9) is designed such that limt→∞ eω = 0,
we can conclude that eΦ converges to zero.

IV. SIMULATION RESULTS

In this section, the following three cases are simulated to
illustrate the performance of our method:

• Case 1: Without saturation
• Case 2: With saturation - Without AWC
• Case 3: With saturation - With AWC

For the simulation, we consider the following parameters:
m = 1.01 kg, l = 0.1185 m, k = 7.5× 10−6 kg ·m/rad2,
b = 1.4× 10−7 kg ·m2/rad2, ϖ = 628 rad/s,

I = diag(0.00585, 0.0054, 0.007),Ku = 1,Kv = 1,KΦ = I3.

where l is the thrust moment arm, k is the propeller thrust
constant, b is the propeller drag constant [14], and ϖ is the
maximum propeller speed. Let the guidance parameters be

ai = 0.84 m, bi = 0.7 m, ci = 0.36 m,

ao = 1.65 m, bo = 1.12 m, co = 0.83 m,

sd = 2.87 m/s, ds = 2.87 m, Umax = 5.5 m/s.

The starting and the destination coordinates are [0, 1.5, 3] and
[4, 0, 1.1]. The desired yaw ψd is set to zero. Also, to induce
saturation of the propellers, a simplified wind disturbance is
considered: a rectangular signal with a magnitude equivalent
to 67.62% of the maximum thrust generated by a single
propeller (i.e., 0.6762kϖ2) is applied in the positive y-
direction over the time interval of 1s to 3s.

Remark 5: For quadrotors, the mechanism that causes
saturation is propeller speed, which occurs when the motors
driving the propellers reach their maximum rotational speed
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and cannot increase their speed any further to generate
additional thrust or torque. However, as seen from Fig. 1 the
controller produces torque and thrust commands while the
UAV (and AWC) are driven by the saturation (and deadzone)
of the torques and thrust. Therefore, we obtain satTT (T ) and
satτ i

τ i
(τi) by perform the following real-time operations in

simulation: ϖ2
1

ϖ2
2

ϖ2
3

ϖ2
4

 =


1
4k

1
4kl

1
4kl

1
4b

1
4k

−1
4kl

1
4kl

−1
4b

1
4k

−1
4kl

−1
4kl

1
4b

1
4k

1
4kl

−1
4kl

−1
4b


 T
τ1
τ2
τ3

 . (54)

With propeller speed limited by ϖ2
isat =

min
(
max

(
ϖ2
i , 0

)
, ϖ2

)
, satTT (T ) and satτ i

τ i
(τ i) are

then calculated as follows:
satTT (T )

satτ1
τ1
(τ

1
)

satτ2
τ2
(τ

2
)

satτ3
τ3
(τ

3
)

 =

 k k k k
kl −kl −kl kl
kl kl −kl −kl
b −b b −b


 ϖ2

1sat

ϖ2
2sat

ϖ2
3sat

ϖ2
4sat

 ,
(55)

from which the deadzones of the input thrust and torques
can be obtained.

The LMI problems are solved using the YALMIP toolbox
[17] with the MOSEK solver [18]. For simulation results,
it is assumed that the conditions of Remarks 1 and 2 do
not occur. Therefore, only LMIs (21) and (40) are solved to
calculate the controller and AWC gains:

Kω1 = Kω2 = Kω3 = 0.9605,Kw = 0.9019,

Ka1 = Ka2 = Ka3 = 1,Kā = 1.

The quadrotor trajectories and propeller speeds are illus-
trated in Figs 2-5. In Case 1, the green trajectory in Fig. 2
shows that the quadrotor avoids all obstacles and efficiently
reaches the destination using a short route, as expected.
However, it is evident from Fig. 3 that the propeller speeds
exceed the maximum speed of ϖ = 628 rad/s.

In Case 2, the saturation constraint is applied in simulation
but AWC is not implemented. As can be seen from the blue
trajectory in Fig. 2, due to the saturation of the propeller
speeds (see Fig. 4), the quadrotor travels a considerably
longer distance to reach its destination.

In Case 3, the saturation constraint is applied in simulation
and AWC is implemented. From the red trajectory in Fig. 2,
we can see that although saturation of propeller speeds occurs
(see Fig. 5), the route taken by the quadrotor to reach its
destination is notably shorter than that of Case 2. However,
it takes a longer route compared to Case 1, which of course
is the ideal case since saturation is absent. For a quantitative
comparison, the distance traveled by the quadrotor in the
three cases is presented in Table I.

For Case 3, the translational velocities and Euler angles
are respectively plotted in Figs. 6 and 7, illustrating that
these signals track the corresponding desired signals. The
difference observed in tracking the desired signals of trans-
lational velocities is due to the saturation of propellers and
the disturbance applied to the system.

V. CONCLUSION

In this paper, the constrained control problem is addressed
in a guidance and control scheme for quadrotors through
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TABLE I
DISTANCE TRAVELED BY QUADROTOR

Case 1 Case 2 Case 3
6.4576 (m) 15.0744 (m) 11.1839 (m)

the development of an anti-windup-based control system.
Because of the coupled nonlinear dynamics which govern
quadrotors, the challenge of designing an anti-windup com-
pensator is overcome through a novel reformulation of the
saturation constraints, which allows for the formulation of an
LMI design solution. The effectiveness of the design method
is illustrated through simulation of obstacle avoidance and
destination seeking of a quadrotor in an unknown environ-
ment.
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