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ABSTRACT
In this study, we simulate mechanically interlocked semiflexible ring polymers inspired by the minicircles of kinetoplast DNA (kDNA)
networks. Using coarse-grained molecular dynamics simulations, we investigate the impact of molecular topological linkage and nanocon-
finement on the conformational properties of two- and three-ring polymer systems in varying solvent qualities. Under good-quality solvents,
for two-ring systems, a higher number of crossing points lead to a more internally constrained structure, reducing their mean radius of gyra-
tion. In contrast, three-ring systems, which all had the same crossing number, exhibited more similar sizes. In unfavorable solvents, structures
collapse, forming compact configurations with increased contacts. The morphological diversity of structures primarily arises from topological
linkage rather than the number of rings. In three-ring systems with different topological conformations, structural uniformity varies based on
link types. Extreme confinement induces isotropic and extended conformations for catenated polymers, aligning with experimental results for
kDNA networks and influencing the crossing number and overall shape. Finally, the flat-to-collapse transition in extreme confinement occurs
earlier (at relatively better solvent conditions) compared to non-confined systems. This study offers valuable insights into the conformational
behavior of mechanically interlocked ring polymers, highlighting challenges in extrapolating single-molecule analyses to larger networks such
as kDNA.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0191295

I. INTRODUCTION

Linked-ring catenanes represent a class of polymers com-
posed of two or more mechanically interlocked ring polymers.1,2

Theoretical,3–5 computational,5–14 and experimental5,15–17 studies
have extensively explored both typical ring polymers and their
interlocked counterparts. It is challenging in general to synthesize
compounds with specific topological linkages rather than typi-
cal covalent bonds.18 Notably, mechanically interlocked rings of
DNA19 can be produced synthetically in multiple well-defined

topologies20–22 to create structures with potential applications in
switches and motors for molecular machines, owing to the mobility
of the individual rings within the structure.20–26

Hierarchical structures composed of interlocking ring
molecules also occur in nature, such as the networks of rings of
DNA called kinetoplast DNA (kDNA) found in the mitochondria
of trypanosome parasites,17,27–40 with Crithidia fasciculata kDNA
being the most studied variant.

This kinetoplast DNA is normally contained within a disk-
shaped organelle measuring 1 �m × 0.4 �m in vivo;17 when
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unconfined, the structure can be observed to form a “shower-
cap” buckled shape of ∼5 �m.29,41,42 Comprising about 5000 inter-
linked DNA “minicircles” (each containing 2500 base pairs, or
850 nm, long, and with low polydispersity43) and a few dozen
linked “maxicircles” (each containing 30 000 base pairs, or 10 �m,
long), containing the genetic information for the synthesis of mito-
chondrial proteins.31,39,44 While the structure of kDNA has been
envisioned as uniform molecular chainmail27,28 with Hopf-linked
minicircles forming a hexagonal network, detailed experimental
observations and associated molecular simulations have provided
a more complex view that these networks contain heterogeneities
such as edges, holes, and additional links among some minicircles.17

Other simulations provided detailed interpretations of experimental
chromatography data, suggesting that rings in the network have a
mean number of three links with other rings.27,45 It is also impor-
tant to note that kDNA is distinctive for its lack of supercoiling,
with the minicircles appearing relaxed when observed through elec-
tron microscopy. This case in the mitochondria of trypanosomatids
could be unique, where covalently closed circular DNA is not super-
coiled. Potentially, this factor promotes the formation of the kDNA
network.46

Recent experimental advancements allow for the controlled
deconstruction of the kDNA network47 such that the remaining
fragments can be carefully analyzed. Hopf links of two and three
rings, as well as more intricate topological linkages involving four
rings, have been observed.47 An example that has not been directly
observed in kDNA is Borromean rings, consisting of three mutu-
ally interconnected loops with no two loops sharing a direct binary
link48 (if one loop is broken, the other two become free of each
other).

Because knots in polymers reduce the entropy of the knotted
portion of the chain, entropy maximization favors the minimiza-
tion of the contour length of the knotted portion, in an effect called
self-tightening.49 A similar effect can exist in linked systems, and
Caraglio and colleagues in several studies showed that links tighten
under confinement.50,51

One can anticipate that a polymer ring’s properties, espe-
cially conformational properties such as radius of gyration, could
be impacted due to it being mechanically interlocked with other
ring polymers instead of existing as an individual ring. These
impacts, based on the imposition of topological constraints by other
rings, could be considered local molecular confinement effects.
In addition, in the realm of nanotechnological applications, these
molecules can undergo overall molecular confinement in nanoslits
or nanochannels, inducing anisotropy based on both the confine-
ment geometry and the polymer’s topological conformation. Prior
work has shown conformational effects of confinement on individ-
ual rings that are different from those of linear polymers.52 It is also
noteworthy that kDNA in slit-like confinement has been shown to
somewhat unfold and adopt more uniformly circular shapes, in con-
trast to the more diverse conformations observed for kinetoplasts in
bulk.41 Previous simulation efforts have aimed to comprehend ring
polymer chain behavior in slit-like confinement with various topo-
logical structures. These simulations primarily focus on the entropic
force exerted by a dilute solution of ring polymer chains, featuring
excluded volume interaction in a good solvent, on the confining par-
allel walls of the slit geometry, yielding a qualitative agreement with
prior analytical results for ideal ring polymers.53

Adding complexity to the structural analysis, the quality of the
solvent in which these polymers are immersed plays a crucial role
in their conformational properties.54 In particular, for kDNA, net-
works composed of thousands of rings transition from a more flat
phase (in a good solvent) to a collapsed phase (in a poor solvent),
traversing an intermediate regime with varying shapes and sizes.32

While prior simulations have provided insights into the effect of
catenation on the θ-temperature depression relative to ring and
linear polymers,55 our focus is on analyzing the influence of dif-
ferent topological links on conformations in good solvents and the
flat-to-collapsed transition under varying degrees of confinement.
Experiments examining crowding-induced32 and protein-induced40

compaction of kDNA show that kinetoplasts can adopt much tighter
configurations than those observed in good solvents. Experimental
work by Holling56 also indicates that similar condensation of kDNA
networks, normally dispersed in water with varying amounts of salt,
can be induced by mixing in ethanol, a poor solvent for DNA.

It is not fully understood what effect molecular topology has
on solvent-induced collapse. It may be argued that, compared to an
unentangled molecule of the same molecular weight, a knotted or
linked molecule adopts a smaller conformation in the good solvent
phase and a larger one in the poor solvent phase due to the per-
sistent topological constraints, leading to a “softer” transition (with
a smaller magnitude change in radius of gyration upon collapse).
However, it is not known whether the number of entangled compo-
nents or the complexity of each entanglement has a more significant
effect or how these effects would interact to determine the behavior
of a large catenated network.

In this study, we explore the impact of molecular topology and
the effect of slit-like nanoconfinement on conformational properties
under varying solvent qualities of fundamental catenanes compris-
ing two and three rings. We focus on the Hopf-linked structures
integral to kDNA and make comparisons to more highly linked or
complex topological structures with otherwise comparable physical
characteristics. Practical implications include an improved under-
standing of the conformations of the constituent components of
kDNA, which is relevant in the interpretation of experimental real-
or inverse-space data on the size/shape of such components in
a solution that may not have the resolution to detail the precise
topology. However, our main objective is to glean fundamental
insights into the intricate interplay of different types of confine-
ment, topological, and solvent effects relevant to experimental
systems.

This paper is organized as follows: We first discuss the selected
topological links, our choice of a coarse-grained modeling approach,
and the details of our simulation methodology in Sec. II. Section III
is dedicated to presenting and discussing the conformational and
structural outcomes when different topological links are subjected
to varying solvent qualities and degrees of confinement. Finally, our
findings are summarized in Sec. IV.

II. SIMULATION METHODS
A. Topological conformations

A prime link is mathematically defined as a link that cannot be
represented as a sum of other links, while a composite link can be
composed of combinations of other links. In this study, we consider
prime links, as illustrated in Fig. 1. These links are designated by the
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FIG. 1. Representation of linked-ring catenanes with topological isomerism in links
considered in this study. Catenanes made up of two rings: (a) Hopf link (the sim-
plest nontrivial link), (b) Solomon link, and (c) Star of David. Catenanes made up of
three rings: (d) a certain cyclic [3]catenane, as shown, (e) Borromean rings, and (f)
another cyclic[3]catenane with a different topological form. The links are listed by
increasing complexity according to Rolfsen’s table58,59 and are labeled in red with
the respective Alexander–Briggs notation, where ab

c denotes the cth b-component
link with crossing number a.

Alexander–Briggs notation,57 denoted as ab
c , and later extended by

Rolfsen.58,59 In this notation, a represents the minimum number of
nodes or crossing points of any projection of the link, the superscript
b is the number of linked components, and the subscript c is a con-
ventional index to distinguish between topological isomers with the
same number of nodes and linked components.

Figures 1(a)–1(c) show three prime links made up of two
components (polymer rings in our case). These range from the ele-
mentary Hopf link (22

1) to the more intricate Star of David (62
1),

including the Solomon link (42
1). Considering slightly larger struc-

tures, we examine three prime links made up of three components
or rings [see Figs. 1(d)–1(f)]: a cyclic [3]catenane (63

1), where each
ring is individually connected to the other two rings without shared
links, the Borromean rings (63

2), and the third cyclic [3]catenane in
Rolfsen’s table (63

3). 63
1 and 63

3 represent the simplest closed Hopf-
linked chains but differ by a twist of the final loop. It was recently
demonstrated14 that this twist chirality can have dramatic effects
on the equilibrium configuration of polycatenanes. These topologies
were chosen to allow us to examine the effect of both increasing the
number of rings and the linkages per ring, as well as the effect of
linking chirality. Although our current model does not include local
nonisotropic interactions or torsions, there is no energy penalty for
twisting as there would be in real DNA. As baseline cases, we have
also studied the conformation of a single isolated ring to demon-
strate the specific impact of the topological linkage and a single linear
polymer chain for comparative purposes.

B. Coarse-grained model
Our coarse-grained model is based on the physical properties

of kDNA minicircles that can be experimentally isolated outside
the kDNA network.17,47 Each polymer ring in our systems is made
of bonded beads of size σ [where size refers to the Lennard-Jones
(LJ) diameter with the potential given below]. We set ε = σ = m to
unity for all beads (these are our reduced LJ units of energy, length,
and mass). In physical units, the hydrated diameter of double-
stranded DNA is 2.5 nm, and its persistence length is approximately
lp � 50 nm. Mapping the bead diameter to SI units (nm), we set
σ = 2.5 nm. The contour length for each polymer ring should be

Lc ∼ 340σ = 850 nm � 2.5 kbp (∼17lps long). Therefore, the persis-
tence length is set to lp = 20σ by adding the angle potential described
below. We simulate different systems, each considering one of the
topological conformations shown in Fig. 1, where each ring has
a total of 340 monomer beads. Consequently, there are a total of
680 beads in two-ring systems and 1020 beads in three-ring systems.

In particular, the polymer rings are modeled with a standard
Kremer–Grest (KG) bead-spring model.60,61 Successive beads in the
ring are connected by the finitely extensible nonlinear elastic (FENE)
potential combined with the repulsive portion of the LJ potential
[the Weeks–Chandler–Andersen (WCA) potential],62,63

Ubonded(ri, i+1) = UFENE(ri, i+1) +UWCA(ri, i+1)
= −1

2
kFENER0

2 ln �1 − � ri, i+1

R0
�2�

+ 4 ε�� σ
ri, i+1

�12 − � σ
ri, i+1

�6� + ε, (1)

where ri,i+1 is the distance between the two beads, kFENE = 30kBT�σ2

is the spring constant, and R0 = 1.5σ is the maximum extent of the
bond where the FENE potential diverges. The second term is the
WCA potential and is cut off at rc = 21/6σ, the minimum of the full
LJ potential. The parameters used here have been shown to ener-
getically prevent bonds from crossing and, therefore, enforce the
mechanical bonds, which are specified entirely by the initial con-
ditions of the simulations. The average bond length is �l� ≡ 0.965σ.
Note that we consider torsionally relaxed DNA rings with no twist,
as shown in Refs. 17 and 45.

To model interactions between nonbonded particles and
account for the influence of an implicit solvent, it is essential to con-
sider solvent-mediated interactions that induce correlations between
segments along the chain. In this study, we employed a tunable
potential represented as a piecewise function of repulsive and attrac-
tive parts, ensuring continuity at rc for rc > 21/6σ as shown in
Refs. 12 and 64. In this context, the repulsive portion has the same
shape while the attraction is added with strength based on the
parameter λ. In particular,

Unonbonded(rij)

=
�������������������

4 ε
�������

σ
rij
�12 − � σ

rij
�6������ + ε(1 − λ), rij ≤ 21�6 σ,

4 ελ
�������

σ
rij
�12 − � σ

rij
�6������, rij > 21�6 σ,

(2)

where rij is the distance between two nonbonded beads, i and j.
As mentioned earlier, the parameter λ controls the depth of the
attractive well, which accounts for the overall effect of the solvent
implicitly. (No attraction between monomers, λ of zero, implies the
athermal, good solvent case where effects of monomer–monomer,
monomer–solvent, and solvent–solvent interactions cancel overall,
and it is not preferable that monomers interact with each other over
the solvent, which is not explicitly represented. Put another way, in
this limit, if our slightly soft repulsive potential is approximated as
perfectly hard, there would be no internal energy change in mixing a
monomer fluid and solvent. A greater attraction between monomers
implies that monomer–monomer or solvent–solvent interactions
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FIG. 2. Effective nonbonded interaction curves with different λ values representing
varying solvent qualities.

are relatively more favorable, corresponding to poorer solvents).64

The influence of different λ values on the nonbonded potential
is illustrated in Fig. 2; here, we explore values of λ ranging from
0 (athermal solvent) to 0.6, which is below the collapse threshold
for our systems. Note that we truncated and shifted the pairwise
potential of Eq. (2) at a cutoff of 2.5σ.

To set the persistence length of the model, we used the
Kratky–Porod potential as in prior work,17,45

Ubend(θ) = kBTlp�σ(1 + cos θ), (3)

where θ is the angle between three consecutive beads along the chain
and the bending energy kBTlp�σ ≡ kbend = 20kBT.

C. Langevin dynamics
Because our systems are in an implicit solvent, we use

a Langevin thermostat that includes a random noise term
(Langevin dynamics) to simulate the canonical ensemble at constant
T = 1.0ε�kB. Therefore, given the positions of each bead i and the
conservative forces Fc,i(t) based on the gradient of all pairwise
potentials from Eqs. (1)–(3), the time evolution of the beads is
governed by the Langevin equation,

m
d2ri

dt2 = Fc, i − ζ
dri

dt
+W i(t), (4)

where m is the bead’s mass and ζ is the friction coefficient set to
ζ = 0.5m�τ, where τ = σ

�
m�ε = 1 is the characteristic time unit

of the simulation.11,61,65,66 The friction coefficient, ζ, is related to
the damping factor, τm, in the implementation of the Langevin
thermostat by ζ = (m�τm). W i(t) is a random force with Gaus-
sian white noise statistics obeying �W i(t)� = 0 and �W i(t)W i(t′)�= 2ζmkBTδijIδ(t − t′), where δ is the Dirac delta function and
I is the identity matrix. This strategy implies that, on average, the
stochastic fluctuations are balanced by the dissipative forces, and
the overall energy stays approximately constant. We use the open-
source LAMMPS package67 to perform the simulations with a time
step of 0.005τ.

D. Simulation setup
We perform single-molecule simulations of the six catenane

systems shown in Fig. 1, where different values of λ ranging from

0.0 to 0.6 (the collapse threshold for our systems) are consid-
ered. The initial configuration for each system was created using
the software Avogadro,68 followed by an energy minimization
of the system. In addition, certain systems underwent a slit-like
nanoconfinement effect, detailed below.

To address confinement, it is crucial to note that a linear poly-
mer chain with a persistence length lp undergoes deformation when
confined to a geometry where at least one dimension d is smaller
than the equilibrium size in bulk (Rg,bulk). This results in distinct
regimes, such as the de Gennes regime69 (Rg,bulk > d� lp) and the
Odijk regime70 (lp � d), each influencing the physical properties of
the polymers.

For simulations without slit-like confinement, a cubic simula-
tion box with constant volume and periodic boundary conditions
of dimensions (300 × 300 × 300)σ3 is employed to prevent cate-
nanes from interacting with themselves through the boundaries.
For simulations with slit-like confinement, we implemented repul-
sive walls, confining the catenane molecule with a height h = 5σ
along the z-axis of the computational box. This condition repre-
sents extreme confinement since the confining dimension is smaller
than the persistence lengths of the molecules studied; in particu-
lar, h = 5σ corresponds to ∼12.5 nm in real units for DNA, which
is in the Odijk regime. The walls interact with catenane beads
using the repulsive WCA potential (Lennard-Jones 12–6 cutoff and
shifted at rc = 21/6σ), generating a force on the atoms perpendicu-
lar to the wall. In these cases, the computational box is periodic
only in the directions parallel to the walls (x- and y-directions of
the computational box) and is constrained by confining walls in the
z-direction.

Systems are then equilibrated for a total time of 1 × 107τ
to achieve an equilibrium conformation and decorrelation in the
position of beads.

After equilibration, all systems underwent a production run
lasting at least 1 × 109 time steps, equivalent to 5 × 106τ, as described
in Ref. 71, for measuring conformational properties.

III. RESULTS AND DISCUSSION
To initiate the analysis and adopt a more intuitive approach,

first visually inspect representative snapshots from molecular
dynamics (MD) simulations, as depicted in Fig. 3, for all systems
studied under varying solvent qualities and for both nonconfined
conditions and under slit-like confinement. Note that each configu-
ration is presented on the same scale for a clear comparison in terms
of size.

Upon initial examination, it is observed that structures col-
lapse under poor enough solvent conditions in both non-confined
and slit-like confinement systems. This occurs when the interaction
parameter λ reaches 0.6 for non-confined systems and 0.4 for con-
fined systems (note we only consider increments of 0.2λ in this work,
so we are unable to determine the exact transition point, although
we plan to consider finer changes in solvent quality in future work).
Morphologically, the collapsed structures vary based on the type of
links. Another visually notable characteristic is that under nanocon-
finement, structures are more extended in the plane perpendicular to
the confinement direction and appear more radially symmetric com-
pared to the same structures under non-confined conditions. This
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FIG. 3. Representative snapshots of linked-ring systems with various topological conformations (labeled with Alexander–Briggs notation57 in red) under varying solvent
qualities for nonconfined conditions (left) and in slit-like confinement (right). In the case of slit-like confinement, a front view is provided along with a perspective from an
oblique top view for the 62

1 molecule for illustrative purposes. (The gray background for systems with λ = 0.6 indicates potential kinetically trapped states, which might not
persist indefinitely. The data in this case are only provided for completeness.)

behavior is intuitively expected and similar to experimental observa-
tions of larger kDNA networks, in which flattened quasi-2D shapes
were observed under extreme confinement.41

At low λ values of 0.0 and 0.2 (good solvent conditions), the
analysis of two-ring systems reveals that a higher number of nodes
or crossing points in any link projection results in a more inter-
nally constrained structure and a smaller average size under these
conditions. This is evident in both non-confined and nanoconfined
systems. Crossing points in these systems are distributed along the
ring domains, preventing them from moving far from each other as
the number of links increases, as shown in the 62

1 system.
Interestingly, at low λ values of 0.0 and 0.2, the three-ring sys-

tems all appear to be of similar size, at least visually. This may be
because, in contrast to the two-ring systems, all of the three-ring
systems have the same crossing number. For the studied types of
three-ring systems, the rings can move away from each other, con-
centrating the links near a common point in the middle. This can be
better appreciated in confined systems.

For higher λ values, confined structures collapsed before
(at a more modest λ or not as poor solvent quality) non-confined
systems. This is expected because these systems have less conforma-
tional entropy in the non-collapsed state due to their confinement
and so lose less entropy upon collapse (while one expects they have
a similar amount of energy upon collapse as non-confined sys-
tems, overall making collapse more favorable), and similar effects
have also been observed experimentally for confined DNA.72 For
confined systems and λ = 0.4, all the topological links under study
exhibit similar rod-like collapsed conformations that are more
than one chain segment thick and relatively extended along one
dimension. At λ = 0.6, both confined and non-confined systems are
collapsed, and two particular conformations can be observed: rod-
like structures and small toroid-like structures, both of which are
multiple segments thick.

We believe these result from competing energetic effects: (1)
the systems would tend to collapse into structures that are overall
more compact/spherical and have more local contacts (LJ interac-
tions), but (2) there is also an energetic penalty for chain bending
(due to the angle potential). Chains can increase their interactions

with less bending if they align locally so that relatively straight local
regions of the chains can interact with each other. Depending on the
topology and bending penalty relative to solvent strength, as well as
the initial state and how exactly it evolves toward a collapsed struc-
ture over time, the system may coil into a toroidal shape with a
locally consistent bending that is less than that required to fully fill a
spherical shape, vs creating a rod-like structure with mostly straight
regions and a smaller number of bent angles near the ends. We
note that the systems at λ = 0.6 are kinetically trapped (they are not
able to explore other conformations after collapsing quickly dur-
ing the beginning of the simulation), and different states (rod-like
vs toroid-like) can evolve from different random initial conditions
for some of these systems, as shown in the supplementary material.
While these observed states may provide insight into the possi-
ble experimentally relevant kinetically trapped states, we make no
attempt to simulate specific cooling or solvent exchange processes,
and thus, we do not address the likelihood of the systems forming
these particular collapsed states experimentally. Below, we show the
results for these states at λ = 0.6 for completeness and to highlight
the fact that the systems all reach a collapsed state at high λ, but we
do not focus on which type of collapsed state they form under this
condition.

To quantitatively characterize the structural features of our
linked-ring catenane systems under varying solvent conditions and
degrees of confinement, we calculated the gyration tensor, denoted
as G. Each component of the gyration tensor is defined as

Gαβ = 1
Nb

Nb�
i=1
�ri, αri, β�, (5)

where Nb is the total number of beads, ri,α is the position of bead i rel-
ative to the catenane molecule’s center of mass, and α, β ∈ {x, y, z}.73

The gyration tensor is a symmetric 3 × 3 matrix, and its eigenvec-
tors are the principal axes of the shape (if the shape is rotated to
this coordinate system, G is a diagonal matrix of eigenvalues). We
define the eigenvalues, sorted in descending order, as λx

2, λy
2, and
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λz
2 (λx

2 ≥ λy
2 ≥ λz

2). This convention makes it so that each λα has
length units and is the same as the one dimensional radius of gyra-
tion calculated along the corresponding principal axis; the overall
squared radius of gyration, Rg

2, is tr G = λx
2 + λy

2 + λz
2. For each

shape, the eigenvalues (and the differences in centers of mass of
rings and crossing numbers as discussed below) are computed at
each saved configuration in time, then each is averaged over time
before being used to calculate further quantities given below, such
as Rg

2.
In Fig. 4(a), for systems under no confinement, Rg values

are approximately constant as a function of λ when λ ≤ 0.4, then
decrease significantly when the systems are collapsed at λ = 0.6. In
the case of two-ring systems, the largest Rg is for the Hopf link
22

1, followed by the Solomon link 42
1, with the smallest being the

Star of David 62
1. Thus, in agreement with expectations and the

visual inspection in Fig. 3, the increased complexity of the topolog-
ical linkage leads to a smaller Rg for two-ring systems. However,
in the case of three-ring systems, the opposite is observed. Here,
the 63

3 system, which has the highest complexity, shows the largest
Rg , although the differences between values for three-ring systems
are relatively small. Note that in this regime, the Hopf-linked three-
ring systems (63

1 and 63
3) lie at similar values to the single Hopf link

molecule (22
1).

On the other hand, for λ = 0.6, where all structures collapse,
the systems take on one of two Rg values related to the two types
of conformations discussed above: rod-like structures (22

1, 42
1, and 63

3
with a higher Rg value) and toroid-like structures (62

1, 63
1, and 63

2 with
a smaller Rg value).

FIG. 4. Mean radius of gyration, Rg, as a function of the interaction parameter λ
for various topological conformations (labeled with Alexander–Briggs notation57)
(a) without confinement and (b) in slit-like confinement. The bars show the stan-
dard errors of all the measurements (note that the error bars are smaller than the
symbols). Note that λ = 0.6 results are presented only for completeness; those
systems are collapsed into compact shapes that are kinetically trapped in a certain
way depending on the initial conditions and do not represent equilibrium states.

The Rg values of systems under slit-like confinement, as shown
in Fig. 4(b), vary differently and are, in general, larger than those
of non-confined systems. For λ = 0.0 and 0.2, we observe that sys-
tems 42

1 and 62
1 are significantly smaller than the rest; while most

systems can concentrate all their crossings near one point and spread
out otherwise, these 42

1 and 62
1 systems are more internally con-

strained and, thus, remain smaller. Note that, in contrast to the
non-confined systems, the confined systems become slightly smaller
at λ = 0.2 and significantly smaller at λ = 0.4, at which point the
non-confined systems have not yet collapsed, as observed in Fig. 3.
At λ = 0.6, the systems are collapsed into qualitatively similar over-
all structures to their non-confined counterparts, although their
Rg values can be different depending mostly on the thickness of the
structures.

As baseline cases, we simulated a single isolated ring under
varying solvent conditions and also a single linear polymer chain for
comparative purposes (see Fig. S1 in the supplementary material).
At first glance, for the non-confined isolated ring [Fig. S1(a)], a small
and constant value of Rg is observed until λ = 0.4, which is expected
since it is a single ring and comparable to the value of the 62

1 struc-
ture. In the case of slit-like confinement, interestingly, the same bulk
trend and values for the isolated ring are practically maintained, with
no abrupt decay at λ = 0.4 as observed in all catenanes studied under
slit-like nanoconfinement [see Fig. 4(b)] and also in the case of the
linear polymer chain, which shows a more similar trend to catenanes
under extreme confinement in terms of Rg trends.

It is instructive to decompose the measurements for Rg and
analyze the biggest and smallest eigenvalues separately (see Fig. 5)
to compare how relatively extended each shape is along its long axis
or shortest dimension.

In non-confined systems, at low λ values, trends in both the
largest and smallest eigenvalues [see Figs. 5(a) and 5(b), respec-
tively] are consistent with the Rg measurements shown in Fig. 4.
However, the differences in the collapsed values at high λ (poor-
quality solvent) are primarily dictated by the largest eigenvalues
(all non-confined collapsed systems’ smallest eigenvalues are simi-
lar); the largest eigenvalue primarily indicates whether the system
happened to become trapped in a long rod-like state or a more
compact toroid-like state. Under slit-like confinement [see Figs. 5(c)
and 5(d)], the trends in the largest eigenvalues with respect to
system type and solvent quality are generally the same as those
seen from the Rg measurements. Of course, the smallest eigenvalue
for these systems is always relatively small due to the confine-
ment in one dimension. Note that monomers occupy a restricted
height due to confinement between approximately −1.5σ and 1.5σ,
with 0 representing the midpoint of the repulsive walls imple-
mented. The wall’s location is set at where the potential diverges;
the center of a bead at the point where there is a 1kBT energy
penalty for being near the wall is at σ, making the effective distance
between walls for beads’ centers to exist about 3σ. They experi-
ence zero repulsive force only in the middle region of 5 − 2 × 21/6

= 2.76σ. Interestingly, the four systems with the lowest λx
2 values

(62
1, 63

1, 63
2, and 63

3) exhibit somewhat larger λz
2 values (although

these are still extremely small relative to the extension in other
directions). This is indicative of thicker configurations in which seg-
ments are partly stacked on top of each other in the direction of
confinement.
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FIG. 5. (a) Biggest and (b) smallest eigenvalues of the gyration tensor (G) as a function of the interaction parameter λ for various topological conformations (labeled
with Alexander–Briggs notation57) in systems without confinement. (c) Biggest and (d) smallest eigenvalues of the gyration tensor (G) as a function of the interaction
parameter λ for various topological conformations (labeled with Alexander–Briggs notation57) in systems with slit-like confinement. The bars show the standard errors of all
the measurements (note that the error bars are smaller than the symbols). Note that λ = 0.6 results are presented only for completeness; those systems are collapsed into
compact shapes that are kinetically trapped in a certain way depending on the initial conditions and do not represent equilibrium states.

We also quantify the polymer conformation by monitoring the
relative shape anisotropy, κ2, defined by

κ2 ∶= 3
2

λx
4 + λy

4 + λz
4

(λx
2 + λy

2 + λz
2)2 − 1

2
, (6)

where 0 ≤ κ2 ≤ 1. A perfect sphere has κ2 = 0, while a one dimen-
sional rod has κ2 = 1, a limit that is not possible for these ring
systems. For planar, circularly symmetric objects, the relative shape
anisotropy converges to the value of 1�4. The shape anisotropy
calculated for all the systems studied is shown in Fig. 6.

For non-confined systems [Fig. 6(a)], a constant trend is
observed for all systems, with κ2 ≤ 0.11 until just before the struc-
tures collapse, indicating relative isotropy in the 3D configurational
space.

For confined systems [Fig. 6(b)], at λ = 0 and 0.2, all val-
ues are between 0.3 and 0.4 because they are spread or extended
(but not completely symmetrically) across the plane perpendicular
to the confinement direction, exhibiting κ2 values slightly higher
than 0.25. The highest κ2 value among the systems is for the 22

1 con-
figuration, owing to its having only one Hopf link, making it less
symmetrical in the x–y plane than three-ring systems. It is notewor-
thy that under confinement, a flat-to-collapse transition is induced
at λ ∼ 0.4 (which is before the collapse transition for non-confined
systems), which increases κ2. At this point, all confined systems
visually appear rod-like, although the value of κ2 is somewhat differ-
ent across the systems. At λ = 0.6, all systems are more significantly
locally collapsed.

To explore how the topological linkage impacts the asymme-
try between rings within a catenane molecule under varying solvent

FIG. 6. Relative shape anisotropy, κ2, as a function of the interaction parameter λ
for various topological conformations (labeled with Alexander–Briggs notation57)
(a) without confinement and (b) in slit-like confinement. Note that λ = 0.6 results
are presented only for completeness; those systems are collapsed into com-
pact shapes that are kinetically trapped in a certain way depending on the initial
conditions and do not represent equilibrium states.

qualities, Fig. 7 presents the time-averaged absolute percentage dif-
ference in Rg (�Rg) of the larger/largest and smaller/smallest rings
in two-ring/three-ring systems for both confined and non-confined
systems. In addition, Fig. 7 shows the mean-squared center-to-
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center distance between interlocked rings, L2, normalized by the
mean squared radius of gyration of the molecule (Rg

2), for both
non-confined and confined systems. In particular, the mean-squared
center-to-center distance measurements consider the average dis-
tance between centers of mass of two rings; for three-ring sys-
tems, the measurements are averaged across all possible two-ring
combinations.

For non-confined systems, �Rg values plateau at low values of
λ (λ ≤ 0.4) for all the systems [see Fig. 7(a)]. Notably, the system
with the lowest �Rg value, 22

1, results from only one constraint acting
equivalently on both rings. On the other hand, differences are larger
in three-ring systems.

In confined systems [see Fig. 7(c)] with low λ values (0 and 0.2),
certain configurations, such as 22

1, 62
1, and 63

2, show very small �Rg .
In the cases of 22

1 and 63
2, there is only one link, or the links can be

brought to a single small region, such that the rest of the rings can
each extend relatively independently in a similar shape to the others.
The reason for the small �Rg for the 62

1 may be different because the
many links between only two rings mean that the links stay evenly
distributed, keeping the rings similar to each other. The other sys-
tems, 42

1, 63
1, and 63

3, exhibit higher �Rg values as their links and
conformations are apparently not even within the molecule.

In Fig. 7(b), the normalized mean-squared center-to-center dis-
tances of the interlocked rings, L2�Rg

2, are shown for non-confined
conditions. The trends are similar for all the systems studied, with a
plateau for λ ≤ 0.4 (albeit at different values) and a common collapse
point for all configurations. For two-ring systems, the more required
crossings, the lower the L2�Rg

2 value (the closer the rings are, as one
would expect). Interestingly, for three-ring systems, different values
are also observed at low λ values, although the number of crossings

is the same. This indicates that the topological linkage type plays a
significant role in the conformational properties of the molecules.
Here, the 63

3 configuration exhibits the highest L2�Rg
2 value due to

the concentration of all crossings in the middle, enabling the rings
to extend. Conversely, one might expect a similar behavior for the
63

2 configuration, but counterintuitively, the 63
1 configuration

exhibits a higher L2�Rg
2 than the 63

2 configuration, even when every
ring is constrained to two other rings separately. On the other hand,
in Fig. 7(d), confined systems exhibit similar trends, but collapse
occurs at a lower λ. Notably, at λ = 0, the 63

1 configuration has a
higher L2�Rg

2 value than even 63
3, presenting a non-trivial result that

warrants further investigation.
To characterize the complexity of entanglements within each

link, we compute the average crossing number (ACN). The crossing
number counts the number of times one part of the link crosses over
another when the link is projected onto a specific plane; the ACN
measures this quantity projected over all possible planes. The ACN
will always be greater than the invariant minimum crossing num-
ber and is typically anti-correlated with the radius of gyration, as a
more compact configuration will contain more folded sections of the
molecule. The formula to calculate the ACN is74

ACN = 1
4π�γi

�
γj

�r̂ ⋅ dri × drj ��ri − rj �2 , (7)

where γi and γj are the contours of the rings, and ri and rj are the
respective spatial 3D coordinates.

As shown in Fig. 8, the ACN increases with the topological
complexity of the links, as expected, and rises as self-interactions
within the molecule induce a more compact state. Under confine-

FIG. 7. Time-averaged absolute percentage difference in Rg (�Rg) between the largest and smallest rings in two-ring and three-ring systems with different conformational
topologies (labeled with Alexander–Briggs notation57) as a function of the interaction parameter λ (a) without confinement and (c) in slit-like confinement. Normalized mean-
squared ring center-to-center distance L2�Rg

2 as a function of the interaction parameter λ (b) without confinement and (d) in slit-like confinement. Note that λ = 0.6 results
are presented only for completeness; those systems are collapsed into compact shapes that are kinetically trapped in a certain way depending on the initial conditions and
do not represent equilibrium states.
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FIG. 8. Average crossing number (ACN) as a function of the interaction parameter
λ for various topological conformations (labeled with Alexander–Briggs notation57)
(a) without confinement and (b) in slit-like confinement. The bars show the stan-
dard errors of all the measurements. Note that λ = 0.6 results are presented only
for completeness; those systems are collapsed into compact shapes that are kinet-
ically trapped in a certain way depending on the initial conditions and do not
represent equilibrium states.

ment in good solvent conditions, the links are effectively flattened
closer to their minimum-crossing configurations when projected
onto most planes, giving an ACN close to their minimum crossing
number. Two linked circles would have an ACN slightly above 2, as
they cross twice in most projections but more times when viewed
obliquely from the side. Two linked ring polymers, such as the
λ = 0.0 22

1 configurations in Fig. 3, would have a higher average
crossing number because the entropic folding of the polymer leads to
crossings, as shown in many projections. A higher value, toward 100,
indicates that the different strands wind around each other many
times, such that there is no projection in which the polymer does
not cross itself dozens or hundreds of times. In that sense, it is a
topological indicator of the polymer’s compaction.

IV. CONCLUSION
We conducted MD simulations to investigate the impact of

molecular topological linkage and the effect of slit-like nanocon-
finement on the conformational properties under varying solvent
qualities of fundamental linked-ring polymers comprising two and
three rings. Our coarse-grained model is based on the Kremer–Grest
model for modeling polymers, with parameters designed to mimic
the physical features of the minirings that make up kDNA
networks.

In good-quality solvents and for two-ring systems, molecules
with a higher number of crossing points (a more internally con-
strained structure) yield smaller average values of the mean radius of
gyration and make for a softer flat-to-collapse transition (a smaller

change in radius of gyration upon transition). This phenomenon
holds in both non-confined and nanoconfined systems. However,
this same phenomenon is not observed in the three-ring systems
studied. For the types of linkages studied here, the three rings could
always move away from each other (in terms of their centers of mass)
by concentrating the crossings at a common region in the middle
of the structure, while each ring could extend away from this small
region. The understanding that behaviors observed in two-ring sys-
tems may differ from those in three-ring systems provides insights
that extrapolating behavior from single molecule analysis to large
catenated networks, such as kDNA, is nontrivial.

In poor-quality solvents, structures tend to collapse, result-
ing in overall compact configurations with increased contacts. This
leads to diverse morphological structures determined more by the
topological linkage than the number of rings.

It is worth noting that, consistent with experimental results
for kDNA networks, extreme confinement induces more isotropic
and extended conformations for catenated polymers. In this sce-
nario, links are effectively flattened into their minimum-crossing
configurations when projected onto most planes. In addition, the
flat-to-collapse transition in extreme confinement occurs at lower
values of λ compared to non-confined systems.

Future efforts will be extended to investigate the threshold
at which solvent quality can potentially induce kinetically trapped
states in simulations and, likely, experiments as solvent strength is
decreased by testing more values of λ for particular conformations.
Finally, to achieve a more detailed understanding of the single-
molecule behavior of catenated DNA chains, we could model these
molecules with a worm-like chain model, introducing torsional
potentials and the characteristic twist present in DNA, as in our pre-
vious work.75,76 In addition, a more detailed model incorporating
partial charges on the DNA would allow for a closer representation
of this molecule and its longer ranged interactions. From this under-
standing, we can also extend to larger networks to approach a kDNA
system.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional details and anal-
yses on single isolated rings and linear polymer chains as baseline
cases for comparative purposes with the catenanes in the main text,
and multiple simulations on single molecule systems at high λ to
analyze kinetically trapped conformations (snapshots provided).
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