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Constrained Reinforcement Learning for Predictive
Control in Real-Time Stochastic Dynamic Optimal
Power Flow

Tong Wu'™, Member, IEEE, Anna Scaglione

Abstract—Deep Reinforcement Learning (DRL) has emerged
as a favored approach for resolving control challenges in power
systems. Traditional DRL guides the agent through exploration
of numerous policies, each embedded within a neural network
(NN), aiming to maximize the associated reward function. However,
this approach can lead to infeasible solutions that violate physical
constraints such as power flow equations, voltage limits, and dy-
namic constraints. Ensuring these constraints are met is crucial
in power systems, as they are a safety critical infrastructure. To
address this issue, existing DRL algorithms remedy the problem by
projecting the actions onto the feasible set, which can result in sub-
optimal solutions. This article introduces a pioneering primal-dual
approach to learn optimal constrained DRL policies specifically for
predictive control in real-time stochastic dynamic optimal power
flow. The focus is on controlling power generations and battery
outputs while ensuring compliance with critical constraints. We
also prove the convergence of the critic and actor networks. Our
case studies, based on IEEE standard systems, underscore the
preeminence of the proposed approach in identifying near-optimal
actions for various states while concurrently adhering to safety
constraints.

Index Terms—Constrained reinforcement learning, stochastic
dynamic optimal power flow control.

NOMENCLATURE
Sets
N The set of all buses, having a cardinality of N.
G The set of all buses equipped with G generators.
Gs (Gn) The set of slack (non-slack) buses fitted with

generation capabilities.
B The set of all Battery Energy Storage Systems
(BESSs), with a cardinality of B.
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Operators

AT A" The transpose and Hermitian of matrix A.

D(A) The vector of the diagonal elements of A.

diag(a) A diagonal matrix with diagonal entries from a.

AoB Hadamard product (entry by entry product).

(A)* Conjugate of a complex vector or matrix.

Abbreviations

Cplx-STGCN Complex-valued Spatio-temporal graph convo-
lutional neural networks.

BESS Battery Energy Storage System.

SDOPF Stochastic Dynamic Optimal Power Flow.

CRL Constrained Reinforcement Learning.

DRL Deep Reinforcement Learning.

I. INTRODUCTION
A. Background and Motivation

HE power grid is a complex, dynamic network composed

of interconnected components that can be influenced by
numerous factors, including fluctuations in demand, changes
in energy resource availability, and the operation of power
plants and control assets (e.g. frequency control and voltage
regulation) [2]. The increasing penetration of renewable and
decentralized energy resources (DER) poses significant oper-
ational challenges for power networks operators, because of the
need to manage their dynamic behavior. At the same time, the
widespread deployment of advanced measurement technologies
such as Phasor Measurements Units (PMUs) in the bulk system,
and the Advanced Metering Infrastructure (AMI), in distribution
systems, provides new opportunities to leverage the data for
real-time power network control [3], rather than relying only on
local control loops to respond to the grid state.

From an operational perspective, in the presence of the un-
certainty not only of demand but also of DER generation, the
challenge of optimal control of dynamic devices such as battery
energy storage systems (BESSs), is being addressed through the
formulation of stochastic dynamic optimal power flow (SDOPF)
methods. These methods dispatch generation resources and se-
lect BESSs charging or discharging periods accounting for the
future impact of real-time decision-making, to ensure efficient
and reliable operations [4]. In fact, a SDOPF formulation solves
the general problem of how to optimally dispatch generation
and operating storage units across a network to meet net electric
load within a time-horizon economically, accounting for the

0885-8950 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authonzed licensed use limited to: Comell University Library. Downloaded on June 07,2024 at 18:17:46 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-7474-6943
https://orcid.org/0000-0002-8892-3680
https://orcid.org/0000-0001-8897-1132
mailto:tw385@cornell.edu
mailto:as337@cornell.edu
mailto:dbarnold@lbl.gov
https://doi.org/10.1109/TPWRS.2023.3326121

5078

dynamic constraints of the electric power supply sources [5].
However, its implementation in real-time is challenging due
to the unpredictable nature of DER and demand of electric
power, the dynamic constraints of generation and storage, and
the computational complexity of the SDOPF problem.

Deep reinforcement learning (DRL) has gained significant
attention for its potential to learn SDOPF policies in dynamic
grid control applications, such as BESS management and EV
charging control with dynamic constraints. By training the algo-
rithm offline on real-world scenarios, several studies (seee.g. [3],
[6], [7]) demostrate that DRL policies for decision making
under uncertainty are a promising solution for optimizing the
real-time operation of BESSs [3]. Examples of DRL applications
for BESS management include a distributed operation strategy
using double deep Q-learning for community BESS in micro-
grids [6]. In [7], an optimal strategy for electric vehicle (EV)
charging was developed in a distribution network through the
use of reinforcement learning, taking into account the dynamic
constraints of the state of charge (SOC) of the EVs.

B. Related Works

In our review of the prior art we will highlight research in
the areas of stochastic dynamic optimal power flow (OPF) (as it
is particularly vast, our review is not comprehensive) learning-
methods to solve OPF formulations, as well as the literature on
constrained reinforcement learning.

1) Stochastic Dynamic OPF: A stochastic OPF formulation
was first introduced in [8] to solve the optimal dispatch problem
with uncertainties in power systems. [9] were key in developing
a dynamic stochastic optimal power flow control model that in-
corporated wide-area measurements for smart grids. [10] further
innovated by extending this model to address the unique chal-
lenges of intermittent renewable energy generation. In a different
setting, [11] showcased the utility of dynamic stochastic optimal
power flow in residential energy systems with their work on
smart homes with PEV energy storage. Lastly, [12] made strides
by introducing a hybrid approach, combining stochastic and
deterministic methods in their multiperiod DC optimal power
flow model. However, these iterative optimization methods have
very high computational complexity, limiting their promise for
real-time control.

2) Learning-Based OPF: Recently, learning-based ap-
proaches for solving OPF problems are trending upward. In
a nutshell, the idea behind these algorithms is to leverage the
universal approximation capabilities of DNNs to learn the policy
mapping load input onto OPF solutions in the class of func-
tion representable with the DNN [13], [14]. Once the training
is completed, one can pass the network loads to the trained
DNN and instantly obtain a quality solution for the OPF. A
key difficulty for applying DNN to solve AC-OPF problems
lies in the fact that the solutions may not satisfy the physical
and operational constraints that make the solution feasible. To
address this problem, [13] includes a regularization term in the
DNN reward objective that penalizes solutions that are AC-OPF
infeasible. In [14], instead, a small-scale mapping method was
proposed to recover the feasible results. The unsupervised idea
is to learn the solution in an unsupervised manner, minimizing
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the cost directly [15], [16]. [15] considered both the penalty
function and mapping function for both equality and inequality
constraints. In [16], a piece-wise penalty function based on the
log-barrier is considered to enforce constraints. However, these
learning-based methods cannot consider dynamic constraints
and how the current actions affect the future.

3) Constrained Reinforcement Learning: DRL methodolo-
gies have shown significant promise in tackling complex
stochastic nonlinear dynamic control problems by aiming to
maximize not only immediate but also future rewards from
control actions. However, it is critical to note that DRL policies
can occasionally render decisions that are infeasible due to
violations of power flow equations and SOC limits. In light of
this, Constrained Reinforcement Learning (CRL) has emerged
as a pivotal approach for addressing constrained sequential
decision-making issues within safety-critical systems, particu-
larly by employing techniques such as Lagrangian relaxation
to navigate through CRL problems (see review [17]). Further
to the aforementioned resources, [18], [19] utilize a Natural
Policy Gradient Primal-Dual, providing assurances for conver-
gence towards a fixed point. [20] introduces an exploration
into chance-constrained reinforcement learning via primal-dual
methods. Additionally, [21] offers an upper confidence primal-
dual algorithm and substantiates upper boundaries for both
regret and constraint violation. Similar work on CRL application
in OPF consider that operational constraints are satisfied by a
novel convex safety layer based on the penalty convex-concave
procedure [22]. In [23], a Lagrangian based DRL is considered
to optimize OPF function. However, this method is hard to scale
in the presence of multi-stage dynamic constraints because its
design is too simple to handle equality constraints. Instead of
training CRL that can generate the feasible actions directly, [24]
considers the feasibility projection that maps the actions onto
the convex feasible sets.

C. Contributions and Organization

The above CRL techniques predominantly focus on aggre-
gate constraints, wherein the cumulative total of a constrained
variable from the initial to the present time step is bound within
a specified limit. Conversely, within the context of multi-stage
stochastic dynamic OPF, each time step necessitates adherence
to both power-flow and dynamic constraints. The main contri-
bution of this article is summarized as follows:
® We propose a training framework for CRL that ensures
the actions selected by the policy are feasible at each time
step. Specifically, we modify the twin delayed deep deter-
ministic policy gradient algorithm (TD3) [25] to optimize
the control of power generation and BESS charging and
discharging actions in a multi-stage SDOPF problem.
® Our proposed approach adopts predictive control, which
implies that the demands and renewable energy are un-
known to us. Nevertheless, the optimization technique
needs to be aware of the demands and renewable energy in
order to solve the optimization procedure and yield actions.

®* We use the augmented Lagrangian method to solve the
constrained SDOPF and update the dual variables of the
modified TD3 using primal-dual methods.
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®* We introduce a complex-valued spatio-temporal graph
convolutional neural network (Cplx-STGCN) for the actor
to capture the spatiotemporal correlation of the environ-
ment states.

® We prove the convergence of critic networks and, under

mild assumptions, the convergence of the augmented La-
grangian actor networks.

The article is structured as follows: Section II discusses the
SDOPF problem, while Section III introduces a constrained re-
inforcement learning method. Section I'V presents the complex-
valued graph convolutional policy function, and Section V ana-
lyzes its convergence. Implementation and a specific case study
of the proposed method are shared in Section VI. Section VII
validates the approach via experimental simulations, and con-
clusions are drawn in Section VIIL

II. PROBLEM FORMULATION

The problem solved in this article is an instance of the fol-
lowing a multi-stage stochastic optimal control formulation:

T4+T-1
Tr%‘[ﬂzlzi]:l ) [Ed,ﬂ(.) l Z (e, ag, dt)] (1a)
i1 t=T
Ty = fe(Ti1,a0-1,de—1), (1b)
a; =m(xe 1), (e, at) € X1, (1c)

where the state vector at time ¢ is denoted by @x;, while a; repre-
sents a control vector at the same time point, encompassing all
controllable devices within power grids. The vector d; indicates
environmental observations, such as demands and renewable
energy inputs. The cost function is represented by £¢ (¢, a;, d;),
and y; stands for network and device bound constraints. The
system dynamics function, f;, models the internal dynamics
and various temporal interdependencies of grid assets, like the
SOC for BESSs. Furthermore, 7(a¢|x;) denotes the randomized
policy.

Concerning the SDOPE, it represents a standard multi-stage
stochastic optimal control problem, aiming to achieve economic
dispatch of power flows by effectively controlling power gen-
erations and BESSs. Specifically, @; = [v; so¢;]" incorpo-
rates voltage angles, v, and the vector of SOCs, soc,, for
all batteries within the system. Note that Vi € N'/B, [so¢;);
=0 and Vi € B, [soc;]; is the state of charge of that BESS,
and thus soc; has the same dimension with v;. The con-
trol vector a; = [g7; G%; Pen i Pais]  includes active power
generation g? = [g .9¢:,]", reactive power generations

160

T T
gg = [Q‘it; ces ;gqc,t] and Paist = [Pdis,ll,ta cen :pd!'s,B,t] and
Peht = [Peh,1,ts - - -5 Peh, B,t]T denote the charge and discharge

rates of the BESSs.

A. Objectives

The objective of the SDOPF formulation, when incorporating
BESSs, entails components feqe and feoqr. Specifically, feost
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represents the fuel costs, detailed as follows:
feost,t = Z (Gigig +bigie + Cz’) 5 2
ieg
where a;, b;, and ¢; are positive. fe.; denotes power loss from
battery charging and discharging.

fess,t = Z(l - T,-'ch,i)pch,z',t + (

icB

- 1) Ddisic  (3)

Ndis,i

where 7., and 74, ; denote the charging and discharging effi-
ciency respectively, and p. ; ; and pg;s ; ; denote the charging
and discharging power of the i*® BESS. The dynamics of the
SOC across each period are described as follows:

At 1

50C;; = S0C; 11 +E— (T,-'ch. Peh,it — -
cap ig

pdﬁs,j,t) ,i€EB
4

where At represents the duration of each decision period and
E.qp is the energy capacity of the BESS. The real power values
of pgis,i,c and pep ;¢ are subjected to the following constraints:

h )
0< Pehint < P:ated: i€eB

0 < Pgisii < Pfiﬁgd: i€eB &)

i

where PSR . and P2% ., denote the limits for charging and
discharging rates, respectively. The reward for an action is
derived as the complement of the objectives in (1a), which is
intended to be maximized:

THT-1 T+T-1
Tt = Z —b(@e, ar, &) = Z (=feost,t = fess,t) - (6)
t=1 t=7

B. Stochastic Dynamic OPF

In this work, we utilize the AC power flow to uphold the
power-flow constraints. The formulation for the multi-stage
SDOPF problem is as follows:

T+T-1
i E by, e, d,
*(adloe 1,800 1) dl ; (e t)]

Mdeis,,t - Mbpch,,t + Mggg —d} = ‘SR{D(UWEYH)}:

(7a)

(7b)
Mygf — d} = S{D (v, Y7)}, (7c)
gP<gi <7, g7<gi <7 v<|v|<T (7d)
0 < Peny < Pinteas 0 < Pais < Dinreas (7e)

[(Crve) o (Y307)| < Smax, |[(Crovt) 0 (Yio07)| < Smax

(7)

80Cnin < 80¢; < 80Cmax, Vt € [T, 7+ T — 1] (7g)
At Pais,

soc, = soc1+ 3 (T.-'chpch,t - d”'t) , (Th)
cap ) Ndis

where the active power demand vectoris df = [df ,, ..., d} ],

the reactive power demand vector is df = [d{ ,,...,d} ]", Y
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is the admittance matrix, and Y ; and Y, denote the branch
admittance matrices corresponding to the ‘from bus’ and the ‘to
bus’ respectively, and v; = [v14,. .. ,UN,g]T is the grid state in
the AC power flow, i.e. v; = |v;| 0 €, v, ; = |v,, ;|e/¢. Let
C; and C;, represent the connection matrices for line and the
‘from buses’ and the “to buses’, respectively. The complex power
injection is given by s = (v 0 i*) = D(v(3)¥), where v € CV
represents the voltage phasor vector, and 7 € CV symbolizes
the current phasor vector. (-)* denotes the conjugate of the
complex vector or matrix and o denotes the Hadamard product
(element-wise product). The function D(-) signifies the vector of
diagonal elements from a matrix, while (i) and (i)* represent
the Hermitian and the conjugate of the vector ¢, respectively.
The current phasor vector can be further expressed as ¢ = Yuv,
thereby allowing s to be rewritten as D(vv Y*). Therefore,
the active and reactive power injections are expressed as R(s) =
R{D(vvHYH)} and S(8) = S{D(vvH Y H)}. 8pax denotes
the vector of long-term rating limits for each branch. Let M, be
the {0, 1}"V*¢ matrix that maps the generation vector g% (where
g? € RI9) to RV, as follows:

[Mggp]z' = 03 [M!}gq]i = 03 V% EN \ g

Mg = g}, [Mgg¥s = g, VieG, Vie[l,...,G]
()]

Likewise, M, represents the matrix that maps vectors p,;, , and
Pais.; across the entire network, inserting zeroes in buses without
batteries. The feasible set of constraints (7b)—(7g) is symbolized
by x¢. The method proposed to solve (7) is detailed in next.

III. CONSTRAINED REINFORCEMENT LEARNING

In this section, we enhance actor-critic policy gradient meth-
ods to incorporate the immediate constraints as articulated in (7).
We specifically utilize the continuous reinforcement learning
framework, TD3 [25], which employs policy gradients to opti-
mize actions. This methodology is akin to the gradient descent
strategy used in convex optimization. Despite the action space
being infinite, our method proves effective in recognizing actions
that approximate the optimal solution.

A. Actor-Critic Method

The basic policy gradient method, which operates as an actor-
only mechanism, generally encounters issues of high variance
and lethargic learning when adjusting parameters for the approx-
imated policy function [26]. The actor-critic method mitigates
these drawbacks, amending policy function parameters guided
by an approximate value function, known as the crific. In Fig. 1,
the actor, symbolized by the policy function 7y and parame-
terized by ¢, selects actions, while the critic, represented as a
state-value function ()¢ and parameterized by £, assesses the
actor’s decisions.

1) Forecasting Action: The action tuple for the multi-stage
SDOPF at time ¢ is denoted as follows:

A [aP.AG. » s T
ay = [gtvgt:pch,.t:pdis,t] ’

Ay =[ay,... 471", 9)
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Critic Actor
Minimizing TD-
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1 [ Mini-bateh (x, a,%,,,.7) | [ Mini-bateh (x,) i
Fig. 1.  Actor-critic architecture.

where @, represents the NN-normalized control action, with
elements g7, g7, Den ¢, and P » normalized to [0, 1] due to the
NN’s sigmoid activation. A; denotes the vector of impending
control actions, i.e., @, . .., G, 71, utilizing a sliding window
policy. Only a; is applied to the environment, ensuring the
satisfaction of constraints x; and the feasibility of future actions
ity ...y Qo1

2) Voltage Magnitudes: The policy controls the future power
injections, which are implicitly related to the voltage magnitudes
through the power flow equations. In order to consider the con-
straint v < |v| < 7, we utilize an independent neural network
to solve for the voltage magnitudes for a given action to ensure
that they are are equal to the ground-truth and within the bound
[v,T]. We define the prediction network as|t| = P,,(x), where
|©0] is defined as the normalized versions of |v| in the range [0, 1].

3) Critic Design: Q-learning employs temporal difference
learning to derive the value function, utilizing foundational
principles by [27] and the pivotal Bellman equation [28]. This
equation intimately connects the value attributed to a current
state-action pair, (z, A), with that of its forthcoming counter-
part, (z', A):

Qe(x, A) = +1E[Q(2', A")], A" = my(')

where y denotes the discount coefficient for impending rewards,
and for expansive state spaces, the value might be approximated
using a differential function estimator Q¢(x, A), characterized
by parameters £. In the context of deep Q-learning, the net-
work undergoes updates utilizing temporal difference learning,
employing a critic network Q¢(x, A) to sustain a consistent
objective y across numerous updates.

y:T—’_FYQE(:B':A): A:W¢(A|:B)a (11)

where the actions are derived from a target actor network w4 and
r is defined in (6).

a) Target Networks: Utilizing farget nefworks enhances
stability in deep reinforcement learning by mitigating approxi-
mation errors [29]. As depicted in Fig. 2, two target networks,
Qg and Q¢,, and two critic networks, Q¢, and Q,, are em-
ployed. The Clipped Double DQN approach [29] employs target
networks to select the minimal value between two estimates:

(12)

(10)

y=r+7minQg(z,A),
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Target Net 2 Critic Net 2

Fig. 2. Critic design.

where the value target y avoids introducing extra overestimation
relative to the conventional Q-learning target, enhancing the
critic networks’ estimation accuracy.

b) Critic Networks: Upon obtaining the target Q values,
critic networks adjust their parameters by:

1
S argngjln N > (¥ — Qg (x, A)),

1
& argmin 3 (y— Qg (w,4)7  (13)

Given batch size N and target values y from (12), the critic
networks undergo an update. Subsequently, target networks’
weights are updated at each time step by a factor 7, derived
from the critic networks:

Geta+1-1)8, Lo+ (1-T1)6.

where £; and &3 represent critic network parameters per (13),
and &) and &), symbolize target network parameters according to
(11), both target and critic networks iteratively undergo mutual
updates.

4) Constrained Actor Design: After defining the critic, we
proceed to establish the actor network and introduce its con-
strained action space. Typically, we train the action network to
maximize the critic network, i.e.

(14)

¢ ¢+ argmax Qg, (Te-1,o(Te-1). (15)

where ¢ denotes the action network parameters. We can utilize
either Q¢, or Q¢, to guide 74 (-) in updating ¢. An action A; =
mg(x¢—1) is deemed feasible if it satisfies all constraints, y;.
Thus, 74 is derived by maximizing the critic network while
upholding x:

m‘?x QEL (:Bt_l., W¢($3_1)) s.t. At < Xt (16)

where A; = my(Ts—1).

B. Primal-Dual Constrained RL Framework

The actor network 7 (-) involves g%, g7, Pen.t, Pais,t» Which
are linearly constrained in (7b)—(7h). To write the linear equality
constraints in a compact way, we consider

Lrg(e ) =b (17
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Likewise, the linear inequality constraints are given by

Kny(xiq1) < c, or [Kmg(xi1)—c]y =0  (18)

where [a] , = max{a,0}. We can summarize the optimization
problem of the constrained reinforcement learning as

m{ain — Q¢ (Te—1,mg(xi-1))

s.t. L?th,(:Bt_l) —-b= 0, Kﬂ¢($t_1) —c= 0 (19)

where (¢, is a non-convex, non-differentiable and Lipschitz
continuous function. Both Lmy(x) —b =0, Kmy(x) —c <0
are linear, but 4 () is non-convex, non-differentiable and Lip-
schitz continuous function. The algorithm entails solving:

1) the Primal Problem by SGD for T" loops:

m‘gnﬁg = ﬂgﬂ— Qe (@o—1,my(@e1)) + A" [m(201)

.
—de— L) + T [Kmg(we) = s+ 5

§
(8]
lIm(@e-1) = de = L9 + = (K 7 (we-1) — e+ 3

2) the Dual Problem:

lk—‘rl = lk + Qfl[ﬂ—(wt_l) — dt — Lﬂ]
pEt = pF + ay [Kmg(@e1) — ]+

The main goal of primal-dual process is to reduce a complex
optimization problem into smaller, easier-to-solve subproblems
that involve the use of duality (i.e. the augmented Lagrangian),
and ensure that the constraints are satisfied. At the most basic
level, duality makes it easier to solve with a gradient descent
methodology constrained optimization by using the dual func-
tion maximization to update the dual variable of the Lagrange
multiplier, and then doing a gradient descent on the primal
problem using the current multiplier update. In our case the
primal problem is that of optimizing the neural network model
that represents the policy with an objective that is the Lagrangian
of the problem, and we use the dual variable update to enforce
the power-flow constraints. Since the only situation in which
the dual variable converges is when the constraints are met, the
policy function will not adopt infeasible actions. More
specifically:
® Primal Update: This step involves updating the primal
variables while keeping the dual variables fixed. In this
stage, we solve the subproblem, which typically has a
simpler structure and can be solved independently.
® Dual Update: After the primal variables are updated, the
dual variables are then updated. This update is done by
taking into account the discrepancies (or residuals) be-
tween the current primal variables and the constraints. If the
constraints are not satisfied (i.e., the residuals are not zero),
the dual variables are adjusted to enforce these constraints
in the next primal update. This update is usually simple
and straightforward.
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Fig. 3.  Architecture of complex-valued spatio-temporal graph convolutional
neural network.

This iterative process is repeated until the residuals become
small enough (below a predefined threshold), indicating that a
good approximation to the solution of the constrained optimiza-
tion problem has been found.

IV. CPLX-GCN-BASED ACTOR NETWORKS

A reinforcement learning algorithm continuously interacts
with the environment, which provides the time-series of the
system states. The physics of the grid implies that the grid state
variables correlation is a function of the grid topological and
electrical characteristics. It has been amply documented at this
point in time that the best way to leverage the knowledge of the
underlying grid is to use graph convoltional neural networks.

In this work, we consider a graph signal « = [v; s0c]" €
C2W!, where each entry [v]; and [soc]; represent the voltage
phasor and the state of charge at bus ¢ € A/, respectively. The
set \V; denotes the nodes connected to node i. The graph shift op-
erator (GSO) S € RW*W!linearly combines values of the graph
signal’s neighbors. Operations such as filtering, transformation,
and prediction are closely related to the GSO. In this work, we
focus on complex symmetric GSOs, meaning S = S'. This is
relevant for our power grid application, where S =Y [30].

As shown in Fig. 3, the temporal convolutional layer contains
a 1-D CNN with a width-T" kernel with K output channels.
In this work, we consider the input state x; € CWIX2 with
two channels, i.e., v; and soc;. The convolutional kernel IT" €
C2T K is designed to map the input X € CV1*2T into a output
graph signal with C; channels X € CVI*K¢_ Therefore, we
define the temporal convolution as,

X =T x*7r X, (20)
where each column of [X], is defined as z,,7 =0,1,...,
K, — 1. After the temporal convolutional layer, we are ready
to put X into the spatial layer. Based on [31], we can design the
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following transfer functions and neuron:

K,—1K-1
HS,z)= Y Y hi(S2,
t=0 k=0
K-1K.-1
W; = o[w,] = o [Z > hk;,s"a:t_,,] L@
k=0 7=0

where hy, ; represents a trainable parameter that, in this context,
is a scalar. Accordingly, the graph signal w; from the spatial
feature extraction layer (see Fig. 3) is:

K-1K.-1

> > hk,,ars":»::t_ar], (22)

k=0 7=0

w; = CReLU

By combining the temporal and spatial convolutions at each
layer, the multiple output channels of the Complex-valued
Spatio-Temporal Graph Convolutional neural Network (Cplx-
STGCN) layer (£ = 1) are expressed as

W, =1 = CReLU(H xg (T *7 X¢)), (23)

where H and I" are the trainable parameters. We denote (23) by
the feature extraction layer.

In the following, we refer to Complex ReLU (namely CReLU)
as the simple complex activation that applies separate ReLUs on
both of the real and the imaginary part of a neuron, i.e:

CReLU(w) = ReLU(R(w)) + j ReLU(S(w)).  (24)

Spatio-Temporal GCN are a special case of multiple features
GCN. Specifically, let X = [z, ..., 2] and let us refer to the
multiple channel outputs as W = [w!, ..., w®], where F is the
number of input features and G is the number of output channels.
A layer of multiple features GCN operates as follows:

K-1

W=0W]=0 lz S* x X x Hy| = CReLU(H #¢ X),
k=0

(25)

where these matrices include G x F' coefficient matrix Hy with
entries [Hy|r, = hY, and Hxg defines the notion of graph
convolution operator based on the concept of spectral graph con-
volution. In summary, the policy function m, can be expressed
by
W;_; = CReLU(H #¢ (T * X))
W1 =CReLU (0P «W,), 1<£<L-1

R(WL)
(W)l )

where (—)g‘DII represents the complex-valued trainable weight ma-
trix and ©7° represents the real-valued trainable weight matrix,
and thus ¢ = {H, T, egm, Ore|V1 > ¢ > L — 1}. Therefore,
the primal optimization in (19) utilizes the stochastic gradient
descents to update ¢ of m(¢) to minimize —Q¢, (', my(x))
subject to some constraints.

?Td, ==
a = sigmoid (93“3 *

(26)
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V. CONVERGENCE ANALYSIS

A. Convergence of Value Functions

We first focus on the convergence of the value function:

Theorem 1: We make the following assumptions:

1) Each state action pair is sampled an infinite number of

times.

2) The Markov decision process is finite.

3) v € [0,1).

4) @ values are stored in a lookup table.

5) Qe¢, and Q¢, receive an infinite number of updates.

6) The learning rates satisfy 7 € [0,1],> ,m =00, ,

(mt)? < oo with probability 1 and VY(z,a)#
(@4, @), = 0.

7) ¥r, Var[r] < oo

Then constrained TD3 will converge to the optimal value
function @*, as defined by the Bellman optimality equation,
with probability 1.

The primal-and-dual update only applies to the actor function
instead of the policy function. Therefore, the proof is shown
in Section A of Supplementary Material [25] applied to the
value function of the proposed CRL. In Theorem 1, Q¢, (x:, a;)
converges to Q*(x,, a;).

B. Convergence of Actor Functions

In the following, we analyze the convergence of the actor
network after the critic network converges.

Itis obvious that 7 () is non-convex, non-differentiable due
to the activation function, but subderivative. Recall that we have
the primal-and-dual method for the actor network:

Assumption V.1: The primal update for (27) can always find
the local optimal solution ¢* foraT > 1:

¢* = arg min, — Q"(a',74(x)) + A" [Lmy() — 1]
+ T [Kmg(@) - e+ + 5 (Lo (@) - B3

+ o (K mg(@) — I3 @7)

This assumption was already proved by in [32].

Assumption V.2: We define the unaugmented Lagrangian L,
has a saddle point (¢*, A*, t*).

Definition 1: We define the equality residual r, = Ly (x)
— b and the inequality residual r, = [Kn4(x) — c]-.

Theorem 2: Let (¢*,L%, n*) be a saddle point for £, and
define

k_ 1 E_q%]|2 L k|2
G R P e
VE decreases as
VI S VE oy 2 A 09)

Because V* < VO, it follows that A® and p* are bounded.
Iterating the inequality above gives that

[ ] [ ]
oo 3 Il + e Yol < VO G0)
k=0 k=0
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which means that r ™" — 0 and r5*! — 0 as k — oo.
With Assumption V.1 and Theorem 2, we can conclude that

both primal and dual updates converge to a saddle point.

VI. CASE STUDY: PRIMAL-DUAL CRL IMPLEMENTATION
FOR SDOPF

We implement the proposed algorithm ((27) and (20)) for the
multi-stage stochastic dynamic optimal power flow problem (7).
Then, we summarize the detailed steps of the primal and dual
updates in Algorithm 1.

A. Primal-Dual SDOPF Formulation

With the above primal-dual framework, we aim to train the
constrained policy function 4 (-) for SDOPF. In particular,
we define power generations g}, g7, as well as BESS charg-
ing power p,, ; and discharging power pg;, . through actions
At = [dt, ey a.t+'1"_1].

a; = [7p(@s-1)]e, e = [ﬁ??@&ﬁch‘,t;ﬁdis‘,t]—rsﬁg = a1,

[l

o L

~q A B oA A A pA ~p ~
gt at,Z: pch,t_at,B:pdis,t at,él'.! gt _(l_gt )gp + gtgpa

gi = (1- Q?)g" +09:9% Pen s £ ﬁch,tp;r:‘gted: Pais,t

[l

Pais,cPratea: (31)
We also have the predicted voltage magnitudes |v| as:
[9e] = [Pu(@e-1)]e, [0f] = (1 = [0 )u+ [8:]7,  (32)

where |v?| is constrained to be equal to the ground-truth one,
i.e., |v¢|. Therefore, we replace |v| in (7b) and (7¢) with |v¥],
with an additional constraint:

[vz] = |ve] = 0. (33)
We introduce dual variables A and ¢ in relation to (7), alongside
the augmented penalty parameters cx:

Mg My ay as
Ao Mot as ag
)‘-t: s Hy = , O = aaﬁ_ ]
Ayt He ¢ Qay Q19
(34)

Furthermore, we reformulate the equality and inequality con-
straints of (7) in a more compact manner:

Tt =

Mbpdis,,t _Mbpch.,t + Mggf—dg—ﬂ%{D(vi’(vt)HYH)}
M,gi — di — S{D(vf (v,)"YH)}
s0c, — 80C,1 + F- ('ﬁ‘chpch,t - %")
[0F| — [ve]
(35)
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} Pdiz, ]
At NehPeh, e — n;:s:
50¢C;_1 — Ecap — 50Cmax
Pdi
At (e o Pt
Eca,p

AR

80Cmin + — 80C;1

Pt = (36)
v — |vf]

[(Crve) o (Y307)| — Smax

|(Ctovt) o (Y;ov:” — Smax

4+

With the definition of (31), the augmented Lagrangian is:

T+T

n'gn Ly= — Qz;(mt, Ty(x-1)) + Z JLIH,; + P‘»;r'f',u,,t
t=7+1

diag(ax,) 0 Tt
0 diag(a) | |Tu,e

where A; and p1, are the dual variable vectors, and «;, and a, are
positive scalars that penalize the augmented terms. The above
problem is different to the optimization problem in (7) due to
the following facts:
1) In (35), we substitute gP, g%, pg;.. and p,;, with their
associated constraints, gf < g; <g¥, g? <g{ <79,
0< pch,.t = p;r:‘?aated’ and 0 < pdis,.t = pg:;.ied’ llSiI'lg (31)
mg(@;—1) is neural network output, sigmoid-constrained
to [0, 1].
2) In (7), soc serves as the state variables for solving. Con-
versely, in (36), soc; are the provided training samples,
used to confine the actions 74 (x;—1).
3) For the voltage magnitude bound, i.e., |v|, we need to pre-
dict it by aindependent GCN given the states x;, i.e., |vP|.
We also need to make a constraint for the predicted voltage
magnitude equal to the ground-truth one, i.e., |[vP| = |v|.
The output of the independent GCN, |vP|, serves as a
conduit linking the ground-truth |v| with the power flow
equations. This linkage ensures that |v| complies with the
power flow equations while remaining proximate to |v?|,
which consistently lies within the feasible bounds [v, T].
4) For instance, when the actions g} and g7 result in voltage
magnitudes |v| that exceed the feasible bounds [v,T], the
residual 7, ; will exhibit significant values for both power
flow equations and |v?| — |v|. By minimizing this residual
using the policy gradient, actions g% and g} are adjusted
to maintain |v| within the stipulated range.
The primal-dual update involves two steps: first, minimizing
the Lagrangian function, and then maximizing the dual function
as follows:

2
(37

2

AT AF 4 diag(an)rae, VE € [1,7 +T)

k+1
My

— pf +diag(a,)ry, Ve [T +T]  (38)
where A¥+1 and pF*+! are iteratively updated based on batch
samples. Our iterative process combines primal and dual updates
to optimize ¢ for 7 (-) while maintaining the feasibility of both
equality and inequality constraints.
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Algorithm 1: Constrained Reinforcement Learning for
Multi-Stage SDOPF.

1 Initialize critic networks Q¢,, ¢, and actor network 74
with random parameters &£, &2, and ¢;

2 Set target networks &] = &1, £ = &2, ¢’ = ¢;

3 Initialize replay buffer B, state @, and define update periods
pu and du;

4 fort=1:T do

/* This the sampling processing */

Select action Ay = mg(@—1);

Observe reward r; using Eq. (6);

Acquire new state x; = env(A;);

Store transition (@¢—1, A¢, 7¢, @) in B;

/* Training processing */

9 Sample a mini-batch of N transitions

{(@n-1, An,rn,@n)|ln=1,--- , N} from B;

0 |y re+ymini—i 2 Qg (Tn, me(@n));

11 Update critics:

€1/€2 + argming, /¢, % 2y — Qg /e (Bn-1, An))*;

12 if 1 mod pu then

13 Utilize the deterministic policy gradient to update ¢:

¢+ ¢ —nVLy(xn—1,x,), where 7 represents

the learning rate and £ is articulated in Eq. (37);

14 Update target networks by (14);

15 if t mod du then
16 | Update the dual variables by (38).

e =1 &

17 Function env (A:+1)

18 Select the initial action, namely,
— P, 4. . T
as = [gtigt!pch,t!Pdt's,t] , from
A= [ag,...,ay) ", witht' =t +T —1;
19 for i € B do
20 if 0 < soc;; < 1 then
At Pdis,i t?Y.
21 |_ 80Ci,t+1 4 80Ci¢ + B~ (nenpen,ie — — )s
22 else if soc;; = 1 then
Pdis it
23 L Peh,it 0, s0ci 141 + sociy — %dT::L;
24 else if soc; : = 0 then
AtnchPeh,it .
2 |_ Piis,it <= 0, 50Cit41 4 80Ci¢ + =gt

Derive v: by solving Eqgs. (7b) and (7c), with a, fixed;
Return X, = [z, @41, -+ ,:x:t_m.l]-r, where
T = [vt, 80¢y;

5 R

B. Constrained Reinforcement Learning Algorithm

The training process of the constrained reinforcement
learning algorithm, described above, is summarized in
Algorithm 1. In steps 1-3, we initialize the parameters of double
critic networks Qg, , Q¢,, double target networks Q¢ , Q¢,, and
the actor networks 7. Steps 5-8 represent the process of data
sampling and storing transition tuple (x;_1, A, ¢, T+ ). In Steps
9-11, we update the critic networks, and we update the actor
network in Steps 12—13 and the dual variables in Steps 15-16.
In Steps 19-25, we update the state of charge soc that should be
projected within [0, 1]. In Step 26, we fix g7, g7, Pen.t, Pais,c and
solve power flow equations to obtain v;. Specifically, we fixed
the power generations on the non-slack buses, i.e. g}, and g,
Vi € Gy, and keep the voltage magnitude and angle on the slack
bus 1 p.u. and 0, respectively. Then, we utilize the Newton’s
method to solve v;.
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After training the GCN-policy function, we are ready to
implement the GCN policy to forecast the control actions, i.e.,
97,32, Den i, Dais.1» by feeding the previous state measurements
x;_1. Then, the active and reactive power generations g7, g7,
and the battery charging and discharging powers p.j, ¢, Pais ¢
are utilized to control the power systems in real time. '

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

Experiments were conducted on the IEEE 14-bus and 30-bus
systems, each with two BESSs. The IEEE 14-bus system has
BESSs located at Bus 9, while the IEEE 30-bus system has
BESSs at Buses 13 and 22. These BESSs have a capacity E.qp
of 1000 MWh and charge/discharge efficiencies (7., and 14;.)
of 0.98. We’ve set the system to reset renewable energy and
demand every hour, using the hourly demand data from the
NREL Wind Integration Toolkit for training. The time step is
determined to be 18 seconds. This calculation is based on the
reinforcement learning system’s design to update 200 times
and then reset the environment once to accommodate the new
demand and renewable energy (60 minutes/200 updates = 18
seconds per update). The SOC is bounded in [0, 1]. For training
of the constrained DRL we relied on PyTorch and used realistic
demand profiles from the Texasgrid. We consider one wind
power generator bus in IEEE 14-bus system, and three of them
in IEEE 30-bus system, and six of them in the IEEE 118-bus
system, simulated using the sample power profiles that were
collected by NREL Wind [33]. The training and testing phases
for the proposed CRL is conducted across different operating
points. Once the policy function is trained, the CRL method
can predict optimal control actions for diverse operating points
without retraining during the testing process.

We developed and trained all proposed CRL architectures
using PyTorch 1.10.0 across all scenarios. We executed all
algorithms on a 64-bit Windows operating system, powered
by a 2.6 GHz Six-Core Intel Core i7 processor. The system is
equipped with a total of 16 GB RAM and an NVIDIA GeForce
RTX 2060 graphics card. The training process for the IEEE 14-
bus system takes around 1.6 hours to complete for 4 * 10° search
iterations, in comparison to the IEEE 30-bus system and the
IEEE 118-bus system, which require up to four hours and eight
hours respectively for the same number of scenarios. Once the
policy training is completed, the testing phase becomes substan-
tially quicker. Specifically, the IEEE 14-bus system is able to pro-
cess 3000 scenarios in less than 73.5 seconds. On the other hand,
the IEEE 30-bus system handles the same amount of scenarios
within a maximum time span of 118.7 seconds, whereas the
IEEE 118-bus system requires up to 173.2 seconds. We evaluate
the performance of the proposed CRL algorithm against both the
stochastic OPF (labeled as “STC” in Fig. 4) method presented
in [34] and the model predictive control (MPC) based on their
optimality and implementation time. As depicted in Fig. 4, even
after considering the cumulative computational times of both the
offline and online phases, the time required for 3000 time-series
operating points—approximately 17 hours—by the stochastic OPF
is notably ten times longer than that of the CRL, which takes
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Fig.4. TIlustration of Total Computation time of the proposed CRL (Training
+ Testing), MPC time, and Stochastic OPF with scenarios.

around 1.6 hours. Take note that the dual update for training
does not require gradient descents, enabling rapid computation.
Therefore, when compared to unconstrained DRL utilizing the
same structure and datasets, the training time for an equivalent
epoch remains substantially similar. Besides, we independently
assess the constraints on voltage magnitude, a strategy inspired
by our prior work with Cplx-GCN, which demonstrated remark-
able accuracy in estimating voltage magnitudes [31]. The MSE
for voltage magnitudes, when RL converges, are as follows:
8.41 x 107 for the IEEE 14-bus system, 8.96 x 1075 for the
IEEE 30-bus system, and 9.54 x 10> for the IEEE 118-bus
system.

The design of the actor networks has been meticulously
planned as follows. The feed-forward network architecture for
the IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus systems
consists of a single layer of cplx-STGCN for feature extraction,
followed by a layer of Complex-valued Neural Network (cplx-
NN), and then a layer of Real-valued Neural Network (real-NN)
for output generation. For the cplx-STGCN layer, the output
channel is set at 10, and the STGCN operates at an order of
K = 5. The cplx-NN layer comprises 512 neurons, while the
real-NN layer is equipped with 1024 neurons. The critic network,
in contrast, has a comparatively straightforward task - to regress
the long-term discounted reward. Consequently, it only requires
a relatively simple design, consisting of a three-layer real-NN
with each layer housing 256 neurons.

The reinforcement learning setting is defined as follows:
the buffer size is 500, the discount factor for the reward is
0.99, the rate at which the target network updates is 0.005,
and the frequency of policy updates with delay is once per 2
iterations. Both network parameters are optimized using Adam
with a learning rate of 1073, The networks are trained after
each time step using a mini-batch of 100 transitions, sampled
uniformly from the replay buffer, which stores the entire history
of transition tuples (x;_1, A¢, ¢, o). It should be noted that
the actor networks in this design incorporate two independent
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Fig. 5. (a) and (b) depict the training and testing curves of the proposed
CRL, along with the associated optimal rewards determined by the optimization
method, denoted as “OPT™. (c) and (d) showcase the testing curves correspond-
ing to the average voltage magnitudes and swing-bus generations within the
IEEE 14-bus system.

GCN, one for active power generation and another for reactive
power generation. This design has the potential to improve the
performance of the proposed CRL system by reducing the action
spaces for the GCN models. The baseline method pertains to
the identical optimization problem as that of CRL, specifically,
Problem (7). This issue is addressed utilizing readily available
solvers, including interior point methods [35].

B. Baseline Methods

Before evaluating our proposed approach, we define several
baseline methods for comparison. First of all, we consider two
well-known DRL methods with Deep Q-Network (DQN) and
Deep Deterministic Policy Gradient (DDPG). Secondly, we
compare the GCN-policy function with the fully connected neu-
ral networks (FNN), the convolutional neural networks (CNN)
and Graph neural networks (GNN). Thirdly, we compare the
proposed method with the optimization method knowing the
future information. We also extend the existing learning-based
OPF methods, i.e., the penalty method [13] and DC3 [15], to
the reinforcement learning setting and compare them with the
proposed algorithm. The percentagl_e optimality gap, “%gap”,
calculated as % gap = 100 x Z—gZ—, where 2" is the ob]ectlve
cost of an OPF feasible solutlon denved from a relaxation, and
2B is the optimal objective cost of this relaxation.

C. Learning Curves and Optimal Curves

1) IEEE 14-Bus System: The learning curves in Fig. 5(a)
show the rewards, represented on the y-axis, at each time step
on the z-axis. Our results are compared with an oracle solution
that knows the future in the time horizon and performs the
constrained optimization. The results indicate that our learning

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 39, NO. 3, MAY 2024

~240

~260

|

H
~zB0

Reward
=330 -300

Reward

g

— OPT
DRL

]

-340

1-5 :ID II: 16u lib l;l} 1;) ZIINJ
Number of Cases

o e 1 e 0 om0 o aw []

Time Steps

(a) Training curves of rewards. (b) Testing curves of rewards.

::‘ .'"I,-qu.'ql./r ,r' | ‘,ﬂhhh I\Ir'u'll.irlr‘w J‘L«".'Llﬁ

Lo

Pg_

0875

oo | N

0500 frmmm e - W

o 0o 0 03 ma 1000 o 200 ao 000

Til:ne Steps Ti rne Steps

(c) Testing voltage magnitudes. (d) Testing swing-bus generations.

Fig.6. Training and testing trajectories for the proposed CRL are illustrated in
figures (a) and (b), accompanied by the optimal rewards calculated through the
optimization method, labelled as “OPT". Figures (c) and (d) display the testing
curves related to the mean voltage magnitudes and swing-bus productions within
the TEEE 30-bus framework.

policy is very close to the optimal curves, demonstrating the ef-
fectiveness of our method in forecasting optimal actions without
future information. The average gap between our DRL approach
and the optimization method is only 2.52%. Upon completion of
the training, the policy function is subjected to a test involving
unseen scenarios, encompassing 2 x 10* samples. The ensuing
results, which are based on a selection of 200 sample outcomes
for graphical representation, are depicted in Fig. 5(b). These
results demonstrate that the policy tends to select actions that
approach optimality, with a relatively small optimality gap of
merely 2.25%. However, the Stochastic OPF and MPC have
larger gap with the optimality.

Applying the policy trained through the constrained DRL, we
also tested the performance injecting new demand profiles in
the future samples, to check if the solutions are feasibile. Both
the voltage magnitudes and power generations are feasible. We
observe that infeasible actions are likely to happen if the training
does not include dual updates. For example, when the values of
Git.1 € Gy, of the (non-slack buses) predicted by the RL is very
small, the values of g; ;,7 € G, in the slack bus will violate the
upper bound constraint. Furthermore, the constraints of voltage
magnitudes are easily violated if the reactive power injections
are either too large or insufficient. These facts are illustrated in
Fig. 5(c) and 5(d), showing the swing-bus generation g; ;, 7 € G
and the average voltage magnitude % > ien |Vt |, demonstrating
that the proposed CRL is always feasible.

2) Analysis of IEEE 30-Bus and 118-Bus Systems: In our
investigation into the CRL implementation, we present the
learning curves for both the IEEE 30-bus and 118-bus systems,
shown in Figs. 6(a) and 7(a), respectively. For the 30-bus system
with BESSs at Bus 13 and Bus 22, the average optimal gap
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Fig.7. Training and testing trajectories for the proposed CRL are illustrated in
figures (a) and (b), accompanied by the optimal rewards calculated through the
optimization method, labelled as “OPT™. Figures (c) and (d) display the testing
curves related to the mean voltage magnitudes and swing-bus productions within
the IEEE 118-bus framework.

between our proposed algorithm and the optimization method
with future information is 3.39%. In the case of the 118-bus
system, equipped with batteries at Buses 5, 23, 41, 58, 75, 96,
and 114, the learning curves depict a reduction in the average
optimal gap, resulting in a 4.05% difference. Post-training, we
evaluated the policy functions against unseen scenarios using
2 x 10* samples for the 30-bus and a similar set for the 118-bus.
Selected results from a pool of 200 samples for each system are
presented in Figs. 6(b) and 7(b). These results illustrate that
the policies lean towards selecting near-optimal actions without
depending on future information. The implementation outcomes
further underscore the superior performance of the proposed
CRL in comparison to both the Stochastic OPF and MPC. To
further validate our approach, we assessed the feasibility of
generation and voltage magnitudes. The results for the 30-bus
system are highlighted in Fig. 6(c) and 6(d), while the 118-bus
system’s results are showcased in Figs. 7(c) and 7(d). Across
both systems, our data emphasizes consistent feasibility, with
the larger 118-bus system achieving a 100% feasibility rate.

D. Feasibility Comparison

We compared the proposed primal-and-dual CRL with two
baselines, namely, the penalty method [13] and DC3 [15].
Typically, the penalty method includes a violation penalty as a
rectified linear unit function included in the reward. For example,
the violation penalty for voltage magnitude is given by

rom = — ([[v] = Tls + [v — [v]]+). (39)
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Fig. 8. Comparison of the penalty method, the DC3 method and the proposed
CRL in the IEEE 14-bus system.
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Fig.9. Comparison of DDPG, DQN, TD3 and the proposed CRL in the IEEE
14-bus system.

The DC3 method considers the equality and inequality con-
straints as || - ||3 for the objectives, i.e.,

min —Q" (&', my(w)) + 5 | [Lm() — bl

(8]

+ o Ky (x) — el

where these norm terms are included in the policy objectives
without the primal-and-dual update process. Fig. 8(a) and 8(b)
show that the proposed constrained DRL can ensure 100% fea-
sibility, whereas the traditional DRL has only 80.78% feasibility
rate. The penalty method provides 13.50% feasibility rate and
the DC3 method has 96.17% feasibility rate for the voltage
magnitudes, and 29.46% feasibility rate and 98.56% feasibility
rate for the swing-bus generations. This indicates that the key
element to enforce the 100% feasibility lies in the dual updates.

E. Comparison of Reinforcement Learning

We also compare the proposed CRL with the existing deep re-
inforcement learning methods, i.e., DQN, DDPG and TD3 with-
out the primal-and-dual updates, considering the IEEE-14 bus
system. The proposed CRL method showcases higher rewards,
i.e., 2.25%, whereas TD3 converges to 5.04%, DQN converges
to 7.33% and DDPG converges to 8.10%. The testing voltage
magnitude curves and testing power generation curves are in
Fig. 9(a) and 9(b). In particular, TD3, DQN and DDPG have
52.39%, 14.95% and 100% power generation feasibility rate,
and 70.89%, 17.72% and 99.27% voltage magnitude feasibility
rate, while the proposed CRL has both 100% power generation
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Fig.10. Comparison of FNN, CNN, RNN and Cplx-GCN policies in the IEEE
14-bus system.

feasibility rate and 100% voltage magnitude feasibility rate. Fur-
thermore, the proposed method can control voltage magnitude
profiles with less variations around 1 p.u.

F. Comparison of Policy Neural Networks

We run a set of numerical experiments to compare the Cplx-
STGCN policy neural networks with different architectures
for the policy neural networks, namely a Fully connected NN
(FNN), a convolutional NN (CNN), and a Recursive NN (RNN).
The test average optimal gaps of FNN, CNN and RNN are
4.99%, more than double compared to the Cplx-STGCN (the
gap is 2.25%); this experiment clearly illustrates the ability of
Cplx-STGCN to better capture spatio-temporal features of the
state in the policy function. In Fig. 10(a) and 10(b), FNN, CNN
and RNN have 65.41%, 89.45% and 63.37% power generation
feasibility rate, and 1.09%, 92.60% and 100% voltage magnitude
feasibility rate. In contrast, the proposed CRL is always feasible.

VIII. CONCLUSION

In this study, we introduced a constrained reinforcement learn-
ing method, utilizing prime-dual decomposition and double-Q
learning for updating policy and critic networks in multi-stage
SDOPF problems. We further proved the convergence of the
proposed CRL under mild assumptions. Numerical results re-
veal that actions selected via our policy closely approximate
those of a future-aware oracle OPF, ensuring 100% feasibility.
Compared with other RL methods, the proposed CRL achieves
the higher reward. Compared with other neural networks, the
proposed Cplx-STGCN policy function has better performance
in extracting the spatio-temporal features for voltage phasors.
Besides, the feasible rate of the proposed CRL is higher than
other constrained neural network methodologies. For future
work, we aim to explore distributed multi-agent reinforcement
learning to manage the challenge of controlling a significantly
larger network.

APPENDIX

The proof of Theorem 2 is provided as follows.
Proof: Since (¢*, A", 1) is a saddle point for unaugmented
LagrangianL, we have

Lo(¢" A7, 1%) < Lo(¢*T1 0%, 1%) (40)
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Using Lug(z)-b=0 and [Kmyg(xz)—c], =0,
the left sides is p* = —Q*(x,mg(x)). With prtl=
—Q*(x, myr11(x)), this can be written as

P A Ly () — B+ T [K () — ] (A1)
We can derive the first key inequality:

By definition, ¢**! minimizes L3 (¢, A¥, u*). The optimality
condition is

0€9(—Q* (myr+1(x))Om g1 (x)+ L A*Omgrsa(x)+a LT
(Lmgrsr(x) — b)Omgrsr (z) + K DEDpkor i (z)

+ oy K" D® D) (K7 (x) — €)1 0mghia ()

= 0(—Q" (mgrs1 () Omgrsr () + LT (A + an(Lmgrsr ()
—b)) Omgar () + K DED (1 + o, (K gesa ()
—)4) Omgiir ()

= O(—Q* (g1 ()07 yir (x) + LA i ()

+ K"'D® Dk 15 000 (x) (43)
where D*+Y) js a diagonal matrix
DD _ {1 (K] [mger (@) > e (44)
" 0 K] [rgesi(a)]i < e
Due to (43), we have
0 € Oyrir (—Q* (mgrrr(x)) + (A1) Lrgusa(z)
+ (“k+1)TD(k+]‘)Kﬁ¢,k+1 (m)) , (45)

which implies that ¢**+! minimizes:

(—Q* (g () + (M) Ly (@) +(u*+1) "DEHD Ky ().
(46)
It follows
(—Q" (mgrs1 (2))) + W) Lgrsa ()
+ (LT DD Kmgeia (z) < (-Q*(mgr (2)))
+ A L () + DY Koy (a0) (47

Using Ly () = b and Kmy-(x) < ¢, we can obtain the sec-
ond key inequation:

k41 *
p*t—p

< (TP () TDEDK (g (@) — e ()
< —(FH) Tk (M) TDED (K () — ©)
= ()T ()T (K (2) — o)

== T = () T (48)
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Adding (42) and (48), regrouping terms, and multiplying
through by 2 gives
2(lk+1 _ JL*)TTerl T 2(”‘k+1 _ I_L*)TT":_:-I—] < 0 (49)

We begin by rewriting the first term. Substituting A**1 = A% +
a,ry T and pktl = pk 4 o ekt

20 =) T o [+ e [l

20— )T e [ e | 50)

substituting 7}t = L(AFF —1F)
%(u“l — p¥) in the first two terms gives

and

k+1 _
and rit =

3&_*T k+1 1k i k4+1 4 k|2
oy A1 = ADTAFT ) - A R
+an [|rEY[; + ai(u" — p) (AT = )

u
(&1Y)

1
o et =+ e [
7

Since Al 2k = (k1 _x*) —(AF —1*) and pFt! —
p* = (p*+t — p*) — (uF — p*), this can be written as

e R e

i k41 _ 9=
al(||1 A

2+ o i (52)

[Ty

1 .
F (-
Qp
Therefore, we can obtain

k41 k k41|12 k412
VIR S VE —ay [l — e [l 653)
This states that V'* decreases in each iteration by an amount that
only depends on the norm of the residual. Because V* < V0,
it follows that A* and p* are bounded. Iterating the inequality
above gives that

[ ] [ ]
Y [ o e Yo i<V 6w
k=0 k=0

which means that r ™' — 0 and 5+ — 0 as k — oo.
This completes the proof. |
Together with Assumption A.1 and Lemma 1, both the primal
and dual variables converge into a saddle point (¢*, A%, p*).
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