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A B S T R A C T

At low Reynolds numbers, ‘‘swirlers’’ – swimmers with an axisymmetric ‘‘head’’ and ‘‘tail’’ counterrotating
about the axis of symmetry – generate no net propulsion in a Newtonian fluid as a consequence of the ‘‘scallop
theorem’’. Viscoelasticity in the suspending fluid breaks the time-reversibility and allows swirlers to propel
themselves, with the swim speed being a function of swimmer geometry, fluid elasticity, and swimming gait.
Using analytical theory and numerical simulations, we study the unsteady motion of a freely-suspended self-
propelled swirler though viscoelastic fluids described by the Giesekus model, allowing for general axisymmetric
geometry and time-dependent tail rotation rate. We show the steady swim speed can be calculated for general
arbitrary axisymmetric geometries at low Deborah number via the reciprocal theorem and the solution of
two Newtonian flow problems. In this ‘‘weak flow’’ limit, we analytically determine the swim speed and its
dependence on the parameters of the Giesekus fluid which in turn are related to the primary and secondary
normal stress coefficients  1 and  2. Furthermore, at low De, we derive the unsteady swim speed as a function
of a specified unsteady tail rotation rate and the material properties of the suspending fluid. We show that
for a particular tail rotation rate, the unsteady swim speed can be analyzed to recover the spectrum of fluid
relaxation times, analogous to small-amplitude oscillatory shear measurements on a benchtop rheometer. This
study expands upon the design space for a ‘‘swimming rheometer’’ by increasing its functionality to make and
interpret rheological measurements.

1. Introduction

Microscopic organisms swim through viscous fluids in a regime
where the Reynolds number is virtually zero [1,2]. In this regime
and with a Newtonian fluid, only specific swimmer gaits allow for
translation [1]. For instance, any swim stroke involving reciprocal,
or time-reversible, motion, creates no propulsion because the Stokes
equations, which govern the flow in this regime, are linear [2]: the
time-reversible motion creates a time-reversible force on the swimmer,
such that the net propulsion over a complete swim stroke is zero.
More generally, this applies when the swimmer configuration or shape
changes reversibly over the course of the entire stroke, regardless of the
rate at which these shape changes occur [3], due to the quasi-steady
nature of the Stokes equations.

However, if the fluid is non-Newtonian, the linearity of the equa-
tions that govern the flow is broken, and propulsion, even with time-
reversible motion, becomes possible. These include non-elastic effects
(i.e. in the absence of normal stresses); for example, a miniature
scallop, either externally actuated by magnetic fields [4,5] or by an
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on-board motor [4], was designed to swim in a shear-thickening or
shear-thinning fluid via employing different opening and closing rates
to create different shear rates, varying viscosity, and hence asymmetric
propulsion over its reciprocal stroke. Viscoelasticity in the suspend-
ing fluid also creates asymmetric propulsion for these scallop swim-
mers [6], with the propulsion created by unsteady normal stresses
(tension along streamlines due to stretched polymers) where propulsion
is created even if the opening and closing rates are the same.

Two-sphere swimmer models have served as a useful starting point
for mathematical analysis, due to the extensive literature available
for flows around spherical particles. One such example for which the
combination of fore-aft asymmetry and viscoelasticity enables propul-
sion is the oscillating two-sphere swimmer: two spheres of different
sizes a fixed distance apart rigidly oscillated by an external force
back-and-forth along the axis connecting their two centers [7], or con-
nected by an infinitesimally thin rod that expands and contracts such
that its length varies sinusoidally in time [7–9]. The authors adopted
a combination of perturbation theory (perturbing either the domain
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boundary [7] or the fluid elasticity [9]) and the reciprocal theorem
to derive the time-averaged swim speed over a period of oscillation,
and show that it is non-monotonic in the Deborah number. For the
expanding-contracting oscillating swimmer, the authors showed that
propulsion arises from an imbalance in the force required to expand,
versus to contract, the swimmer, over the course of a reciprocal stroke.

Two-sphere swimmers with a gait where the spheres rotate have
also been studied for propulsion created when viscoelasticity breaks the
symmetry of Stokes equations. A single sphere rotating in a viscoelastic
fluid can propel along the axis of rotation if the fore-aft symmetry of
the sphere about the equatorial plane is broken, e.g. by the application
of a symmetry-breaking static magnetic field [10]. The addition of a
second sphere, with its center placed along the rotation axis of the first
and rotating about the same axis, can break this fore-aft symmetry and
enable propulsion in a viscoelastic fluid; this motion creates no propul-
sion in Newtonian fluids due to a combination of kinematic reversibility
and reflection symmetry [11]. Two-sphere swimmers rigidly rotating
along their axis of symmetry (‘‘swirling’’) under an external applied
torque [11,12] were found to propel along their axis of symmetry,
with speed being a function of the size ratio of the spheres. Another
experimental study showed that a ‘‘microsnowman’’ – two bonded
spheres rotated by an applied magnetic field – swim in synthetic
mucus, with approximately linear speed over a range of small rotation
rates [13]. In contrast to these rigidly-rotated two-sphere swimmers,
freely-suspended two-sphere swirlers were also studied, where the
spheres counter-rotate and there is no net torque [14,15]. Such swirlers
are propelled via non-zero normal stresses in elastic fluids [11,14],
making their translational velocity a measure of the elastic normal
stresses. In all cases, the propulsion speed is a function of not only
the swimmer geometry and gait, but also the material properties of the
fluid — its elasticity. Thus, an artificial swimmer can be designed to
move with a prescribed gait, and its velocity analyzed to determine
fluid properties — a ‘‘swimming rheometer’’.

Experiments recently completed with a freely-suspended robotic
swirler [15] were a first step towards designing and fabricating such
a rheometer. This autonomous sensor has the potential to make rheo-
logical measurements of fluids in situ, allowing for measurements of the
fluid in its operating conditions e.g. as a process rheometer.

Inspired by transient tests performed on benchtop rheometers (e.g.
small-amplitude oscillatory shear, stress relaxation), we consider the
case where the swirler rotation rate varies with time. Previous studies
with swimmer configurations or velocity boundary conditions that
were periodic in time evaluated the time-averaged equations over the
swim stroke [6,7,9], or by making use of the Fourier representation
and working with the complex viscosity [8]. For single spheres in
viscoelastic fluids, previous studies focused on translation [16] and
steady rotation [17], and unsteady flow studies looked at settling [18],
translation [19] and simultaneous translation and rotation [20]; the
latter two studies also work with the complex viscosity in the Fourier
domain to establish the time-dependence. Working with the complex
viscosity allows the introduction of arbitrary time-dependence in the
velocity boundary conditions, and we adopt a similar approach in
our study, leaving our expression in terms of a convolution in the
time-domain Appendix C.

In this work, we extend the previous analysis to freely-suspended
axisymmetric swirlers, where the tail rotation rate can vary with time.
We show that the velocity of a steady swirler for a fixed tail rotation
rate, which is a measure of normal stresses in the fluid, can be predicted
(over a range of small Deborah number) for various swirler geometries
if Newtonian solutions to two other problems with the same geometry
are known. We derive a relation between a time-varying tail rotation
rate, and the translational velocity of the freely-suspended swirler. We
show that for a certain functional form of the tail rotation rate, the
swirler’s translational velocity can be analyzed to obtain the linear
viscoelasticity of the suspending fluid, analogous to small amplitude
oscillatory shear experiments on a benchtop rheometer. To do this,

Fig. 1. Depiction of freely-suspended swirler geometry. (a) Tail T has characteristic
rotation rate É⌦

T
specified; head H characteristic rotation rate É⌦

H
is opposite in

direction to counter the tail torque. The head and tail area separated by some distance
h. (b) We initially consider the fields created by a single rigidly-rotating ‘‘tail’’ with
time-varying rotation rate ⌦

T
(t), and subsequently consider the effect of the head.

we first use a combination of perturbation theory and the reciprocal
theorem (Sections 2.1–2.4) to get analytical predictions of the swim-
mer’s velocity. We then conduct fully-resolved numerical simulations
(Section 2.5) to compare the results against our theoretical predictions,
and show how we can analyze the simulation results to recover the
linear viscoelastic properties of the suspending fluid. The calculations
presented in this paper are valid for general weakly elastic fluids
(i.e. the general second order fluid [21]), for axisymmetric swirler
geometries with prescribed rotation rates, even if they move under an
applied torque.

2. Methods

2.1. Governing equations

The fluid surrounding the swirling microswimmer is described
mathematically by conservation of momentum and mass, with the
equations rescaled to dimensionless form by a careful choice of scale
factors. Fig. 1 illustrates the swimmer geometry: two rotating bodies of
revolution, with one as the ‘‘head’’ and the other as the ‘‘tail’’. Their
bodies are arranged coaxially and they are not physically connected,
but maintained at some distance h.1 They rotate along their axis of
shape revolution; without loss of generality, we adopt the reference
frame where this is the z-axis (equivalently the x3-axis), pointing from
the ‘‘tail’’ to the ‘‘head’’. Due to the axisymmetric geometry and rotation
about the symmetry axis, its translational velocity is constrained to
lie along this axis as well. Since the swimmer is in general freely-
suspended, we will prescribe the tail rotation rate ⌦

T
(t) and have the

head rotation ⌦
H
(t) be determined from the torque-free condition. We

define the characteristic rate of rotation to be É⌦
T
— for example, when

the tail rotation rate is oscillating at some frequency about the mean
value, É⌦

T
is the mean rotation rate. Since the head and tail can be

of arbitrary axisymmetric geometries, we consider their hydrodynamic
torque in a Newtonian fluid at Re = 0 and use it to define characteristic
length scales:

L
H

i
= 8⇡⌘0l3H É⌦

H
�
i3 (1)

L
T

i
= 8⇡⌘0l3T É⌦

T
�
i3 (2)

For arbitrary geometries, the direction of propulsion is unknown;
Binagia and Shaqfeh [14] propose that propulsion in the direction
of the object identified as the ‘head’ occurs when D

H
l
4
H
_D

T
l
4
T

> 1,

1 This has been achieved experimentally [15].
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where D
H
,D

T
are the drag coefficients of the head and tail respectively

translating through a Newtonian fluid along their axis of symmetry.
The characteristic viscous stress scale is ⌘0 É⌦T

, where ⌘0 is the
zero shear viscosity of the fluid. We will assume the swimmer motion
is such that the Reynolds number Re í

⇢ É⌦T lc

⌘0
– where l

c
is either

l
H
or l

T
– of the flow is in the Stokes regime, as with biological

microswimmers [22]. Thus we use the dimensionless Stokes equations
for an incompressible fluid:

(
j
�
total

ij
= 0 (3)

(
i
u
i
= 0 (4)

where u
i
is the velocity field in the fluid made dimensionless by l

c
, and

�
total
ij

is the Cauchy or total stress made dimensionless by ⌘0 É⌦T

To incorporate viscoelasticity, we assume the total stress �total
ij

arises
from the sum of a Newtonian and polymeric contribution:

�
total

ij
= *p�

ij
+ 2�E

ij
+ (1 * �)�p

ij
(5)

E
ij
= 1

2
�

(
j
u
i
+ (

i
u
j

�

(6)

where p is the (solvent) pressure made dimensionless by ⌘0 É⌦T
; �p

ij
is

the stress arising from polymer molecules in the fluid made dimen-
sionless by ⌘

p
É⌦
T
; and � í

⌘s

⌘s+⌘p
is the solvent viscosity over the

zero-shear viscosity. To describe �p
ij
we will start with the Oldroyd-B

and Giesekus constitutive equations, which are derived from treating
polymer molecules as Hookean dumbbells. However, many of our
results will be for the general second-order fluid (e.g. the low De
expansion of the Giesekus equation [23]) and therefore of broader
generality [21]. The nondimensional constitutive evolution equation is
as follows:
)�

p

ij

)t
+ De

�

u
k
(
k
�
p

ij
* (

k
u
i
�
p

jk
* (

k
u
j
�
p

ik
+ ↵�p

ik
�
p

kj

�

+ �p
ij
= 2E

ij
(7)

where time is non-dimensionalized by the polymer relaxation time
�. The Deborah number De í � É⌦

T
is a measure of fluid elasticity.

The Giesekus mobility parameter ↵ reflects the effect of anisotropic
drag on the polymer molecule as it stretches, and non-zero values
lead to predictions of shear-thinning and non-zero second normal stress
differences [21]. When ↵ = 0, the Oldroyd-B model [24] is recovered.
This nondimensionalization resembles that carried out by Joens and
Swan [19], in which the characteristic timescale for the unsteady
term differs from that of the remaining terms arising from the upper
convected derivative. In their work, they note that ‘‘the imposed flow
can change with arbitrary rapidity’’, thus the unsteady term persists
even at small Deborah numbers. Our choice of timescale, which is
appropriate for investigating linear viscoelastic behavior, leads to the
same retention of the unsteady term in the limit as De ô 0

2.2. Perturbation theory

The effect of weak elasticity is analyzed through perturbation the-
ory, in a method similar to previous studies of bodies in elastic flu-
ids [19,23]. For small Deborah number, we suppose the dimensionless
variables can be written as a power series as follows:

p = p
(0) + De p(1) +5 (8)

u
i
= u

(0)
i

+ De u(1)
i

+5 (9)

�
p

ij
= �

p(0)
ij

+ De �p(1)
ij

+5 (10)

To determine the solution for the freely suspended swimmer, we
first consider the problem of an arbitrary axisymmetric body swirling
in an unbounded viscoelastic fluid domain; one could think of this as
first focusing on just the ‘‘tail’’ rotating without the ‘‘head’’ (as depicted
in Fig. 1(b)). This gives the following boundary conditions:

p(r ô ÿ) ô 0 (11)

u
i
(xs
i
) = ✏

ijk
⌦(t)�

j3x
s

k
≈ xs

i
on surface (12)

u
i
(x

i
 ô ÿ) ô 0 (13)

The rotation rate can have a general time-dependence; however
we first provide a derivation for the case where the rotation rate is
sinusoidal with time around a mean offset, i.e. ⌦(t) = 1 + " cos!t =
R{1 + "e

i!t}; we work with the complex representation to simplify
the algebra. The frequency, !, is non-dimensionalized by the polymer
relaxation time �. The amplitude of the oscillation is small compared
to its mean, i.e. " ~ 1. We are interested in the long-time behavior
of the pressure, velocity, and polymer stress fields, as they dictate the
propulsion and hence translational velocity of the swimmer — the
primary measure of interest. As we demonstrate below, the swirler
adopts a speed which oscillates about a mean value. The ratio of the
oscillation amplitudes to the mean speed reflects the relaxation time
spectrum of the fluid, from which the dimensionless complex modulus
or complex viscosity can be obtained.

2.2.1. Zero-th order solution for pressure, velocity, and polymer stress
At zero-th order, the governing equations and boundary conditions

are as follows:

0 = *(
i
p
(0) + �(2

u
(0)
i

+ (1 * �)(
j
�
p(0)
ij

(14)

(
i
u
(0)
i

= 0 (15)

)�
p(0)
ij

)t
+ �p(0)

ij
= 2E(0)

ij
(16)

u
(0)
i
surface = (1 + "ei!t)✏

ijk
�
j3x

s

k
≈ xs

i
on surface

(17)

We assume the variables are separable into the product of spatial
and time dependent functions, with the spatially-varying components
denoted by overbars. From the velocity boundary condition, the zero-th
order velocity, and subsequently polymer stress, can be determined:

u
(0)
i

= (1 + "ei!t) Ñu(0)
i

(18)

�
p(0)
ij

= (1 + "

1 + i! e
i!t) Ñ�p(0)

ij
(19)

= (1 + "

1 + i! e
i!t)(2 ÑE(0)

ij
) (20)

Eq. (20) indicates linear viscoelastic response even if Deô 0, which
is to say, if �⌦ ~ 1 but ! (made dimensionless by �) Ì O(1). On the
other hand, if ! is also negligible, Eq. (20) reduces to 1 + "ei!t(2E(0)

ij
),

i.e. Newtonian flow.
The Stokes equation at zero-th order is hence:

(
i
p
(0) = �(1 + "ei!t)(2

Ñu
(0)
i

+ (1 * �)(1 + "

1 + i! e
i!t)(2

Ñu
(0)
i

(21)

Using the ansatz that the pressure is the product of a tempo-
ral coefficient and the spacial component Ñp

(0), and identifying the
corresponding form for each with Eq. (21):

p
(0) =

⌅

1 + "(� + 1 * �
1 + i! e

i!t)
⇧

Ñp
(0) (22)

(
i
Ñp
(0) = (2

Ñu
(0)
i

(23)

This shows the spatial components of the zero-th order pressure and
velocity correspond to the Newtonian Stokes solutions. Due to the re-
versibility of Stokes flow, no propulsion is created at this order. Further,
because the Newtonian problem is for an axisymmetric swirling body
rotating in a Newtonian quiescent fluid, no pressure is generated and
p
(0) is identically zero [25].

p
(0) = 0 (24)

As a consequence, the time-dependence of the velocity and polymer
stress are not coupled by the pressure at zero-th order and Ñu

(0)
i

is a
harmonic function. Eqs. (18), (20) and (24) are the general solutions
for an axisymmetric swirler in an unbounded viscoelastic fluid at zero
order in De.
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2.2.2. O (De) solution for pressure, velocity and polymer stress
At linear order in the perturbation expansion, the governing equa-

tions are as follows:

0 = *(
i
p
(1) + �(2

u
(1)
i

+ (1 * �)(
j
�
p(1)
ij

(25)

(
i
u
(1)
i

= 0 (26)

)�
p(1)
ij

)t
+ �p(1)

ij
=M

ij
* ↵�p(0)

ik
�
p(0)
kj

+ 2E(1)
ij

(27)

M
ij
= *u(0)

k
(
k
�
p(0)
ij

+ (
k
u
(0)
i
�
p(0)
jk

+ (
k
u
(0)
j
�
p(0)
ik

(28)

As before, we assume the linear-order pressure, velocity and poly-
mer stress fields are the product of spatial and temporal dependent
functions. Given the time-dependence of the imposed oscillation, we
use an ansatz for the functional form of the linear-order pressure and
velocity, where f and g are complex numbers to be determined from
the governing equations at this order. Substituting for the linear-order
polymer stress:

u
(1)
i

= Ñu
(1)
i

+ fei!t Ñu(1)
i
;E(1)

ij
= ÑE

(1)
ij

+ fei!t ÑE(1)
ij

(29)

p
(1) = Ñp

(1) + gei!t Ñp(1) (30)

�
p(1)
ij

= ÑM
ij
* ↵ Ñ�p(0)

ik
Ñ�
p(0)
kj

+ 2 ÑE(1)
ij

(31)

+ ei!t
L

"(2 + i!)
(1 + i!)2

ÑM
ij
* 2"↵

(1 + i!)2
Ñ�
p(0)
ik

Ñ�
p(0)
kj

+ 2f
1 + i!

ÑE
(1)
ij

M

+ O("2)

(32)
ÑM
ij
= * Ñu(0)

k
(
k
Ñ�
p(0)
ij

+ (
k
Ñu
(0)
i
Ñ�
p(0)
jk

+ (
k
Ñu
(0)
j
Ñ�
p(0)
ik

(33)

At this point, we discard terms quadratic in " from Eq. (32) assuming
" ~ 1. We note that at O(De0), there are no terms of higher power than
O("1) for ✏ ~ 1. Thus, our expansion to this point is truncated at terms
linear in De, ", and "De. Substituting this into Eq. (25) and isolating
the steady terms as well as the terms that vary as ei!t:

(
i
Ñp
(1) = (2

Ñu
(1)
i

+ (1 * �)(
j
ÑM
ij
* (1 * �)↵(

j
Ñ�
p(0)
ik

Ñ�
p(0)
kj

(34)

g(
i
Ñp
(1) = f

0

1 + i�!
1 + i!

1

(2
Ñu
(1)
i

+ (1 * �) "(2 + i!)
(1 + i!)2

(
j
ÑM
ij

(35)

* (1 * �) 2"↵
(1 + i!)2

(
j
Ñ�
p(0)
ik

Ñ�
p(0)
kj

(36)

As explicitly shown in the Appendix, Eq. (B.9) can be used to
simplify (

j
ÑM
ij
:

(
j
ÑM
ij
= *(

i

�

Ñu
(0)
j
(
j
Ñp
(0) + ÑE

(0)
jk

ÑE
(0)
jk

�

+ (
j
Ñ�
p(0)
ik

Ñ�
p(0)
kj

(37)

Since Ñp(0) = 0:

(
i
( Ñp(1) + (1 * �) ÑE(0)

jk

ÑE
(0)
jk
) = (2

Ñu
(1)
i

+ (1 * �)(1 * ↵)(
j
Ñ�
p(0)
ik

Ñ�
p(0)
kj

(38)

g(
i
( Ñp(1) + (1 * �) ÑE(0)

jk

ÑE
(0)
jk
) = f

0

1 + i�!
1 + i!

1

(2
Ñu
(1)
i

(39)

+ (1 * �) "(2 * 2↵ + i!)
(1 + i!)2

(
j
Ñ�
p(0)
ik

Ñ�
p(0)
kj

(40)

In order to satisfy Eq. (25) for all time, the ratio of the temporal
coefficients of each term between Eqs. (38) and (40) must be equal.
This leads to the following relations for the unknowns f , g:

g = "(2 * 2↵ + i!)
(1 + i!)2(1 * ↵)

(41)

f = "(2 * 2↵ + i!)
(1 + i!)(1 + i�!)(1 * ↵) (42)

2.3. Head rotation of a freely-suspended swirler

The previous sections derive the O(De0) and O(De1) fields for a
swirling axisymmetric body with a time-dependent rate of rotation —
however, the body was not torque-free. The freely-suspended swimmer
is comprised of two counter-rotating bodies, and the rotation rate of
the head is such that the torque on the head is equal to that on the tail.

In Appendix A, we show that the torque on the head has an O(De0)
contribution and no O(De1) contribution, from perturbation in De. As a
consequence, the head always rotates with the same time-dependence
as the tail, but in the opposite direction. Hence, no additional time-
dependence in the boundary conditions is introduced by including
a counter-rotating head, and a single specified time-dependence is
applicable for both the head and the tail velocity boundary conditions
through O(De1). This applies for arbitrary axisymmetric geometries of
the head and tail.

2.4. Translational velocity of a freely-suspended swirler

The analysis in the preceding sections has been derived for the
unsteady velocity field created by a freely-suspended swirler with
time-dependent rotation rate ⌦(t) = 1 + "e

i!t. However, the exper-
imentally measured quantity is typically the translational velocity of
this swirler [12,14]. To relate these quantities, we use the reciprocal
theorem. We quote the general form of the reciprocal theorem in
viscoelastic fluids, with extended derivations found in previous work,
e.g. [11]

…

H ,T

4

ÑU
i
F
aux
i

+⌦
i
L
aux
i

* U
aux
i

F
i
*⌦aux

i
L
i

5

= De (1 * �)
 
V

((
j
u
aux
i

)( ÑM
ij
* ↵ Ñ�p(0)

ik
Ñ�
p(0)
kj

) dV (43)

We consider the auxiliary problem of the same axisymmetric object,
translating steadily with velocity Uaux

i
along its axis of symmetry in a

Newtonian fluid with non-dimensional viscosity �aux = 1; the auxiliary
rotation rate and torque are hence both identically zero. We also
consider the primary problem where the swimmer is force-free. Finally,
we apply the identity derived in the Appendix (Eq. (B.20)) appropriate
for rigid swirling motion to simplify the integral.

ÑU
i
F
aux
i

= De (1 * �)
 
V

((
j
u
aux
i

) Ñ�p(0)
ik

Ñ�
p(0)
kj

dV (44)

Since the auxiliary force is arbitrary, this equation gives the transla-
tional velocity of the freely-suspended swirler with a steadily-rotating
tail as:

ÑU
i
= De (1 * �)(1 * ↵)V <

�
i3 (45)

V
< = * 1

F aux  V
((

j
u
aux
i

) Ñ�p(0)
ik

Ñ�
p(0)
kj

dV (46)

The factor V < accounts for the effect of the geometry of the swirler,
and the magnitude and direction of its translation independently of the
material properties of the fluid. A negative value indicates the swimmer
is translating in the same direction as the swimmer in the auxiliary
problem, and vice versa. This approach is similar to that appearing
in previous work for the velocity of steadily-rotating swirlers [11]. In
the present work, we derive a further result which shows linearity of
ÑU
i
in ↵, and combine this with the unsteady perturbation results in

Section 2.2 to get both the magnitude and time-dependence of the
unsteady swimmer translational velocity in Section 2.4.1.

The integral in V
< can be computed by solving two Newtonian

Stokes problems. In the first problem, we simulate the same swimmer
translating along its axis of symmetry in a Newtonian fluid of the
same zero-shear viscosity as the viscoelastic fluid of interest. Solving
for the flow field around, and net force on, the swimmer. we get
u
aux
i

and F
aux
i

respectively. On the other hand, as described in Sec-
tion 2.2.1, ÑE(0)

ij
can be obtained from the flow created by the swimmer

rotating (torque-free) in a Newtonian fluid. Hence, the steady swim
velocity of a freely-suspended swirler in a viscoelastic fluid can be
computed from solving two Newtonian problems, without completing
computer simulations in a viscoelastic fluid. This can be used as a
method for quickly iterating through axisymmetric swirler geometries,
in order to predict geometries that exhibit greater propulsion for better
experimental measurements.
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2.4.1. Tail rotation rate follows oscillation about a mean rotation rate
To obtain the transient velocity of the freely-suspended swirler, we

note that the swirler’s translational velocity is created by the linear-
order velocity field, which is a product of a temporal coefficient and the
steady field Ñu(1)

i
. The swirler translational velocity is thus also composed

of a magnitude determined by the steady field – Eq. (45) – multiplied
by a temporal coefficient. The temporal coefficient of the linear-order
velocity field is the same throughout the fluid domain, including on
the swirler surface; it is thus the same temporal coefficient derived in
Section 2.2.2. thus for tail rotation rate ⌦(t) = 1 + ei!t, the swirler has
velocity:

U
trans
i

(t) =
0

1 + "(2 * 2↵ + i!)
(1 + i!)(1 + i�!)(1 * ↵) e

i!t

1

ÑU
i

(47)

This result shows the translational velocity oscillates about an offset,
with a phase shift compared to the oscillation of the rotating tail. The
phase shift, or equivalently the in- and out-of-phase (with respect to
the tail oscillation) amplitudes of the oscillating velocity are affected
by fluid properties and hence a measurement of the fluid rheology. The
experimentally-measured value of interest are the phase amplitudes of
the translational velocity about its mean value, which we will refer to as
the complex velocity U<, analogous to the complex viscosity or complex
modulus:

U
< = "(2 * 2↵ + i!)

(1 + i!)(1 + i�!)(1 * ↵) (48)

We show in Section 3 how this functional form of the complex
velocity compares to simulation results, and how this can be used to
recover fluid parameters such as �, �, ↵ from simulation results.

Finally, we note that the above derivation does not require that the
swirler be torque-free, only that it is force-free. Hence, the predictions
for steady and transient velocity can also be extended to swirlers
propelled by means of an externally-applied torque [12].

2.4.2. Tail rotation rate follows step-start or step-stop
The translational velocity of a freely-suspended swirler including a

tail rotation rate following a step-start or step-stop – ⌦
T
(t) = ✓(t) and

⌦
T
(t) = 1* ✓(t) respectively, where ✓(t) is the Heaviside step function –

can also be easily analyzed. This is analogous to start-up and cessation
of stress tests in a benchtop rheometer. We have derived a general
expression for the temporal coefficients via convolutions, as detailed in
Appendix C, and apply it to this problem. For a single-mode Giesekus
fluid, the translational velocity for a freely-suspended swirler is given
through O(De1) as follows:

⌦
T
(t) = ✓(t) :U (t)

ÑU
= 1 + �(1 * 2(1 * ↵)�e*t_� )

(1 * ↵)(1 * �)(1 * 2�) (49)

* ↵e
*2t

(1 * ↵)(1 * �) *
(1 * 2↵)e*t

(1 * ↵)(1 * �) (50)

⌦
T
(t) = 1 * ✓(t) : U (t)

ÑU
= 1

1 * ↵ e
*t_� * ↵e

*2t

(1 * ↵)(1 * 2�) (51)

For an Oldroyd-B fluid where ↵ = 0:

⌦
T
(t) = ✓(t) : U (t)

ÑU
= 1 + �e

*t_� * e*t
1 * � (52)

⌦
T
(t) = 1 * ✓(t) : U (t)

ÑU
= e

*t_� (53)

We show in Section 3 how the functional forms in Eqs. (52) and
(53) compare to simulation results.

2.5. Numerical calculations

Three dimensional simulations of the governing equations and
boundary conditions were performed using a third-order-accurate
finite-volume flow solver developed at Stanford’s Center for Turbulence
Research. The numerical calculations for these problems closely follow
the framework described in previous studies [14,15]. In brief, an

unstructured, tetrahedral, body-fitted mesh (Fig. 2(b)) is used to define
the fluid domain: the fluid region interior to a cylindrical boundary and
exterior to the swimmer centered within this cylinder. The swimmer is
always axisymmetric, with its axis of revolution aligned to that of the
cylindrical boundary. The cylindrical domain has length and diameter
20 R

L
, such that confinement effects are negligible. The co-moving

frame of reference is adopted in this problem to avoid the need for
remeshing and swimmer position updates. The mesh has increasing
resolution around the swimmer at the center of the domain, in order
to resolve any stress boundary layers there (Fig. 2(b)). The evolution
equations for the velocity and polymer conformation tensor (Eq. (3),
(7)) are solved on this mesh using the log-conformation method [26,
27] to maintain positive-definiteness. The initial conditions for the
simulations are a quiescent fluid containing polymers at equilibrium,
i.e. �p

ij
(t = 0) = 0 everywhere. The boundary conditions for the

conformation tensor are �p
ij

= 0 at the entrance to the domain, and
a convective outlet boundary at the exit. The tail of the swimmer has
a rotation rate which can be prescribed as a function of time. At each
timestep, inner iterations via a quasi-Newton method, specifically Broy-
den’s method [28], are used to determine the swimmer’s translational
velocity, and the rotation rate of its head, such that the net force and
torque on the swimmer are both zero.

The phase amplitudes of the translational velocity are analyzed
to compare against theoretical predictions, as depicted in Fig. 2(c):
the simulation is run for sufficient time such that the results are
independent of the initial condition (after about 8�). The last full
oscillation period of the tail rotation rate is used for analysis: the in-
and out-of-phase translational velocity phase amplitudes are calculated
by numerical integration of the inner product with, respectively, the
cosine and sine of the imposed frequency. The in-, and out-of-phase
amplitudes respectively correspond to the real, and negative imaginary,
components of the oscillation coefficient in Eq. (48)

For the results presented, the geometry of the swirler is kept the
same unless otherwise indicated: a two-sphere swirler with a tail of
radius R

T
= R

H
_2, separated by a gap of height h = 0.05R

H
; Fig. 2(a)

depicts this geometry to scale. The swirler is freely-suspended unless
otherwise stated.

3. Results and discussion

3.1. Single-mode Oldroyd-B fluid

3.1.1. Reciprocal theorem
As described in Section 2.4, the translational velocity of a freely-

suspended two-sphere swirler was predicted by running two Newtonian
simulations and calculating the integral defined in Eq. (46) to obtain
the geometric factor V <. This factor was then scaled by the viscoelastic
fluid properties De and � to predict the swirler’s translational velocity.
Fig. 3(a) shows these predictions for a range of De at three different val-
ues of �, compared to fully-resolved numerical simulations at the same
conditions, for a swirler with a spherical head and tail as described in
Section 2.5. Eq. (45) gives a prediction that translational velocity is lin-
ear in (1*�), so normalizing the translational velocity by (1*�) and with
↵ = 0, the results should collapse onto a single curve. Fig. 3(b) shows
this procedure applied to the data from Fig. 3(a), and that the data
indeed collapses onto a single curve at low De, with the slope calculated
from Eq. (46). Additionally, we run steady simulations of a swirler with
a different geometry: an oblate spheroidal tail with major radius 0.75
and minor radius 0.5, and a gap size h = 0.15. Using the same procedure
to calculate V < and comparing this prediction to simulation results,
we again see our results show good agreement with the theory for De
f 1, indicating that the steady swim velocity for a freely-suspended
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Fig. 2. Simulation setup and analysis: (a) representative geometry with time-dependent tail rotation, here shown as oscillation about a constant offset; (b) meshing of the body-fitted
simulation domain with refined mesh layers near the swimmer body; and (c) representative translational velocity extracted from simulation and compared to theoretical predictions.

Fig. 3. Using the reciprocal theorem to predict the translational velocity of a freely-suspended swirler. In these plots, the points are from steady simulations of freely-suspended
swirlers in single-mode Oldroyd-B fluids with varying parameters De and �. The slopes of the dashed lines and dotted lines are obtained from calculating V < (Eq. (46)) from
Newtonian simulations. (a) Swirler translational velocity plotted against De, for three different � values. The swirler has a spherical head and spherical tail, as described in
Section 2.5. (b) Swirler translational velocity normalized by (1*�), for two different geometries. The data from Fig. 3a collapses onto a single curve in agreement with theory. The
data for a swirler with an oblate spheroid tail also collapses, and has a higher translational velocity under the same material parameters. The insets show representative sketches
of the two swirler geometries.

swirler can be predicted from the results of two Newtonian simulations,
the latter of which are less computationally intensive to complete than
fully-resolved viscoelastic simulations. Further, this procedure can be
applied to arbitrary axisymmetric geometries, serving as a design tool
to allow for faster iteration through multiple swirler design geometries
to find those, for example, with enhanced propulsion.

3.1.2. Step-start and step-stop
Fig. 4 shows predictions for the translational velocity when the

swirler is immersed in a single-mode Oldroyd-B fluid, with a step
change in its tail rotation. Predictions from the theoretical results
obtained in Section 3.1.2, Eqs. (52) and (53), are shown in Figs. 4(a)
and 4(b) respectively. There is good agreement between our theoretical
predictions and simulation results, indicating our theory captures the
transient physics accurately, again for De f 1. In particular, Eq. (53)
indicates the timescale of the decay in the translational velocity in
dimensional terms is ��, i.e. the so-called retardation time, and so
fitting this decay can be used as another measure of these parameters.

3.1.3. Oscillation
Fig. 5 shows predictions for the complex translational velocity when

the swirler is immersed in a single-mode Oldroyd-B fluid, with its
tail having a rotation rate that oscillates with time about a constant
mean. The amplitude of this oscillation is small compared to the
magnitude of the mean — here, the oscillation amplitude is 20% of

the mean oscillation rate. The complex velocity is a function of the
non-dimensional Oldroyd-B parameter � and the oscillation frequency
non-dimensionalized by �. Fig. 5a shows the effect of different � on
the complex velocity, changing the intersection of the in- and out-of-
phase amplitudes, and the maximum of the out-of-phase amplitude.
The curves are plotted from the expressions derived in Section 2, and
the points are results obtained from simulations in a fluid where the
mean Deborah number is 0.3. There is good agreement between our
theoretical predictions and simulation results at different values of �,
indicating our theory captures the transient physics accurately.

We further wish to understand the range of the mean Deborah
number for which our perturbation theory expressions are valid. To that
end, we conduct simulations at a constant value of � but with three
different De values — this is equivalent to having the swirler rotate
with the same mean tail rotation rate and oscillation frequencies, but
in single-mode fluids of different relaxation times. Fig. 5b shows the
results of these simulations plotted as points, compared to theoretical
predictions (Eq. (48)) with � = 0.75. We see the results obtained
at different mean Deborah numbers collapse onto the same curve,
indicating the perturbation theory is robust up to at least De = 0.8.

Finally, we observe that the non-dimensional complex viscosity for
a Maxwell mode can be recovered from the complex velocity U< as
defined in Eq. (48) using the following relation:
⌘
<
M

⌘
p

= 1
1 + i! (54)
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Fig. 4. Translational velocity of a swirler with step change in tail rotation in a single-mode Oldroyd-B fluid, De = 0.3, � = 0.75. (a) Swirler tail rotation rate undergoes a step
change to its steady value. (b) Swirler tail rotation rate undergoes a step change from a steady value to zero.

Fig. 5. Translational velocity of a swirler with oscillating tail rotation in a single-mode Oldroyd-B fluid, investigating (a) the in- and out-of-phase swirler translational velocities
at different values of � and constant mean Deborah number of 0.3; (b) the in- and out-of-phase swirler translational velocities at different mean Deborah numbers and constant
� = 0.75; and (c) converting the complex velocity into the dimensionless complex viscosity for the Maxwell mode in the Oldroyd-B fluid.

= U
<
0

1 + i�!
"

1

* 1 (55)

Hence the nondimensional complex viscosity can be recovered using
measurements from an experiment or simulation as follows:

⌘
<
M

⌘
p

˘ U
<
measured

0

1 + i�!
"

1

* 1 (56)

U
<
measured í U

®
measured * iU

®®
measured (57)

In (57), U ®
measured,U

®®
measured are respectively the in- and out-of-phase

velocity amplitudes recovered from the translational velocity from an
experiment or simulation, and " is known from the imposed tail oscil-
lation rate. In Fig. 5(c) we perform this transformation on the complex
velocity and see good agreement with the theoretical prediction for the
corresponding Maxwell mode in the Oldroyd-B fluid.

3.2. Single-mode Giesekus fluid

We also investigate the complex velocity, scaled to the mean veloc-
ity, produced by a swirler immersed in a single-mode Giesekus fluid.
We first test the prediction that the steady velocity is linear in (1 * ↵),
where ↵ is the Giesekus parameter and leads to both shear-thinning and
non-zero second normal stresses [21]. The points in Fig. 6(a) shows
simulation results for the translational velocity of a swirler whose tail
has a constant rotation rate, normalized by the velocity when ↵ = 0. The
deviation of the simulation results from the expected scaling increases
as ↵ increases but is still accurate to within 4%. Our analytical theory is

hence able to capture the scaling of the steady velocity with ↵ observed
in simulations.

For a tail rotation rate with oscillations, Fig. 6b-d shows theoretical
predictions of the effect of the Giesekus parameter ↵ on the com-
plex viscosity, for a swirler in a single-mode Giesekus fluid. As with
the Oldroyd-B fluid, � also shifts the phase amplitude curves, their
intersection and maxima.

Fig. 6(e) compares the results, both from simulation (points) and
theory (lines), between a Giesekus fluid (data in blue) with ↵ = 0.1 and
an Oldroyd-B fluid (i.e. a Giesekus fluid with ↵ = 0; data in red). The
value of � is maintained at 0.75 for both cases. For each simulation, the
complex velocity scaled to the mean velocity is plotted. There is good
agreement between the simulation results and theoretical predictions,
demonstrating how non-zero second normal stresses modestly affect
the translational velocity, and that our model captures the steady and
transient physics for fluids with non-zero second normal stresses.

We also note that the O(De1) expansion of the Giesekus fluid corre-
sponds to the second-order fluid model, with the constants transformed
as per Table 6.2-2 in Ref. [21]: �1, �2 in the reference correspond to �
and (1 * �)� in this text respectively.

3.3. Multi-mode Oldroyd-B fluid

Most real polymeric fluids contain a spectrum of relaxation times
[29]. We extend our formula for the complex velocity to multi-mode
Oldroyd-B fluids, detailed in Appendix D, and run simulations of our
swirler in these fluids to compare against the theoretical predictions.
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Fig. 6. Complex velocity of a swirler with oscillating tail rotation in a single-mode Giesekus fluid, investigating (a) the effect of the Giesekus mobility parameter ↵ on the
translational velocity of a swirler with steady tail rotation; (b-d) theoretical predictions of the in- and out-of-phase swirler translational velocities at different values of (↵, �); and
(e) simulation results against theoretical predictions at two values of ↵ for constant � = 0.75, De = 0.3.

Fig. 7. Complex velocity of a swirler with oscillating tail rotation in a multi-mode Oldroyd-B fluid. In each plot, the oscillation frequency is non-dimensionalized by the longest
relaxation time. (a) Two-mode Oldroyd-B fluid with � = 0.5; and (b) 4-mode Oldroyd-B fluid where the modes follow the Rouse relaxation spectrum, � = 0.75.

For these frequency sweeps, reported in Fig. 7, the oscillation frequency
!1 is made dimensionless by the longest relaxation time.

We first use a two-mode Oldroyd-B fluid as a test case. Fig. 7(a)
shows the results from a frequency sweep in such a fluid, compared to
predictions from theory. We again see good agreement for this simple
test case.

For more accurate representation of experimental polymeric fluids,
we look at well-known models for polymer solutions – e.g. the Rouse
or Zimm models – which predict a spectrum of relaxation times for

polymeric fluids. In these spectrums, the relaxation times and polymer
viscosities typically scale according to the mode number. For instance,
the Rouse model predicts a spectrum where the first mode has the
longest relaxation time �1 and highest polymer viscosity ⌘

p,1, and
subsequent modes have relaxation times and polymer viscosities scale
as the inverse square of the mode number: �

q
= �1_q2; ⌘p,q = ⌘

p,1_q2,
where q is the mode number. Equivalently, this indicates that the ratio
between the relaxation time and polymer frequency for each mode is
a constant. We run a frequency sweep in a multi-mode Oldroyd-B fluid
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Fig. 8. Fitting simulation results (top plots) to functional forms from theory via least squares regression to reconstruct dimensionless complex modulus (bottom plots) for a (a)
single-mode, (b) two-mode, and (c) four-mode Oldroyd-B relaxation spectrum. In the first two cases, the viscosity and relaxation time of each mode is treated as a fitting parameter;
in the final case, the number of modes is specified, and the relaxation time of each mode, plus a constant scale factor that linearly relates viscosity and relaxation time, is treated
as a fitting parameter.

with four modes employing the Rouse scaling for relaxation times and
polymer viscosities. Fig. 7(b) shows the simulation results, compared
to predictions from theory. The agreement between simulation and
theory for both frequency sweeps indicates that our model captures the
effect of having more than one relaxation modes, each with a distinct
relaxation time and elastic modulus.

Due to the algebraic form of the multi-mode complex velocity,
there is no straightforward algebraic transformation to recover the
dimensionless complex viscosity as was done in Section 3.1.3. Instead,
we investigate the use of least-squares regression to Eq. (D.19) to
estimate the polymer relaxation spectrum, i.e. determine a list of modes
with associated relaxation times and polymer viscosities. We test this
procedure against simulation results collected for a frequency sweep in
a 1-mode, 2-mode, and 4-mode Rouse fluid. In this section, we work in
dimensional quantities to reflect a usual experimental procedure. The
frequency tested in each simulation is hence reported in dimensional
units (s*1), and the polymer relaxation times are considered dimension-
ally as well. For the first two fluids, we let the mode relaxation times �

q

and polymer fractions �
q
be free fitting parameters; this also fixes the

solvent fraction � = 1*≥

q
�
q
. For the Rouse fluid, we assume the relax-

ation time of each mode is a fitting parameter, with an additional fitting
parameter being the ratio between the relaxation time and polymer
viscosity common to all modes. Fig. 8 shows the results of using linear
regression to simulation data to obtain the relaxation spectrum. We
see good agreement between the relaxation time spectrum predicted
from regression to the functional form of the complex velocity, and the
actual relaxation time spectrum of the fluid used in each simulation.
The relaxation time spectrum is then used to calculate the complex
modulus modulo a constant factor of the zero-shear viscosity, via a sum
of the multiple Maxwell modes:

G
<

⌘0
= i!

0

� +
n
…

q=1

�
q

1 + i�
q
!

1

(58)

We propose that this method can be used to analyze experimentally col-
lected data from a physical swirler, to obtain the viscoelastic spectrum
of the fluid in which it is immersed.

4. Conclusions

In this study, we have analyzed freely-suspended swirlers of ar-
bitrary axisymmetric geometry in a viscoelastic fluid using analytical
and numerical calculations to understand the interaction between un-
steady swirling flows in viscoelastic fluids, and the unsteady propulsion
generated by such flows. We show that the steady swim speed for
an arbitrary axisymmetric geometry at low Deborah number can be
calculated from the solution of two Newtonian problems in the same ge-
ometry, (Section 2.4). The latter calculation is far less computationally
or mathematically intensive than solving the full viscoelastic problem.
This formulation can thus be used as a design tool to search through
the space of swirler geometry and optimize propulsion. The theory and
numerical simulations predict a nearly linear increase in the speed with
the Deborah number (i.e. fluid elasticity), 1*� (i.e. polymer concentra-
tion), and 1 * ↵ (where ↵ reflects the second normal stress coefficient)
for De f 1. Note that all of these parameters are of rheological interest.
While we specifically consider the Giesekus model in this paper, the
results can be expressed in terms of the second-order fluid model, where
the Giesekus model parameters � and ↵ can be re-expressed as first
and second normal stress coefficients. This is appropriate for the low
Deborah number limit, for which the perturbation expansion is also
derived, and shows the linear proportionality of the translation speed
in that regime; these predictions become less accurate as the Deborah
number increases.

In addition to the steady swim speed, we investigate the unsteady
swim speed produced by unsteady tail rotation. We derive a general
form for the unsteady swim speed as a function of fluid material param-
eters and the unsteady tail rotation Appendix C, and for a specific form
(oscillation about an offset). We then demonstrate how the functional
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form of the unsteady swim speed is related to fluid material parameters
(Section 2.4.1). These functional forms allow us to fit simulation data
to reconstruct the viscoelastic spectrum of the suspending fluid, and
from the spectrum make predictions of the fluid’s linear viscoelastic
response (Section 3.3). In general, the swirler translational velocity
arises from a balance between the propulsion created by normal stresses
proportional to the square of the tail rotation rate, and the drag
exerted on the swirler as it translates through the fluid. For the tail
rotation rate presented in Section 3.3, the propulsion lags the oscillating
tail rotation rate, and the phase difference between the oscillating
tail rotation and the oscillating propulsion increases with oscillation
frequency. The propulsion magnitude also decreases with increasing
oscillation frequency, as the normal stresses are unable to reach their
steady values in each cycle of the tail oscillation rate. Since the swirler
translates with an oscillating speed, there is also a phase difference
between the drag and the speed: as with the unsteady translation of
spheres through a viscoelastic fluid, the complex viscosity creates a
phase difference. These effects together mean that at low oscillation
frequencies, the propulsion is largely in-phase with the tail rotation
rate and the in-phase velocity dominates, while at high oscillation
frequencies the propulsion is largely out-of-phase with the tail rotation
rate and diminishes in magnitude.

Together, the studies in this paper expand the design space of self-
propelled swirlers [15] to allow the identification of geometries with
increased propulsion for better signal-to-noise, and to perform different
rheological tests by having different time-varying tail rotation rates.
We note that the perturbation expansion of the Giesekus constitutive
equation up to linear order in De has the same functional form as
the general second order fluid model, where the model parameters are
expressed as the primary and secondary normal stress coefficients. The
results of these studies are thus broadly applicable to ‘‘weak’’ flows of
complex fluids.
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Appendix A. Swimmer head rotation rate

Using the reciprocal theorem, we shall show that if the freely-
suspended swirler has head and tail rotation rates that make the whole
swirler torque free in a Newtonian fluid, the same rotation rates will
let it be torque free in a weakly elastic fluid.

The surface of the head and tail are S
H
,S

T
respectively, and the

total surface of the whole swirler is S = S
H
+S

T
. The primary problem

is the force-free, but not necessarily torque-free, swirler in a weakly
elastic fluid, i.e. the second order fluid expanded up to linear order
in De, and with head and tail rotation rates ⌦H

i
, ⌦

T

i
. The auxiliary

problem is the swirler of the same geometry in a Newtonian fluid,
with the same head and tail rotation rates: ⌦H<

i
= ⌦

H

i
,⌦

T <
i

= ⌦
T

i
. The

(axisymmetric) swirler in the auxiliary problem is force-free as it only
exhibits swirling motion.

Primary problem:

p = p
(0) + De p1 (A.1)

u
i
= u

(0)
i

+ De u1
i

(A.2)

�
p

ij
= �

p0
ij

+ De �p(1)
ij

(A.3)

�
ij
= �

(0)
ij

+ �1
ij

(A.4)

= *p(0)�
ij
+ 2E(0)

ij
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4

*p1�
ij
+ 2E1

ij
+ (1 * �)�p(1)

ij

5

(A.5)

= *p(0)�
ij
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ij
(A.6)
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(
j
�
ij
= 0 (A.8)

F
H

i
+ FT

i
= 0 (A.9)

Auxiliary (Newtonian) problem:

�
<
ij
= *p<�

ij
+ 2E<

ij
(A.10)

(
j
�
<
ij
= 0 (A.11)

F
H<
i

+ FT <
i

= 0 (A.12)

Since the auxiliary and primary problems have the same boundary
conditions on the pressure and velocity at O(De0), p< = p

(0) and
u
<
i
= u

(0)
i
. We will use the equivalence between < and (0) quantities for

simplification later. Constructing the reciprocal theorem:
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Simplifying the L.H.S.:
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n
j
dA = ⌦

H

j
L
H<
j

+⌦T

j
L
T <
j

+ U
i⇠⇠⇠⇠⇠: 0
(FH<
i

+ FT <
i

) (A.16)

Similarly:
 
S

u
<
i
�
ij
n
j
dA = ⌦

H<
j
L
H

j
+⌦T <

j
L
T

j
+ U<

i⇠⇠⇠⇠⇠: 0
(FH
i

+ FT
i
) (A.17)

*
 
S

u
i
�
<
ij
n
j
* u<

i
�
ij
n
j
dA = *(⌦H

j
L
H<
j

+⌦T

j
L
T <
j
) * (⌦H<

j
L
H

j
+⌦T <

j
L
T

j
)

(A.18)

= *⌦H

j
(LH<

j
* LH

j
) *⌦T

j
(LT <

j
* LT

j
) (A.19)

Simplifying the R.H.S.:

 
V

((
j
u
i
)�<
ij
dV =

 
V

(E(0)
ij

+ DeE1
ij
)(2E<

ij
) dV (A.20)

=
 
V

2E(0)
ij
E

(0)
ij

+ 2DeE1
ij
E

(0)
ij
dV (A.21)

 
V

((
j
u
<
i
)�
ij
dV =

 
V

E
<
ij
(2E(0)

ij
+ 2DeE1

ij
+ De (1 * �)�p(1)

ij
) dV

(A.22)

=
 
V

2E(0)
ij
E

(0)
ij

+ 2DeE1
ij
E

(0)
ij
dV (A.23)

+
 
V

De (1 * �)�p(1)
ij

E
(0)
ij
dV (A.24)

 
V

((
j
u
i
)�<
ij
* ((

j
u
<
i
)�
ij
dV = *

 
V

De (1 * �)�p(1)
ij

E
(0)
ij
dV (A.25)

= *De (1 * �)
 
V

E
(0)
ij
(M

ij
* 4↵E(0)

ik
E

(0)
kj
) dV

(A.26)
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Substituting Eqs. (A.19) and (A.26) to simplify the reciprocal theo-
rem Eq. (A.15):

⌦
H

j
(LH<

j
*LH

j
)+⌦T

j
(LT <

j
*LT

j
) = De (1*�)

 
V

E
(0)
ij
(M

ij
*4↵E(0)

ik
E

(0)
kj
) dV

(A.27)

As in Section 2.2.2, we use the Giesekus equation [21] to simplify
the integral containing M

ij
:

 
V

E
(0)
ij
(M

ij
* 4↵E(0)

ik
E

(0)
kj
) dV = (1 * ↵)

 
V

E
(0)
ij
E

(0)
ik
E

(0)
kj
dV (A.28)

⌅

⌦
H

j
(LH<

j
* LH

j
) +⌦T

j
(LT <

j
* LT

j
)
⇧

= De (1 * �)(1 * ↵)
 
V

E
(0)
ij
E

(0)
ik
E

(0)
kj
dV

(A.29)

The quantity E(0)
ij
E

(0)
ik
E

(0)
kj
is the trace of the cube of the rate of strain

tensor. Let the eigenvalues of E
ij
be �1, �2, �3. Then:

E
(0)
kk

= �1 + �2 + �3 = 0 (A.30)

E
(0)
ij
E

(0)
ik
E

(0)
kj

= tr(E(0)
ik
E

(0)
kl
E

(0)
lj
) (A.31)

= �
3
1 + �

3
2 + �

3
3 (A.32)

We observe that if at least one of (�1, �2, �3) is zero, then the remain-
ing eigenvalues have equal magnitude and opposite sign, meaning that
the sum of their cubes is zero. We will now show that it is the case that
at least one eigenvalue is zero.

A.1. Eigenvalues of the rate-of-strain tensor

We are interested in the eigenvalues of the rate-of-strain tensor for
a flow created by an axisymmetric object rigidly rotating about its axis
of revolution. Due to the axisymmetry of the problem, we identify that
the flow can be expressed as derivatives of a streamfunction [30]. First,
without loss of generality, we align the axis of rotation and revolution
to the x3 axis and note that the flow can be written in the following
form:

u
i
= ⌦✏

i3k(k� (A.33)

(2
�(r

c
, x3) = 0 (A.34)

r
c
=
t

x
2
1 + x

2
2 (A.35)

E
ij
= ⌦

2
⌅

✏
i3k(j(k� + ✏

j3k(i(k�
⇧

(A.36)

= ⌦

2

b

f

f

d

*2(1(2� (2
1� * (2

2� *(2(3�

(2
1� * (2

2� 2(1(2� (1(3�

*(2(3� (1(3� 0

c

g

g

e

(A.37)

Here, we work in cylindrical coordinates (r
c
, ✓
c
, z
c
) – with the sub-

script c to denote cylindrical coordinates – where the z
c
axis is aligned

to x3 and correspondingly the axis of rotation and revolution. The
Cartesian derivatives can then be rewritten in term of the cylindrical
coordinates:

(1 =
x1
r
c

)

)r
c

= cos ✓
c

)

)r
c

(A.38)

(2 =
x2
r
c

)

)r
c

= sin ✓
c

)

)r
c

(A.39)

(2
1 * (2

2 =
⌅

sin2 ✓
c
* cos2 ✓

c

⇧ )
2

)r2
c

(A.40)

= cos 2✓
c

)
2

)r2
c

(A.41)

Using subscripts to denote derivatives where (�)
r
= )

)rc

(�), (�)
z
= )

)zc

(�) =
)

)x3
(�):

E
ij
= ⌦

2

b

f

f

d

*2 cos ✓
c
sin ✓

c
�
rr

cos 2✓
c
�
rr

* sin ✓
c
�
rz

cos 2✓
c
�
rr

2 cos ✓
c
sin ✓

c
�
rr

cos ✓
c
�
rz

* sin ✓
c
�
rz

cos ✓
c
�
rz

0

c

g

g

e

(A.42)

det(E
ij
) = *2 cos ✓

c
sin ✓

c
�
rr
(sin ✓

c
�
rz
)2 (A.43)

+ 2(cos 2✓
c
�
rr
)(* sin ✓

c
�
rz
)(cos ✓

c
�
rz
) (A.44)

* (*2 cos ✓
c
sin ✓

c
�
rr
)(cos ✓

c
�
rz
)2 (A.45)

= �
cc
(�
rz
)2
4

* sin 2✓
c
sin2 ✓

c
* cos 2✓

c
sin 2✓

c
+ sin 2✓

c
cos2 ✓

c

5

(A.46)

= 0 (A.47)

This shows the determinant of the rate-of-strain tensor is zero, and
thus at least one eigenvalue is zero. Hence, the trace of the cube of the
rate-of-strain tensor is also zero. Returning to Eq. (A.29):

⌦
H

j
(LH<

j
* LH

j
) +⌦T

j
(LT <

j
* LT

j
) = 0 (A.48)

We now use this result to determine the torques on the swirler head
and tail, LH

i
and L

T

i
, and show that they are the same as those in

the Newtonian auxiliary problem, using proof by contradiction. If we
assume the head and tail torques in the primary problem are different
from those in the auxiliary problem, i.e. LH

i
= L

H<
i

+ �L
H

i
, LT

i
=

L
T <
i

+ �LT
i
:

⌅

⌦
H

j
(�LH

j
) +⌦T

j
(�LT

j
)
⇧

= 0 (A.49)

Since the head and tail counter-rotate, ⌦H

i
and ⌦T

i
are of different

sign. The only non-zero solution to Eq. (A.49) requires �LH
j
and �LT

j

to be the same sign. However, this would cause the head and tail
rotation to be offset in the same direction, and no other information
can be used to determine the preferred direction. Hence we conclude
that �LH

j
= �L

T

j
= 0 is the only physical solution.

This shows that if the head and tail rotation rates are the same
in a weakly elastic fluid as they are for a Newtonian fluid, and the
swirler is torque free in a Newtonian fluid, it will also be torque-
free in the weakly elastic fluid. Crucially, the time-dependence of the
head rotation rate will follow that of the tail, due to properties of the
Newtonian Stokes regime. Thus only one time-dependence appears in
the velocity boundary conditions, as used in Section 2.4.

Appendix B. Divergence of products of zero-th order terms

From a perturbation in De, the linear-order total stress is given by:

Ñ�
(1)
ij

= * Ñp(1)�
ij
+ 2� ÑE(1)

ij
+ Ñ�

p(1)
ij

(B.1)

Ñ�
p(1)
ij

= (1 * �)
4

2 ÑE(1)
ij

* Ñu
(0)
k
(
k
Ñ�
p(0)
ij

+ (
k
Ñu
(0)
i
Ñ�
p(0)
jk

+ (
k
Ñu
(0)
j
Ñ�
p(0)
ik

5

(B.2)

= (1 * �)
4

2 ÑE(1)
ij

* 2
�

Ñu
(0)
k
(
k
ÑE
(0)
ij

* (
k
Ñu
(0)
i
ÑE
(0)
jk

* (
k
Ñu
(0)
j
ÑE
(0)
ik

�

5

(B.3)

For ease of convention we can rewrite the total stress in a cleaner
form, collecting non-linear combinations of zeroth-order terms:

Ñ�
(1)
ij

= * Ñp(1)�
ij
+ 2 ÑE(1)

ij
+ (1 * �) ÑM

ij
(B.4)

ÑM
ij
í *2 Ñu(0)

k
(
k
ÑE
(0)
ij

+ (
k
Ñu
(0)
i
ÑE
(0)
jk

+ (
k
Ñu
(0)
j
ÑE
(0)
ik

(B.5)

The Giesekus Equation (Bird, Equation 6.3-6) [21] is equivalent to
the following:

2(
j

4

Ñu
(0)
k
(
k
ÑE
(0)
ij

* (
k
Ñu
(0)
i
ÑE
(0)
jk

* (
k
Ñu
(0)
j
ÑE
(0)
ik

5

(B.6)

= *4(
j
ÑE
(0)
ik

ÑE
(0)
kj

+ (
i

4

D

Dt
Ñp
(0) + ÑE

(0)
jk

ÑE
(0)
jk

5

(B.7)
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Â(
j
ÑM
ij
= *(

j

4

2
÷
ÑE

(0)

ij

5

= (
j

4

4 ÑE(0)
ik

ÑE
(0)
kj

5

* (
i

4

D

Dt
⇢⇢>

0
Ñp
(0) + ÑE

(0)
jk

ÑE
(0)
jk

5

(B.8)

We can rewrite the divergence of ÑM
ij
as equal to the divergence of

another tensor G
ij
such that:

(
j
ÑM
ij
= (

j
G
ij

(B.9)

G
ij
í * ÑE

(0)
kl

ÑE
(0)
kl
�
ij
+ 4 ÑE(0)

ik

ÑE
(0)
kj

(B.10)

We want to relate this to the reciprocal theorem, which shows the
propulsion occurs from the following integral over V

f
, the fluid domain

exterior to the swimmer:

U
(1)
i
F
aux
i

* Uaux
i

F
(1)
i

= (1 * �)
 
Vf

(
j
u
aux
i

ÑM
ij
dV (B.11)

Consider the following integrals involving ÑM
ij
and G

ij

 
Vf

(
j
u
aux
i

ÑM
ij
dV =

 
Vf

(
j
(uaux
i

ÑM
ij
) dV *

 
Vf

u
aux
i

(
j
ÑM
ij
dV (B.12)

= *
 
S

u
aux
i

ÑM
ij
n
j
dA *

 
Vf

u
aux
i

(
j
ÑM
ij
dV (B.13)

 
Vf

(
j
u
aux
i
G
ij
dV =

 
Vf

(
j
(uaux
i
G
ij
) dV *

 
Vf

u
aux
i

(
j
ÑM
ij
dV (B.14)

= *
 
S

u
aux
i
G
ij
n
j
dA *

 
Vf

u
aux
i

(
j
G
ij
dV (B.15)

The two surface integrals can be converted to volume integrals over
the interior of the swimmer V

S
, which is undergoing rigid rotation

(at zero-th order in De). Since the tensors ÑM
ij
, G

ij
comprise entirely

of terms involving the rate-of-strain tensor, which is zero in a rigidly
rotating domain, these integrals evaluate to zero.

 
Vf

(
j
u
aux
i

ÑM
ij
dV = *Uaux

i

������*
0

 
VS

(
j
ÑM
ij
dV *

 
Vf

u
aux
i

(
j
ÑM
ij
dV (B.16)

 
Vf

(
j
u
aux
i
G
ij
dV = *Uaux

i

������* 0

 
VS

(
j
G
ij
dV *

 
Vf

u
aux
i

(
j
G
ij
dV (B.17)

The Giesekus equation also shows the last term in each of the above
two equations are equal. Hence:

 
Vf

(
j
u
aux
i

ÑM
ij
dV =

 
Vf

(
j
u
aux
i
G
ij
dV (B.18)

=
 
Vf

(
j
u
aux
i

(4 ÑE(0)
ik

ÑE
(0)
kj
) dV (B.19)

Â
 
Vf

(
j
u
aux
i

ÑM
ij
dV =

 
Vf

(
j
u
aux
i

( Ñ�p(0)
ik

Ñ�
p(0)
kj

) dV (B.20)

This is helpful for compactness, but especially also because the
square of the zero-th order polymer stress shows up in the Giesekus
constitutive equation. For instance, when the Giesekus ↵ parameter is
non-zero:

Ñ�
(1)
ij

= * Ñp(1)�
ij
+ 2 ÑE(1)

ij
+ (1 * �)

4

ÑM
ij
* ↵ Ñ�p(0)

ik
Ñ�
p(0)
kj

5

(B.21)

U
(1)
i
F
aux
i

* Uaux
i

F
(1)
i

= (1 * �)
 
Vf

(
j
u
aux
i

4

ÑM
ij
* ↵ Ñ�p(0)

ik
Ñ�
p(0)
kj

5

dV (B.22)

= (1 * �)(1 * ↵)
 
Vf

(
j
u
aux
i

Ñ�
p(0)
ik

Ñ�
p(0)
kj

dV (B.23)

This demonstrates clearly the linearity of the steady swimmer trans-
lational velocity in (1 * �)(1 * ↵)

Appendix C. General transient solution via convolution

We consider a freely-suspended swimmer, with a non-dimensional
tail rotation rate whose magnitude varies with time as � (t) and ori-
entation Ç⌦

i
remains unchanged. This leads to the following boundary

conditions:

p(r ô ÿ) ô 0 (C.1)

u
i
(x

i
 ô ÿ) ô 0 (C.2)

u
0
i
(xs
i
) = � (t)✏

ijk
Ç⌦
j
x
s

k
≈ xs

i
on surface (C.3)

C.1. Zero-th order solution for pressure, velocity, and polymer stress

We apply a Fourier transform to convert the time-domain variable t
to the frequency domain variable k, using carets to denote variables in
the frequency domain. Due to orthogonality, the space-domain compo-
nents remain unchanged. Applying the Fourier transform to the system
zero-th order, the governing equations and boundary conditions are as
follows:

0 = *(
i
Çp
(0) + �(2

Çu
(0)
i

+ (1 * �)(
j
Ç�
p(0)
ij

(C.4)

(
i
Çu
(0)
i

= 0 (C.5)

Çu
0
i
surface = Ç� (k)✏

ijk
p
j
r
k

(C.6)

(ik + 1) Ç�(0)
ij

= 2E(0)
ij

(C.7)

We assume the variables are separable into the product of spatial
and time dependencies, with the spatially-varying components denoted
by overbars. From the velocity boundary condition, the zero-th order
velocity, and subsequently polymer stress, can be determined:

Çu
0
i
= Ç� Ñu

0
i

(C.8)

Ç�
p(0)
ij

=
Ç�

1 + ik Ñ�
p(0)
ij

(C.9)

=
Ç�

1 + ik (2
ÑE
(0)
ij
) (C.10)

The Stokes equation at zero-th order is hence:

(
i
Çp
(0) =

4

� Ç� + (1 * �) Ç�
1 + ik

5

(2
Ñu
(0)
i

(C.11)

Isolating the spatial components for the pressure and velocity in the
above equation:

Çp
(0) =

4

� Ç� + (1 * �) Ç�
1 + ik

5

Ñp
(0) (C.12)

(
i
Ñp
(0) = (2

Ñu
(0)
i

(C.13)

This shows the spatial components of the zero-th order pressure
and velocity correspond to the Newtonian Stokes solutions. Due to
reversibility of Stokes flow, no propulsion is created at this order.
Further, because the Newtonian problem is for an axisymmetric body
rotating in a Newtonian quiescent fluid, no pressure is generated and
p
(0) is identically zero [25].

p
(0) = 0 (C.14)

C.2. Linear order solution for pressure, velocity, and polymer stress

To apply the Fourier transform to products of time-dependent
terms in Eq. (27), the convolution theorem results in convolutions
of frequency-dependent terms after applying the transform. Hence we
define new terms for ease of notation:

Ç�
n1 = Ç� <

Ç�

1 + ik (C.15)

Ç�
n2 =

Ç�

1 + ik <
Ç�

1 + ik (C.16)

Here, the < indicates convolution between the two functions. The
Fourier-transformed governing equations and boundary conditions at
linear order are hence:

0 = *(
i
Çp
(1) + �(2

Çu
(1)
i

+ (1 * �)(
j
Ç�
p(1)
ij

(C.17)
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(
i
Çu
(1)
i

= 0 (C.18)

(ik + 1) Ç�(1)
ij

= Ç�
n1 ÑMij

* ↵ Ç�
n2 Ñ�

p(0)
ik

Ñ�
p(0)
kj

+ 2 ÇE(1)
ij

(C.19)

ÑM
ij
= * Ñu(0)

k
(
k
Ñ�
p(0)
ij

+ (
k
Ñu
(0)
i
Ñ�
p(0)
jk

+ (
k
Ñu
(0)
j
Ñ�
p(0)
ik

(C.20)

We assume Çp
1
, Çu

1
i
are separable into frequency and spatial depen-

dencies, and obtain an expression for the linear-order polymer stress:

u
(1)
i

= ÇT
1
u
(k) Ñu(1)

i
(x
i
); ÇE(1)

ij
= ÇT

1
u
(k) ÑE(1)

ij
(C.21)

Çp
(1) = ÇT

1
p
(k) Ñp(1)(x

i
) (C.22)

Ç�
p(1)
ij

=
Ç�
n1

(1 + ik)
ÑM
ij
* ↵

Ç�
n2

(1 + ik) Ñ�
p(0)
ik

Ñ�
p(0)
kj

+
ÇT
1
u

1 + ik (2
ÑE
(1)
ij
) (C.23)

Substituting these fields into the Stokes equation at this order
(Eq. (C.17)):

ÇT
1
p
(
i
Ñp
1 = ÇT

1
u

4

� + (1 * �)
1 + ik

5

(2
Ñu
1
i
+

Ç�
n1

(1 + ik) (1 * �)(j
ÑM
ij

(C.24)

*
↵ Ç�

n2
(1 + ik) (1 * �)(j Ñ�

p(0)
ik

Ñ�
p(0)
kj

(C.25)

Using the identity provided by equation 6.3-6 in Bird [21], (referred
to therein as the Giesekus equation) to simplify (

j
ÑM
ij
:

ÇT
1
p
(
i
ÑP
1 = ÇT

1
u

4

1 + i�k
1 + ik

5

(2
Ñu
1
i

(C.26)

+
Ç�
n1 * ↵ Ç�n2
(1 + ik) (1 * �)(

j
Ñ�
p(0)
ik

Ñ�
p(0)
kj

(C.27)

ÑP
1
í Ñp

1 + (1 * �) ÑE(0)
jk

ÑE
(0)
jk

(C.28)

We wish to obtain ÇT
1
u
(k), which, upon transforming back into

the time-domain, gives the time-dependence for the freely-suspended
swimmer translational velocity. We compare the above equations to
the steady equation at this order, which determines the spatial fields;
i.e. Ñu(1)

i
, Ñp

(1) satisfy:

(
i
ÑP
1 = (2

Ñu
1
i
+ (1 * �)(1 * ↵)(

j
Ñ�
p(0)
ik

Ñ�
p(0)
kj

(C.29)

The ratio of the coefficients of each term between the two equations
must be equal to satisfy Eq. (C.17):

ÇT
1
u

4

1 + i�k
1 + ik

5

=
Ç�
n1 * ↵ Ç�n2

(1 + ik)(1 * ↵) (C.30)

ÇT
1
u
=

Ç�
n1 * ↵ Ç�n2

(1 + i�k)(1 * ↵) (C.31)

This also gives the time-dependence of the pressure:

ÇT
1
p
=

Ç�
n1 * ↵ Ç�n2

(1 + ik)(1 * ↵) (C.32)

Finally, for the time-dependence of the translational velocity of the
freely-suspended swimmer – the key experimental observable – we
need to find T 1

u
= F

*1[ ÇT 1
u
]. Using the convolution theorem to simplify

these expression, we obtain:

T
1
u
(t) = 1

1 * ↵

H

� (t)
⌅

� (t) < e*t
⇧

* ↵
⌅

� (t) < e*t
⇧2
I

< e
*t_�

�
(C.33)

Appendix D. Complex velocity in a multi-mode fluid

We now have n Oldroyd-B modes, where the qth mode �
q

ij
has

viscosity ⌘ and relaxation time �
q
. For each mode, we nondimensional-

ize its evolution equation, using the stress scale ⌘
p
É⌦
T
and the longest

relaxation time �1. The following non-dimensional equations for each
polymer mode arise:


q

)�
q

ij

)t
+ �q

ij
= 

q
De1M

q

ij
+ 2E

ij
(D.1)

M
q

ij
= *u

k
(
k
�
q

ij
+ (

k
u
i
�
q

jk
+ (

k
u
j
�
q

ik
(D.2)


q
í

�
q

�1
(D.3)

We apply the perturbation expansion described in Section 2 to each
mode up to O(De1). At O(1):
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Observe that 
q
!1 = �

q
!, the non-dimensional oscillation frequency

for the qth mode. As before, the spatial components of the zero-th order
pressure and velocity correspond to the Newtonian Stokes solutions, no
propulsion is created at this order, and p(0) is identically zero.

Next, at O(De):
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As in Section 2.2.2, we give E(1)
ij
a time dependence 1+ fei!1t, and

we give p(1) the time dependence 1 + gei!1t. Comparing the steady and
transient components and noting that and Mq
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=M
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for all modes:
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Now we examine the sinusoidal terms in the multimode and com-
pare coefficients:
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As we are interested in the ratio of the oscillating velocity to the
steady velocity, we rescale the coefficient of theM

ij
term such that the

steady Eq. (D.13) can be directly compared to the unsteady equation:
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Above, terms in curly braces match (D.13) and thus the time-
dependence of the pressure and velocity can be recovered by comparing
only the terms in square braces:
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This complex prefactor f is thus the complex velocity of a swirler
in a multi-mode Oldroyd-B fluid.
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