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SUMMARY

Lactobacillus (Lacticaseibacillus) rhamnosus GG synergizes
with dietary tryptophan to increase vitamin B3 metabolism
in vivo. Methylnicotinamide, a vitamin B3 degradative
product, strongly promotes gut tight junction and barrier
function in homeostasis and during experimental colitis.

BACKGROUND & AIMS: Lacticaseibacillus rhamnosus GG (LGG)
is the world’s most consumed probiotic but its mechanism of
action on intestinal permeability and differentiation along with
its interactions with an essential source of signaling metabo-
lites, dietary tryptophan (trp), are unclear.

METHODS: Untargeted metabolomic and transcriptomic ana-
lyses were performed in LGG monocolonized germ-free mice
fed trp-free or -sufficient diets. LGG-derived metabolites were
profiled in vitro under anaerobic and aerobic conditions. Mul-
tiomic correlations using a newly developed algorithm
FLA 5.6.0 DTD � JCMGH1346 proof
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discovered novel metabolites tightly linked to tight junction
and cell differentiation genes whose abundances were regu-
lated by LGG and dietary trp. Barrier-modulation by these
metabolites were functionally tested in Caco2 cells, mouse
enteroids, and dextran sulfate sodium experimental colitis. The
contribution of these metabolites to barrier protection is
delineated at specific tight junction proteins and enterocyte-
promoting factors with gain and loss of function approaches.

RESULTS: LGG, strictly with dietary trp, promotes the enter-
ocyte program and expression of tight junction genes, partic-
ularly Ocln. Functional evaluations of fecal and serum
metabolites synergistically stimulated by LGG and trp revealed
a novel vitamin B3 metabolism pathway, with methyl-
nicotinamide (MNA) unexpectedly being the most robust
barrier-protective metabolite in vitro and in vivo. Reduced
serum MNA is significantly associated with increased disease
activity in patients with inflammatory bowel disease. Exoge-
nous MNA enhances gut barrier in homeostasis and robustly
promotes colonic healing in dextran sulfate sodium colitis. MNA
� 7 May 2024 � 3:40 pm � ce CJ
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2 Suntornsaratoon et al Cellular and Molecular Gastroenterology and Hepatology Vol. -, Iss. -
is sufficient to promote intestinal epithelial Ocln and RNF43, a
master inhibitor of Wnt. Blocking trp or vitamin B3 absorption
abolishes barrier recovery in vivo.

CONCLUSIONS: Our study uncovers a novel LGG-regulated
dietary trp-dependent production of MNA that protects the
gut barrier against colitis. (Cell Mol Gastroenterol Hepatol
2024;-:-–-; https://doi.org/10.1016/j.jcmgh.2024.04.003)

Keywords: Metabolome; Probiotic; Transcriptome; Tight
Junction.

nlike tight epithelia, the permeability of the small
Abbreviations used in this paper: CD, Crohn’s disease; DSS, dextran
sodium sulfate; FITC, fluorescein isothiocyanate; GF, germ free; IBD,
inflammatory bowel disease; ISO, isoniazid; LGG, Lactobacillus (Lac-
ticaseibacillus) rhamnosus GG; LGGtrp-, GF mice monocolonized with
LGG and fed trp-free diets; LGGtrpD, GF mice monocolonized with
LGG and fed trp-sufficient diets; LPS, lipopolysaccharide; METRCA,
metabolome-transcriptome correlation analysis; MNA, methyl-
nicotinamide; NAM, nicotinamide; PBS, phosphate-buffered saline;
PBStrp-, GF mice gavaged with PBS and fed trp-free diets; PBStrpD,
GF mice gavaged with PBS and fed trp-sufficient diets; qPCR, quan-
titative polymerase chain reaction; TEER, transepithelial electrical
resistance; TJ, tight junction; trp, tryptophan; UC, ulcerative colitis.

© 2024 The Authors. Published by Elsevier Inc. on behalf of the AGA
Institute. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Uintestine is primarily defined by the paracellular
pathway between epithelial cells lining the lumen.1 This
pathway is selectively sealed by tight junctions (TJ) exhib-
iting barrier properties that can be altered by diet, the gut
microbiota and their metabolites, and by host response to
these luminal signals. Two distinct routes of small intestinal
paracellular flux have been proposed: the “leak” and “pore”
pathways mediating the permeability, respectively, of such
macromolecules as dextran and of ions and small solutes.2

Both routes are regulated mainly by TJ proteins occludin
(Ocln), ZO-1 (Tjp1), and the large family of claudins
(Cldns).3–5 Intestinal expression and intracellular location of
Ocln and claudins, both of which constitute intercellular TJ
bridges, and of ZO1, which link these bridges to the cyto-
skeleton, are altered markedly in patients with gut perme-
ability disorders.6,7 Abnormal perturbations in the
composition of the gut microbiota, termed gut dysbiosis, can
disrupt homeostatic microbiota-host interactions, thereby
impacting the expression, integrity, and location of these TJ
proteins and, as a consequence, causing inappropriate in-
creases in permeability of the paracellular pathway.8 This
leaky gut condition has been associated with inflammatory
bowel disease (IBD) and other autoimmune disorders.5,9–11

Thus, patients with IBD display an increased paracellular
permeability with TJ abnormalities, whereas an impaired
intestinal barrier precedes and predicts IBD diagnosis by
several years.12,13

The harmful association between leaky gut syndrome
and IBD is exacerbated by a deficiency in dietary tryptophan
(trp, an essential amino acid).11,14 Serum levels of trp are
much lower in patients with IBD compared with healthy
control subjects,11 reinforcing earlier findings in colitis an-
imal models showing dietary trp levels to be inversely
proportional to the magnitude of intestinal inflammation
and permeability.15,16 Only 1% of dietary trp is synthesized
into serotonin, and most are catabolized in the gut via 2
major pathways: kynurenine and indole. First, in both host
and bacteria, the kynurenine pathway synthesizes pre-
cursors of vitamin B3 nicotinamide (NAM), and thus, also of
NADþ.17 Like trp in IBD serum, NADþ levels in ileal and
colonic tissues of patients with IBD are markedly reduced,
indicating a pathologic dysregulation in NAM meta-
bolism.18,19 Second, the gut microbiota, particularly
commensal lactobacilli, convert dietary trp into a variety of
indoles, which in turn become ligands of the host Aryl Hy-
drocarbon Receptor found in barrier organ systems, such as
FLA 5.6.0 DTD � JCMGH1346 proof
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the gastrointestinal tract. A common indole, indole-
propionic acid, is reduced in the stool of patients with ul-
cerative colitis (UC).20

Lacticaseibacillus (formerly Lactobacillus) rhamnosus GG
(LGG), a widely consumed probiotic strain that is the subject
of 210 clinical trials,21 displays promising efficacy in
addressing gastrointestinal disorders ranging from diarrhea
and necrotizing colitis to autoimmune conditions associated
with leaky gut syndrome.22–26 Despite these findings, con-
flicting results in trials with patients with irritable bowel
syndrome and patients with IBD underscore the complex
influence of disease heterogeneity and patient nutrition on
LGG efficacy.27,28 Although we recently reported LGG pro-
foundly changing the host’s intestinal luminal metabolome
while excluding gut colonization of pathobiont bacteria, the
identity and health impact of LGG-dependent metabolites
remain poorly characterized, emphasizing the need for an
understanding of the underlying mechanisms and signaling
molecules mediating LGG’s barrier enhancement.29

Here, we obtained comprehensive, untargeted tran-
scriptomic and metabolomic profiles of the ileum and of
both feces and serum, respectively, in LGG monoassociated
germ-free (GF) mice fed trp-sufficient or trp-free diets. We
also characterized LGG-derived metabolites under aerobic
and anaerobic culture conditions. Through a multiomic
correlation analysis newly developed by us,30 we initially
uncovered LGG- and dietary trp-associated metabolites that
statistically linked robustly to transcripts belonging to
pathways modulating enterocyte TJs and differentiation. We
then subsequently showed via in vitro, ex vivo, and in vivo
functional experiments that most of the correlated metab-
olites can actually profoundly benefit the gut barrier. Sur-
prisingly, LGG specifically promotes an intestinal trp-to-
NAM metabolic pathway by elevating its key enzymes and
transporters. Moreover, we also discovered that methyl-
nicotinamide (MNA), a vitamin B3 metabolite thought to be
mainly destined for urinary excretion and thus metaboli-
cally inert, actually exhibits strong protection of barrier
function in vitro and in vivo. In fact, we also uncovered via
in silico analysis that decreased serum MNA is associated
with increased disease activity in patients with IBD. Thus,
LGG stimulates a dietary trp-dependent vitamin B3 synthe-
sis pathway with MNA being the most barrier-protecting
and anticolitogenic metabolite.
� 7 May 2024 � 3:40 pm � ce CJ
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Results
LGG and Dietary Tryptophan Synergize to
Promote Enterocyte Program

GF mice fed with trpþ and trp- showed a modest weight
gain or loss, respectively. Food consumption was slightly
greater in trp- mice. Equivalent LGG colonization in trpþ
and trp- mice was found by quantitative polymerase chain
reaction (qPCR) of fecal DNA using 16S rRNA and LGG-
specific primers (Figure 1B and C). Three weeks after
inoculation, bulk RNA-sequencing was performed on ilea of
GF mice gavaged with phosphate-buffered saline (PBS) and
fed trp-free diets (PBS trp-), GF mice gavaged with PBS and
fed trp-sufficient diets (PBS trpþ), LGG trp-, and LGG trpþ
mice (n ¼ 5). Dietary trp alone altered ileal transcriptome in
GF mice (Figure 1D). LGG association significantly altered
ileal transcriptome under both trpþ and trp- conditions.
LGG trpþ transcriptome was noticeably different from the
other 3 groups suggesting that LGG and dietary trp drove
the largest change in ileal transcriptome.

Dietary trp affected 3917 ileal transcripts in GF mice,
and 5315 transcripts in LGG-associated mice (Figure 1E),
with 1496 transcripts affected solely by dietary trp. LGG
affected 3088 ileal transcripts in trp- mice and 4730 tran-
scripts in trpþ mice (Figure 1F), with 918 transcripts
affected solely by LGG. The synergistic effect of LGG and
dietary trp was reflected by the number of altered genes
and the magnitude of fold changes (Figure 1G and H). These
results suggested that LGG and dietary trp robustly changed
ileal transcriptome, and the effect was greater than those
elicited by dietary trp or LGG alone.

Gene set enrichment analysis revealed that LGG and
dietary trp increased transcriptomic programs of enterocyte
differentiation and function, including TJ genes, brush border,
fatty acid b-oxidation, and apoptosis being impacted the most
(Figure 1I-K). Heatmap illustrated a robust elevation of
enterocyte genes in LGG trpþmice, and such elevation strictly
depended on dietary trp (Figure 1L). This synergism between
LGG and trp promoting the TJ and brush border, respectively,
is best exemplified by their genes Ocln and Slc5a1, whose
expressions are greatest in LGG trpþ (Figure 1M and N).

The effects on enterocyte program seemed unique to
LGG, because a comparison of ileal transcriptomes of
Ruminococcus gnavus–monocolonized and trp-fed GF or
specific pathogen-free mice showed that the increased
enterocyte genes were predominantly in LGG mice
(Figure 2A). The elevated enterocyte program in LGG trpþ
seemed to be at the cost of secretory cells (Figure 2B),
because a partial goblet cell transcriptome (eg, Tff3, Agr2)
(Figure 2C) and almost the entire Paneth cell transcriptome
(eg, Lyz1, numerous defensins) (Figure 2D) were reduced in
LGG trpþ mice. In contrast, LGG plus dietary trp had no
effect on Lgr5 and Olfm4, marker genes of the fast-cycling
intestinal stem cells (Figure 2E), or epithelial and stromal
Wnt ligand genes (Figure 2F). Importantly, LGG and dietary
trp seemed to increase Rnf43, Dll1, and Dll4, regulators of
the Wnt and Notch signaling, respectively (Figure 2G).
Confocal immunostaining analysis validated a reduced
Paneth cell number in LGG trpþ ileum (Figure 2H).
352
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LGG colonization in mice consuming trpþ or trp- diets
trigger complicated systemic responses to diet-LGG-host
interaction. To test if live LGG perfused through the intes-
tinal tract in vivo may acutely elicit a similar intestinal
transcriptomic response, we performed intraluminal perfu-
sion using saline or live LGG for 4 hours (Figure 2I). Bulk
RNA-Seq on LGG- or saline-perfused ileum showed sepa-
rated transcriptomic profiles (Figure 2J), with the most
reduced transcripts being defensins in LGG-perfused mice
(Figure 2K and L). We did not observe changes in enterocyte
genes, suggesting that LGG cannot acutely promote enter-
ocyte program within the short time window studied in this
perfusion experiment.

LGG Drives Specific Fecal and Serum
Metabolome In Vivo

We postulate that LGG may alter the host metabolome,
which in turn may regulate intestinal epithelial program-
ming. We performed an untargeted fecal metabolomic
analysis using liquid chromatography–mass spectrometry
and uncovered approximately 200 polar fecal metabolites
that differed in abundance among 4 groups (Figure 3A). In
GF mice, dietary trp before colonization markedly separated
the host fecal metabolome profile (Figure 3B). Within a
week of LGG colonization, fecal metabolite profiles changed
(Figure 3B), and the separation persisted after 3 weeks of
colonization (Figure 3B). Similar changes were observed for
metabolites in the positive mode.

Serum metabolomic profiles were modestly separated
with a noticeable overlap between LGG trp- and PBS trp-
mice (Figure 3C). In the presence of dietary trp, LGG induced
a marked change in serum metabolome, suggesting that LGG
impacts the host serum metabolites only in the presence of
dietary trp. In contrast, the liver metabolome was only
affected by dietary trp, with little impact from LGG
(Figure 3D). Cross-comparing the fecal, serum, and liver
metabolites suggested that the metabolites modulated by
LGG were compartment-specific (Figure 3E), suggesting that
LGG exerts a delicate modulation of the host leading to
specific fecal and serum metabolomic profiles.

Variables important in the projection analysis revealed
the identities of the most significant fecal (Figure 3F and G)
or serum (Figure 3H and I) metabolites that were increased
or decreased by LGG under trp- (Figure 3F and H) or trpþ
(Figure 3G and I) conditions, respectively. Dietary trp can be
metabolized in host cells into kynurenine and NAM or
converted by gut bacteria into various indoles (Figure 3J).
We then specifically examined indole pathway and kynur-
enine pathway metabolites to identify those showing a
synergistic response to LGG and dietary trp. Dietary trp
elevated multiple serum indoles and kynurenine, with
serum indole-3-acrylic acid showing a synergistic response
to LGG and trp (Figure 3K and L). Interestingly, serum MNA,
a downstream degradation product of kynurenine-to-NAM
pathway (Figure 3J), was also significantly elevated pri-
marily in LGG trpþ mice (Figure 3L). Fecal indole lactic acid
was increased by LGG, independent of dietary trp, whereas
indole-3-acetamide increased in LGG trpþmice (Figure 3M).
� 7 May 2024 � 3:40 pm � ce CJ
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Fecal NAM riboside and MNA were both increased in LGG
trpþ mice (Figure 3N). Again, liver indoles and kynurenine
were only elevated by dietary trp with limited influence
from LGG (Figure 3O and P).
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Identification of LGG-Regulated Barrier-Promoting
Metabolites

We developed a high-throughput metabolome-tran-
scriptome correlation analysis (METRCA), which identified
significant correlations between the 2 omics datasets.30

Comparing LGG trp- and PBS trp- mice, METRCA uncov-
ered 28 LGG-regulated metabolites in fecal, serum, and liver
that each correlated with relatively few specific ileal tran-
scripts (Figure 4A). In trpþ mice, METRCA uncovered a
marked increase in LGG-regulated metabolites that signifi-
cantly correlated with numerous ileal transcripts
(Figure 4B). Several indoles, among other metabolites, were
identified when comparing PBS trpþ and LGG trpþ mice
(Figure 4B). Interestingly, both fecal and serum indole-3-
acetamide correlated with similar sets of representative
TJ, brush border, and lipid metabolism genes (Figure 4C).
However, fecal and serum indolelactic acid not only corre-
lated with distinct ileal transcripts (Figure 4D) but also with
different numbers of genes. Various trp and non-trp me-
tabolites, although positively correlating with enterocyte
gene networks, exhibited negative correlations with goblet
or Paneth cell genes (Figure 4C-F).

We next conducted a targeted query for metabolites that
were correlated with TJ genes. In trp- mice, few LGG-
regulated metabolites were correlated and those few were
mostly linked with a small number of TJ genes (Figure 4G).
In trpþ mice, however, we uncovered a greater number of
trp or non-trp metabolites correlating with TJ genes
(Figure 4G). Metabolites positively or negatively correlated
with Ocln (Figure 4H) or Tjp1 (Figure 4I) were revealed.
Several metabolites were found to be correlated with mul-
tiple TJ genes, with fecal indole-3-acetamide, serum indole-
3-propionic acid, and serum MNA being the most highly
ranked positive correlators (Figure 4H-J). These correlations
were validated by representative TJ-correlating plots for trp
and non-trp derivatives (Figure 4J-L). Because there are
Figure 1. (See previous page). LGG and dietary trp promote
(gavaged with PBS) and LGG-monoinoculated mice (LGG) fed
inoculation, then sacrificed (Sac). (B) Cq number of RT-PCR an
during preinoculation (-1), and at 1-, 2-, and 3-weeks postinocula
the same time points. (D) Principal component analysis (PCA) of
PBS (PBS-, blue), fed trpþ, PBS-gavaged (PBSþ, purple), fed
monocolonized (LGGþ, orange). (E) Venn diagram of numbers
effect without (PBSþ vs PBS-) and with LGG (LGGþ vs LGG-). (F
< 0.05) representing trp effect without (PBSþ vs PBS-) and with
and downregulated by LGG without trp, and (H) with trp. (I) N
analysis comparing transcriptomes of trp-sufficient mice with
nonrandom distribution of genes in (J) tight junction and (K) brus
ileal transcripts from PBS-, PBSþ, LGG-, and LGGþ (n ¼ 5 ea
0.05). RPKM of representative transcripts of genes in the (M) tig
gray, LGG. Statistical significance among the groups was determ
.001, ****P < .0001. Ocln, occludin; RPKM, reads per kilobase o
Slc5a1, Sodium-dependent glucose transporter 1; Tjp1, Tight ju

FLA 5.6.0 DTD � JCMGH1346 proof

Downloaded for Anonymous User (n/a) at Rutgers The State Unive
07, 2024. For personal use only. No other uses without permi
sealing claudins that reduce and leaky claudins that enhance
paracellular permeability, it is interesting to note that
numerous LGG metabolites positively correlated with seal-
ing claudin 3 exhibits either no correlation (eg, fecal NAM
riboside, fecal indole-3-acetamide) or negative correlation
(eg, fecal salicylamide, fecal sorbitol) with leaky claudin 2
(not shown). Simultaneously, LGG metabolites negatively
correlated with claudin 3 (eg, fecal acetyl-glutamine, fecal
acetyl-glutamate) demonstrate a positive regulation with
claudin 2. Most LGG serum metabolites, including numerous
indoles positively correlated with claudin 3, do not correlate
with claudin 2.

To functionally test if the previously mentioned TJ-
correlating fecal and serum metabolites may influence
barrier function, we used the polarized Caco-2 monolayers
for transepithelial electrical resistance (TEER) and fluores-
cein isothiocyanate (FITC)-dextran permeability assays. The
addition of 2.5%–5% of LGG supernatant on Caco-2 mono-
layer resulted in a 2-fold increase in TEER (P ¼ .01)
compared with the control (Figure 5A). This enhancement
exceeded the efficacy of p40, an LGG-derived peptide, sug-
gesting additional barrier-promoting factors in LGG spent
medium. We thus used this system to test highly ranked
barrier-correlating LGG-regulated metabolites, by applying
them to either the luminal or the basolateral sides of the
monolayer. Luminal administration of indole-3-acetonitrile,
indole-3-acetic acid, and indole-3-carboxylic acid improved
TEER by 168%, 91%, and 39%, respectively, after 48 hours
of incubation compared with vehicle (Figure 5C and D).
Treating cells with a cell free Clostridium difficile superna-
tant provoked a 46% reduction in TEER, consistent with an
increased permeability of the paracellular pathway
(Figure 5B). Under Crohn’s disease (CD)-treated condition,
the luminal application of indoles (indole-3-lactic acid,
indole-3-propionic acid, indole-3-acetonitrile, indole-3-
acetamide, indole-3-acetic acid, and indole-3-carboxylic
acid) restored TEER with efficacies ranging from 29% to
96% (Figure 5B-D). Moreover, basolateral treatment of
indole-3-acetamide and indole-3-carboxyaldehyde exhibited
a remarkable increase in baseline TEER, with 1.3- and 1.6-
fold enhancements, respectively, in comparison with the
vehicle. Under CD treatment, the basolateral indole-3-lactic
enterocyte transcriptome. (A) 2 x 2 experimental design: GF
a trp-sufficient (trpþ) or trp-free (trp-) diet for 3 weeks after
alysis using universal 16S primers of fecal samples collected
tion. (C) Cq number of RT-PCR using LGG-specific primers at
ileal transcriptome from mice fed a trp- diet and gavaged with
trp-, LGG-monocolonized (LGG-, green), and fed trpþ, LGG-
of ileal transcripts (FC > 1.5, FDR < 0.05) representing trp
) Venn diagram of numbers of ileal transcripts (FC > 1.5, FDR
LGG (LGGþ vs LGG-). (G) Volcano plot of genes upregulated
ormalized enrichment score following gene set enrichment
LGG (LGGþ) and with trp. Leading edge graphs depicting
h border pathways from LGGþ vs PBSþ mice. (L) Heatmap of
ch group), showing only significantly different genes (FDR <
ht junction and (N) brush border membrane. White bars, PBS;
ined by 2-way analysis of variance, *P < .05, **P < .01, ***P <
f transcript, per million mapped reads; Si, sucrase-isomaltase;
nction protein 1.
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Figure 2. LGG and dietary trp effects are specific and suppress Paneth cell transcriptome. (A) Representative heatmaps
of ileal TJ and brush-border transcripts in GF (blue bar on top of heat map), LGG-monocolonized (orange), Ruminococcus
gnavus–monocolonized (red), and specific pathogen free (SPF) (yellow) mice (n ¼ 4–5 each group) suggesting LGG effects are
specific. (B) Targeted, representative partial heatmaps of ileal Goblet and Paneth cell transcripts were significantly different
(FDR < 0.05) among PBS- (blue), PBSþ (purple), LGG- (green), and LGGþ (orange) mice (n ¼ 5). (C-G) Representative
transcripts of goblet cells, Paneth cells, stem cells, Wnt and Notch regulator genes. (H) Immunostaining against Trefoil factor 3
(TFF3, green), alkaline phosphatase (AP, red), Lysozyme 1 (LYZ1, white), DAPI (blue). (I) Conventional mouse intestine was
perfused with saline (Ringer) or LGG. (J) Principal component analysis (PCA) showing separation of saline- (blue) and LGG-
perfused (orange) ileal transcriptomes (n ¼ 4). (K) Volcano plot of ileal transcriptome perfused with or without LGG. Signifi-
cantly altered expression is shown in red (jFCj > 1.5, FDR < 0.05). (L) Representative Defa transcripts. Statistical significance
among the groups was determined by 1-way analysis of variance, *P < .05, **P < .01, ***P < .001, ****P < .0001.
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Figure 3. LGG and trp drive indole and kynurenine (KYN)-NAM metabolomic pathways. (A) Heatmap of fecal metabolites
analyzed by liquid chromatography–mass spectrometry in negative (top) and positive (bottom) modes. Significant LGG- and
trp-induced changes were observed in 121 fecal metabolites (88 negative, 62 positive, 29 in both). Serum had 106 (negative)
and 69 (positive) metabolites, whereas the liver had 104 (negative) and 75 (positive). Darker brown indicates upregulation, blue
indicates downregulation. (B) Principal component analysis (PCA) of fecal metabolites (negative mode) over time: 1 week
before (left), 1 week (middle), and 3 weeks (right) after LGG inoculation (n ¼ 5). PCA of (C) serum and (D) liver metabolites 3
weeks after LGG inoculation. (E) Venn diagram depicting the number of fecal (red), serum (green), and liver (blue) metabolites
(negative mode) significantly different between LGGþ vs PBSþmice (jFCj > 1.5, FDR < 0.05). Twenty-seven fecal metabolites
differed between LGGþ and PBSþ mice, 2 also in serum. (F) Variables important in the projection (VIP) scores of fecal me-
tabolites driving intergroup differences between LGG and GF mice deficient in trp (LGG- vs PBS-) and (G) between LGG and
GF mice fed trp-sufficient diets (LGGþ vs PBSþ). (H) VIP scores of serum metabolites between LGG- and PBS- and between
(I) LGGþ vs PBSþ. (J) Diagram showing the indole and kynurenine-nicotinamide pathways. Levels of indoles and kynurenine-
NAM metabolites in the (K, L) serum, (M, N) fecal, and (O, P) liver. Statistical significance among the groups was determined by
2-way analysis of variance, *P < .05, **P < .01, ***P < .001, ****P < .0001. IAL, indole-3-carboxyaldehyde; IAM, indole-3-
acetamide; IAN, indole-3-acetonitrile; IAR, indole-3-acrylic acid; ILA, indole-3-lactic acid; IPA, indole-3-propionic acid; KYN,
kynurenine; NADþ, nicotinamide adenine dinucleotide; NR, nicotinamide riboside.
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acid, indole-3-acetamide, and indole-3-carboxyaldehyde
restored TEER by 57.5%–72.4% (Figure 5F and G). FITC-
dextran permeability assays were largely consistent with
TEER results (Figure 5E and H).

We then evaluated candidate metabolites on enteroids
from specific pathogen free mice. Following exposure to
lipopolysaccharide (LPS), epithelial permeability increased
by 1.75-fold quantified as FITC-dextran intensity within the
enteroid. Indole-3-propionic acid, indole-3-acetamide, MNA,
and carnosine attenuated LPS induced permeability
FLA 5.6.0 DTD � JCMGH1346 proof
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(Figure 5I and J). Furthermore, we found by immunofluo-
rescent staining and RT-qPCR, indole-3-propionic acid,
MNA, indole-3-acetamide, and carnosine significantly
increased Tjp1 and Ocln expression compared with the
vehicle and LPS group (Figure 5K-M). To test if the barrier-
promoting effects of the metabolites may rely on TJ function,
we did the experiments with OclnKO enteroids, which
exhibited a 320% increase in permeability compared with
the wild-type enteroids. LPS did not exacerbate the
permeability, nor did the metabolites rescue the
824
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Figure. 4. Identification of LGG-regulated barrier-correlating metabolites. (A) Untargeted heatmap determined by the
METRCA algorithm to depict the number of transcripts whose expression levels correlated with levels of specific metabolites
(negative [-] and positive [þ] modes) in the liver (L), serum (S), and feces (F) of LGGtrp- vs PBStrp- mice. (B) Untargeted
heatmap calculated by METRCA for LGGtrpþ vs PBStrpþ. Correlations between 10 representative transcripts (circles) with an
individual fecal metabolite (orange square). Representative transcripts predicted to be modulated by (C) fecal and serum IAM,
(D) fecal and serum indolelactic acid, (E) other fecal indoles and nonindoles, and (F) other serum indoles and nonindoles
metabolites. Blue line indicates positive correlation; red, negative. A thick line indicates regulation by both LGG in trp-sufficient
mice (LGGtrpþ compared with PBStrpþ), and by trp in LGG mice (LGGtrpþ compared with LGGtrp-), a thin line by only 1
comparison. Colored circles on genes depict functional groups (light blue, TJ; dark blue, brush-border; gray, proliferation;
orange, fatty acid synthesis and metabolism; green, lipid beta-oxidation; yellow, goblet cell; and pink, Paneth cell marker).
Targeted heatmap (TJ genes vs metabolites) of number of correlations regulated by LGG (G) without trp (top) and with trp
(bottom). (H, I) Correlations between representative TJ transcripts and serum and fecal metabolites whose levels increase
primarily with LGG-trpþ. Individual correlations between trp-NAM metabolites with (J) Ocln, (K) Tjp1, and (L) Tjp2 genes.
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permeability in OclnKO enteroids (Figure 5N-O), suggesting
that Ocln is required for the barrier restoration by the tested
metabolites. In addition, these metabolites also reduced Tff3
and Lyz1 in treated enteroids (Figure 5P-R). Thus, we vali-
dated a panel of METRCA-identified, LGG-regulated barrier-
enhancing metabolites ex vivo that also affected intestinal
cell differentiation.
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941
LGG Stimulates TRP-NAM Pathway and MNA
Promotes Gut Barrier

Among the tested metabolites, MNA exhibited a robust
barrier-promoting efficacy especially increasing Ocln
expression in vitro (Figure 5J and M). MNA is a downstream
degradation product of the de novo NAD synthesis (also
known as kynurenine) pathway from trp (Figure 6A). Two
other NAD synthesis pathways include the Preiss-Handler
synthesis from nicotinic acid, and the salvage pathway
from NAM mononucleotide and NAM riboside (Figure 6A).
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NAD catabolism involves at least 6 enzyme families,
including sirtuins, CD38 and poly(ADP-ribose) polymerases
whose by-product is NAM, which is either recycled back to
NAD or methylated into MNA that is, in turn, oxidized into
the final excretory products N-methyl-2-pyridone-5-
carboxamide (2-PY) and N-methyl-4-pyridone-3-
carboxamide (4-PY) (Figure 6A). Targeted transcriptomic
analysis revealed NAM metabolism pathway upregulation in
the ileum but not in liver of LGG trpþ mice (Figure 6B). We
also observed increased trp metabolism gene network in
LGG trpþ ileum but not liver (Figure 6C). Specifically, most
enzymes and transporters of the trp-NAM pathway were
significantly increased (Figure 6B and C). To determine if
LGG directly makes trp-NAM metabolites, liquid
chromatography–mass spectrometry metabolomics per-
formed on overnight cultured LGG in aerobic or anaerobic
conditions, revealed that kynurenine and NADþ were syn-
thesized (Figure 6D). Nicotinate and MNA decreased in
culture, suggesting that the augmented serum MNA in LGG
942
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trpþ mice reflect a result of LGG-stimulated trp to NAM
metabolism. Despite the impermeable nature of NADþ, the
significantly increased ectoenzymes, Cd38, Nt5e (Cd73),
Bst1 (Cd157), and various transporters in the LGG trpþ
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mice (Figure 6A and B) support an enhanced influx of
extracellular NAM precursors that were taken into the
NADþ-NAM-MNA intracellular metabolic pathways
(Figure 6A).
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Within the integrative analysis of 1300 serum metabo-
lites in 484 patients with UC, 464 patients with CD, and 365
controls subject,31 we searched for trp-NAM metabolites in
stool and serum samples of patients with IBD, including CD
and UC. Significantly lower levels of certain indoles were
detected in the serum of patients with IBD compared with
healthy control subjects (Figure 6E). Examining the rela-
tionship of metabolites with disease indices highlighted the
association of low serum MNA and xanthenurate levels with
increased disease severity in UC and CD, whereas high fecal
kynurenine is linked with the severity of CD (Figure 6F).
MNA is the strongest negative correlator with the Mayo
endoscopic score for UC (q-value, 5.08E-6) (Figure 6F). In
addition, indole acetotylcarnitine consistently displayed
significantly lower levels in IBD, whereas indoleacetylglut-
amine was significantly lower in UC and IBD (Figure 6E).
Indole acetic acid derivatives, such as indole-7-acetic acid
and methyl indole-3-acetate, exhibited reduced levels in
patients with UC and patients with IBD. These findings
emphasize that dysregulation in trp-NAM metabolism may
play a contributory role in both the onset and progression of
IBD.

We then assessed by TEER and dextran permeability all
kynurenine-NAM-related metabolites for their effects on the
gut barrier. Luminal administration of individual metabo-
lites for 48 hours did not induce significant changes in
baseline TEER (Figure 6G and H). However, in the presence
of a barrier disruptor, C difficile spent medium, NAM ribo-
side, NADþ, NAM, and MNA ameliorated the disrupted TEER
by 25%–60% (Figure 6I). Notably, the marked increase in
dextran permeability caused by C difficile was effectively
mitigated by luminal kynurenine, NAM riboside, NADþ,
NAM, and MNA by 30%–50% (Figure 6J). Before C difficile,
basolateral application of NAM mononucleotide and NAM
increased baseline TEER modestly after 48 hours (Figure 6K
and L). In the presence of C difficile, basolateral kynurenine,
NAM mononucleotide, NAM, NADþ, and MNA rescued the
TEER by 18%–42% (Figure 6K and M), whereas basolateral
kynurenine and MNA prevented marked increases in
dextran permeability (Figure 6N). These findings highlight
the contribution of trp-NAM metabolic products to
Figure 5. (See previous page). LGG-regulated TRP-NAMmeta
luminal treatment of Caco2 cells with LGG cell-free supernatant
48 hours (n ¼ 6 per group) Control (con), LGG medium or PBS.
under the curve (AUC) of TEER from 0–48 hours, normalized to
LGG-derived indoles showing % (of initial) TEER. Bottom depi
supernatant treatment (right) with (E) quantified paracellular per
done with metabolites applied to the basolateral compartment.
treated mouse organoids. Selected metabolites were evaluat
treated organoids. (J) Image J-quantified FITC-dextran fluores
sentative images showing fluorescent staining of Tjp1 (left) and O
(ZO-1) and (M) Ocln in control, LPS-, LPSþmetabolite-, and me
quantified FITC-dextran fluorescence of organoid permeability o
of Tff3 (left) and Lyz1 (right) with selected metabolites. (Q) Repr
(right) of control organoids and those treated with IPA. (R) Num
organoid area. Statistical significance among the groups was d
***P < .001, ****P < .0001. CARN, carnosine; IAA, indole-3-
acetamide; IAN, indole-3-acetonitrile; IAR, indole-3-acrylic acid
indole-3-lactic acid; IPA, indole-3-propionic acid; VEH, DMSO.
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enhancing and protecting the gut barrier, with MNA unex-
pectedly being the most robust candidate.
MNA Protects Barrier Function and Promotes
Colonic Healing During Colitis

With the compelling in vitro observation of MNA efficacy
in barrier enhancement and protection, we next investigated
MNA’s effect in vivo. Exogenous MNA, when administered
intraperitoneally to specific pathogen-free mice every other
day for 2 weeks, significantly increased by 2-fold barrier
function as assessed by ovalbumin flux from lumen to
plasma, an assay that estimates permeability of the gut
paracellular pathway (Figure 7A and B). We then tested
MNA effects in 4 groups of mice that were treated with PBS,
MNA, PBS– dextran sodium sulfate (DSS), and MNA-DSS
(Figure 7C). Although no significant changes in body
weight were observed in the noncolitis groups, that of the
DSS-treated group declined markedly after 8 days.
Remarkably, during the recovery phase, the MNA-treated
but not the PBS-treated DSS mice exhibited a robust and
rapid recovery, reaching 100% of initial body weight within
4 days, suggesting a remarkable efficacy of MNA in pro-
moting colonic healing. This finding is supported by histo-
logic analysis indicating a substantial amelioration of
colonic inflammation and tissue damage in MNA-treated
DSS mice (Figure 7D and E).

To investigate the protective mechanisms underlying
MNA effects, we determined Ocln expression. At steady
state, MNA treatment alone led to a 2-fold increase in ileal
and colon Ocln levels (Figure 7F-I). DSS treatment markedly
reduced Ocln levels, and MNA but not PBS injection rescued
significantly Ocln expression (Figure 7D-G). Notably, MNA
administration not only rescued colon Ocln levels from the
impact of DSS but also maintained them at levels compa-
rable with those of the PBS group (Figure 7F-I). These MNA-
mediated effects on Ocln were validated by Western blot
analysis (Figure 7J and K).

Moreover, MNA treatment reduced fecal lipocalin levels
compared with those of PBS-treated DSS mice, further
supporting observations that MNA affords mucosal
bolites promote and protect the gut barrier. (A) Top shows
at different concentrations (%v/v) or with P40 (50 ng/mL) over
% TEER was normalized to that of initial. Bottom shows area
that of Con. (B-D) Top shows luminal treatment of Caco2 with
cts AUC from 0–48 hours (left) and after Clostridium difficile
meability using FITC-dextran. (F-H) Similar experiments were
(I) FITC-dextran permeability in control (media only) or LPS-
ed for their efficacy in protecting the permeability of LPS-
cence in the lumen normalized to that of control. (K) Repre-
cln (right) of organoids treated with IPA. Expression of (L) Tjp1
tabolite-treated organoids. (N) Representative images and (O)
f Ocln KO organoids treated with metabolites. (P) Expression
esentative immunofluorescent images of TFF3 (left) and LYZ1
ber of TFF3-positive (left) and LYZ1-positive (right) cells per
etermined by 1-way analysis of variance, *P < .05, **P < .01,
acetic acid; IAL, Indole-3-carboxyaldehyde; IAM, indole-3-
; ICA, indole-3-carboxylic acid; ICB, indole-3-carbinol; ILA,
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protection against inflammation (Figure 7L). MNA alone
increased Tjp1 and Ocln by >50% at steady state before
DSS, whereas MNA treatment after DSS administration
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(Figure 7M). Finally, interleukin-6 and tumor necrosis fac-
tor-a levels that were low before DSS administration
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increased markedly in PBS-injected mice, an increase pre-
vented or mitigated by MNA (P < .05) (Figure 7N).

To explore the mechanism of MNA-increased colonic
healing, we examined intestinal epithelial differentiation
pathway regulators and observed a DSS-induced 40%
decrease in intestinal Rnf43 transcripts. This Rnf43 reduc-
tion was completely rescued by MNA. Dll4 and Notch1 dis-
played the same trend as Rnf43 of being promoted by MNA
in DSS mice (Figure 7O). In contrast, Lgr5 expression
seemed independent of treatment. We then validated by
immunohistochemistry (Figure 7P and Q) and Western blot
(Figure 7R and S) that MNA significantly increased intestinal
Rnf43 in homeostasis and during the DSS colitis recovery
phase. These results collectively suggest that MNA may
promote epithelial recovery by promoting enterocyte dif-
ferentiation via regulating key epithelial regenerating
pathways involving RNF43 and Notch.

Next, we sought to investigate to what extent the trp-
NAM pathway confers protection. We treated mice with
isoniazid (ISO), a known antituberculosis drug that in-
terrupts trp absorption and NAM production.32 For 4 days
before DSS-induced colitis, we administered ISO once a day.
ISO treatment led to a significant decrease in body weight in
ISO-DSS mice compared with PBS-DSS mice (Figure 7T). ISO
exacerbated the colitis by further decreasing colonic Ocln
and Tjp1 while increasing colonic IL-6 (Figure 7U). These
findings collectively suggest that blocking trp-NAM ab-
sorption and metabolism exacerbated colitis.
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Discussion
Using our recently developed innovative METRCA algo-

rithm, we uncovered, then validated, specific serum and
intestinal metabolites that promote or impair barrier func-
tion. Many of the metabolites we discovered correlate
positively not only with barrier-promoting Ocln and Tjp1,
but interestingly also with sealing claudins but not with
leaky claudins. Although expression levels of these TJ com-
ponents do not equate to barrier function, these results
Figure 6. (See previous page). Serum MNA is reduced in IBD
(A) Graphical illustration depicting the metabolic fate of TRP and
pathways. (B) Heatmaps illustrating NAM metabolism-related
Handler pathway (violet), salvage pathway (yellow), and ectoen
depicting TRP metabolism-related genes associated with TRP t
and liver (right). (D) Liquid chromatography–mass spectrometr
culture supernatant of LGG (n ¼ 3 per group). (E) Volcano plo
targeting trp-NAM, derived from in silico IBD analysis in serum
CN, and UC vs CN. (F) DMA analysis of trp-NAM metabolites
Simple Clinical Activity Index and Mayo endoscopic score for UC
for CD, with FDR <0.10 threshold indicated by a dashed black lin
manner, showing TEER of Caco-2 cells normalized to Veh (n ¼
hours of metabolite treatment before Clostridium difficile toxin
treatment. (J) Quantified paracellular permeability using FITC-d
time-dependent manner, showing AUC of TEER from 0–48 hour
% TEER 24 hours after C difficile treatment, and quantified p
significance among the groups was determined by 1-way analys
2PY, N1-Methyl-2-pyridone-5-carboxamide; I7AA, 1H-indol
indoleglyoxylic acid; IHS, 6-hydroxyindole sulfate; IND, indole;
acid; NAD, NADþ; NAM, nicotinamide; nKYN, n-Acetylkynuren
riboside; QUI, quinolinate; Trig, trigronelline; XAN, xanthurenate
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nevertheless demonstrate for the first time that LGG syn-
ergizes with a key dietary component to regulate gut
epithelial differentiation and permeability by altering the
abundances of barrier-modulating metabolites.

We also demonstrate here that LGG drives a dietary trp-
dependent metabolic pathway involving NAM that effec-
tively protects the gut barrier against colitogenic insult.
Inflamed gut and colitis have been associated with a dis-
rupted trp-NAM metabolism.33,34 We found that serum and
fecal MNA, a by-product of NAM metabolism, are elevated in
LGG trpþ mice. Our in silico analysis of a published IBD
metabolomic dataset31 revealed that serum MNA is strongly
and inversely correlated with disease activities in patients
with IBD. Additionally, low MNA levels were reported in the
urine of IBD cohorts35 further substantiating a dysfunctional
NAM metabolism during intestinal inflammation. The posi-
tive correlation of serum MNA with 10 TJ genes and its
robust promotion of TEER and barrier protection ex vivo
and in vivo, collectively underscore its strong barrier-
promoting effects. Some strains of lactobacilli make NAM-
metabolites,36 and we found that LGG makes kynurenine
and NADþ in vitro, which may fuel intestinal NAM meta-
bolism in the host cells. Indeed, most enzymes and trans-
porters involved in de novo NAM synthesis, recycling, and
scavenger pathways are elevated in mouse ileum in
response to LGG and dietary trp. Administering exogenous
MNA alleviates colitis, whereas administering inhibitors of
trp-NAM absorption exacerbates colitis. Thus, we document
for the first time that LGG promotes trp-NAM metabolism
and that MNA is a barrier protector. Our finding may have
implications for precision probiotic intervention based on
patient serum MNA abundances.

The essential nature of vitamin B3 and its derivatives as
building blocks of NAD for energy is well known, but its role
as nonoxidative regulators of physiologic processes is just
being appreciated.37,38 This step of NAM-to-MNA methyl-
ation is catalyzed by NAM N-methyltransferase as a degra-
dation pathway and is considered irreversible.39 Therefore,
MNA has long been viewed as an inert and transient
while exogenous MNA robustly promotes barrier function.
NAM metabolites, highlighting enzymes involved in different
genes associated with metabolite transport (blue), Preiss-
zyme (green) in the ileum (left) and liver (right). (C) Heatmaps
ransport (blue) and TRP metabolism (brown) in the ileum (left)
y analysis of KYN-NAM derived metabolites in the cell-free
t displaying results of differential metabolite analysis (DMA)
and stool of patients. Comparisons include IBD vs CN, CD vs
associations with clinical disease activity indices, including
, and Harvey Bradshaw Index, and Simple Endoscopic Score
e. (G-I) Luminal treatment of metabolites in a time-dependent
5 per group), area under the curve (AUC) of TEER from 0–48
challenge, and AUC of % TEER 24 hours after C difficile

extran levels. (K-N) Basolateral treatment of metabolites in a
s of metabolite treatment before C difficile challenge, AUC of
aracellular permeability using FITC-dextran levels. Statistical
is of variance, *P < .05, **P < .01, ***P < .001, ****P < .0001.
e-7-acetic acid; HPA, 5-hydroxypicolinic acid; IGA, 3-
KYN, kynurenine; MOX, nicotinamide-N-oxide; NA, nicotinic
ine; NMN, nicotinamide mononucleotide; NR, nicotinamide
.
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intermediate for eventual disposal via renal excretion.
However, MNA is a relatively common metabolite enriched
in Judas ear fungus and green tea already consumed by
humans, and its potential anti-inflammatory40,41 and vaso-
protective activities42 have been proposed by recent studies.
The potential transporters for MNA (eg, Mate1, Mate2,
OCT1-3) have only been speculated and more studies are
needed; however, active uptake of exogenous MNA was
shown in canine kidney43,44 and rat liver cells,45 consistent
with our observed effects of exogenous MNA in vivo and
in vitro. We present compelling data to support MNA’s
positive contribution to barrier-strengthening and colonic
healing. We found that injecting MNA to wild-type mice is
sufficient to elevate RNF43, an E3 ubiquitin ligase that is
downstream of AHR signaling and suppresses Wnt signaling
by removing Frizzled receptors from cell surfaces.46,47 MNA
also rescued DSS-induced reduction in Dll4 and Notch1
in vivo. Interestingly, LGG and dietary trp synergistically
promoted RNF43 and Dll ligands, reflecting a Wnt-Off and
Notch-On scenario favorable for enterocyte differentia-
tion.48 The Wnt-Off condition is also consistent with a
suppression of all Paneth cell transcriptome. Indeed, a
robustly promoted enterocyte program and a suppressed
Paneth cell program were only found in LGG trpþ mice,
suggesting a cellular differentiation program uniquely
regulated by LGG in the presence of dietary trp. Our finding
of MNA-regulated RNF43 may reflect a previously reported
link of the canonical Wnt pathway with NADþ salvage
pathway.49 Our finding of MNA-mediated stabilization of
Ocln and RNF43 during DSS colitis indicates a promoted
stem cell to enterocyte differentiation and maturation, ul-
timately strengthening the gut barrier and health.

"Leaky gut” allows the entry of harmful substances from
the intestinal lumen into circulation, thereby triggering a
cascade of metabolic alterations50 and inflammatory51

response in the host. Because impairment of gut barrier
stands as an evolutionarily conserved hallmark of aging,52

the light shed by this study on LGG presents a promising
avenue for delaying the age-related decline in gut health.
Interestingly, vitamin B3 derivatives, such as NAM riboside,
are considered as beneficial supplements for healthy aging
and longevity.53 In this context, our use of GF mice provided
a controlled environment to dissect a simplified interplay
among LGG, dietary trp, and the host. Our findings of trp-
Figure 7. (See previous page). MNA mitigates DSS colitis and
for assessing MNA efficacy against 2.5% DSS-induced colitis. (
(n ¼ 10) or PBS (n ¼ 8) administration (intraperitoneal, every oth
DSS induction and recovery periods. Data are mean ± standard e
vs PBS group; and #P < .05, ##P < .01 for PBS-DSS vs MN
stained with hematoxylin and eosin. (E) Blinded assessment o
recovery period from DSS treatment. Representative images o
quantitative analysis of Ocln expression in the (H) ileum and (I) c
ileum, and (K) corresponding quantification. (L) Fecal lipocalin-2
Quantitative reverse transcription polymerase chain reaction an
Dll4, Notch1) in the colon at sacrifice. (P) Representative IHC im
Western blot analysis of colon RNF43, and (S) corresponding
treatment, including changes in body weight (n ¼ 4 for both PBS
Il-6 in the colon at sacrifice. Statistical significance among the gr
**P < .01, ***P < .001, ****P < .0001.
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NAM were validated in conventional mice that harbor
intact gut microbiota, and highlight the reliance of certain
LGG’s beneficial effects on key dietary components, such as
trp. Our metabolome-based observations may apply to other
lactobacilli species. Lacticaseibacillus plantarum improves
barrier function by enhancing TJ proteins,54 whereas Lac-
ticaseibacillus acidophilus increases mucin production.55

Lacticaseibacillus casei influences antimicrobial peptide
production, bolstering host defense,56 and Lacticaseibacillus
reuteri regulates cytokine release to influence intestinal
epithelium.57 Our study suggests that the salutary effects of
probiotics may be enhanced by trp supplementation, and
the inconsistent findings may be attributed to dietary dif-
ferences in previous studies. Furthermore, LGG-derived in-
doles demonstrate improvements in disrupted barriers in
Caco-2 and enteroid models. Noteworthy indoles, such as
indole-3-propionic acid,58 indole-3-acetic acid,59 indole-3-
lactic acid,60 indole-3-pyruvate,61 and indole-3-aldehyde61

have been shown in various investigations to promote gut
homeostasis by activating AHR61 and PXR receptors.62,63

These receptors, in turn, may regulate the integrity of
epithelial and immune cells, highlighting the broader im-
plications of probiotic interventions. Future work will
delineate how MNA stimulates TJ gene expression and
barrier function. We conclude that LGG stimulates dietary
trp-dependent production of barrier-protecting MNA.

Materials and Methods
Animal procedures and protocols were in accordance

with the Institutional Animal Care and Use Committee,
Rutgers New Jersey Medical School.

Experimental Designs
Gnotobiotic study. GF mice (C57BL/6, Charles River
Laboratories) were fed either trp-free or trp-sufficient
diets.30 The trp-sufficient diet, containing 0.2% trp, had
otherwise exactly the same composition as the trp-free. Mice
were acclimatized for 2 weeks then divided into 4 groups, 2
of which were fed trp-sufficient, and the other 2 fed trp-free
diets for another 2 weeks (Figure 1A). At Week 0, mice in
trp-free and trp-sufficient conditions were divided into co-
horts that were gavaged with either LGG (108 CFU/mL in
200 mL PBS) or sterile PBS. Mice were continuously fed with
promotes colonic healing in mice. (A) Experimental design
B) Serum ovalbumin levels (ng/mL) following 2 weeks of MNA
er day). (C) Body weight changes (% of initial) of mice during
rror. Significant differences are denoted as *P< .05, **P < .01
A-DSS groups. (D) Representative images of colon sections
f Mouse Colitis Histology Index (MCHI) score following the
f immunofluorescent staining in (F) ileum and (G) colon, with
olon. (J) Western blot analysis of Ocln and b-actin (Act) in the
(lpcn2) levels in different groups after DSS treatment. (M-O)

alysis of gene expression (Tjp1, Ocln, Il-6, Tnf-a, Rnf43, Lgr5,
ages, and (Q) quantitative analysis of Rnf43 in the colon. (R)
quantification. (T) Evaluation of trp-NAM deficiency via ISO
and ISO treatment groups). (U) Expression of Ocln, Tjp1, and
oups was determined by 1-way analysis of variance, *P < .05,
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Table 1.Metabolite Dosing Information

Metabolites Dose Application

Kynurenine 10 mM Caco-2 luminal/
basolateral
treatment

Nicotinamide riboside 10 mM
Nicotinamide mononucleotide 10 mM
NADþ 10 mM
Nicotinamide 10 mM
Methylnicotinamide 10 mM

Indole-3-acetamide 500 mM Caco2 basolateral
treatmentIndole-3-carboxyaldehyde 500 mM

Indole-3-lactic acid 500 mM
Indole-3-propionic acid 500 mM
Indole-3-acrylic acid 250 mM
Indole-3-carbinol 250 mM

Indole-3-acetamide 250 mM Caco2 luminal
treatmentIndole-3-acetic acid 250 mM

Indole-3-acetonitrile 250 mM
Indole-3-carboxylic acid 250 mM
Indole-3-carboxyaldehyde 100 mM
Indole-3-lactic acid 50 mM
Indole-3-propionic acid 100 mM
Indole-3-acrylic acid 250 mM
Indole-3-carbinol 100 mM

Indole-3-propionic acid 0.1 mM Enteroids
Indole-3- acetamide 200 mM
Methylnicotinamide 87 nM
Carnosine 20 mM
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trp-free and trp-sufficient diets until sacrifice 21 days after
inoculation. Fecal pellets were collected before and after
inoculation. Feces, intestine, serum, and liver were collected
at sacrifice.
LGG administration and GF monitoring. LGG was
cultured (37�C) in MRS broth and centrifuged (1200 � g, 10
minutes) to pellet before gavaging to mice. Body weight and
feeding rate were monitored. GF status before inoculation
was validated by a commercial vendor (IDEXX) and
constantly monitored in-house by fecal DNA analysis of
bacterial 16S rRNA. After inoculation, qPCR for fecal DNA
with 16S rRNA and LGG-specific primers were used to
confirm colonization. Same engraftment efficiency of LGG
was found in mice fed with trpþ or trp- diets. LGG qPCR
primers are: forward, 5’-CGCCCTTAACAGCAGTCTTC-3’ and
reverse, 5’-GCCCTCCGTATGCTTAAACC-3’. The 16S rRNA
qPCR primers are forward 5’-AGAGTTTGATCCTGGCTCAG-3’,
and reverse, 5’- CTTGTGCGGGCCCCCGTCAATTC-3’.
Intestinal perfusion. Procedures followed previous
work.64 Mice were perfused with live LGG (3.3X108 CFU/
mL) þ Inulin (3.3 mg/mL), or with Krebs-Ringer Buffer þ
inulin. After 4 hours of perfusion, the intestines were
collected for RNA sequencing.
DSS-induced colitis and metabolite treat-
ment. C57BL/6 mice were intraperitoneally injected with
PBS or 30 mg/kg MNA every other day for 2 weeks then
gavaged with 100 mg/kg chicken ovalbumin (Figure 7A).
About 24 hours postgavage, plasma ovalbumin levels were
quantified using an enzyme-linked immunosorbent assay kit
(abx555335, Abbexa, UK) to determine gut permeability in
homeostasis. For DSS experiments, the mice were grouped
into PBS, MNA, PBSþDSS, and MNAþDSS cohorts and sub-
jected to 2.5% DSS treatment for 11 days, followed by a 5-
day recovery period. MNA was injected every other day
after initiation of DSS treatment. After sacrifice, tissues were
collected for immunohistochemistry and immunofluores-
cence staining, qPCR, and Western blot analysis, whereas
fecal samples from Day 11 were analyzed for lipocalin 2
levels using enzyme-linked immunosorbent assay
(ab199083).
Caco-2 transepithelial electrical resistance and par-
acellular flux. Cells (20,000 per well) were suspended in
Dulbecco’s modified eagle medium media (20% fetal bovine
serum, 1% Primocin) in 96-well transplates (MilliporeSigma
PSHT004R5) and polarized for 21 days. TEER was
measured with an EVOM system using an STX100 electrode
(World Precision Instruments). Indole and NAM-derived
metabolites were added apically or basolaterally (Table 1).
To induce barrier disruption and assess efficacy of metab-
olites to repair disruption, Caco-2 monolayers were treated
with 0.15% vol/vol C difficile cell-free supernatant. Para-
cellular flux was assessed by introducing FITC-dextran (5
mg/mL) to apical chambers, and FITC fluorescence in 10 mL
samples from the basolateral chamber was measured in a
black 96-well plate (Costar 3915) using a Glomax (Promega,
WI) plate reader (excitation: 490 nm, emission: 520 nm).
Intestinal organoid treatment with LPS and metab-
olites. Enteroids were isolated as previously described.48

To grow wild-type and Ocln KO enteroids, Oclnfl/fl and
FLA 5.6.0 DTD � JCMGH1346 proof
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Oclnfl/fl-Vil/CREERT2 mice were injected (intraperitoneally)
with tamoxifen and sacrificed 7 days after the injection to
establish organoids. Day 0 was when enteroids were seeded.
On Day 3, media were replaced with LPS (1 mg/mL) with or
without metabolites (indole-3-propionic acid [0.1 mM],65

indole-3-acetamide [200 mM], MNA [12 ng/mL], carnosine
[20 mM]), incubated for 48 hours, and analyzed.
Bulk RNA sequencing. Before analyses, the high quality
of extracted ileal RNA from all samples was confirmed (RIN,
8.6 ± 0.56). Total RNA was subjected to poly(A) selection
using oligo(dT)25 magnetic beads (New England Biolabs).
Libraries were constructed using Next (New England Bio-
labs) Ultra II RNA library preparation with sample purifi-
cation beads and Next Multiplex Oligos. Poly(A) selection
and library quality were assessed using TapeStation 2200
(Agilent) and libraries quantified (Qubit 4.0 fluorometer,
ThermoFisher). The prepared libraries were sequenced
(Illumina NextSeq 500) then analyzed by CLC Genomics
Workbench 20.0.4.
Metabolite extraction and liquid chromatography–
mass spectrometry analysis. Feces and liver metabo-
lites were extracted using the reported procedures.29 Serum
metabolites were extracted in methanol (ratio of ser-
um:methanol, 1:4) at –20�C for 20 minutes, and centrifuged
at 17,000 � g for 2 minutes. Supernatants were stored on
ice. The pellet was further extracted in acetoni-
trile:methanol:water (400:400:200), for 10 minutes on ice,
centrifuged at 17,000 � g for 10 minutes, and the super-
natant combined with the first extraction. Liquid
chromatography–mass spectrometry analysis was per-
formed as previously described.29 The metabolite data were
analyzed in MAVEN (Metabolic Analysis and Visualization
� 7 May 2024 � 3:40 pm � ce CJ
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Engine). Compound identification used the accurate mass
and the retention time learned from an in-house chemical
library. MetaboAnalyst 5.0 was then used for further sta-
tistical and functional interpretation of metabolomics data.
Finally, principal component analysis and variables impor-
tant in the projection (cutoff 1.229) analyses were used to
identify those metabolites substantially driving differences
between 2 treatments.
RT-qPCR analysis. Primers used include: b-actin (Actb),
forward 5’-TTG TTA CCA ACT GGG ACG ACA TGG-3’, reverse
5’- CTG GGG TGT TGA AGG TCT CAA ACA-3’; ZO-1 (Tjp1),
forward 5’-GGG AGG GTC AAA TGA AGA CA-3’, reverse 5’-
GGC ATT CCT GCT GGT TAC AT-3’; Ocln, forward 5’-ATT CCA
TCA GTT TCC TAT CT-3’, reverse 5’-ACC AGG ACC TTT CTT
GAC-3’; Lyz1, forward 5’-ATG GCT ACC GTG CT TCA AG-3’,
reverse 5’- CGG TCT CCA CGG TTG TAG TT-3’; Tff3, forward
5’- TAA TGC TGT TGG TGF TCC TG-3’, reverse 5’- CAG CCA
CGG TTG TTA CAC TG-3’, Dll4, forward 5’-AGC TGG AAG TGG
ACT GTG GT-3’, reverse 5’-TAG AGT CCC TGG GAG AGC AA-
3’; Rnf43, forward 5’-CCG GGT CAT TTC GTG CCT C-3’,
reverse 5’-CCT GGT TCC TGG TAA GAT GGA-3’; Lgr5, for-
ward 5’- TGA GCG GGA CCT TGA AGA TT-3’, reverse 5’ AGG
TGC TCA CAG GGC TTG AA-3; Notch1, forward 5’- ATG TCG
ATG TTC GAG GAC CAG-3’, reverse 5’ TCA CTG TTG CCT GTC
TCA AG-3’; IL-6 forward 5’- ACC ACG AGG ATC AGT ACG AA-
3’, reverse 5’- TGT TCFG CAT AAG GGC TCT GT-3’;Tnf- a
forward 5’- GAT CTC AAA GAC AAC CAA CAT GTG-3’, reverse
5’- CTC CAG CTG GAA GAC TCC AAB CAG-3’. All samples
were normalized to b actin.
Permeability and immunohistochemistry. Perme-
ability and immunohistochemistry of enteroids were
described previously.48 For colon and ileal tissues, the sec-
tions (5 mm) underwent antigen retrieval in 0.1 M citrate
acid buffer (pH 6) at subboiling temperature for 20 minutes.
Following blocking with PBS containing 0.1% Triton X-100,
2% normal serum, and 2% bovine serum albumin for 1 hour
at room temperature, slides were incubated with primary
antibodies overnight at 4�C. After 3 PBS washes, slides were
incubated with fluorescent dye-conjugated secondary anti-
bodies for 1 hour at room temperature, followed by DAPI
nuclear counterstaining for 10 minutes. Mounted (Prolong
Gold Antifade Mountant) slides were imaged at 10X
magnification with 3 representative sections per mouse
using Nikon TE2000. Quantitative analysis was performed
using Image J. Primary antibodies were diluted in blocking
buffer. Primary antibodies were rabbit monoclonal OCLN,
mouse monoclonal ZO-1 and TFF3 (AB216327, 1A12 and
14475882, respectively, ThermoFisher) and rabbit poly-
clonal LYZ1 (PU024-5UP, Biogenex).
METRCA. Correlation analysis between metabolome and
transcriptome used our newly developed R script.30 Tran-
scriptome data were filtered and only differentially expressed
genes (fold change >1.5, FDR-adjusted P < .05) were
considered. Pairwise Pearson correlation coefficients were
calculated between genes andmetabolites, and their statistical
significance was obtained via the cor.test function in R.
Metabolite-gene pairs with FDR-adjusted P < .05 were
significantly associated. Heatmapwas generated by pheatmap
package in R. Genes were clustered by hierarchical clustering.
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Statistical analysis. All results are expressed as mean ±
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graphs.
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