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Abstract: A longstanding open question in the theory of disordered systems is whether
short-range models, such as the random field Ising model or the Edwards–Anderson
model, can indeed have the famous properties that characterize mean-field spin glasses
at nonzero temperature. This article shows that this is at least partially possible in the case
of the random field Ising model. Consider the Ising model on a discrete d-dimensional
cube under free boundary condition, subjected to a very weak i.i.d. random external
field, where the field strength is inversely proportional to the square-root of the number
of sites. It turns out that in d ≥ 2 and at subcritical temperatures, this model has some
of the key features of a mean-field spin glass. Namely, (a) the site overlap exhibits one
step of replica symmetry breaking, (b) the quenched distribution of the overlap is non-
self-averaging, and (c) the overlap has the Parisi ultrametric property. Furthermore, it is
shown that for Gaussian disorder, replica symmetry does not break if the field strength
is taken to be stronger than the one prescribed above, and non-self-averaging fails if it is
weaker, showing that the above order of field strength is the only one that allows all three
properties to hold. However, the model does not have two other features of mean-field
models. Namely, (a) it does not satisfy the Ghirlanda–Guerra identities, and (b) it has
only two pure states instead of many.

1. Introduction

The random field Ising model (RFIM) was introduced as a simple model of a disordered
system by [38] in 1975. The model is defined as follows. Take any d ≥ 1 and ! ⊆ Zd .
Let E denote the set of edges connecting neighboring points in !. Given a field strength
h ∈ R, define the (random) Hamiltonian H : {−1, 1}! → R as

H(σ ) := −
∑

{i, j}∈E
σiσ j − h

∑

i∈!

Jiσi , (1.1)
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where J = (Ji )i∈! is a fixed realization of i.i.d. random variables from some distribution.
At inverse temperatureβ > 0, the RFIM prescribes a random Gibbs measure on {−1, 1}!
with probability mass function proportional to e−βH(σ ).

A large body of deep mathematics has grown around this model, such as the early
works of [36,37] on the multiplicity of ground states in the 3D RFIM, the proof of phase
transition in d ≥ 3 by [13,14], the absence of phase transition in d ≤ 2 proved by [3,4],
and the more recent works on quantifying the Aizenman–Wehr theorem [2,5,16,18],
culminating in the proof of exponential decay of correlations in the 2D RFIM by [24]. The
recent developments have led to a resurgence of interest in this model in the mathematical
community, yielding a number of new and important results [8,11,22,23,25,26].

In spite of all this progress, one major question that has not yet been settled is
whether the RFIM has a spin glass phase. A disordered system is said to exhibit spin
glass behavior if it has the properties that characterize mean-field spin glasses. In the
formulation laid out by Giorgio Parisi [51], the main features of mean-field spin glasses
are replica symmetry breaking (RSB), non-self-averaging (NSA), ultrametricity, and the
presence of many pure states. These properties are defined as follows. Consider a system
of N particles, with spins σ = (σ1, . . . , σN ) ∈ {−1, 1}N . In a disordered system, the
probability law µ of σ is random. Let σ 1, σ 2, . . . be i.i.d. spin configurations drawn
from a fixed realization of the random probability measure µ. The overlap between the
configurations σ i and σ j is defined as

Ri, j :=
1
N

N∑

k=1

σ i
kσ

j
k .

Let ⟨R1,2⟩ denote the expected value of R1,2 with respect toµ. Roughly speaking, we say
that the system exhibits replica symmetry if R1,2 ≈ ⟨R1,2⟩ with high probability (i.e.,
probability → 1 as the system size → ∞). Otherwise, we say that replica symmetry
breaks. The breaking of replica symmetry is usually quite difficult to prove rigorously.
RSB has been established rigorously only in mean-field systems, where every particle
interacts with every other particle. The primary example of this is the Sherrington–
Kirkpatrick (SK) model [54], where the discovery of RSB led to the development of
Parisi’s broken replica method [44]. Rigorous proofs of RSB in the SK and other mean-
field models came much later (see [57,59] and references therein).

For short-range models such as the RFIM and the Edwards–Anderson (EA) model [30],
there is no proof of RSB as of now. Settling a longstanding debate [41], it was shown
in [17, Lemma 2.6] that replica symmetry does not break in the RFIM at any fixed tem-
perature and nonzero field strength. The question of RSB in the EA model is still open,
although some aspects of spin glass behavior have been established at zero temperature
in the recent preprint [19], confirming some old conjectures from physics [12,31].

The second basic property of spin glass models in Parisi’s formulation is non-self-
averaging (NSA). NSA is the property that the quenched law of R1,2 (i.e., its law con-
ditional on a realization of µ) does not converge to a deterministic limit in probability
as the system size goes to infinity. Rigorous proofs of NSA are now known for mean-
field systems [57,59], but there is no short-range model that has been rigorously proved
to have the NSA property. In fact, there are mathematical arguments based on ergodic
theory that seem to rule out NSA in translation-invariant short-range models in infinite
volume [45], but there is a counter-argument that infinite volume systems do not truly
represent finite volume behavior [50]. The main result of [17] implies that the RFIM
does not have the NSA property at non-critical field strengths, but that leaves open the
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possibility that NSA may hold at critical temperatures in the RFIM. Nothing is known
about NSA in the EA model.

The third basic property of spin glasses is ultrametricity. This means, roughly speak-
ing, that for any given ε > 0, the probability of the event R1,3 ≥ min{R1,2, R2,3} − ε
tends to 1 as the system size goes to infinity. Ultrametricity implies that the Gibbs measure
“organizes the states like a tree”, a notion that has recently been made mathematically
precise in [20]. Ultrametricity also has the important consequence that it allows one to
write down the joint distribution of arbitrarily many overlaps from the distribution of a
single overlap, and thereby understand almost everything about the system. Ultrametric-
ity has been rigorously proved in mean-field systems, most notably by [49] for a variant
of the SK model, followed by extensions to other mean-field systems [7,21,39,55,56].
As of today, there are no rigorous results about ultrametricity for systems with purely
local interactions.

The fourth property—the existence of many pure states—means, very roughly, that
the Gibbs measure behaves like a mixture of a large number of ergodic measures. Again,
this is known rigorously only for mean-field models [48] and certain special models
on lattices [46]. Incidentally, it is rather unclear how to define a pure state outside the
setting of Markov random fields on finite-dimensional lattices [32]. For certain kinds
of mean-field spin glasses, a rigorous definition was given by [48]. In the next section,
we will give a general definition of the number of pure states that encompasses both
mean-field and lattice models.

Proving that short-range models of disordered systems can have the above features
of mean-field spin glasses has long been one of the main unsolved questions in this area,
first posed in the seminal monograph of [44]. As mentioned above, there is a negative
result from [17], where it was established that the RFIM does not have a phase where
replica symmetry breaks. In this article, we show that in spite of this negative result, the
first three features of a spin glass listed above—RSB, NSA, and ultrametricity—can in
fact arise in the RFIM, if instead of keeping the field strength h in (1.1) fixed, we take it
to zero like |!|− 1

2 as |!| → ∞, and take β bigger than the critical inverse temperature
of the Ising model. Moreover, if the Ji ’s are Gaussian, then we show that this is the only
scaling of h where this happens. However, the fourth property does not hold, because the
system appears to be a mixture of two pure states instead of many. Another common (but
perhaps not essential) feature of mean-field spin glasses, called the Ghirlanda–Guerra
identities, also does not hold for this system.

2. Results

Take any d ≥ 2. For each n, let Bn := {−n, . . . , n}d , and let En be the set of undi-
rected nearest neighbor edges of Bn . Let %n := {−1, 1}Bn be the set of ±1-valued spin
configurations on Bn . Let (Ji )i∈Bn be a collection of i.i.d. random variables with mean
zero, variance one, and finite moment generating function in an open neighborhood of
the origin. Let h ∈ R be a parameter. Define the Hamiltonian Hn : %n → R as

Hn(σ ) := −
∑

{i, j}∈En

σiσ j − h√|Bn|
∑

i∈Bn
Jiσi (2.1)

This is the Hamiltonian for the Ising model on Bn subjected to a random external field
of strength h Ji |Bn|−

1
2 at site i for each i ∈ Bn . That is, we have replaced the parameter

h in (1.1) by h|Bn|−
1
2 . The Gibbs measure for this model at inverse temperature β is
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the random probability measure on %n with probability mass function proportional to
e−βHn(σ ) at each σ ∈ %n . For a function f : %n → R, let ⟨ f ⟩ denote its expected value
with respect to the Gibbs measure. The “quenched distribution” of f is the law of f (σ )
conditional on (Ji )i∈Bn , where σ is drawn from the Gibbs measure.

2.1. Replica symmetry breaking and non-self-averaging. Let σ 1 and σ 2 be drawn in-
dependently from the Gibbs measure defined by a single realization of the disorder
(Ji )i∈Bn . Recall from the previous section that the site overlap (or spin overlap) between
σ 1 and σ 2 is defined as

R1,2 := 1
|Bn|

∑

i∈Bn
σ 1
i σ 2

i .

If we have a sequence of configurations σ 1, σ 2, . . . drawn independently from the Gibbs
measure, then Ri, j denotes the overlap between σ i and σ j . The following theorem is
the first main result of this paper.

Theorem 2.1 (Replica symmetry breaking and non-self-averaging). Take any d ≥ 2
and n ≥ 1 and consider the model defined above on Bn = {−n, . . . , n}d at inverse
temperature β > β0, where β0 is the critical inverse temperature for the ordinary Ising
model on Zd . Then there is a deterministic value q > 0 depending only on β and d,
such that E⟨(R2

1,2 − q2)2⟩ → 0 as n → ∞. Moreover, if we define

Xn :=
√
qβh√|Bn|

∑

i∈Bn
Ji , (2.2)

then we have that

lim
n→∞E[(⟨R1,2⟩ − q tanh2 Xn)

2] = 0. (2.3)

Consequently, as n → ∞, ⟨R1,2⟩ converges in law to q tanh2(
√
qβhZ), where Z is a

standard Gaussian random variable.

For the reader’s convenience, let us briefly explain the significances of the two asser-
tions of the above theorem. The first assertion, that E⟨(R2

1,2 − q2)2⟩ → 0 as n → ∞,
shows that when n is large, the overlap R1,2 is close to either q or −q with high prob-
ability. The second assertion shows that the quenched expectation of R1,2 is a random
variable that converges to a non-degenerate limiting distribution as n → ∞. Jointly, this
proves two things. First, it shows that R1,2 does indeed behave like a random variable
that is close to one of two values, and not just one value (because otherwise, ⟨R1,2⟩ would
be close to q or −q). This is known as one step of replica symmetry breaking (1RSB).
Second, it shows that the quenched distribution of the overlap is not self-averaging—that
is, it does not converge to a deterministic limiting distribution as n → ∞. Equation (2.3)
shows that the mass near q is approximately

1
2
(1 + tanh2 Xn), (2.4)

and the mass near −q is 1 minus the above. An important thing to note is that q depends
only on β and d, and not on h. Thus, q is the limiting absolute value of the overlap in the
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ordinary Ising model—that is, the case h = 0. In particular, Theorem 2.1 implies that
for the Ising model, the quenched law of R1,2 converges in probability to the uniform
distribution on {−q, q} as n → ∞. The presence of h only changes the masses near q
and −q.

Theorem 2.1 shows that non-self-averaging can occur even in a system that only
has local interactions. It is to be noted that the system under consideration here has no
obvious representative in the infinite volume limit (because the field strength is tending
to zero but with a non-trivial effect which cannot be captured by a model in infinite
volume in any obvious way), thereby posing no contradiction to the results of [45] on
the impossibility of NSA in translation-invariant infinite volume systems.

2.2. Ultrametricity. The next result says that the overlap satisfies the Parisi ultrametric
property in the large n limit, meaning that R1,3 ≥ min{R1,2, R2,3}−o(1)with probability
1 − o(1) as n → ∞.

Theorem 2.2 (Ultrametricity). Let d, n, β0, β and q be as in Theorem 2.1. Then, as
n → ∞, the quenched distribution of (R1,2, R1,3, R2,3) converges in law to a random
limiting distribution with support

{(q, q, q), (−q,−q, q), (−q, q,−q), (q,−q,−q)}. (2.5)

Consequently, for any ε > 0, the quenched probability of the event R1,3 ≥ min{R1,2,
R2,3} − ε tends to 1 in probability as n → ∞.

Combined with Theorem 2.1, it is easy to deduce the approximate masses assigned
by the law of (R1,2, R1,3, R2,3) near the four points displayed in (2.5). Let a be the
approximate mass near (q, q, q), and let b be the approximate mass near each of the
other three points (which must be equal, by symmetry). Then a + 3b ≈ 1, and a + b ≈
the probability of the event R1,2 ≈ q, which is given by the formula (2.4). Solving, we
get

a ≈ 1
4
(1 + 3 tanh2 Xn), b ≈ 1

4
(1 − tanh2 Xn).

Just like Theorems 2.1, 2.2 is valid even if h = 0, that is, for the Ising model. It shows
that at subcritical temperatures, the overlap in the Ising model has the ultrametricity
property.

2.3. Behavior of the magnetization. The magnetization of a configuration σ is defined
as

m = m(σ ) := 1
|Bn|

∑

i∈Bn
σi .

The following theorem identifies the limiting behavior of the magnetization of a con-
figuration drawn from the Gibbs measure when β is bigger than the critical inverse
temperature of the Ising model. It also gives a relation between the magnetizations of
two independently drawn configurations and their overlap.
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Theorem 2.3 (Behavior of the magnetization).Let d, n,β0,β andq be as in Theorem2.1.
Themagnetizationm of a configurationσ drawn from themodel satisfiesE⟨(m2−q)2⟩ →
0 as n → ∞, and with Xn defined as in (2.2), we have

lim
n→∞E[(⟨m⟩ − √

q tanh Xn)
2] = 0. (2.6)

In particular, ⟨m⟩ converges in law to
√
q tanh(

√
qβhZ), where Z is a standardGaussian

random variable.Moreover, formost values of j ∈ Bn, ⟨σ j ⟩ ≈ ⟨m⟩with high probability,
in the sense that

lim
n→∞

1
|Bn|

∑

j∈Bn
E[(⟨σ j ⟩ − ⟨m⟩)2] = 0. (2.7)

Lastly, if m(σ 1) and m(σ 2) are the magnetizations in two configurations σ 1 and σ 2

chosen independently from the same Gibbs measure, thenE⟨(R1,2 −m(σ 1)m(σ 2))2⟩ →
0 as n → ∞.

This theorem is the basis for proving the previously stated results about the overlap,
because it says that the overlap between two configuration is approximately equal to the
product of their magnetizations with high probability, and gives the approximate distri-
bution of the magnetization, which is concentrated near q or −q with high probability. In
addition to the previously stated results, it also gives the asymptotic quenched distribu-
tion of any number of overlaps, because conditional on the disorder, m(σ 1),m(σ 2), . . .
behave like i.i.d. random variables taking values in {−√

q,
√
q} with a certain distribu-

tion, and Ri, j ≈ m(σ i )m(σ j ) for each i ̸= j .

2.4. Two pure states. As mentioned in the introduction, it is unclear how to rigorously
define pure states outside the setting of Markov random fields on a lattice, where it is
well-understood [32]. We will now give a general definition of the number of pure states
in a sequence of models, and show that according to this definition, our model has two
pure states in the n → ∞ limit.

Let {Nn}n≥1 be a sequence of positive integers tending to infinity, and let (Xn,i )n≥1,1≤i≤Nn
be a triangular array of real-valued random variables. For each n, let πn be a uniform ran-
dom permutation of 1, . . . , Nn , independent of the Xn,i ’s. Let Yn,i := Xn,πn(i). Let Z =
(Z1, Z2, . . .) be a sequence of random variables such that for each k, (Yn,1, . . . , Yn,k)
converges to (Z1, . . . , Zk) in distribution as n → ∞. Then note that Z is an infinite
exchangeable sequence of random variables. By De Finetti’s theorem [40, Theorem 1.1],
the law of Z is a mixture of probability laws of i.i.d. sequences, with a unique mixing
measure [40, Proposition 1.4].

Definition 2.4. In the above setting, let µ be the mixing measure of the law of Z . Let
p be the size of the support of µ, which may be a positive integer or infinity. Then, we
will say that the law of (Xn,i )1≤i≤Nn has p pure states asymptotically as n → ∞.

For example, if the Xn,i ’s are i.i.d., then so are the Zi ’s, and therefore p = 1. On
the other hand, suppose that Nn = n and Xn,i = Y + Wi , i = 1, . . . , n, where Y and
W1,W2, . . . are i.i.d. standard Gaussian random variables. If πn is a uniform random
permutation of 1, . . . , n, then for any n and k, the law of (Xn,πn(1), . . . , Xn,πn(k)) is the
same as the law of (Z1, . . . , Zk), where Zi = Y + Wi . Now, Z1, Z2, . . . is an infinite
exchangeable sequence, which is conditionally i.i.d. given Y . Since the support of Y
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contains infinitely many points, we deduce that the law of (Xn,i )1≤i≤n has infinitely
many pure states as n → ∞.

In the setting of disordered systems, the law of (Xn,i )1≤i≤Nn is itself random, and
may not be converging to a deterministic limit in any reasonable sense as n → ∞. Thus,
we have to modify Definition 2.4 to accommodate this scenario. Let Yn,i = Xn,πn(i) be
defined as before. For each k, let νn,k be the law of (Yn,1, . . . ,Yn,k), which is now a
random probability measure. Let ν be a random probability measure taking value in the
set of laws of infinite exchangeable sequences. Let νk be the (random) law of the first k
coordinates of a sequence with law ν.

Definition 2.5. Let ν be as above, and letµ be the (random) mixing measure of a random
probability measure with law ν. Suppose that there is a deterministic p ∈ {1, 2, . . .}∪{∞}
such that with probability one, the support of µ has p points. Also, suppose that for each
k, the law of νn,k converges weakly to the law of νk . Then, we will say that the (random)
law of (Xn,i )1≤i≤Nn has p pure states asymptotically as n → ∞.

The following result shows that under the above definition, our model has two pure
states asymptotically as n → ∞. This holds for any h, and in particular h = 0, which
is the case of the ordinary Ising model.

Theorem 2.6. Let d, n, β0 and β be as in Theorem 2.1. Then the random probability
measure on%n defined by themodel fromTheorem 2.1 has two pure states asymptotically
as n → ∞, as defined in Definition 2.5.

2.5. Failure of the Ghirlanda–Guerra identities. The Ghirlanda–Guerra (GG) identities
are a set of identities that are satisfied in the infinite volume limits of many mean-field
spin glass models [33]. A symmetric array of random variables (Si, j )1≤i, j<∞ is said to
satisfy the GG identities if for any k, any bounded measurable function f of (Si, j )1≤i, j≤k ,
and any bounded measurable function ψ : R → R,

E( f ψ(S1,k+1)) =
1
k
E( f )E(ψ(S1,2)) +

1
k

k∑

i=2

E( f ψ(S1,i )). (2.8)

These identities have been proved for the limiting joint law of overlaps for a variety
of mean-field models of spin glasses. (Here, the “joint law” refers to the unconditional
distribution, averaged over the disorder.) They form the basis of Panchenko’s proof
of ultrametricity in [49], following a line of prior work connecting the GG identities
with ultrametricity [1,6,47,58]. The following theorem shows that the GG identities
are not valid for our model. This shows that while the GG identities are sufficient for
ultrametricity of the overlap (as shown by Panchenko [49]), they are not necessary.

Theorem 2.7 (Failure of the Ghirlanda–Guerra identities). Let d, n, β0 and β be as in
Theorem 2.1. Then the limiting joint distribution of the overlaps, as n → ∞, does not
satisfy the Ghirlanda–Guerra identities.

2.6. Failure of spin glass behavior at other field strengths. One may wonder if taking
the field strength to be proportional to |Bn|−

1
2 is the only way to get replica symmetry

breaking and non-self-averaging in the large n limit. Our next result shows that this is
indeed the case for Gaussian disorder (and it is reasonable to conjecture that the same
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holds for any i.i.d. disorder). Replica symmetry does not break if the parameter h is
allowed to go to ±∞ as n → ∞, and the non-self-averaging of the quenched law of the
overlap breaks down if h is allowed to go to zero as n → ∞.

Theorem 2.8 (Failure of spin glass behavior at other field strengths). Suppose that the
parameter h in the Hamiltonian Hn is allowed to vary with n. If h → 0 as n → ∞,
then the distance between the quenched law of R1,2 under our model and the law of
R1,2 under the Ising model on Bn at the same temperature and free boundary condition
tends to zero in probability as n → ∞, for any metric that metrizes weak convergence
of probability measures. In particular, non-self-averaging fails. On the other hand, if
|h| → ∞ as n → ∞, and if the Ji ’s are i.i.d. standard Gaussian random variables,
then E⟨(R1,2 − ⟨R1,2⟩)2⟩ → 0, meaning that replica symmetry does not break. These
conclusions hold at any temperature.

The second assertion of the above theorem extends [17, Lemma 2.6] by showing that
replica symmetry holds not only when the parameter h in the standard form (1.1) of the
RFIM Hamiltonian is fixed and nonzero, but is even allowed to go to zero slower than
|!|− 1

2 (for ! = Bn).

2.7. The antiferromagnetic RFIM. For the sake of completeness, let us also consider
the random field antiferromagnetic Ising model on Bn under free boundary condition.
This is the model where the minus in front of the first term on the right side in (2.1) is
replaced by a plus. That is, the Hamiltonian is

Hn(σ ) :=
∑

{i, j}∈En

σiσ j − h√|Bn|
∑

i∈Bn
Jiσi . (2.9)

All of the results for the ferromagnetic model continue to hold for the antiferromagnetic
version, except one—the magnetization tends to zero instead of converging in law to a
non-degenerate distribution.

Theorem 2.9 (Results for the antiferromagnetic RFIM). Theorems 2.1, 2.2 and 2.8 re-
main valid for the antiferromagnetic model, with Ji replaced by (−1)|i |1 Ji in the (2.2),
where |i |1 is the ℓ1 norm of i . The magnetization, however, satisfies E⟨m2⟩ → 0 as
n → ∞.

2.8. Uniformity of correlations in the ordinary Ising model. In addition to the above re-
sults, our analysis also reveals the following “uniformity of correlations” for the ordinary
Ising model on Bn under free boundary condition and subcritical temperatures. Namely,
⟨σiσ j ⟩ ≈ q for most i, j ∈ Bn . More generally, for any even l and most i1, . . . , il ∈ Bn ,

⟨σi1 · · · σil ⟩ ≈ q
l
2 . This result is the foundation for most of the other results in this paper.

Note that the correlation is zero if l is odd due to the invariance of the model under the
transform σ → −σ .

Theorem 2.10 (Uniformity of correlations in the Ising model). Let d, n, β0, β and q be
as in Theorem 2.1. Consider the ferromagnetic Ising model on Bn at inverse temperature
β and free boundary condition (i.e., the model with Hamiltonian given in (2.1) but with
h = 0). Then for any even positive integer l,

lim
n→∞

1
|Bn|l

∑

i1,...,il∈Bn
|⟨σi1 · · · σil ⟩ − q

l
2 | = 0.
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Uniformity of correlations in infinite volume is a simple consequence of a result of
[10] (see also [53]), which says that the infinite volume Gibbs measure for the Ising
model under free boundary condition is the average of the infinite volume measures
under plus and minus boundary conditions.

The finite volume result stated above does not follow easily from the infinite volume
result, even though we know that correlations decay exponentially under plus and minus
boundary conditions [29]. This is because Bodineau’s theorem does not imply that the
finite volume Gibbs measure under free boundary is approximately the average of the
finite volume measures under plus and minus boundary conditions. The proof presented
in this draft is due to Hugo Duminil-Copin (private communication). It uses the random
cluster representation of the Ising model and Pisztora’s renormalization scheme [52]. A
different proof was given in the original draft of this paper, which had the disadvantage
of not covering the full supercritical regime and has therefore been omitted.

This completes the statements of the results. The rest of the paper is devoted to proofs.

3. Proof of Theorem 2.10

We now present the proof of Theorem 2.10 due to Hugo Duminil-Copin (private com-
munication), which uses coupling with the FK-Ising (random cluster) model.

3.1. The FK-Ising model. Recall that the FK-Ising model on Bn is defined as fol-
lows [35]. Let En be the set of edges of Bn , as before, and let *n := {0, 1}En . Each
element ω ∈ *n defines a graph on Bn , with (open) edges corresponding to those e ∈ En
for which ωe = 1. Edges of Bn that are not in this graph are said to be “closed”. Let E(ω)
denote the number of open edges and k(ω) denote the number of connected components
of this graph. The FK-Ising model with parameter p, under free boundary condition,
assigns a probability proportional to

pE(ω)(1 − p)|En |−E(ω)2k(ω) (3.1)

at each ω ∈ *n . A different kind of boundary condition, called the “wired boundary
condition”, has an identical form of the probability mass function but with a different
definition of k(ω). Under the wired boundary condition, all the boundary vertices of Bn
are assumed to be connected to each other, and so all connected components that touch
the boundary are merged into a single component. Fixing p, we will denote probabilities
computed under the free and wired boundary conditions by P0

n and P1
n , respectively.

It is known that the infinite volume limits of these measures exist and are equal if p
is not equal to its critical value (which corresponds to the critical β in the Ising model
if we reparametrize p = 1 − e−2β ) (by [10, Theorem 2.1] and [34, Theorem 5.3(b)]);
that is, for any event A determined by finitely many edges, the limits limn→∞ P0

n (A)
and limn→∞ P1

n (A) exist and are equal. We will denote this limit by P(A).
Following standard convention, we will denote by x ↔ y the event that two vertices

x and y are connected by a path of open edges. Similarly, x ↔ ∂Bn will denote the
event that x is connected by a path to the boundary of Bn , and x ↔ ∞ will denote the
event that x belongs to an infinite open cluster. It is known that when p is greater than
the critical value, the infinite volume FK-Ising model has a unique infinite open cluster
with probability one [15, Theorem 2] (see also [27, Theorem 1.10]). In the following,
we will assume throughout that p is greater than the critical value.



93 Page 10 of 32 S. Chatterjee

Lastly, define

q := lim
n→∞(P(0 ↔ ∂Bn))

2, (3.2)

where the existence of the limit follows from monotonicity of the probability as a function
of n. We will hold this q fixed throughout the remaining discussion. Note that

P(0 ↔ ∞) = P(0 ↔ ∂Bn for all n)
= lim

n→∞ P(0 ↔ ∂Bn) =
√
q. (3.3)

The numbers p and q will remain fixed throughout the remainder of this section, unless
otherwise mentioned.

3.2. Uniformity of connectivities in infinite volume. The identity (3.3) leads to the fol-
lowing lemma, which shows that P(0 ↔ x) ≈ q whenever |x | is large.

Lemma 3.1. For any x, P(0 ↔ x) ≥ q, and given any ε > 0, there exists C depending
on ε such that whenever |x |∞ > C (where |x |∞ denotes the ℓ∞ norm of x), we have
P(0 ↔ x) ≤ q + ε.

Proof. Take any x . By the uniqueness of the infinite open cluster, the event 0 ↔ x is
implied by the events that 0 ↔ ∞ and x ↔ ∞ (with probability one). By the FKG
property and the identity (3.3), this implies that

P(0 ↔ x) ≥ P(0 ↔ ∞, x ↔ ∞)

≥ P(0 ↔ ∞)P(x ↔ ∞) = q.

This completes the proof of the lower bound. Next, for each n, let Bn(x) denote the cube
Bn shifted by x , that is, the set x + Bn . Let ∂Bn(x) denote the boundary of Bn(x). Take
any x ̸= 0 and k < 1

2 |x |∞ − 1. Then the cubes ∂Bk and ∂Bk(x) are disjoint. Moreover,
there is a finite set S of edges in Zd that are not edges of Bk or Bk(x), such that

• if the edges in S are all open, then all vertices of ∂Bk and ∂Bk(x) are in the same
connected component, and

• every edge that is incident to a vertex in ∂Bk ∪ ∂Bk(x) but is not an edge of Bk or
Bk(x), is a member of S.

Let F denote the event that all edges in S are open. Conditional on F , the configurations
of open edges in Bk and Bk(x) are independent, and follow the random cluster models
on these cubes with wired boundary condition. Take any l < k, and let E be the event
{0 ↔ ∂Bl} ∩ {x ↔ ∂Bl(x)}. Since E and F are increasing events and P(F) > 0, the
FKG property implies that P(E |F) ≥ P(E). Consequently,

P(0 ↔ x) ≤ P(E) ≤ P(E |F)
= P(0 ↔ ∂Bl , x ↔ ∂Bl(x)|F)
= P1

k (0 ↔ ∂Bl)P1
k (x ↔ ∂Bl(x))

= (P1
k (0 ↔ ∂Bl))2.

Take any ε > 0. For fixed l, if k is large enough, then

(P1
k (0 ↔ ∂Bl))2 ≤ (P(0 ↔ ∂Bl))2 +

ε

2
.
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But if l is large enough, then (P(0 ↔ ∂Bl))2 ≤ q + ε
2 . Thus, if |x | is large enough, then

we can choose l and k so that both inequalities are satisfied. This proves the claimed
upper bound. ⊓⊔

3.3. Uniformity of two-point correlations in finite volume. Our next goal, roughly speak-
ing, is to show that the conclusion of Lemma 3.1 holds even if we consider the model
restricted to a cube, as long as 0 and x are not too close to the boundary of the cube. The
following lemma provides the upper bound.

Lemma 3.2. Given any ε > 0 and n, there is some k > 0 depending only on d and ε (and
not on n), such that whenever x, y ∈ Bn and |x− y|∞ > k, we have P0

n (x ↔ y) ≤ q+ε.

Proof. It is a simple consequence of the FKG property that P0
n (x ↔ y) is an increasing

function of n. As a result, we have

P0
n (x ↔ y) ≤ P(x ↔ y)

for any x, y ∈ Bn . But by Lemma 3.1 and the translation-invariance of the infinite
volume measure, there is some k depending only on d and ε such that P(x ↔ y) ≤ q +ε
whenever |x − y|∞ > k. This completes the proof of the lemma. ⊓⊔

The lower bound in a finite cube is more complicated. It requires a version of the so-
called “Pisztora renormalization argument” [52], due to [29]. First, recall the definition
of the FK-Ising model on Bn under arbitrary boundary condition. A general boundary
condition ξ refers to a partition of the set of boundary vertices of Bn , where we think of all
vertices within the same member of the partition as being connected, when defining k(ω)
in (3.1). So, for example, ξ consists of only singletons for the free boundary condition,
and ξ consists of only the full set ∂Bn for the wired boundary condition. Let Pξ

k denote
the model on Bk under boundary condition ξ . For a given realization of the model on
Bn , we say that a “block” Bk(x) ⊆ Bn is “good” if x ∈ kZd , and the following hold:

• There is an open cluster in Bk(x) that touches all faces of Bk(x).
• Any open path in Bk(x) of length k is contained in this cluster.

We will frequently refer to the above open cluster as the “giant open cluster” of Bk(x).
Two blocks Bk(x) and Bk(y) are said to be neighbors if x and y are neighbors in
kZd . Note that two neighboring blocks have a substantial overlap. In particular, if two
neighboring blocks are both good (in a realization of the model), then the conditions
imply that the large clusters in the two blocks also intersect. In this situation, we say that
the two blocks are “connected”.

The result of [29] that we are going to use is that for any k, any boundary condition
ξ on B2k and any p greater than the critical value,

Pξ
2k(Bk is good) ≥ 1 − e−ck, (3.4)

where c depends only on p and d. This was proved for d ≥ 3 in [29, Equation (3.1)]
(see also [9, Theorem 2.1]). For d = 2, it follows from the RSW estimate in [28]. A
consequence of this is the following lemma.

Lemma 3.3. Given any ε > 0, the following is true for all large enough even k (with the
threshold depending only on d and ε). Suppose that Bk(x) and Bk(y) are both contained
in Bn, and are disjoint. Then, under P0

n , the probability that any open path of size k
2 in

Bk(x) is connected to any open path of size k
2 in Bk(y) is at least 1 − ε.
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Proof. Let P be an open path of length k
2 in Bk(x). Consider blocks of the form Bl(z),

z ∈ lZd , where l = k
2 . Let a be the starting point of P . By the nature of the blocks,

there is at least one block D such that a ∈ D and the ℓ1 distance of a from ∂D is at least
ld
2 . (For example, if a = (a1, . . . , ad), then we can choose D = Bl(z) where zi is the

integer multiple of l that is closest to ai , so that |(zi ± l)− ai | ≥ l
2 .) Then the part of P

starting from a and continuing until the first time P hits ∂D, has length at least ld
2 ≥ l

(because d ≥ 2). Thus, if D is a good block, then this part of P lies within the giant
open cluster of P as in the definition of good block above.

If k is chosen large enough (depending on d and ε), then (3.4) shows that with
probability at least 1 − ε

2 , all blocks intersecting Bk(x) or Bk(y) are good. On the other
hand, as argued in the proof of [29, Lemma 3.1] with the help of the main result of [43],
the collection of good blocks forms a finitely dependent percolation process on lZd ∩Bn ,
which dominates an i.i.d. percolation process with parameter q, where q can be made
as close to 1 as we want by choosing k large enough. Consequently, by choosing k large
enough we can guarantee that with probability at least 1 − ε

2 , the giant open cluster of
any good block intersecting Bk(x) is connected to the giant open cluster of any good
block intersecting Bk(y). Combining this with our previous deductions, we get that with
probability at least 1− ε, any open path of size k

2 in Bk(x) is connected to any open path
of size k

2 in Bk(y). ⊓⊔
We are now ready to prove the lower bound.

Lemma 3.4. Given any n and ε > 0, there exist positive integers k, l depending only on
d and ε (and not on n) such that whenever x, y ∈ Bn, |x − y|∞ ≥ 2k, and x, y are at
an ℓ∞ distance at least l from ∂Bn, we have P0

n (x ↔ y) ≥ q − ε.

Proof. Take any n, k, l, x and y as in the statement of the theorem, where k and l will be
chosen later. We will choose k to be even and k < l < n. Let E be the event that there
is an open cluster Cx in Bk(x) \ Bk

2
(x) connecting ∂Bk(x) and ∂Bk

2
(x), and an open

cluster Cy in Bk(y) \ Bk
2
(y) connecting ∂Bk(y) and ∂Bk

2
(y), such that Cx ̸↔ Cy in Bn .

Note that if x ↔ ∂Bk(x), y ↔ ∂Bk(y), and E fails to happen, then the open clusters
connecting x to ∂Bk(x) and y to ∂Bk(y) must be connected in Bn , and therefore x ↔ y.
Thus, by the FKG inequality,

P0
n (x ↔ y) ≥ P0

n (x ↔ ∂Bk(x), y ↔ ∂Bk(y)) − P0
n (E)

≥ P0
n (x ↔ ∂Bk(x))P0

n (y ↔ ∂Bk(y)) − P0
n (E). (3.5)

Let Qx denote the FK-Ising model on Bl(x) under free boundary condition. Since
k < l < n and Bl(x) ⊆ Bn , the FKG property implies that

P0
n (x ↔ ∂Bk(x)) ≥ Qx (x ↔ ∂Bk(x)) = P0

l (0 ↔ ∂Bk).

Similarly,

P0
n (y ↔ ∂Bk(y)) ≥ P0

l (0 ↔ ∂Bk).

By the definition of q, we can choose k large enough (depending on d and ε) such that

P(0 ↔ ∂Bk) ≥ √
q − ε

8
.
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Having chosen k like this, we can then use the definition of the infinite volume measure
to find l large enough (depending on d, ε and k) such that

P0
l (0 ↔ ∂Bk) ≥ P(0 ↔ ∂Bk) − ε

8
.

Thus, with such choices of k and l, we get that P0
n (x ↔ ∂Bk(x)) and P0

n (y ↔ ∂Bk(y))
are both bounded below by

√
q − ε

4 . Plugging this into (3.5), we get

P0
n (x ↔ y) ≥ q − ε

2
− P0

n (E).

Finally, with a large enough choice of k (depending on d and ε), Lemma 3.3 implies that
P0
n (E) <

ε
2 , which completes the proof. ⊓⊔

Using Lemmas 3.2 and 3.4, and a standard coupling of the Ising and FK-Ising models,
we are now ready to state and prove the following theorem, which is the main result of
this subsection.

Theorem 3.5. Letβ0 be the critical temperature of the ordinary Isingmodel in dimension
d. Take any β > β0 and let p := 1 − e−2β , so that p is a supercritical probability for
the FK-Ising model. Let q be defined as in equation (3.2). Take any ε ∈ (0, 1). For each
n, let

δn = δn(β, d, ε) := max{|⟨σiσ j ⟩ − q| : i, j ∈ B⌊(1−ε)n⌋, |i − j |1 ≥ εn},

where ⟨·⟩ denotes averaging with respect to the Ising model on Bn at inverse temperature
β and free boundary condition. Then δn → 0 as n → ∞.

Proof. Take any n. Let P0
n (·) denote probability computed under the FK-Ising model

with parameter p on Bn under free boundary condition. It is a standard fact [35, Theorem
1.16] that for any i, j ∈ Bn ,

⟨σiσ j ⟩ = P0
n (i ↔ j). (3.6)

Using this identity and Lemmas 3.2 and 3.4, it is now straightforward to prove Theorem
3.5. ⊓⊔

3.4. Uniformity of four-point correlations in finite volume. In this subsection, we show
that for most quadruples of vertices i, j, k, l ∈ Bn , ⟨σiσ jσkσl⟩ ≈ q2 if n is large, where
the expectation is with respect to the Ising model with free boundary condition on Bn at
a supercritical inverse temperature β, and q is as in (3.2). First, we need the following
analogue of Lemma 3.2 for four-point connectivities. Let p be as in Theorem 3.5.

Lemma 3.6. Given any ε > 0 and n, there is some k > 0 depending only on d and ε
(and not on n), such that if x, y, w, z ∈ Bn are such that all interpoint ℓ∞ distances are
greater than 2k, and all four points are at least at an ℓ∞ distance k from the boundary,
then we have

P0
n (x ↔ y ↔ w ↔ z) ≤ q2 + ε, P0

n (x ↔ y ̸↔ w ↔ z) ≤ ε.
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Proof. For the proof of the first inequality, we proceed as in the proof of Lemma 3.1.
Since the interpoint distances are all greater than 2k, the cubes Bk(x), Bk(y), Bk(w) and
Bk(z) are disjoint. Let F be the event that all edges of Bn that do not belong to these
cubes are open. Then by the FKG property, we have that for any l < k,

P0
n (x ↔ y ↔ w ↔ z) ≤ P0

n (x ↔ ∂Bl (x), y ↔ ∂Bl(y), w ↔ ∂Bl (w), z ↔ ∂Bl (z))

≤ P0
n (x ↔ ∂Bl (x), y ↔ ∂Bl(y), w ↔ ∂Bl (w), z ↔ ∂Bl (z)|F).

But, given F , the configurations inside the cubes Bk(x), Bk(y), Bk(w) and Bk(z) are
independent, and follow the FK-Ising models in these cubes with wired boundary con-
dition. Thus, we get

P0
n (x ↔ y ↔ w ↔ z) ≤ (P1

k (0 ↔ ∂Bl))4.

By the equality of the infinite volume measures under free and wired boundary condi-
tions, we have that for l fixed and k sufficiently large (depending on l, d and ε),

(P1
k (0 ↔ ∂Bl))4 ≤ (P(0 ↔ ∂Bl))4 +

ε

2
.

By the definition of q, a large enough value of l ensures that

(P(0 ↔ ∂Bl))4 ≤ q2 +
ε

2
.

Combining the last three displays proves the first claim of the lemma.
For the second claim, note that the event x ↔ y ̸↔ w ↔ z implies that x ↔ ∂Bk(x),

y ↔ ∂Bk(y), w ↔ ∂Bk(w), and z ↔ ∂Bk(z), but the open cluster joining y to ∂Bk(y)
is not connected to the open cluster joining w to ∂Bk(w). By Lemma 3.3, the probability
of this event can be made as small as we like by choosing k large enough. ⊓⊔
The next lemma is the analogue of Lemma 3.4 for four-point connectivities.

Lemma 3.7. Given any ε > 0 and n, there exist k and l depending only on d and ε
(and not on n), such that if x, y, w, z ∈ Bn are such that all interpoint ℓ∞ distances are
greater than 2k, and all four points are at least at an ℓ∞ distance l from the boundary,
then we have

P0
n (x ↔ y ↔ w ↔ z) ≥ q2 − ε.

Proof. LetCx andCy be as in the proof of Lemma 3.4, and defineCw andCz analogously.
Let E be the event at least two of these clusters are not connected to each other. Then,
as in the proof of Lemma 3.4, we can use Lemma 3.3 to conclude that P0

n (E) <
ε
2 if k

is chosen large enough. Also, as in the proof of Lemma 3.4, we deduce that

P0
n (x ↔ y ↔ w ↔ z)

≥ P0
n (x ↔ ∂Bk(x), y ↔ ∂Bk(y), w ↔ ∂Bk(w), z ↔ ∂Bk(z)) − P0

n (E).

The proof is now completed by applying the FKG inequality to replace the first probabil-
ity on the right by the product of the probabilities of the four events, and then proceeding
as in the proof of Lemma 3.4 to show that these probabilities are all bounded below by√
q − ε

100 if k and l are large enough. ⊓⊔
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Finally, the following lemma gives the analogue of equation (3.6) for four-point corre-
latons.

Lemma 3.8. Take any β > 0 and let p := 1−e−2β . Take any n. Let ⟨·⟩ denote averaging
with respect to the Ising model on Bn at inverse temperature β and free boundary
condition, and let P0

n (·) denote probability computed under the FK-Ising model with
parameter p on Bn under free boundary condition. Then for any distinct i, j, k, l ∈ Bn,

⟨σiσ jσkσl⟩ = P0
n (Any open cluster contains even number of elements from {i, j, k, l})

= P0
n (i ↔ j ↔ k ↔ l) + P0

n (i ↔ j ̸↔ k ↔ l)

+ P0
n (i ↔ k ̸↔ j ↔ l) + P0

n (i ↔ l ̸↔ j ↔ k).

Proof. It is a standard fact that a configuration from the Ising model on Bn at inverse
temperature β and free boundary condition may be obtained as follows. First, generate
a configuration from the FK-Ising model on Bn with parameter p, under free boundary
condition. Then, take the connected components of vertices in this configuration, and
independently for each component, assign the same spin to all vertices, where the spin
is chosen to be 1 or −1 with equal probability. (For a proof, see [35, Theorem 1.16].)

Now take any distinct i, j, k, l ∈ Bn . To compute ⟨σiσ jσkσl⟩, we consider the above
coupling and compute the conditional expectations given the FK-Ising configuration,
which we denote by ⟨σiσ jσkσl⟩′. The following are easy to see:

• If i, j, k, l are all in the same cluster, them ⟨σiσ jσkσl⟩′ = 1.
• If two of i, j, k, l are in one cluster and the other two are in a different cluster, then
⟨σiσ jσkσl⟩′ = 1.

• In all other cases, ⟨σiσ jσkσl⟩′ = 0.

Taking unconditional expectation gives the desired result. ⊓⊔
We now arrive at the main result of this subsection.

Theorem 3.9. Let d, β0, β and q be as in Theorem 3.5. Take any ε ∈ (0, 1). For each n,
let

γn = γn(β, d, ε) := max{|⟨σiσ jσkσl⟩ − q2| : i, j, k, l ∈ B⌊(1−ε)n⌋,

all pairwise ℓ1 distances between i, j, k, l are ≥ εn},
where ⟨·⟩ denotes averaging with respect to the Ising model on Bn at inverse temperature
β and free boundary condition. Then γn → 0 as n → ∞.

Proof. It is easy to see that Theorem 3.9 follows from the representation of the four-
point correlation given in Lemma 3.8, together with the upper and lower bounds given
in Lemmas 3.6 and 3.7. ⊓⊔

3.5. Concentration of the magnetization and the overlap in the Ising model. To gener-
alize the results for two-point and four-point correlations to l-point correlations for all
even l, as well as for other purposes, we need the following theorem.

Theorem 3.10. Let d, β0, β and q be as in Theorem 3.5. Let m be the magnetization and
R1,2 be the overlap between two independent replicas in the ferromagnetic Ising model
on Bn under free boundary condition and inverse temperature β. Then ⟨(m2 −q)2⟩ → 0
and ⟨(R2

1,2 − q2)2⟩ → 0 as n → ∞.
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Proof. Throughout this proof, C,C1,C2, . . . will denote constants that depend only on
d, whose values may change from line to line. Fix some n and some ε ∈ (0, 1). Let
m := ⌊(1 − ε)n⌋. Let δn be as in Theorem 3.5 and γn be as in Theorem 3.9. Let

S := {(i, j) ∈ Bn × Bn : i, j ∈ Bm, |i − j |1 ≥ εn}, (3.7)

and let

T := {(i, j, k, l) ∈ B4
m : all pairwise ℓ1 distances between i, j, k, l are ≥ εn}.

Let Sc := B2
n\S and T c := B4

n\T . Now, if (i, j) ∈ Sc, then either at least one of i and
j is in Bn \ Bm , or |i − j |1 < εn. From this observation, it follows that

|Sc| ≤ Cεn2d + Cεdn2d , (3.8)

where C depends only on d. Since

|⟨m2⟩ − q| ≤ 1
|Bn|2

∑

i, j∈Bn
|⟨σiσ j ⟩ − q| ≤ |Sc|

|Bn|2
+
|S|δn
|Bn|2

,

this shows that

lim sup
n→∞

|⟨m2⟩ − q| ≤ Cε. (3.9)

On the other hand,

|⟨m4⟩ − q2| ≤ 1
|Bn|4

∑

i, j,k,l∈Bn
|⟨σiσ jσkσl⟩ − q2|

≤ |T c|
|Bn|4

+
|T |γn
|Bn|4

,

which shows that

lim sup
n→∞

|⟨m4⟩ − q2| ≤ Cε. (3.10)

Combining (3.9) and (3.10), we get

lim sup
n→∞

⟨(m2 − q)2⟩ = lim sup
n→∞

(⟨m4⟩ − 2⟨m2⟩q + q2)

= lim sup
n→∞

(⟨m4⟩ − q2 − 2(⟨m2⟩ − q)q)

≤ Cε.

Since ε is arbitrary, this completes the proof of the first assertion of the theorem. Next,
note that

⟨R2
1,2⟩ =

〈(
1

|Bn|
∑

i∈Bn
σ 1
i σ 2

i

)2〉

= 1
|Bn|2

∑

i, j∈Bn
⟨σ 1

i σ 2
i σ 1

j σ
2
j ⟩

= 1
|Bn|2

∑

i, j∈Bn
⟨σiσ j ⟩2.
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Proceeding as above, this shows that ⟨R2
1,2⟩ → q2 as n → ∞. Similarly,

⟨R4
1,2⟩ =

1
|Bn|4

∑

i, j,k,l

⟨σiσ jσkσl⟩2,

which can be used as above to show that ⟨R4
1,2⟩ → q4 as n → ∞. Combining, we get

that ⟨(R2
1,2 − q2)2⟩ → 0. ⊓⊔

Corollary 3.11. In the setting of Theorem 3.10, as n → ∞, the law of m tends to the
probability measure that puts equal mass on ±√

q, and the law of R1,2 tends to the
probability measure that puts equal mass on ±q.

Proof. Simply combine Theorem 3.10 with the observation that ⟨R1,2⟩ = ⟨m⟩ = 0 by
the invariance of the model under the transform σ → −σ . ⊓⊔

3.6. Proof of Theorem 2.10. For l = 2, the proof is contained in the proof of Theorem
3.10. Take any even l ≥ 4. Note that

1
|Bn|l

∑

i1,...,il∈Bn
⟨σi1 · · · σil ⟩ = ⟨ml⟩, 1

|Bn|l
∑

i1,...,il∈Bn
⟨σi1 · · · σil ⟩2 = ⟨Rl

1,2⟩.

Thus, by the Cauchy–Schwarz inequality,

1
|Bn|l

∑

i1,...,il∈Bn
|⟨σi1 · · · σil ⟩ − q

l
2 | ≤

[
1

|Bn|l
∑

i1,...,il∈Bn
(⟨σi1 · · · σil ⟩ − q

l
2 )2

] 1
2

=
[

1
|Bn|l

∑

i1,...,il∈Bn
(⟨σi1 · · · σil ⟩2 − 2q

l
2 ⟨σi1 · · · σil ⟩ + ql)

] 1
2

= [⟨Rl
1,2⟩ − 2q

l
2 ⟨ml⟩ + ql ] 1

2 . (3.11)

Now, by the fact that R1,2 and q are both in [0, 1], and the inequality

|x l
2 − y

l
2 | ≤ l

2
|x − y|

that holds for all x, y ∈ [−1, 1], we have

|⟨Rl
1,2⟩ − ql | ≤ ⟨|Rl

1,2 − ql |⟩ ≤ l
2
⟨|R2

1,2 − q2|⟩.

Thus, by Theorem 3.10, ⟨Rl
1,2⟩ → ql as n → ∞. Similarly,

|⟨ml⟩ − q
l
2 | ≤ ⟨|ml − q

l
2 |⟩ ≤ l

2
⟨|m2 − q|⟩,

and so, ⟨ml⟩ → q
l
2 as n → ∞. Using these in (3.11) completes the proof.
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4. Proofs of the Main Results

In this section, we will complete the proofs of the results from Sect. 2 (except Theorem
2.10, which has already been proved in the previous section). Throughout this section,
we will let ⟨·⟩ denote averaging with respect to the model on Bn with Hamiltonian
Hn defined in (2.1), at inverse temperature β. Diverging from the notation used in the
previous section, we will use ⟨·⟩0 to denote averaging with respect to the Ising model on
Bn at inverse temperature β and free boundary condition (because this model corresponds
to the case h = 0 of our model). The following lemma (which is just the central limit
theorem for the moment generating function) will be used several times.

Lemma 4.1. Take any ai ∈ R, i ∈ Bn. Let θ > 0 be a constant such that |ai | ≤ θ/2 for
all i , and E(eθ |J0|) < ∞. Then

∣∣∣∣E
[

exp
(

1√|Bn|
∑

i∈Bn
ai Ji

)]
− exp

(
1

2|Bn|
∑

i∈Bn
a2
i

)∣∣∣∣ ≤ C

|Bn|
3
2

∑

i∈Bn
|ai |3,

where C is a positive constant that depends only on the law of the Ji ’s and the choice of
θ .

Proof. Take any θ as in the statement of the theorem. We will let C,C1,C2, . . . denote
any positive constants whose values depend only on d, on the law of the Ji ’s and on the
choice of θ , and whose values may change from line to line. First, note that for any k,

E|J0|k ≤ k!
θk

E(eθ |J0|) ≤ Ck!
θk

. (4.1)

By the above inequality and the facts that E(J0) = 0, E(J 2
0 ) = 1, we get that for any i ,

E
[

exp
(

ai Ji√|Bn|

)]
= 1 +

a2
i

2|Bn|
+ Ri , (4.2)

where

Ri :=
∞∑

k=3

E
(

aki J
k
i

k!|Bn|
k
2

)
.

Note that by (4.1) and the fact that |ai | ≤ θ/2 for all i ,

|Ri | ≤
∞∑

k=3

|ai |k

k!|Bn|
k
2

E|Ji |k ≤
∞∑

k=3

C1|ai |3(θ/2)k−3

|Bn|
k
2 θk

≤ C2|ai |3

|Bn|
3
2

. (4.3)

Similarly,

∣∣∣∣exp
(

a2
i

2|Bn|

)
− 1 − a2

i

2|Bn|

∣∣∣∣ =
∞∑

k=2

a2k
i

k!2k |Bn|k
≤ Ca4

i

|Bn|2
. (4.4)

Now, for any N , and any x1, . . . , xN , y1, . . . , yN ∈ R, if we let K be the maximum of
|xi | and |yi | over all i , then
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∣∣∣∣
N∏

i=1

xi −
N∏

i=1

yi

∣∣∣∣ ≤
N∑

i=1

|x1 · · · xi−1yi · · · yN − x1 · · · xi yi+1 · · · yN |

≤
N∑

i=1

K N−1|xi − yi |. (4.5)

By (4.2), (4.3), and the inequalities 1 + x ≤ ex and |ai | ≤ θ/2,

0 ≤ E
[

exp
(

ai Ji√|Bn|

)]
≤ eC/|Bn |.

Similarly, by (4.4),

0 ≤ exp
(

a2
i

2|Bn|

)
≤ eC/|Bn |.

Thus, by (4.2), (4.3), (4.4) and (4.5),
∣∣∣∣E

[
exp

(
1√|Bn|

∑

i∈Bn
ai Ji

)]
− exp

(
1

2|Bn|
∑

i∈Bn
a2
i

)∣∣∣∣

=
∣∣∣∣
∏

i∈Bn
E

[
exp

(
ai Ji√|Bn|

)]
−

∏

i∈Bn
exp

(
a2
i

2|Bn|

)∣∣∣∣

≤ (eC/|Bn |)|Bn |
∑

i∈Bn

∣∣∣∣E
[

exp
(

ai Ji√|Bn|

)]
− exp

(
a2
i

2|Bn|

)∣∣∣∣

≤ C

|Bn|
3
2

∑

i∈Bn
|ai |3.

This completes the proof of the lemma. ⊓⊔

4.1. Proof of Theorem 2.3. In this proof, o(1) will denote any quantity, deterministic or
random, whose absolute value can be bounded by a deterministic quantity depending
only on n (and the law of the Ji ’s and our choices of β and d) that tends to zero as
n → ∞. We begin with the derivation of the approximate formula for the quenched
expectation of the magnetization. Let Xn be defined as in (2.2), and define the random
variable

L = L(σ ) := βh√|Bn|
∑

i∈Bn
Jiσi , (4.6)

where σ is drawn from the Ising model on Bn at inverse temperature β and free bound-
ary condition. Let m and R1,2 be the magnetization of σ and the overlap between two
configurations drawn independently from the Gibbs measure of the Ising model, respec-
tively. Let β and q be as in Theorem 3.5. The first step in the proof of Theorem 2.3 is
the following lemma.
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Lemma 4.2. Let L be as above. Then

lim
n→∞E[(⟨eL⟩0 − e

1
2 β2h2(1−q) cosh Xn)

2] = 0.

Proof. Note that by Lemma 4.1,

E⟨eL ⟩2
0 = E⟨eL(σ 1)+L(σ 2)⟩0

= E
〈
exp

(
βh√|Bn|

∑

i∈Bn
Ji (σ 1

i + σ 2
i )

)〉

0

=
〈
exp

(
β2h2

2|Bn|
∑

i∈Bn
(σ 1

i + σ 2
i )

2
)

+ o(1)
〉

0

= eβ2h2⟨eβ2h2R1,2⟩0 + o(1). (4.7)

By Corollary 3.11, this shows that

lim
n→∞E⟨eL⟩2

0 = eβ2h2
cosh(β2h2q). (4.8)

Next, again by Lemma 4.1,

eβ2h2(1−q)E cosh2 Xn = 1
4
eβ2h2(1−q)E(e2Xn + e−2Xn + 2)

= 1
2
eβ2h2(1−q)(e2β2h2q + 1) + o(1)

= eβ2h2
cosh(β2h2q) + o(1). (4.9)

Finally, by another application of Lemma 4.1,

e
1
2 β2h2(1−q)E[⟨eL⟩0 cosh Xn] =

1
2
e

1
2 β2h2(1−q)E[⟨eL+Xn ⟩0 + ⟨eL−Xn ⟩0]

= 1
2
e

1
2 β2h2(1−q)E

[〈
exp

(
βh√|Bn|

∑

i∈Bn
Ji (σi +

√
q)

)〉

0

+
〈
exp

(
βh√|Bn|

∑

i∈Bn
Ji (σi − √

q)
)〉

0

]

= 1
2
e

1
2 β2h2(1−q)

[〈
exp

(
β2h2

2|Bn|
∑

i∈Bn
(σi +

√
q)2

)〉

0

+
〈
exp

(
β2h2

2|Bn|
∑

i∈Bn
(σi − √

q)2
)〉

0
+ o(1)

]

= 1
2
eβ2h2 [⟨eβ2h2√qm⟩0 + ⟨e−β2h2√qm⟩0] + o(1). (4.10)

But, by Corollary 3.11,

lim
n→∞⟨eβ2h2√qm⟩0 = lim

n→∞⟨e−β2h2√qm⟩0 = cosh(β2h2q).
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Thus,

lim
n→∞ e

1
2 β2h2(1−q)E[⟨eL ⟩0 cosh Xn] = eβ2h2

cosh(β2h2q). (4.11)

Combining (4.8), (4.9) and (4.11), we get

lim
n→∞E[(⟨eL⟩0 − e

1
2 β2h2(1−q) cosh Xn)

2]

= lim
n→∞E[⟨eL⟩2

0 − 2e
1
2 β2h2(1−q)⟨eL⟩0 cosh Xn + eβ2h2(1−q) cosh2 Xn] = 0.

This completes the proof of the lemma. ⊓⊔
The next step in the proof of Theorem 2.3 is the following lemma.

Lemma 4.3. Let L be as above. Then

lim
n→∞E[(⟨meL⟩0 − √

qe
1
2 β2h2(1−q) sinh Xn)

2] = 0.

Proof. Take any j ∈ Bn . By a computation similar to the one that led to equation (4.7),
we get

E⟨σ j eL ⟩2
0 = eβ2h2⟨σ 1

j σ
2
j e

β2h2R1,2⟩0 + o(1).

Averaging over j , we get

1
|Bn|

∑

j∈Bn
E⟨σ j eL ⟩2

0 = eβ2h2⟨R1,2eβ2h2R1,2⟩0 + o(1).

By Corollary 3.11, this shows that

lim
n→∞

1
|Bn|

∑

j∈Bn
E⟨σ j eL⟩2

0 = qeβ2h2
sinh(β2h2q). (4.12)

Next, by a computation similar to the one that led to equation (4.9), we get

qeβ2h2(1−q)E sinh2 Xn = qeβ2h2
sinh(β2h2q) + o(1). (4.13)

Finally, by a computation similar to the one that led to equation (4.10), we get

√
qe

1
2 β2h2(1−q)E[⟨σ j eL⟩0 sinh Xn]

=
√
q

2
eβ2h2 [⟨σ j eβ2h2√qm⟩0 − ⟨σ j e−β2h2√qm⟩0] + o(1).

Averaging this over j , we get

1
|Bn|

∑

j∈Bn

√
qe

1
2 β2h2(1−q)E[⟨σ j eL ⟩0 sinh Xn] =

√
qeβ2h2⟨m sinh(β2h2√qm)⟩0 + o(1).

By Corollary 3.11, this shows that

lim
n→∞

1
|Bn|

∑

j∈Bn

√
qe

1
2 β2h2(1−q)E[⟨σ j eL⟩0 sinh Xn] = qeβ2h2

sinh(β2h2q). (4.14)
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Combining (4.12), (4.13) and (4.14), we get

lim
n→∞

1
|Bn|

∑

j∈Bn
E[(⟨σ j eL⟩0 − √

qe
1
2 β2h2(1−q) sinh Xn)

2] = 0. (4.15)

An application of the Cauchy–Schwarz inequality shows that the above quantity is
an upper bound for the quantity that we want to show is converging to zero, thereby
completing the proof. ⊓⊔

The final ingredient we need is the following.

Lemma 4.4. Let β be as in Theorem 3.5. Then ⟨(R1,2 − m(σ 1)m(σ 2))2⟩0 → 0 as
n → ∞, where σ 1 and σ 2 are drawn independently from the Ising model on Bn at
inverse temperature β and free boundary condition.

Proof. Note that

⟨(R1,2 − m(σ 1)m(σ 2))2⟩0 = ⟨R2
1,2⟩0 − 2⟨R1,2m(σ 1)m(σ 2)⟩0 + ⟨m2⟩2

0.

By Corollary 3.11, ⟨R2
1,2⟩0 → q2 and ⟨m2⟩0 → q as n → ∞. Now, note that

⟨R1,2m(σ 1)m(σ 2)⟩0 =
〈

1
|Bn|3

∑

i, j,k∈Bn
σ 1
i σ 2

i σ 1
j σ

2
k

〉

0

= 1
|Bn|3

∑

i, j,k∈Bn
⟨σiσ j ⟩0⟨σiσk⟩0.

Using the same tactics as in the proof of Theorem 3.10, it is now easy to show that the
above quantity tends to q2 as n → ∞. This completes the proof. ⊓⊔

We are now ready to complete the proof of Theorem 2.3.

Proof of Theorem 2.3. First, note that by Jensen’s inequality,

⟨eL⟩0 ≥ e⟨L⟩0 = 1. (4.16)

Thus, by (4.16) and the Cauchy–Schwarz inequality,

⟨|m2 − q|⟩ = ⟨|m2 − q|eL ⟩0

⟨eL⟩0

≤ ⟨|m2 − q|eL ⟩0 ≤
√

⟨(m2 − q)2⟩0⟨e2L ⟩0.

Taking expectation on both sides and applying Jensen’s inequality, we get

E(⟨|m2 − q|⟩) ≤
√

⟨(m2 − q)2⟩0E(⟨e2L ⟩0).

By Theorem 3.10, the first term within the square-root tends to zero as n → ∞. By
Lemma 4.1, the second term is uniformly bounded in n. Thus, E(⟨|m2 − q|⟩) → 0 as
n → ∞. Since

⟨(m2 − q)2⟩ ≤ 2⟨|m2 − q|⟩,



Features of a Spin Glass in the Random Field Ising Model Page 23 of 32 93

this proves the first claim of the theorem. Next, note that

⟨m⟩ = ⟨meL⟩0

⟨eL ⟩0
.

Thus, if we let

a := √
qe

1
2 β2h2(1−q) sinh Xn, b := e

1
2 β2h2(1−q) cosh Xn, c := a

b
= √

q tanh Xn,

then by (4.16),

|⟨m⟩ − c| =
∣∣∣∣
⟨meL⟩0

⟨eL ⟩0
− a

b

∣∣∣∣ =
|b⟨meL⟩0 − a⟨eL ⟩0|

b⟨eL ⟩0

≤ |b⟨meL ⟩0 − a⟨eL ⟩0|
b

≤ |⟨meL⟩0 − a| +
a
b
|⟨eL⟩0 − b|.

Since b ≥ 1, this shows that

E|⟨m⟩ − c| ≤ E|⟨meL⟩0 − a| + E(a|⟨eL ⟩0 − b|)

≤
√
E[(⟨meL⟩0 − a)2] +

√
E(a2)E[(⟨eL⟩0 − b)2]. (4.17)

By Lemmas 4.2, 4.3, and the fact that E(a2) is uniformly bounded in n (by Lemma 4.1),
we get that the above quantity tends to zero as n → ∞. But, since ⟨m⟩ and c are both in
[−1, 1],

E[(⟨m⟩ − c)2] ≤ 2E|⟨m⟩ − c|.

This proves (2.6). To prove (2.7), note that by Lemma 4.2 and the inequality (4.16),
proceeding as in the derivation of (4.17), we get

1
|Bn|

∑

j∈Bn
E|⟨σ j ⟩ − √

q tanh Xn| =
1

|Bn|
∑

j∈Bn
E

∣∣∣∣
⟨σ j eL⟩0

⟨eL ⟩0
− a

b

∣∣∣∣

= 1
|Bn|

∑

j∈Bn
E

( |b⟨σ j eL⟩0 − a⟨eL ⟩0|
b⟨eL ⟩0

)

≤ 1
|Bn|

∑

j∈Bn
E

( |b⟨σ j eL⟩0 − a⟨eL ⟩0|
b

)

≤
√
E(a2)E[(⟨eL⟩0 − b)2] +

1
|Bn|

∑

j∈Bn

√
E[(⟨σ j eL ⟩0 − a)2].

We have already seen that the first term tends to zero as n → ∞. The second term is
bounded above by

[
1

|Bn|
∑

j∈Bn
E[(⟨σ j eL⟩0 − a)2]

] 1
2

.
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By (4.15), this also tends to zero as n → ∞. Thus,

lim
n→∞

1
|Bn|

∑

j∈Bn
E|⟨σ j ⟩ − √

q tanh Xn| = 0.

Thus, by (2.6) and the fact that

(⟨σ j ⟩ − √
q tanh Xn)

2 ≤ 2|⟨σ j ⟩ − √
q tanh Xn|,

we get (2.7). Finally, note that by (4.16) and the Cauchy–Schwarz inequality,

E⟨|R1,2 − m(σ 1)m(σ 2)|⟩ = E
( ⟨|R1,2 − m(σ 1)m(σ 2)|eL(σ 1)+L(σ 2)⟩0

⟨eL ⟩2
0

)

≤ E⟨|R1,2 − m(σ 1)m(σ 2)|eL(σ 1)+L(σ 2)⟩0

≤
√

⟨(R1,2 − m(σ 1)m(σ 2))2⟩0E⟨e2L(σ 1)+2L(σ 2)⟩0

By Lemma 4.4, the first term inside the square-root tends to zero as n → ∞. The second
term is uniformly bounded in n, by Lemma 4.1. This shows that the expression on the
left tends to zero. But note that

E⟨(R1,2 − m(σ 1)m(σ 2))2⟩ ≤ 2E⟨|R1,2 − m(σ 1)m(σ 2)|⟩.

This completes the proof of Theorem 2.3.

4.2. Proof of Theorem 2.1. All assertions of Theorem 2.1 are direct consequences of the
properties of m from Theorem 2.3 and the result that E⟨(R1,2 − m(σ 1)m(σ 2))2⟩ → 0
as n → ∞.

4.3. Proof of Theorem 2.2. Let A := {−√
q,

√
q}3 ⊆ R3, and let B denote the set dis-

played in (2.5). Consider the map f : R3 → R3 defined as f (x, y, z) := (xy, yz, zx).
Then f is a continuous map, and an easy verification shows that f (A) = B. (For ex-
ample, f (

√
q,

√
q,

√
q) = (q, q, q), f (

√
q,

√
q,−√

q) = (q,−q,−q), f (
√
q,−√

q,
−√

q) = (−q, q,−q), etc.) Take any open set V ⊇ B, and let U = f −1(V ). Then U is
also open, andU ⊇ A. Let σ 1, σ 2, σ 3 be three configurations drawn independently from
the Gibbs measure of our model, and define the overlaps as usual. By Theorem 2.3, the
difference between the random vectors (R1,2, R2,3, R3,1) and f (m(σ 1),m(σ 2),m(σ 3))
converges to the zero vector in L2 (unconditionally, after integrating out the disorder).
This shows, first of all, that the quenched law of (R1,2, R2,3, R3,1) converges in distri-
bution, because so does the quenched law of (m(σ 1),m(σ 2),m(σ 3)). Next, note that
by Theorem 2.3,

lim
n→∞P((m(σ 1),m(σ 2),m(σ 3)) ∈ U ) = 1,

where P denotes the unconditional probability, after integrating out the disorder. Thus,

lim
n→∞P( f (m(σ 1),m(σ 2),m(σ 3)) ∈ V ) = 1.
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Combining this with the previous observation, we see that for any open set V ⊇ B,

lim
n→∞P((R1,2, R2,3, R3,1) ∈ V ) = 1.

This shows that the quenched probability of the event (R1,2, R2,3, R3,1) ∈ V converges
to 1 in probability. From this, it is easy to complete the proof of the theorem.

4.4. Proof of Theorem 2.7. Taking k = 2, f = S1,2 and ψ(x) = x in (2.8) gives the
equation

E(S1,2S1,3) =
1
2
(E(S1,2))

2 +
1
2
E(S2

1,2).

We will show that this equation fails for the overlap in the infinite volume limit of our
model. Indeed, by Theorem 2.3,

lim
n→∞(2E⟨R1,2R1,3⟩ − (E⟨R1,2⟩)2 − E⟨R2

1,2⟩)

= lim
n→∞(2E⟨m(σ 1)2m(σ 2)m(σ 3)⟩ − (E⟨m(σ 1)m(σ 2)⟩)2 − E⟨m(σ 1)2m(σ 2)2⟩)

= lim
n→∞(2E(⟨m2⟩⟨m⟩2) − (E(⟨m⟩2))2 − E(⟨m2⟩2)), (4.18)

provided that the limits exist (which we will prove shortly). Let Xn be defined as in
(2.2), and let Yn := tanh Xn . Then by Theorem 2.3, the right side of (4.18) equals

lim
n→∞(2q2E(Y 2

n ) − q2(E(Y 2
n ))

2 − q2) = −q2 lim
n→∞(1 − E(Y 2

n ))
2.

But Yn is a bounded random variable with converges in distribution to tanh(
√
qβhZ),

where Z is a standard Gaussian random variable. Thus, for any finite h, the above limit
is nonzero. This completes the proof.

4.5. Proof of Theorem 2.9. In this subsection, we will denote averaging with respect
to the antiferromagnetic Ising model on Bn at inverse temperature β and free boundary
condition by ⟨·⟩a,0, and averaging with respect to the model on Bn with Hamiltonian
(2.9) at inverse temperature β by ⟨·⟩a .

Let σ be a configuration drawn from the ferromagnetic Ising model on Bn at inverse
temperature β and free boundary condition. Define η ∈ %n as

ηi := (−1)|i |1σi for all i ∈ Bn . (4.19)

Then, it is easy to see that η is drawn from antiferromagnetic Ising model on Bn at
inverse temperature β and free boundary condition. Thus, we have

⟨m2⟩a,0 = 1
|Bn|2

∑

i, j∈Bn
⟨σiσ j ⟩a,0 = 1

|Bn|2
∑

i, j∈Bn
(−1)|i |1+| j |1⟨σiσ j ⟩0.

Take any ε ∈ (0, 1). Let δn be as in Theorem 3.5 and let m := ⌊(1 − ε)n⌋. Let S be
defined as in equation (3.7), and let Sc := (Bn × Bn)\S. Then

1
|Bn|2

∑

i, j∈Bn
(−1)|i |1+| j |1(⟨σiσ j ⟩0 − q) ≤ |Sc|

|Bn|2
+
|S|δn
|Bn|2

≤ |Sc|
|Bn|2

+ δn .



93 Page 26 of 32 S. Chatterjee

By Theorem 3.5, δn → 0 as n → ∞. Combining these observations and the upper
bound (3.8), we get

lim sup
n→∞

1
|Bn|2

∑

i, j∈Bn
(−1)|i |1+| j |1(⟨σiσ j ⟩0 − q) ≤ Cε.

It is easy to see that

lim
n→∞

1
|Bn|2

∑

i, j∈Bn
(−1)|i |1+| j |1 = 0.

Combining all of the above, we get that lim supn→∞⟨m2⟩a,0 ≤ Cε. Since this holds for
every ε ∈ (0, 1), and ⟨m2⟩a,0 ≥ 0, we conclude that ⟨m2⟩a,0 → 0 as n → ∞.

Now let L be defined as in (4.6). Then, as in (4.16), we have ⟨eL ⟩a,0 ≥ e⟨L⟩a,0 = 1.
Thus,

E⟨|m|⟩a = E
( ⟨|m|eL⟩a,0

⟨eL⟩a,0

)
≤ E⟨|m|eL⟩a,0 ≤

√
E⟨m2⟩a,0E⟨eL ⟩a,0.

We have shown above that the first term inside the square-root tends to zero as n →
∞. By Lemma 4.1 and the above relationship between η and σ , the second term is
uniformly bounded in n. Thus, E⟨|m|⟩a → 0 as n → ∞. Since |m| ≤ 1, this implies
that E⟨m2⟩a → 0.

Lastly, let σ 1 and σ 2 are configurations drawn independently from the model on
Bn with Hamiltonian (2.1) at inverse temperature β, but with Ji replaced by (−1)|i |1 Ji .
Define η1 and η2 via the relationship (4.19). Then, it is easy to see that η1 and η2 are drawn
independently from the model on Bn with Hamiltonian (2.9) at inverse temperature β.
Moreover, the overlap between η1 and η2 is exactly the same as the overlap between σ 1

andσ 2. Thus, all of the claims about the overlap that we have proved for the ferromagnetic
model continue to hold for the antiferromagnetic model, after replacing Ji by (−1)|i |1 Ji
in the theorem statements.

4.6. Proof of Theorem 2.8. Let F denote the free energy of our model. That is,

F = log
∑

σ∈%n

e−βHn(σ ),

with Hn defined as in (2.1). Then note that

∂F
∂ Ji

= βh⟨σi ⟩√|Bn|
.

This implies, by the Gaussian Poincaré inequality [42, p. 49], that

Var(F) ≤
∑

i∈Bn
E

[(
∂F
∂ Ji

)2]
≤ β2h2. (4.20)

On the other hand,

∂2F
∂ Ji∂ J j

= β2h2

|Bn|
(⟨σiσ j ⟩ − ⟨σi ⟩⟨σ j ⟩),
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and therefore, by [18, Theorem 3.1],

Var(F) ≥ 1
2

∑

i, j∈Bn

[
E

(
∂2F

∂ Ji∂ J j

)]2

= β4h4

2|Bn|2
∑

i, j∈Bn
[E(⟨σiσ j ⟩ − ⟨σi ⟩⟨σ j ⟩)]2. (4.21)

By the FKG inequality for the RFIM [17, Lemma 2.5], ⟨σiσ j ⟩ − ⟨σi ⟩⟨σ j ⟩ ≥ 0 for i, j .
Thus,

⟨R2
1,2⟩ − ⟨R1,2⟩2 = 1

|Bn|2
∑

i, j∈Bn
(⟨σiσ j ⟩2 − ⟨σi ⟩2⟨σ j ⟩2)

= 1
|Bn|2

∑

i, j∈Bn
(⟨σiσ j ⟩ − ⟨σi ⟩⟨σ j ⟩)(⟨σiσ j ⟩ + ⟨σi ⟩⟨σ j ⟩)

≤ 2
|Bn|2

∑

i, j∈Bn
|⟨σiσ j ⟩ − ⟨σi ⟩⟨σ j ⟩|

= 2
|Bn|2

∑

i, j∈Bn
(⟨σiσ j ⟩ − ⟨σi ⟩⟨σ j ⟩).

Combining this with (4.21), we get

E⟨(R1,2 − ⟨R1,2⟩)2⟩ = E(⟨R2
1,2⟩ − ⟨R1,2⟩2)

≤ 2
|Bn|2

∑

i, j∈Bn
E(⟨σiσ j ⟩ − ⟨σi ⟩⟨σ j ⟩)

≤ 2
[

1
|Bn|2

∑

i, j∈Bn
(E(⟨σiσ j ⟩ − ⟨σi ⟩⟨σ j ⟩))2

] 1
2

≤ 2
[

2Var(F)
β4h4

] 1
2

.

Plugging in the upper bound on Var(F) from (4.20), we get

E⟨(R1,2 − ⟨R1,2⟩)2⟩ ≤ 2
3
2

β|h| .

The upper bound tends to zero if |h| → ∞ as n → ∞. This proves the second claim of
Theorem 2.8. For the first claim, note that for any k,

⟨Rk
1,2⟩ =

⟨Rk
1,2e

L ⟩0

⟨eL ⟩0
,

where L is the function defined in (4.6). By (4.16), this shows that
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|⟨Rk
1,2⟩ − ⟨Rk

1,2⟩0| =
∣∣∣∣
⟨Rk

1,2e
L ⟩0

⟨eL ⟩0
− ⟨Rk

1,2⟩0

∣∣∣∣

=
|⟨Rk

1,2e
L⟩0 − ⟨Rk

1,2⟩0⟨eL ⟩0|
⟨eL⟩0

≤ |⟨Rk
1,2e

L ⟩0 − ⟨Rk
1,2⟩0⟨eL ⟩0|

= |⟨Rk
1,2(e

L − ⟨eL ⟩0)⟩0|
≤ ⟨|eL − ⟨eL ⟩0|⟩0

= ⟨|(eL − 1) − ⟨eL − 1⟩0|⟩0 ≤ 2⟨|eL − 1|⟩0.

Now, note that for any given σ ∈ %n , by Lemma 4.1,

E|eL(σ ) − 1| ≤
√
E[(eL(σ ) − 1)2]

=
√
E[e2L(σ ) − 2eL(σ ) + 1]

=
√
e2β2h2 − 2e

1
2 β2h2

+ 1 + o(1)

=
√
(e2β2h2 − 1) − 2(e

1
2 β2h2 − 1) + o(1).

By the inequality ex − 1 ≤ ex that holds for 0 ≤ x ≤ 1, we get that the above quantity
is bounded above by Cβ|h| + o(1) when |h| ≤ 1

β , where C is a universal constant. In
particular, it tends to zero as h → 0. Thus, if h → 0 as n → ∞, then for every k,

lim
n→∞E|⟨Rk

1,2⟩ − ⟨Rk
1,2⟩0| = 0.

This shows that if n is large, then all quenched moments of R1,2 under our model are,
with high probability, close to the corresponding moments of R1,2 under the Ising model.
From this, it is not hard to prove the claim stated in the theorem (e.g., using Bernstein
approximation).

4.7. Proof of Theorem 2.6. By Theorem 2.3 and Theorem 2.1, E⟨(R2
1,2 − q2)2⟩ → 0

and E⟨(m2 − q)2⟩ → 0 for our model. This allows us to repeat the proof of Theorem
2.10 from Sect. 3.6 verbatim to deduce that the conclusion of Theorem 2.10 holds even
if h ̸= 0, with the same q. This shows, in particular, that if πn is a uniform random
permutation of the elements of Bn , then for any even l,

⟨σπn(1)σπn(2) · · · σπn(l)⟩ → q
l
2 (4.22)

in probability as n → ∞. Next, let us consider the case of odd l. For the Ising model, the
above expectation is zero if l is odd. This is no longer true if h ̸= 0. Recall the random
variable Xn defined in equation (2.2). Take any odd positive integer l. We claim that

⟨σπn(1)σπn(2) · · · σπn(l)⟩ − q
l
2 tanh Xn → 0 (4.23)

in probability as n → ∞. To prove this, let m be the magnetization. We claim that

⟨ml⟩ − q
l
2 tanh Xn → 0 (4.24)
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in probability as n → ∞. To see this, note that by Theorem 2.3, E⟨(m2 − q)2⟩
→ 0. From this, it is easy to deduce that

⟨ml⟩ − q
1
2 (l−1)⟨m⟩ → 0

in probability, since ml−1 can be replaced by q
1
2 (l−1) asymptotically. But again by

Theorem 2.3, ⟨m⟩−√
q tanh Xn → 0 in probability. Combining these two observations

yields (4.24). Next, we claim that

⟨Rl
1,2⟩ − ql tanh2 Xn → 0 (4.25)

in probability asn → ∞. To see this, note that by Theorem 2.3, ⟨(R1,2−m(σ 1)m(σ 2))2⟩ →
0 in probability. This implies that

⟨Rl
1,2⟩ − ⟨m(σ 1)lm(σ 2)l⟩ → 0

in probability. But ⟨m(σ 1)lm(σ 2)l⟩ = ⟨ml⟩2. Thus, (4.25) follows from (4.24). Now,
proceeding just as in the derivation of (3.11), we get

1
|Bn|l

∑

i1,...,il∈Bn
|⟨σi1 · · · σil ⟩ − q

l
2 tanh Xn|

≤
[

1
|Bn|l

∑

i1,...,il∈Bn
(⟨σi1 · · · σil ⟩ − q

l
2 tanh Xn)

2
] 1

2

=
[

1
|Bn|l

∑

i1,...,il∈Bn
(⟨σi1 · · · σil ⟩2 − 2q

l
2 ⟨σi1 · · · σil ⟩ tanh Xn + ql tanh2 Xn)

] 1
2

= [⟨Rl
1,2⟩ − 2q

l
2 ⟨ml⟩ tanh Xn + ql tanh2 Xn]

1
2 .

By (4.24) and (4.25), the last expression tends to zero in probability as n → ∞. This
proves the claim (4.23).

Now take any n, and let τn,1, τn,2, . . . be an infinite exchangeable sequence of random
variables with the following random law. Given Xn , let Zn be a random variable that takes
value

√
q with probability 1

2 (1 + tanh Xn) and −√
q with probability 1

2 (1 − tanh Xn).
Having generated Zn , let τn,1, τn,2, . . . be i.i.d. random variables taking value 1 with
probability 1

2 (1+Zn) and−1 with probability 1
2 (1−Zn). Then note thatE(τn,i |Zn, Xn) =

Zn , and therefore, for any positive integer l,

E(τn,1 · · · τn,l |Zn, Xn) = Zl
n .

This give us

E(τn,1 · · · τn,l |Xn) = E(Zl
n|Xn) =

{
q

l
2 tanh Xn if l is odd,

q
l
2 if l is even.

Comparing this with (4.22) and (4.23), it is now easy to show that for any l, the Lévy–
Prokhorov distance between the (random) laws of (σπn(1), . . . , σπn(l)) and (τn,1, . . . , τn,l)
converges to zero in probability as n → ∞. But, the random law of (τn,1, . . . , τn,l) con-
verges in distribution to the random law of (τ1, . . . , τl), where τ1, τ2, . . . are defined just
like the τn,i ’s, but with Xn replaced by X = √

qβhW , where W is a standard Gaussian
random variable. This suffices to complete the proof.
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