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Theory of topological Nernst and thermoelectric transport in chiral magnets
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We calculate the thermoelectric transport of spin-orbit coupled conduction electrons in the presence of
topological spin textures. We show, within a controlled, semiclassical approach that includes all phase space
Berry curvatures, that the Nernst effect has two contributions in addition to the usual effect proportional to a
magnetic field. These are an anomalous contribution governed by the momentum-space Berry curvature and
proportional to net magnetization, and a topological contribution determined by the real-space Berry curvature
and proportional to the topological charge density, which is nonzero in skyrmion phases. We derive a generalized
Mott relation expressing the thermoelectric tensor as the chemical potential derivative of the conductivity tensor
and show how the Sondheimer cancellation in the Nernst effect is evaded in chiral magnets.
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I. INTRODUCTION

There has been enormous effort in the investigation of
chiral magnetic materials in recent years [1—4]. This has been
in part due to the fundamental interest in topological spin
textures and their impact on the properties of materials, and in
part motivated by the possibility of using skyrmions (topolog-
ical textures of unit charge) for potential device applications.

One of the most widely studied effects of topological
charge density in chiral magnets is their unusual signature in
transport: the topological Hall effect (THE) [3]. This effect
arises when the conduction electrons—in metallic magnets
[2,5-9] or in heavy metals proximate to a magnet [10,11]—are
impacted by an “emergent magnetic field,” which is the flux
quantum (h/e) times the topological charge density [3,12—
16]. Our focus here is the analogous topological effect in the
transverse thermoelectric response.

The Nernst signal N, the transverse voltage response to
an applied thermal gradient in the absence of time reversal
symmetry, is a quantity of fundamental importance. It is well
known that N = —E,/|V,T| in an external magnetic field B,
is vanishingly small in simple metals due to the Sondheimer
cancellation [17,18]. A large Nernst effect is usually observed
in either semimetals or strongly correlated systems [19].

Naively, if the “emergent magnetic field” due to a non-
trivial topological charge density was simply analogous to an
external magnetic field (as in the theory of the THE [13])
one might expect a Sondheimer cancellation and a very small
topological Nernst effect. It is thus interesting that a robust
topological Nernst effect has been seen in the skyrmion phase
of chiral magnets [20-25].

In this paper we develop a theory of the topological Nernst
effect in chiral magnetic materials that addresses this puz-
zle. In addition, we also need to address the issue that the
topological contribution is only one part of the observed
signal. Experiments [20-25] on the transverse thermoelectric
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response in chiral magnets are analyzed as the sum of three
pieces: an “ordinary” response proportional to the exter-
nal magnetic field, an “anomalous” contribution proportional
to the magnetization, and a “topological” contribution pro-
portional to the topological charge density ny, = [ d’r -
(0, x 0, ) /4rV. This decomposition is motivated by the
empirical success of a similar expression for Hall resistivity
[2,5-11] as the sum of three contributions and its recent theo-
retical derivation [26] in an experimentally relevant regime.

The results presented here build upon the pioneering work
of Xiao et al. [27], who derived an anomalous contribution
to thermoelectric transport in ferromagnets. Here we calculate
thermoelectric effects in a controlled semiclassical calculation
for spin textures with an arbitrary spatial variation which al-
lows for nontrivial topological charge density. We analyze the
dynamics of wave packets in phase space, taking into account
all Berry curvatures [including the mixed (r, k) curvatures]
on an equal footing together with r and k derivatives of the
semiclassical energy eigenvalues. In the semiclassical regime
where the lattice spacing a < the mean free path ¢ < L,
the spin texture length scale, and weak spin-orbit coupling
(SOC) A compared to electronic energy scales, we solve the
Boltzmann equation to determine the thermoelectric conduc-
tivity ‘@, which relates the electrical transport current j,, to a
temperature gradient via j,. = —-ZV,T.

We summarize our main results.

(1) We show that, to leading order in the small parameters
indicated above, and for all temperatures 7, the transverse
(off-diagonal) thermoelectric responses in a system with spin
textures is just the sum of an anomalous piece and a topolog-
ical piece. As summarized in the Table in Fig. 1, the former
arises from k-space Berry curvature [27] and is proportional
to the net magnetization, while the latter arises from r-space
Berry curvature and is proportional to the topological charge
density. All other contributions, arising, e.g., from mixed cur-
vatures, are small corrections in the semiclassical regime with
weak SOC.

(2) While our expressions for ‘@ and N are valid for all
temperatures, we show that in the low temperature regime

©2023 American Physical Society
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FIG. 1. Summary of results. Dominant scaling relations, Berry curvature, and magnetization dependencies for leading order contributions
to the thermoelectric conductivity, Seebeck, and Nernst effects in the regime k;' ~a<l=vrt K<L;and A KJ <t~ Ep. Here oy =

(atyy + @y + 0)/3 and ay = (o, — o, )/2. The Seebeck and Nernst effects are related to the thermopower tensor ? =0

<> -l<>
o , where

Seebeck S, = 1/3(Sx + Syy + S2;) and Nernst N = (S, — Syx)/2. The chemical potential of quantities are determined by the dimensionless
functions .Z(n), S(u), <7 (), and 4 (w) that depend on the ratios J/u and J/¢.

kgT « Ef, the Fermi energy, the thermoelectric conductivity
satisfies a Mott relation relating the thermoelectric conductiv-
ity tensor ‘@ to the chemical potential derivative 8 & (1)/d
of the electric conductivity tensor g [26]. A Mott relation
for just the anomalous response in a ferromagnet was derived
in Ref. [27]; here we show that it is valid in the presence
of arbitrary spin textures including both the anomalous and
topological terms.

(3) We show how the topological Nernst contribution
evades the Sondheimer cancellation. The r-space Berry curva-
ture couples with opposite signs to the spin-split conduction
bands, unlike an external magnetic field, and this leads to a
nonzero contribution even for a simple parabolic dispersion.

(4) Although the anomalous and topological contributions
originate from vastly different physical mechanisms, we find,
somewhat surprisingly, that they have the same functional de-
pendence on the chemical potential x or density of conduction
electrons, provided the SOC is proportional to the conduction
electron group velocity.

Our conclusions are derived for conduction electrons with
arbitrary dispersion and a general form for the SOC, including
Rashba SOC arising at interfaces, interacting with any spin
texture in two dimensions. More generally, we also analyze
the three-dimensional (3D) problem with a spin texture that
does not vary in the z direction, as would be the case for a
random array or a crystal of skyrmion tubes.

Previous theoretical analyses of thermoelectric transport in
chiral magnets have been restricted to either numerical calcu-
lations [28], where a decomposition into the anomalous and
topological contributions is ill defined, or an analytic approach
[29] that ignores SOC so that spin remains a good quantum
number and, in addition, the Mott relation is assumed rather
than derived.

II. MODEL
We consider the Hamiltonian

H==>"tch¢;, =1 el i) 07 )e,

ijo

M i, ,
2 : A ij oo\ A
+ at cia(v)/ XySOB )Cjcr’
ij,ys,o0’

i,oo’

ey

where i, j label lattice sites, 0,0’ € {#, |} and y, § € {x, y}.
The model includes as limiting cases the standard models
that have been widely used in studies of the topological Hall
effect [3,13,26], and of anomalous Hall [27,28] and thermo-
electric transport [29]. The first term describes an arbitrary
band structure using tight-binding amplitudes #;; whose scale
is t. The second term couples the conduction electron spin to
a given magnetic texture m(r) with an exchange coupling J.
For simplicity we choose #(r) to be independent of z, which
is adequate to model crystals or disordered arrays of skyrmion
tubes.

The SOC with strength A is proportional to the electron
velocity v/ = it;;(r; — r;)/h on a bond with lattice constant a.
For simplicity, we restrict ourselves to SOC that involves only
oy and o, as appropriate for systems with broken interfacial
inversion. The precise form of the SOC depends on the N
tensor. Y~ = it, leads to Rashba SOC (v 0, — v)/0,) which
preserves vertical mirror planes (M, M,), but breaks M.
Choosing % =1, leads to (v)’;j Oy — U;j oy) which breaks all
mirror planes [30,31]. (The effects of Ising SOC « o, are
suppressed by A/J and ignored; see Appendix A.)

Finally, we include effects due to impurity scattering pro-
cesses in Hiyp, which will enter our Boltzmann equation
analysis below through the relaxation time t. The energy
scales in our model can be organized as A K J <t ~ Ep,
where Er is the Fermi energy measured from the band edge
and where Er > kgT.

To take into account both r- and k-space Berry curvatures
at the same time, we need to use a semiclassical approach.
This demands that the microscopic length scales a ~ k;l are
much smaller than the mean free path £ = vpt and the length
scale Ly on which the spin texture varies. To control our
calculations we will work in the regime a < ¢ <« L,. These
are realistic assumptions for many chiral magnetic materials,
where 10 < Ly < 500 nm [32], while 1 < £ < 100 nm (given

~

that 10 < kpl < 100).

III. SEMICLASSICAL THEORY OF THERMOELECTRIC
TRANSPORT

To analyze the dynamics of wave packets in phase
space § = (ry, 1y, Iz, ky, ky, k), we construct the semiclassical
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Bloch Hamiltonian Hgsc (&) = (k)1 + d(§) - o, where

A
dy(® = — D tysduel) = Jiny (1), .8 € {x,y),
)

dz(‘s) =

where (k) is the band dispersion in the absence of A and
d(&) captures the quantum mechanical nature of the spin
(see Appendix A for details). The semiclassical eigenen-
ergies are £.(&) = e(k) £ |d(&)| and the derivatives of the
eigenfunctions, |u;(&)), encode the quantum geometry of the
semiclassical bands through the generalized Berry curvatures

Q5(8) = £1d(&) - [0,d(§) x dpd(§)] 3)

with o, B € {ry, 1y, 72, ki, ky, k;}. The semiclassical equa-
tions of motion (with band index / = %) are

EL® =[T7®),, 0E1®)/N @

where [[(8)lap = Q4 (&) — lioy ® Tap. £1(8) = E(§) up to
corrections of order (A/Er)(a/Ly) that can be ignored in the
regime of interest [26,33]. We suppress the & dependence of
quantities in what follows.

Building on the analysis of Ref. [34] we obtain the local
charge current:

—Ji(r) ©))

Jioe = Z / o )3[ eDifiiy + V., x (Difimp)l. (5)

The first term describes the center of mass motion of wave
packets, while the second describes their orbital rotation. Here
r; is determined by Eq. (4), f; is the electronic distribution
function, and D; = /det[I";(§)] describes the modification
of the phase space volume element in the presence of Berry
curvatures so that Liouville’s theorem is satisfied. The orbital
magnetic moment m; of the semiclassical wave packet (with
a, b, ce{x,y, z}) is given by

Ry = —is 3 e, ) (Hse = ED u)). (©)
bc

In experiments, the Nernst effect is determined by the g=0
transport current [35]

d3
jlr / (jloc Vf X M) (7)

where V is the volume of the system and M the thermody-
namic magnetization. To calculate anomalous and topological
contributions to the thermoelectric conductivity, we expand
Eq. (7) to first order in temperature gradients (linear response)
and to second order in the small parameters of our theory.

IV. THERMOELECTRIC CONDUCTIVITY

We write the thermoelectric conductivity as & =
H(l) + <_>(2) , where oV is independent of 7, and a® de-
pends on 7. ?( ) arises from the orbital magnetic moment in
Eqg. (5) and the magnetization in Eq. (7). The antisymmetric

Hall component oy = (ozxy ayc)/2 has two leading order
contributions, o and «f;. Here, oy = (oc(l) alD)/2 is the

anomalous contribution to the thermoelectric Hall conductiv-
ity [27], given by

8291
= —/{(81 wfCle] — G[Sl]}< 8A2 ) »

Here [, =3,_, [d®/(87°V), the local grand poten-
tial density G;[&;] = —kgT In(1 + e P& =), the equilibrium
distribution function f[g;] = (e'®~*/%T 4 1)~! and g; are
the semiclassical eigenenergies in the absence of A: e (k) =
e(k) £ J. We note that real space gradient corrections to
Eq. (8) are down by a/L;.

The 7-dependent contribution @
Boltzmann equation

_Si— f051
T

®)

is obtained from the

=i-V.fi+k-Vifi 9)

which we solve for f; = f°[&]+ g to linear order in the
temperature gradient within the relaxation time approximation
(see Appendix B). We find that the leading order longitudinal
contribution ¢«; = (Ol(z) + a(z) + a(2)) /3 can be written as

o = 3h2/ Vel or fler]. (10)
The topological Hall contribution to the thermoelectric
conductivity derives from the antisymmetric component o}, =

(@) — «(2))/2 that can be written as

et?
o) = SO > / I o fen 2. an
Here ny,p, is the topological charge density and

(k) = ;{vT A S 1w a2
(a?13)
<«—>—1

with v = (9y,¢, d,¢) and M Kk, = O, 0; €1 (see Appendix C).

Thus, the leading order contributions to the thermoelectric
conductivity are just the sum of an anomalous contribu-
tion proportional to the momentum space Berry curvature
and a topological contribution proportional to the topological
charge density: ay = oy + o}, with corrections suppressed in
powers of the small parameters of our theory (see Fig. 1). We
note that these results for the thermoelectric conductivity were
found without the use of a Mott relation (which only holds in
the low temperature regime).

V. MOTT RELATION

Temperature gradients couple to the distribution function
via the real-space gradient operatorr -V, =r- V[T (r)dr +
m(r)- V] in the Boltzmann equation. In contrast, electric
field perturbations only enter the Boltzmann equation through
the semiclassical equations of motion: v — rg and k — kg
(see Appendix D). However, even in the presence of all
phase space Berry curvatures, the electric field dependent
perturbations to the equations of motion can be rewritten
such that the electric field dependent part of rg - V, + kg - Vi
takes the form 7 -Edz. This allows a simple relationship
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between the different field dependent perturbations to the
distribution function to be established.

The solution to the Boltzmann equation requires inverting
the operator 1 + P with P, = t(#; - V, + k; - V). The for-
mal solution can then be written as

g =T fUIE1) (—P)'H - [V, T (13)

n=0

(see Appendix B). Similarly in the presence of a constant
electric field E = —V,¢(r) the linear response solution can
be written as [26]

g =ted: fO1E1) (~P))'F; - [—

n=0

Vgl (14)

The charge current j deriving from these contributions
takes the form r;g; which allows one to determine a Mott re-
lation between & > and 3 5% /3 where w is the chemical
potential. Similarly by generalizing the work of Ref. [27] we

find that a Mott relation also holds for @ ‘" and 85" )/8
in the regime a < L; (see Appendix D). By adding these
two contributions we arrive at the Mott relation for the full
response tensors

2,2
w° kzT 00;;
aj = __ B 7

15
3 e ou (15)

valid for kgT < Ef.

The leading order contribution to the anomalous Hall con-
ductivity ofy = (0}’ — 0{}’)/2 derives from the anomalous
velocity that is propomonal to 24k, and can be written as

A 0
= Top Z J? f (2n)*

tkz d*k
Z iy | Gy 23Sl (16)

. (akxdl X 8kydl)

e
= < det
270t

where we have used an integration by parts to restrict the
integration to momenta near the Fermi surface [36] (see Ap-
pendix E). Using the Mott relation, we find that the leading
order contributions to oy = a4y + o, are
)
A (W),

W (@)(A%T)(_ det(%”
Y=\ J2t Mo
k ksT
12 ad 3 0
e Zl/d koe, fOlel 2. (17)
I=%1

2(k) is defined in (12), and &/ (u) is a dimensionless
function of w/t and J/t and describes the chemical potential
or density dependence of ay (see Appendix E).

Note that o}, and o derive from very different mecha-
nisms, the former from the real space Berry curvature and the
latter from the momentum space Berry curvature. Neverthe-
less, both contributions to the thermoelectric conductivity can
be shown to be proportional to 2 (k) and thus have the same
functional dependence with the chemical potential or density.

T
oy

o ()

To understand why 2 (k) appears in both contributions, we
note that the totally antisymmetric part of any rank 2 tensor
must be invariant under rotations about the Z axis and must
change sign under vertical mirror planes. 2(k) transforms
trivially under rotations about the Z axis, and at this level of
our perturbation expansion, it is the natural object to construct
from one and two momentum space derivatives of £(k). In
), vertical mirror operations flip the sign of Nyp- In agy, it
is m, which changes sign under such a transformation, while
det(”) is left invariant. See Appendix E.

In the regime o; > o0y, i # j, with o7 = (0xx + 0}y +
0,.)/3, and using Eq. (15) the Nernst signal can be written
as [37]

212 a
N— _rr_lﬂ dtan(®g) (18)
3 e ou
where tan(®py) = oy /oy is the Hall angle. For simple metals
in the presence of an external magnetic field, a Sondheimer
cancellation [17] can occur whereby the dominant contribu-
tions to the Hall and longitudinal conductivities have similar
u dependences, so that d®p /du is small and N can be highly
suppressed. This cancellation can be avoided by an energy-
dependent scattering mechanism [38]. However, even with
a constant relaxation time, the anomalous and topological
contributions to N avoid Sondheimer cancellation because
the Berry curvatures have opposite signs in spin-split bands
(Appendix F).

In parallel to Eq. (17), we write the contributions to the

Nernst effect N = N4 + N7T as
)) %
(),

kg \ ( A2(h)T)kgT \ { _ det(¢
() () (5

NT= _<@)<<;B/T>>( op@”) N (42,

d 1 [d*k 2(k)d,, f°
N () =332 2. f3 ( )2 s,fo[gl] (19)
8 Zlfd k|Vk81| 881f [81]
(k) is defined in (12), and .4 () is a dimensionless func-
tion of w/t and J/t and describes the chemical potential or
density dependence of N.

NA

VI. MODEL CALCULATIONS

Given an arbitrary band structure, one can use Eqgs. (17)
and (19) to compute the thermoelectric conductivity and
Nernst signals. As illustrative examples, we calculate these
transport signals in two dimensions for a system with a
parabolic dispersion and for a tight binding model.

Consider parabolic bands with arbitrary SOC in two di-
mensions. To calculate .27 (1), we use e4 (k) = gy + a*k> £ J
and Eq. (17) to find that o7 () = 22 /3 {O[n — (89 — J)] —
Ol — (g9 + J)]} [see dotted lines in Fig. 2(a)]. The nonan-
alytic structure in ./ (u) occurs at the band edges. For the
Nernst signal A4 () = —47'r3t.l/3u2 Olu — (g9 + J)] and is
nonzero only when electron states in both bands are occupied
[see Fig. 2(b)].

Figure 2(a) shows o/(u) and Fig. 2(b) shows 4 (u),
calculated for nearest neighbor interactions on the two-
dimensional square lattice: e(k) = —2t[cos(k.a) + cos(kya)].

014419-4



THEORY OF TOPOLOGICAL NERNST AND ...

PHYSICAL REVIEW B 108, 014419 (2023)

® o
-20
3
3
—40
—60 .
0 -4 -2 0

FIG. 2. Chemical potential dependence of the thermoelectric
conductivity and Nernst signal. (a) <7 (u) related to the transverse
thermoelectric response [Eq. (17)] and (b) 4" (u) related to the
Nernst signal [Eq. (19)], calculated at T = O for the two-dimensional
square lattice with J/t = 3/4 (black curves). Both &7 () and A" (u)
are odd functions of 1 /¢ due to particle-hole symmetry of the square
lattice. Peaks are observed near Van Hove singularities (gold) and
near band edges (blue); see band structure in inset. The quadratic
band approximations for both quantities are plotted near band edges
(red dashed lines). See Appendix F for how these results depend on
choice of parameters.

The quadratic band approximation with ¢y = —4¢ is marked
by the dashed red lines. The nonanalytic jumps in .2/ (1) and
A (w) are due to the nonanalyticity of the density of states as
the chemical potential crosses the band edge.

Near the Van Hove singularities, /() and .4 (n) are
sharply enhanced as is commonly recognized in signatures of
thermoelectric transport [39,40]. For example, in the present
model, o/ (u) and 4 (u) are antisymmetric functions in p
such that peaks of opposite magnitude appear around p = 0
for the chemical potentials that cross the Van Hove singulari-
ties at the X point in the Brillouin zone [see inset in Figs. 2(a)
and 2(b)]. In fact, anywhere the density of states changes
rapidly with the chemical potential will show an enhancement.

VII. DISCUSSION

Through a controlled semiclassical analysis in the regime
where A <J < Ep, a <1 < L, we have shown that the
thermoelectric conductivity is composed of the sum of an
anomalous contribution, proportional to the average magne-
tization, and a topological contribution, proportional to the
topological charge density. In addition, we have shown that
a Mott relation holds even in the presence of a nonzero
topological charge density, thus justifying a commonly held
assumption [20-22,28,29,40]. As a consequence of the Mott
relation, the thermoelectric conductivity and Nernst signal are
enhanced at points in the band structure in which there is a
rapidly changing density of states, such as near Van Hove
singularities.

We estimate the order of magnitude of the Nernst sig-
nal by approximating Eq. (19) with 3D parabolic bands
and find NT ~ (kg/e)(kpl)(kgT /EF)(nopa®)A (1). In a
skyrmion material with a/L; = 1/100, ntopa2 ~ 1073, We
use kgT/Er ~ 107*, and 10 < kz€ < 100. For (tJ/u?) ~
1/3, we find A4 (i)~ 100. We thus estimate N7 in the

range (1073-1072) (kg/e) ~ 86-860 nV /K, similar to what
has been measured in experiments; see e.g., Ref. [21]. In
the regime of interest (¢ < £ < Lyand A K J <t ~ Ef) NA
and N7 can be shown to be comparable in magnitude (see
Appendix G).

We have considered the regime a < £ < L, in the analysis
above. The question of how to solve the Boltzmann equa-
tion when a < Ly < £, the analog of the “strong field limit,”
is an open question. We have focused here on the intrinsic
part of the anomalous thermoelectric response arising from
k-space Berry curvature, known to be the dominant contri-
bution to the anomalous Hall response in many materials.
The question of how extrinsic effects like skew and side-jump
scattering impact the thermoelectric response has not been ex-
plored. These are all important questions for future research.
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APPENDIX A: SEMICLASSICAL EQUATIONS OF MOTION

Following Ref. [34] we can construct a semiclassical the-
ory of Eq. (1) by making an expansion of the Hamiltonian
about some position r.:

H ~ H,+ AH,

He=—tY &he,, =) el lmre) 018,
(ij).o

i,o0’

(AT)

AR i A o' 1 oo’ \
+ Py Z vy/ CzTa <Xy805 + 7 Wro: >Cja”
(ij),yé,00’
(A2)
AH = —J ) &[0 —r) - Vitn(re) - 077 12, (A3)

i,o0'

where y, 8 € {x, y} and 0, 0’ € {1, |}. For generality, we in-
clude here an Ising spin-orbit interaction (x v"/w, o). The
semiclassical approximation is valid if m(r) is changing
slowly in space compared to the other length scales of the
problem (i.e., Ly > ¢, a).

We can define the semiclassical Bloch Hamiltonian by
writing H, in a semiclassical Bloch basis (Hsc(r., k)

efik-rHCeikr)

Hsc(re, k) = e(k)L +d(re, k) - o (A4)

2 A A
where d, ()= Y, — X5 e =iy (x0), de(§)= >, a7 7

O, & — Ji(re), and e(k) =1 e*Ti=r)) The eigenfunc-
tions |uy(r., k)) are the periodic part of the Bloch eigen-
vectors |+ (r., k)) and can be determined in terms of the
spherical components of d(r, k), 6(r., k), and ¢(r., k). In the
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spin-Z basis they can be written as

~cos (7558)
w (k) = (cos (M)e_w(’“k)) (A5)
s (252)
and their semiclassical Bloch eigenvalues are
Exlre, k) = e(k) £ |d(re, k)| (A6)

1. Wave packet dynamics

We can construct wave packets from semiclassical Bloch
states |V (r., k)) via

Welre, ko)) = Y yalre, k) [Ye(re, k). (A7)
k

Here y.(r., k) is chosen such that the wave packet is strongly
peaked at r. and k.:

(We(re, k)| F|\Welre, ko)) =re, (AB)
(Walre, k)| p|Welre, ko)) = lik,. (A9)
|

(0 PR v s "k

-5, 0 . ok 'y

| B R

- erkx - erkx - Qrz ky 0 Qkxky

_Q’:’Ek)- _ka, _kav _thv 0
L\ -2 -2 Q0. 2

To find the time evolution of r. and k. we construct the
semiclassical Lagrangian

a ~
Li(re, ko) = (We(re, ke)l iﬁg —H|Wi(re, ko)) (Al0)

and find the Euler-Lagrange equations of motion for r, and
k.. These equations can be written in compact form as (see
Ref. [34])

. 1 ~
YT ®) = Ve Ea®). (AlD)
B

Here & = (ry, 1y, 12, ke, Ky, k), § = 0,&, and we drop the ¢
label on r, and k. for convenience. The energy functional that
appears in the semiclassical equations is

EL(§) = Ex(§) + AEL(®),
AEL(E) = (Wa(®)| AH W4 (E))

= > Im{[, (eI

— Hsc ()10 lu+(8))1} (Al12)

and I'*(£) is a rank 2 totally antisymmetric tensor of dimen-
sion 4:

; (A13)

coco o
loococo o
coococo ~
cooco~ o
cocoo~o o©

)

where Qgi g, are the components of generalized curvatures in the expanded phase space spanned by r and k:

Q= 0, A, — 05, AL, A =i (e (®)] B, lus(®) .

(A14)

Note that for simplicity, we suppress the dependence of the curvatures on & [i.e., Q2,z,(§) — ¢,,] and we suppress the
band index. We may solve Eq. (All) for systems with a Hamiltonian of the form in Eq. (1). In the following analysis, we
assume that m(r) is independent of r, as would be the case, for example, in a skyrmion tubes phase. This restriction causes all
Berry curvatures involving r, or k; derivatives to vanish. Subsequently, the equations of motion for the phase space variables

E = (ixv i‘yv iZ? kX9 ky’ kz) are

I -  3E® o 9 E®
. = ey Q 2 1 Q 7 2 s
ry (E) D(&) - ([ kk]y(S 7i + [( + k)]y3 h
: 9, E® ™ 8,£®
<> k <> T
k)/(‘E) = < Z [ Q rr]y5 : - |:<]l + Q rk>:| : s (AlS)
D) = »
. 1 0.E®)
"TDE & : (A16)
where y, § € {x, y}. The superscript T stands for transpose and the two-dimensional generalized curvature matrices are
<> <>
P = — 2 u It (A17)
= — r ,
D(§) —(1+ ‘5’%) ko
0 Q 0 Qr ry _Qr, , Qr, ¢
<§)kk = ol s (§)rr = - s (§)rk = o o s (AIS)
—Qpk, 0 Q. 0 Qo —k
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D(S) =V det[F(E)] - |1 - erkx - Szr}.k’\‘ - err}»Qkxky - erkerykx + Qiﬁ,{kXerkyL (Alg)

APPENDIX B: THERMAL PERTURBATIONS AND THE BOLTZMANN EQUATION

To calculate the Nernst effect, we must calculate the charge current to first order in spatial derivatives of the temperature.
Contributions proportional to the scattering time 7 derive from temperature gradient induced corrections to the electronic
distribution function that can be determined by solving the Boltzmann equation:

d .
5 fE) =0fE) +7E) V. (&) + k@) Vif(§). (BI)

Note that there is no explicit time dependence in H such that 8, f(&) = 0. For simplicity, we will suppress the band index. We
solve this equation under the relaxation time approximation

d _ ¢0
4 pgyn SO —S® ®2)
t T
with relaxation time . Here f(£) is the equilibrium distribution function
1
r® = O /T 1 (B3)
In the presence of temperature gradients we have
— 70 .
—M =r&) - [Vin(r) -V, f(&)+ V,TE)or f(E]+ k@) Vif(é) (B4)
where we have used
V. f(&) =Vun@r) -V, f(&)+V,TE)rf&) (B5)
with
v, = (L 9 L) (B6)
om, dm, dm,,

Without the statistical drive induced by the temperature gradient, the distribution function is at equilibrium and the Boltzmann
equation dictates

0="F(&) - V.f2&) + k& Vifo®). (B7)
Usirlg the chain rule and the equations of motion, we show that this is satisfied if f (&) is a function of & (&) alone, i.e., f 0) =
SUE®T:
0 = [#(§) - V£ + k(&) - ViE©I0s1EE)]

o 0.E® - 3, E®)\ -
=Y 119 wlys S T LA+ Q)= 19, E8)
3y

o 8 EE wr 8@\ o Tos1E®)]
+ ([ Q rr]yzi ‘ 7 - [(]l"i_ Q rk)]ys h )akyg(s):| gD(g)

o A E® L o .E® L \azE®)
= 82)/: ([ Q rk]yS 7 8ry5(§) - [ £ rk]&y Takyg(s)) . D(e)

=0. (B8)
Note that Q 4, 2 ,., and Q , are totally antisymmetric matrices such that

(o)=Y v yv,=0 (BY)
ij

for all v.
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1. First order in temperature gradients

To determine the distribution function to first order in temperature gradients we may make a power series expansion of f(&)
in powers of the temperature gradients. Here we only are interested to first order such that we may write

F&) ~ fIE®)] + g&) (B10)

where g(&) is first order in temperature gradients [i.e., g(§) o< VT (r)]. Substituting into Eq. (B4) and equating terms that are
first order in temperature gradients we have

g(‘s) HE) - (Vo) - Vo g(®) - VT, LIEEN 4 kE) - Vg (6
= {2[F(§) - V,(r) - V,, + k(&) - Vil + 1)g(&) = —1i- V,T(r)or fOLEE)]. (B11)
This is in the form
(14 P)g&) = —t#(&) - V,T(r)dr fPLE®)] (B12)
with P = z[r(§) - V.ah(r) -V, + k(§) - V¢]. Solving for g" (£§) we have
&) = —7 > _(=1Y'(PY"{iE) - V. T(rdr fFLE®)). (B13)
n=0

Note here we consider a constant temperature gradient [i.e., V.7 () = const] such that IP only acts on #(§) and 97 f° [6’~ (&)]. This
allows us to write V,#u(r) - V,, as V.. With this simplification we have

g(§) = —T Y (=)' (&) - V, + k(&) - V') - V. T)dr fOLEE@). (B14)

n=0

The operator in the second parentheses acts on the functions 7(&) and BT O [5 (&)]. However Eq. (B7) constrains the action of
the operator on 37 f° [5 (&)] to vanish. This occurs at all orders, i.e., P" fO[E (&§)] = 0. We may rewrite our expression for g(&€) as

8(&) = —tar fUIEE] Y (=TI - V, + k(&) - ViI"[F() - V,T ()], (B15)

n=0

2. Scaling of terms in the perturbed distribution function
We have

ViE®) o VEE vk) ®16)

f[f<$>-vr+k<s>-vk]m( C y, WL

where we have used £ (&) ~ £(&). These terms multiply dr fo[g (&)] in g(&) and will thus contribute where 37 f° [c‘,N‘ (&)] is large,
which is in a range of kgT around the Fermi energy. Therefore we have

V.&E V. A b4
t( kh(f) Vv, — h(g) ‘Vk) ~ T<UF oV, + i ak> T B17)

where we note that J ~ £ and at most d,, ~ 1/L, and 9y, ~ a. This statement relies heavily on the condition A < J and the
action of the operator on 7(§) [e.g., the first term in Eq. (B17) actually scales as (£/L)(A/EF)]. This shows that at leading order
t[r(&) -V, + k(&) - V] scales as £/L,, which in the regime of interest is much less than 1. We thus only need to consider the
first few 7 in the sum of Eq. (B15).

APPENDIX C: CONTRIBUTIONS TO THE THERMOELECTRIC CONDUCTIVITY

Contributions to the thermoelectric conductivity % * derive from the second term in Eq. (5) as the temperature gradient
induces t dependent corrections to the distribution function:

d% .
ey | oD@ b

To first order in temperature gradients we may write

do¢ . do& . ~ >\
JP = _6,2 / mu(@n@)g?(s)wr; f mﬂ(&)n(&)aﬁo[&(é)] (Z;(—l) (P)) )r(&)-vrT(w (C2)
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such that we may write the thermoelectric conductivity as
o = Z / T — == Dy(&)or L€ )] [r, ® (Z( 1)"(1P1)"> i (&)}. (C3)

1. First order in

To find contributions to the thermoelectric conductivity first order in T we may substitute g’ (£) into Eq. (C2). This gives

jel = Z / Von )3D/(E)FI(E)3Tf0 E@NiE) - V. T@)l. (C4)
Extracting the thermoelectric conductivity we have
d6§ =5 . Mre o)
o) = —et ; / Ve DO E@ i) - @) -] (C5)
(E,1)

At this order in 7, the tensor ;""" is symmetric such that the transverse contribution to o/ vanishes: a/f""" = 1/2(a(E:) —

o E-D

ay,’) = 0. The leading order longitudinal contribution can be written as

oy = —

3 nz / \Vier|* or fOLer]. (C6)

2. Second order in T

We have already found the leading order nonvanishing longitudinal component of the thermoelectric conductivity and
therefore will focus now on the transverse antisymmetric component of the thermoelectric conductivity. Using Eq. (C1) the
charge current to second order in t is

d® .
jOP =—et? / W;DI@)"‘I(E)(?TJCO[Q(5)][f1(§) -V, k(&) - Vil () -V, Tr)]. (C7)
==+
Extracting the thermoelectric conductivity we have
d® A . N
af? =et’y / WEPD,@)M@) 07 Ol @NFE) -V, + ki (§) - Vil (&) - J1. (C8)
==+

We now want to find the largest terms in a/L; and A/Er. We start by looking at leading order in a/L;.

a. First orderina/L;

ViE : v
@) V, ~ a/L and at leading order we have k;(§) - V; ~ — h[(s) '

We note that nominally 7;(§) - V, ~

Thus to leading order in a/L; we have

5. & V.E V,& o &
a(“) 5 ZZ/V(Z ; anO[Ez(é)]< i z(€)>< khl(g) v, hz(g) 'Vk)< k,};(g))' (C9)

To find the largest contribution to the above we can now expand this to first order in A/Ep. This can be done by first expanding
&1 (&) to first order in A:

Vk ~ a/LX.

Ex(§) ~ ex(k) £ Aaft Z mi(r)(xij + 8zjw ;)0 € (k). (C10)
i=x,y,2
Jj=x.y

Thus any spatial gradient will be nominally order A and we see the order (1/Er)° term vanishes in Eq. (C9). Thus for all other
gradients we may substitute in the A independent part and we may use flo[S (&)] ~ fl0 [€(k)] in the above. We find

1{(8@&@)) (Vksi@) v, VE® vk> (%é(s)) o y)} ci
2 h h h h
at*i . > .
~ i—a@(k)[ar‘m(r) ‘X —0,m(r)- "} -3l (C12)
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Substitution into Eq. (C9) gives

1 et tzk
by = 5 (e — ) { Z / —a[ar‘mu) X = 0,m(r) - X -9+ m(r) (D we — O, wy)]

d’k
x / (Zn)3(3Tf0[81]o@(k))}- (C13)

For periodic magnetic textures this vanishes such that terms deriving from Eq. (C9) will scale at orders higher than
(A/EF)(a/Ls). We note terms in the integrand over real space transform trivially under rotations of the system, but flip sign
under vertical mirrors. To proceed we look at terms of order (a/Ly)>.

b. Second order in a/L;

Unlike at first order in a/L;, at second order in a/L; there are nonvanishing contributions to the transverse Nernst conductivity
that are order (A/Er)° = 1 such that we may set A = 0 in Eq. (C8) and look for the largest terms. In the absence of SOC the
equations of motion for the wave packets are

o =

ra r=0 - h ’

R 9, e(k)

h®| =200
A=0 Y A=0

PE| = 8"87(1‘) k. =0 (C14)
r=0

where again for simplicity in the above and what follows gradients and vectors are restricted to the xy plane. Substitution into

Eq. (C8) gives
2 6
r_ €t d°§
= ;f Vr)

0, & . €
S >8ky] e

kEl I:Z <[<§)rr]6y]

~ o i
a2k
Z( o, ) / i flen 20 (C15)
r=0
with
20) = 1)@ (M =TV H1]-v) (C16)

—1
where v = (9, ¢, 9, ¢) and Wk’,kj = O, 0, &; with 7, j € {x, y}. We note that

d*r
27V Ixly -

2
= —l/ d—m(r) [0, m(r) x 0, m(r)] = —1nyp (C17)
0 47V ’

where 7y, is the topological charge density. Substitution into the above gives the topological thermoelectric conductivity:

et?t3 d’k
all = ?nmpazz ! /@aﬁo[e,]g(k). (C18)
=%

APPENDIX D: MOTT RELATION

In the presence of an external electric field in the xy plane, the semiclassical equations of motion are altered,

1 ot d, 5(5) . 1.5 0 5(5)
iy (§) = D('f) |:[ kk]y5< +e 5)+[( + Q)]s W i|,
9, E(&) 3, £(&)
b= D@Z[ﬁw S 10 T (25 )] &
Loaf®
7, = 'D(E) P k, =0, (D2)
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whereas temperature gradient perturbations only enter Boltzmann’s equation through V,:

_ fOr8 .
L GAAY CRACEER A 03)

where V! = V,#iu(r) - V,,. For electric field perturbations, we may write the Boltzmann equation as

—_ f0r& .
—% () V4 (®) - ViIf )

, [ il o ¢Ejs
= [#(§) - V) + k(&) - vk]f(s>+2 [(% Ea)~V,Vf°[5]—<[]l+ Q klay P ) VS [5}
= [F(§) - V. + k(&) - Vi1f(§) — F - eEdz f°[€). (D4)

Comparing Eq. (D3) to Eq. (D4), in the presence of an electric field, the perturbations to the distribution function to linear
order in the electric field, g?(£), take a similar form to temperature gradient induced perturbations. Solving the Boltzmann
equation gives [26]

&&= te Y (~1)'(PY{#(E) - E 9z 1E®)1) (D5)

n=0

such that these contributions to the electric conductivity can be written as

o) =~ Z f van )3D1(£>8gf [51(5)]|:r1(§)<2( 1y'(Py )") '{(&)} (D6)

n=0

which we may compare to the contributions to the thermoelectric conductivity:

aff = Z / v )3791(&)87]30[5(&)][f;‘(&)(Z(—l)"(l&)’“)f{(&)}. (D7)
n=0
For simplicity, we define
1
Gi§) = —er s 1(§)|:71(E)<Z( 1>"<1P1>">rl (&)} (D8)
n=0

such that we may write the conductivities as

&
=3 / ' i E I = -3 / dﬁs( © - )ag,fO[a(enGl(e),

DY / d% 35, fIE®IGI®). ©9
We may define

Gi(x) = / d°¢ S[E(&) — x1G(§) (D10)

such that we may write the conductivities as

o Z/dx . f [x]G;(x)( o7 ) o = _eZ/dx 3. fO1x1Gy (x). (D11)

For low temperatures, we can now do a Sommerfeld expansion of both o2 7 and o; j:

) ~
i G (x) ~
of =TT T e e G o1
= O = s
which implies the Mott relation
2 (2)
@ k3T 0
o (D13)

T3 e B,u'
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APPENDIX E: CHEMICAL POTENTIAL DEPENDENCE
OF ANOMALOUS HALL CONDUCTIVITY

The anomalous Hall conductivity is proportional to the
integral of the momentum space Berry curvature over the
occupied Bloch states. Its leading order contribution is

&3k
A _ 0
H = Top Z J? / (2;1)3

X (akxd,(k) x O d (K))|,_, - 2- (El)

For simplicity we suppress the band index in what follows. To
see the relationship to 2(k), we first perform an integration
by parts:

&k, A
/ o [e](Br,d (k) x B, d(K))|,_, -2

-5 [ 2% @k
B (27 )}

where ¢;; is the Levi-Civita symbol which in two dimensions
(i, j € {x,y}) has a single independent coefficient. The prod-
uct allows four nonzero terms that can be grouped as follows:

Z €ij8nmdn(

i,j,n,m

D EiEmndn O dn)v;0: fle] (E2)

i,j,n,m=x,y

akidm) Vj |w:0

1
= —;det(?)[_'}x(ak\ UX)Uy - vy(akX vy)vx

+ O, vxv}z, + 9, vyvi]

1
= —det(X")2(k). (E3)

a
Substitution into Eq. (E2) gives Eq. (16).

To understand why 2(k) appears in both the anomalous
and topological contributions, we note that the totally anti-
symmetric part of any rank 2 tensor must be invariant under

<=7
rotations about the Z axis R (#) and must change sign under
. . <>x <>y
vertical mirror planes, M and M . For any rank 2 space
< .
tensor T , under rotations 7;; — T = Zkl fk(Q)R}:, )T .
The totally antisymmetric component must be left invari-
ant: T, — Ty; = T,y — T;x. We also note that under vertical
mirror planes, M* and M, the totally antisymmetric com-
ponent must change sign: T;; — T} = >,y MG M Ty =
> M'lvk./\/ly Ty = —T;;. In o}, these mirror operations flip
the sign of nyp. In oy, it is m, which changes sign under such
a transformation, while det( X" ) is left invariant.

APPENDIX F: CALCULATION OF THERMOELECTRIC
TRANSPORT AND THE SONDHEIMER CANCELLATION

In two dimensions and wusing the Mott relation
(Appendix D), the analytic expression for the longitudinal
thermoelectric conductivity for quadratic bands is given by

mikge (kT \[1 eo—J <p <eo+J
T kse . (FI
T Th ((h/z)){Z w>eo+J D

Using the Mott relation and in the limit 67 = (0 + 0yy)/2 >
(0xx — 0yy)/2, 0y, 0y, the analytic expression for leading

(a) — kgT/t=0 (b) 5
201 —— kgT/t=0.05 o
— kgT/t=02
—— kgT/t=0.4 _s5
10 ksT/t=0.6

()
b
y
|
AR
o

-101 0
—201 -10
. -20
-4 -2 0
it uit uit

FIG. 3. /() for varying parameters. The left panel shows the
effect of raising the temperature. The finite temperature values are
calculated using the temperature dependent Eq. (11). Nonphysical
jumps are smoothed out. The zero-temperature approximation is
appropriate in metals and heavily doped semimetals. The right panels
show the effect of varying J/¢ while holding 7 = 0. As in Fig. 2, the
Van Hove singularities (gold) and band edges (blue) are shown by
vertical lines. The dashed red line shows the approximate solution for
quadratic bands. As J/t is increased, the qualitative behavior remains
the same, as long as no gap is opened between the bands.

order contribution to the Seebeck effect (thermopower) is

DR LT,
3 e du
2 k3T (O[(n — (g9 — D] Ol — (g0 + )]
_?T< —(e0—J) —(co+J) )
(F2)

We now illustrate the parameter dependence of o7 (u)
(Appendix E) using, as an example, the two-dimensional
square lattice with nearest neighbor interactions. Figure 3(a)
shows the temperature dependence of .7 (1 ). The nonanalytic
jumps in o7 (u) are the result of the Mott relation, in which
the p derivative is taken at 7 = (0. The full temperature-
dependent expression from Eq. (11) is plotted in comparison
to the Mott result. The Mott result remains a good approxima-
tion since kgT < t.

Figure 3(b) shows the dependence of </ (u) on the mag-
netic exchange coupling, J, which controls the energy gap
between the two bands. The behavior of .7 (1) for each choice
of J/t remains qualitatively the same.

In canonical thermoelectric transport in the presence of
external magnetic fields, a Sondheimer cancellation can occur
whereby the Nernst effect is suppressed due to a Hall angle
independent of a system’s chemical potential. This occurs
when the chemical potential dependences of the longitudi-
nal conductivity and Hall conductivity are equivalent. For
weakly spin-orbit coupled spin-split bands, the Nernst effect
in the presence of an external magnetic field is determined
by Eq. (19) with / — 1 in the numerator and 7y, replaced by
eB/h. For quadratic bands in three dimensions, this leads to
ofB,of oc (u+J)¥? + (u—J)’* such that N 9,0y = 0.
However, in the presence of nontrivial topological charge,
the sign of 2, ,, I = +£1, is opposite for each spin split pair
of bands. This leads to GLQ” o (4 J)P? 4+ (u—J)¥? and
(f,?"’ o< (u+JI)¥? —(u—J)7%, and thus generically N «
9,0y # 0. This allows for Nernst effects to occur even in the
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absence of a rapidly changing energy dependent scattering or
relaxation time.

APPENDIX G: SCALING OF THERMOELECTRIC
CONTRIBUTIONS

The regime of interest is determined by the inequali-
ties a < L K Lg and A K< J <t~ Ep. Let us define the

small parameter € = A/Er ~ a/f ~ {/L;. The anomalous
thermoelectric conductivity scales as ag ~ (M) (kgT /t) ~
€?(kgT /Er). For the topological thermoelectric conductivity,
we have o, ~ (a/L,)*(kgT /t)(t/(h/T)) ~ €*(kT /EF). Us-
ing (Ept/h)* ~ (£/a)® ~ 1/€%, we see that o also scales as
€?(kgT /Er). A similar analysis shows that both N4 and N7
scale as €3(kgT /Ep).
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