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The impact of land use and land cover change (LULCC) on soil organic carbon (SOC) stock is one of the most
uncertain items in estimating the global C budget. Despite the improvements in satellite monitoring techniques
and inventory data in recent decades, the uncertainty in modeled LULCC-induced SOC changes stemming from
the choice of land use datasets remains largely unknown. Using a process-based model, the Dynamic Land
Ecosystem Model (DLEM), we investigated global SOC changes during 1900-2018 driven by six LULCC datasets
(i.e., LUH2-GCB2019, ESA CCI-LC, MODIS, GLASS-GLC, HH, and RF), which were generated by varied data
sources and methodologies. The simulated global SOC stock was negatively affected by land conversions in all
the LULCC datasets; however, the corresponding SOC loss was highly different ranging from 33.11 Pg C to 106.20
Pg C. Such significant differences in the global SOC stock estimates due to LULCC uncertainty were mainly
located in boreal and temperate forests of the northern high latitudes and were most likely attributed to the
LULCC-induced changes in vegetation net primary production. Meanwhile, regions exhibiting large divergence in
relative changes of LULCC-induced SOC loss were mainly located in the low latitudes. When considering the
interactive effects of LULCC with other environmental factors, the simulated SOC showed divergent trends,
increasing in MODIS-, ESA CCI-LC-, and GLASS-GLC-based estimations, but decreasing in LUH2-GCB2019-, HH-,
and RF-based estimations. These results highlight the importance of the accuracy of LULCC data in determining
the global carbon budget. Future efforts are required for harmonizing satellite observations and inventory data
both spatially and temporally to better represent the land conversion processes in terrestrial ecosystem modeling.

1. Introduction

Soil is the largest terrestrial carbon pool, of which the carbon stock is
nearly four times greater than that of the vegetation biomass and three
times greater than the atmosphere (Jobbdgy and Jackson, 2000; Lal,
2004). Roughly two-thirds of soil carbon is held as soil organic carbon
(SOC), which is the net balance between C input from decaying vege-
tation, fungal and bacterial necromass, and C output through erosion,
leaching, and decomposition (Davidson and Janssens, 2006; Regnier
et al., 2013; Smith, 2008; Tian et al., 2015). Due to its vast quantity, a
slight change in SOC stock could lead to a drastic impact on the atmo-
spheric CO, and CH4 concentrations, and thereby, the climate system
(Zhou et al., 2019). Meanwhile, SOC is a major determinant of soil

* Corresponding author.
E-mail address: hanqin.tian@bc.edu (H. Tian).
1 Chengcheng Gang and Hao Shi contributed equally to the article

https://doi.org/10.1016/j.agrformet.2023.109585

quality, providing substrates for microbial processes like respiration and
nutrient cycling and thus further regulating plant growth and ecosystem
sustainability (Lal, 2004; Ramesh et al., 2019; Reeves, 1997; Tian et al.,
2015). Higher levels of SOC can improve soil structure, increase carbon
sequestration capacity, and reduce the risk of erosion and nutrient
leaching. Therefore, understanding the spatial and temporal patterns of
SOC is crucial for global climate mitigation and sustainable soil man-
agement (Ramesh et al., 2019; Wang et al., 2019).

The magnitude of SOC is impacted by both abiotic and biotic factors,
such as precipitation (Doetterl et al., 2015), temperature (Conant et al.,
2011), topography (Seibert et al., 2007), soil properties (Tian et al.,
2010), vegetation types (Jobbagy and Jackson, 2000), soil biota (Liang
and Balser, 2011), and various human disturbances to the ecosystems,
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particularly the land use and land cover change (LULCC). LULCC affects
SOC stock in various pathways, including deforestation (Bautista-Cruz
et al., 2012; Petrenko and Friedland, 2015), cultivation (Huon et al.,
2013), afforestation (Poeplau and Don, 2013), cropland management
(de Oliveira et al.,, 2015; Yu et al.,, 2018), and wetland/peatlands
drainage (Gao et al., 2014), etc.

Quantifying the impacts of LULCC on the magnitude and variations
of SOC has garnered increasing interest across the local (Tan et al.,
2004), regional (Batjes, 2002; Guevara et al., 2020; Xie et al., 2007), and
global scales (Hengl et al., 2017; Tian et al., 2015). Yue et al. (2020)
estimated that LULCC accounted for 30-45% of the interannual vari-
ability of land carbon balance over 1959-2015. Machmuller et al. (2014)
found that emerging land use practices had rapidly increased soil
organic matter. Most research has attributed uncertainties in LULCC
emissions to model structures and parameterization schemes (Luo et al.,
2016; Scharlemann et al., 2014; Xu et al., 2020), whereas the role of
LULCC data itself has been usually overlooked, especially in ensemble
modeling initiatives (Tian et al., 2015; Todd-Brown et al., 2013).

Previous studies have demonstrated that the uncertainty in LULCC
emissions is, in large part, related to the changing rate in land use, which
underpins the establishment of present and historical land use maps
(Hartley et al., 2017; Houghton et al., 2012; Hurtt et al., 2020; Jain
et al., 2013; Peng et al., 2017; Shevliakova et al., 2009). Jain and Yang
(2005) found that the difference in the changing rates of cropland area
of two widely used land use datasets contributed significantly to the land
use emission uncertainty. It was also reported that during 1750-2010,
discrepancies between reconstructed and dynamically computed land
covers led to a difference of 84-114 Pg C in historical LULCC emissions
(Goll et al., 2015). Additionally, the diversity of LULCC definitions is
also an uncertainty source (Goll et al., 2015; Houghton et al., 2012;
Obermeier et al., 2021).

Therefore, understanding how LULCC uncertainties will influence
the global soil carbon stock estimates is essential and will contribute to
the management of existing carbon pools (Obermeier et al., 2021;
Poeplau et al., 2011). This is particularly important as LULCC is esti-
mated to have affected 32% of the global land area (Winkler et al.,
2021). Here we use six different LULCC datasets to drive the
process-based Dynamic Land Ecosystem Model (DLEM) to investigate
how global SOC estimates would be influenced by the choice of LULCC
dataset both spatially and temporally during 1900-2018. The outcomes
of this research would contribute to improving LULCC cartography and
quantifying the global carbon budget.

2. Materials and methods
2.1. The dynamic land ecosystem model (DLEM)

DLEM is a highly-integrated terrestrial biosphere model (TBM) that
can quantify spatially explicit carbon, water, and nutrient fluxes and
stocks at a daily time-step (Tian et al., 2011a, 2015; Wang et al., 2020;
Yao et al., 2020). It contains five key components, including biophysics,
plant physiology, soil biogeochemistry, dynamic vegetation, and land
use and management (Ren et al., 2020; Tian et al., 2011a, 2015). DLEM
has been extensively used to investigate the ecosystem responses to
multiple natural and anthropogenic influences, such as climate change,
atmospheric CO, concentration, tropospheric ozone, land-use change,
and disturbances (e.g., fire, hurricane, and harvest), across a wide va-
riety of biomes and spatiotemporal scales (Friedlingstein et al., 2020;
Pan et al., 2014, 2020; Ren et al., 2020; Tian et al., 2011a, 2015; Wang
et al., 2020; Yang et al., 2015; Yao et al., 2020; Zhang et al., 2016). The
agricultural module in DLEM is developed by incorporating explicit and
mechanistic representations of dynamic crop growth processes,
including crop-specific phenological development, biomass accumula-
tion and allocation, yield formation, and biogeochemical and hydro-
logical processes, along with agricultural management practices such as
nitrogen fertilization, irrigation, rotation, manure application, and
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tillage (Zhang et al., 2018). By coupling detailed biogeochemical, bio-
physical, and hydrological processes, the agricultural module is capable
of simulating and predicting the exchange of carbon, water, nutrient,
and energy fluxes within the agriculture-climate-environment system.
Additionally, we considered the cropland expansion, abandonment, and
rotation when assessing the impacts of LULCC on SOC and other fluxes
and stocks (Tian et al., 2011, 2015; Ren et al., 2020).

2.2. LULCC datasets

Six LULCC datasets were used, namely Land-Use Harmonization 2
Update for the Global Carbon Budget (LUH2-GCB2019; Chini et al.,
2021a; Hurtt et al., 2020), Moderate-Resolution Imaging Spectroradi-
ometer (MODIS) MCD12Q1 version 6 (Friedl and Sulla-Menashe, 2019),
European Space Agency Climate Change Initiative-Land Cover (ESA
CCI-LC; Bontemps et al., 2013, 2015), Global Land Surface
Satellite-Global Land Cover (GLASS-GLC; Liu et al., 2020), data by
Ramankutty and Foley (1999; hereafter RF), and data by Houghton and
Hackler (2001; hereafter HH).

LUH2-GCB2019 (0.25° x 0.25°, 1700-2018) was built upon the
updated data from the History Database of the Global Environment
(HYDE 3.2) and the most recent Food and Agriculture Organization
(FAO) statistics. It adopts corrected cropland and grazing areas, along
with a significant sub-national reorganization of agricultural land-use
patterns within Brazil as far back as 1950 (Chini et al., 2021b; Hurtt
et al., 2020). This dataset has been used as a standard input for the
multiple terrestrial biosphere models to assess the annual global carbon
budget (Friedlingstein et al., 2020). The MCD12Q1 version 6 product
(500m x 500m, 2001-2018) was generated by applying the supervised
classification method to MODIS reflectance data (Friedl et al., 2010),
with the classifier instability reduced dramatically through using Hid-
den Markov Models (Abercrombie and Friedl, 2015). The improved ESA
CCI-LC maps (300m x 300m, 1992-2018) were produced based on the
Advanced Very High Resolution Radiometer (AVHRR), the Systeme
Pour I’Observation de la Terre-VEGETATION (SPOT-VEG), the Medium
Resolution Imaging Spectrometer (MERIS), and the Project for On-Board
Autonomy-Vegetation (PROBA-V) using the GlobCover unsupervised
classification chain (ESA, 2017). The GLASS-GLC product (5 km x 5 km,
1982-2015) is built upon the latest version of AVHRR Global Land
Surface Satellite climate data records (Liu et al., 2020). The RF dataset is
mainly based on the FAOSTAT agricultural statistics and considers
changes in other land use types to compensate for the agricultural area
changes (Ramankutty et al., 2008; Ramankutty and Foley, 1999).
Oppositely, the HH dataset relies on forest area and biomass from FAO
Global Forest Resources Assessment (FRA) and assumes that the area
changes of other land use (e.g. croplands) account for the forest area
change (Houghton, 2008; Houghton and Hackler, 2001). Both the RF
and HH datasets provide a fractional area for croplands and natural
vegetation at a 0.5° x 0.5° spatial resolution. The RF dataset is available
from 1700 to 2005, and HH is from 1700 to 2007 (Meiyappan and Jain,
2012). All these datasets, except RF and HH, were resampled to a 0.5° x
0.5° resolution.

The historical cropland distributions for MODIS (1700-2000), ESA
CCI-LC (1700-1991), and GLASS-GLC (1700-1981) were reconstructed
according to the annual changing fraction of cropland in each grid cell in
LUH2-GCB2019 and the spatial patterns in their respective first avail-
able years. Natural vegetation types from MODIS, ESA CCI-LC, GLASS-
GLC, HH, and RF were further re-categorized to be consistent with DLEM
biomes classifications. In LUH2-GCB2019, the non-agricultural land was
partitioned into natural biomes according to the spatial patterns of
natural plant functional types (PFTs) in the Synergetic Land Cover
Product (SYNMAP; Jung et al., 2006), which were then scaled propor-
tionally with the annual cropland fraction within each grid cell.
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2.3. Other model forcings

Daily climate data, including maximum, minimum, mean tempera-
ture, precipitation, and downward shortwave radiation, were obtained
from the Climate Research Unit-Japanese reanalysis (CRU-JRA; Harris,
2019). Annual atmospheric COy concentration was obtained from the
NOAA GLOBALVIEW-CO, dataset from atmospheric and ice core mea-
surements (https://www.esrl.noaa.gov). Annual atmospheric nitrogen
deposition data was obtained from the International Global Atmospheric
Chemistry (IGAC)/Stratospheric Processes and Their Role in Climate
(SPARC) Chemistry-Climate Model Initiative (CCMI) (Eyring et al.,
2013). Soil physical and chemical properties were acquired from the
International Soil Reference and Information Centre-World Inventory of
Soil Emission Potentials (ISRIC-WISE) Harmonized Global Soil Profile
dataset (Batjes, 2008). Other auxiliary inputs, such as topography and
river network data, were acquired from the previous studies (Pan et al.,
2014; Tian et al., 2011b).

2.4. Model calibration and simulation designing

DLEM was calibrated against GPP measurements from FLUXNET and
the Long-Term Ecological Research (LTER) Network for each PFT
(Fig. 1). Specifically, we first ran the model with the default parameters,
of which most GPP-related parameters were tuned (within a + 20%
range of default values) to obtain a close match between the observed
and modeled GPP values. The parameter set with a minimal bias be-
tween the simulated and observed values was adopted. Then, the DLEM
model was further tuned and validated using SOC measurements across
various vegetation types, soil, and climate conditions, which were from
the World Soil Information Service (WSIS; Batjes et al., 2017), the
Harmonized World Soil Database (HWSD v1.2; Wieder et al., 2014), the
Global Soil Organic Carbon Map (GSOC v1.2.0), and the International
Geosphere-Biosphere Program Data and Information System (IGBP-DIS;
Global Soil Data Task, 2014). In this step, considering the number of
SOC measurements is sufficient to cover a wide variety of land conver-
sion trajectories and it is difficult to judge which LULCC dataset is
mostly near to the truth, it only requires ensuring the DLEM model using
any one of the LULCC datasets can achieve an overall acceptable accu-
racy compared with those observation-based SOC products. Here, the
LUH-GCB2019 dataset was used to drive the DLEM model, as it has the
longest record of land conversion and is widely used in inter-model
comparison projects (e.g., TRENDY) and the estimation of the global
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carbon budget (Chini et al., 2021a).

“All-combined” simulations with historical time-varying climate,
LULCC, N deposition, and atmospheric CO,, were run to estimate SOC
changes. DLEM was first run to reach equilibrium using the daily
climatology during 1901-1930. When differences in carbon, nitrogen,
and water pools between their current and previous averages in two
consecutive 20-year moving windows were less than 0.1 g Cm ™2 yr},
0.1 g Nm 2 yr !, and 0.1 mm Hy0 m~2 yr™}, respectively, the equi-
librium state in a grid cell was considered to be reached (Ren et al.,
2020; Zhang et al., 2018). Before the transient simulations, the model
was spun up for another 1,000 years to avoid potential bias resulting
from the shift between the equilibrium state to the transient state. In this
step, the climate data between 1901 and 1930 was randomly selected for
each year. To evaluate the impacts of LULCC on SOC dynamics, the
paired “without-LULCC” simulations, i.e., fixing LULCC in 1700 for each
of the six LULCC datasets, were conducted. The LULCC-induced SOC
change for each LULCC dataset was calculated as the difference between
the “all-combine” and “without-LULCC” simulations.

3. Results
3.1. Historical changes in cropland area

The temporal dynamics of the global cropland area showed large
differences across the six LULCC datasets. The largest cropland area was
recorded in ESA CCI-LC, which had a cropland area of 19.47 million km?
in the 2010s (Fig. 2), followed by LUH2-GCB2019 with a cropland area
of 15.56 million km? in the 2010s. MODIS, GLASS-GLC, and RF had
similar cropland areas of approximately 12.00 million km? in recent
decades, while HH got the smallest cropland area of approximately 7.00
million km? in the 2000s.

The three long-record datasets agreed that cropland had expanded
substantially since 1900 though they differed in the changing rate
(Fig. 2). In recent decades, LUH2-GCB2019 showed the most pro-
nounced increase in cropland area, whereas MODIS, GLASS-GLC, and RF
showed barely cropland expansion or even recession (Fig. 2). Cropland
expansion also occurred in ESA CCI-LC, which mainly took place in the
1990s, and has remained stable since 2000. This trend contrasts with
that of LUH2-GCB2019, in which the cropland area sharply increased in
the 2010s. It is worth noting that the cropland area in GLASS-GLC
exhibited the greatest fluctuations among all the datasets.

The spatial distribution of cropland also exhibited great divergences
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Fig. 1. Spatial distribution of site-level GPP and SOC measurements.



C. Gang et al.
21
= LUH2-GCB2019
——MODIS _—
——ESACCILC
18- e GLASS-GLC
N ——hH e
£ e RF
i~
S
= 151
E
©
Q
© 12
©
[
o
ol B
S 9
(@]
6-

1900 1920 1940 1960 1980 2000 Year

Fig. 2. The temporal trends of cropland area since 1900 for the six LULCC
datasets. The dotted lines indicate the reconstructed periods.

among the six LULCC datasets (SI Fig. S2). LUH2-GCB2019 and RF had a
similar spatial pattern, with RF having a smaller area in Eurasia. RF also
had a larger cropland area than MODIS, particularly in South America
and Africa. In GLASS-GLC, cropland was mainly concentrated in North
America, southeastern South America, Southern Europe, India, and
eastern Asia. HH had a larger cropland area in Africa than MODIS and
GLASS-GLC. Across all datasets, cropland expansion was particularly
notable in regions where it had already been intensively cultivated, such
as North America, southeastern South America, and India (Fig. 3).
Cropland abandonment was mainly located in eastern North America
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and western Europe. Notably, a significant decrease in cropland area
was observed in eastern China in HH and RF, at a much higher rate than
in the other LULCC datasets (Fig. 3).

3.2. Validation of model results

The validation results revealed that modeled GPP agreed well with
the observations (R? = 0.72; Fig. 4a). In terms of the modeled SOC, a
relatively lower deviation from the observations was observed (r =
0.40), and it performed comparably or slightly better than HWSD,
GSOC, an IGBP-DIS (Fig. 4b). The spatial patterns of the simulated SOC
by DLEM were generally consistent with HWSD, GSOC, or IGBP-DIS (SI
Fig. S1).

3.3. Impacts of LULCC on the global SOC changes

As shown in Fig. 5, the largest LULCC-induced SOC reduction from
1900 to 2018 was found in the LUH2-GCB2019-based estimation, which
amounted to 106.20 Pg C. The LULCC-induced SOC losses estimated by
MODIS, ESA CCI-LC, and GLASS-GLC were close, being 36.02, 37.80,
and 33.48 Pg C, respectively. Meanwhile, HH and RF exhibited higher
SOC losses, with values of 57.28 and 66.40 Pg C, respectively.

Spatially, the LULCC-induced SOC loss widely occurred across the
globe, especially in the northern high latitudes (Fig. 6). In LUH2-
GCB2019-based estimation, LULCC-induced SOC loss at a rate of >5
kg C-m~2yr~! was mainly distributed in the central and mid-east re-
gions of North America. Such a loss rate was higher than those estimated
by MODIS, ESA CCI-LC, and GLASS-GLC. For the HH- and RF-based
estimations, regions exhibiting the LULCC-induced SOC loss were
mainly concentrated in northern North America. In Europe, both LUH2-
GCB2019- and RF-based estimations exhibited larger areas with LULCC-
induced SOC loss compared to the other LULCC datasets. Regions with a
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Fig. 3. Spatial patterns of the historical changes in cropland area since 1900 in the six LULCC datasets. The area of regions showing a significant trend in cropland
coverage accounts for 95.31%, 93.94%, 80.94%, 78.86%, 93.89%, and 95.82% for LUH2-GCB2019, MODIS, ESA CCI-LC, GLASS-GLC, HH, and RF, respectively.
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Fig. 4. Comparisons of modeled GPP (a) and SOC (b) with observations. The LUH2-GCB2019 is used in driving DLEM. The Ref data in Fig. 4b is the site-level data
from WSIS. BNEF, Boreal needleleaf evergreen forest; BNDF, Boreal needleleaf deciduous forest; TBDF, Temperate broadleaf deciduous forest; TNEF, Temperate
needleleaf evergreen forest; TrBDF, Tropical broadleaf deciduous forest; TrBEF, Tropical broadleaf evergreen forest; DShb, Deciduous shrubland; EShb, Evergreen

shrubland; Gra: Grassland.
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Fig. 5. The modeled accumulative LULCC-induced SOC loss using different
LULCC datasets.

high LULCC-induced SOC loss rate were primarily located in northern
Europe in the HH-based estimation but in southern Europe for estima-
tions by MODIS, ESA-CCI, and GLASS-GLC. In Asia, LUH2-GCB2019-
based estimation showed the largest area with high LULCC-induced
SOC decreasing rates, followed by RF-, HH-, ESA CCI-LC-, and MODIS-
based estimations. Most of these regions were distributed in boreal
areas. In contrast, the smallest area experiencing LULCC-induced SOC
loss was observed in GLASS-GLC estimation, mainly concentrated in
northeastern and southern China. In South America, the largest area
with a high SOC loss rate was found in the LUH2-GCB2019-based esti-
mation (Fig. 6).

To further identify the hotspots with the large discrepancies in SOC
resulting from LULCC differences, the LULCC-induced SOC dynamics in
ten regions, including North America (NA), South America (SA), Europe
(EU), Africa (AF), Russia (RU), Middle East (MIDE), East Asia (EAS),
South Asia (SA), Southeast Asia (SEA), and Oceania (OC), were
compared. As shown in Fig. 7, Russia experienced the largest LULCC-
induced SOC loss (14.53 + 11.48 Pg C), with the LUH2-GCB2019-
based estimation yielding 34.39 Pg C, more than twice the amount
simulated by other LULCC datasets. In NA, the second-largest decrease

in SOC caused by LULCC was observed, with a decrease of 14.16 + 7.08
Pg C. The RF-, LUH2-GCB2019-, and HH-based simulations were twice
as high as the estimates based on MODIS, ESA CCI-LC, and GLASS-GLC.
In other regions, the reduction of SOC resulting from LULCC was less
than 10.00 Pg C. The smallest decrease was detected in MIDE with 0.68
+ 0.69 Pg C. In OC, the largest discrepancy among the simulations was
observed, with the LUH2-GCB2019-based estimation indicating a SOC
loss of 6.80 Pg C, while the GLASS-GLC-based estimation indicated a
SOC increase of 0.77 Pg C. The LULCC-induced SOC loss was 2.31 4+ 1.67
Pg Cand 1.60 + 0.64 Pg C in SES and SAS, respectively. The regions with
large divergence in relative changes of LULCC-induced SOC loss were
primarily located in the low latitudes. The largest difference was
observed in SAS, where the relative change of LUH2-GCB2019 was ten
times higher than that estimated by other LULCC datasets. Smaller dis-
parities in relative change were observed in RU, EU, and NA. Overall,
LUH2-GCB2019-based estimation has the largest SOC loss resulting from
LULCC in all regions except in NA, EU, and SAS, and the relative change
of this loss deriving from different LULCC datasets varied across the ten
regions.

3.4. Co-effects of LULCC and other factors on the global SOC

When considering both LULCC and other factors, the simulated dy-
namics of SOC driven by the six LULCC datasets showed greater differ-
ences than those by LULCC alone, both spatially and temporally. All the
modeled SOC decreased from 1900 to the 1960s (Fig. 8). The highest and
lowest decreasing rates were found in LUH2-GCB2019- and GLASS-GLC-
based estimations, respectively. After the 1960s, ameliorations in SOC
loss or even SOC increase were observed to different extents for all the
LULCC datasets except RF. It is noted that global SOC showed a
decreasing trend around the 1990s in estimates driven by GLASS-GLC.
Over the entire study period, the largest SOC decrease of 39.11 Pg C
was found in the LUH2-GCB2019-based estimation, followed by 12.36
Pg C in the HH-based estimation and 22.43 Pg C in the RF-based esti-
mation. In contrast, MODIS-, ESA CCI-LC-, and GLASS-GLC-based esti-
mations indicated that SOC increased by 7.80, 14.73, and 8.13 Pg C,
respectively. This suggests that the contribution of other factors may
have surpassed the impacts of LULCC during certain periods.

All the LULCC datasets revealed two hotspots of SOC stocks, located
around the 0° and 60°N (Fig. 9). LUH2-GCB2019- and GLASS-GLC-based
SOC showed similar spatial patterns, with higher SOC density in eastern
and northern Russia compared to other LULCC datasets. The HH- and
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Fig. 6. Spatial dynamics of LULCC-induced SOC driven by different LULCC datasets. The SOC changes are derived as the differences between “All-combine” and
“without-LULCC” simulations. The area of regions showing a significant trend in LULCC-induced SOC changes accounts for 96.14%, 93.13%, 94.02%, 94.17%,
95.42%, and 87.87% for LUH2-GCB2019, MODIS, ESA CCI-LC, GLASS-GLC, HH, and RF, respectively.

RF-based estimations, however, indicated that high SOC density in
Russia was concentrated in the western regions, while it was widely
distributed across central and eastern Russia in other LULCC dataset
estimations. In central Africa, the MODIS-based SOC density was the
highest among all six LULCC datasets (Fig. 9).

The spatial dynamics of SOC estimated by different LULCC datasets
also exhibited large divergence (Fig. 10). Regions with SOC reduction
were primarily concentrated in the northern high latitudes. Notably, in
North America, the estimated SOC loss estimated by ESA CCI-LC, GLASS-
GLC, and HH was markedly lower than those estimated by the other
three LULCC datasets. Furthermore, the SOC loss estimated by LUH2-
GCB2019 was primarily located in the central and mid-eastern re-
gions, whereas HH and RF estimated SOC loss in the northern regions. In
Europe, the high SOC loss rates were found in the southern region based
on LUH2-GCB2019, MODIS, and ESA CCI-LC, while HH and RF showed
similar loss rates in the northern regions. GLASS-GLC-based estimation
indicated SOC gain in most regions of Europe. In Russia, LUH2-
GCB2019, HH, and RF estimated widespread SOC loss with high rates,
while MODIS, ESA CCI-LC, and GLASS-GLC showed lower rates of SOC
loss in this area.

4. Discussion
4.1. Effects of LULCC on SOC dynamics
The LULCC effects on SOC dynamics are diverse and complex. When

one ecosystem changes into another one, the previous state of soil would
be disturbed, leading to either release or uptake of soil carbon until a

new equilibrium is eventually reached (Bolin, 2001; Guo and Gifford,
2002; Smith, 2008). Notably, the conversion from native vegetation to
cropland would reduce the SOC pool due to the decreasing input of
biomass and enhanced decomposition after disturbances (Poeplau et al.,
2011). Oppositely, afforestation on cropland is supposed to increase the
soil carbon pool (Deng et al., 2014; Korkanc, 2014; Lal, 2004). The
development of secondary forests contributes to the recovery of SOC but
may take a century-long time (Powers et al., 2011; Wright, 2005).
However, there are also studies arguing that the re-vegetation of crop-
land did not necessarily lead to an increase or decrease in SOC (Farley
et al., 2004; Smal and Olszewska, 2008; Vesterdal et al., 2002).

We found that the northern high latitudes experienced the largest
SOC loss resulting from LULCC. In North America and Russia, the
cropland area expanded the most in LUH2-GCB2019 among all the
LULCC datasets, leading to a large LULCC-induced SOC loss. This finding
is consistent with previous studies (Eglin et al., 2010; Tian et al., 2015).
Eglin et al. (2010) demonstrated that LULCC-induced SOC loss out-
weighed the carbon accumulation caused by climate and CO; in North
America, the Former Soviet, and Europe, due to forest clearing during
the 20 century. During 1850-2015, cropland expansion dominated the
net carbon balance in the Midwestern US (Yu et al., 2018). The cropland
area decreased in North America in HH but a similar magnitude of SOC
loss was observed, supporting the idea that the conversion of cropland to
natural vegetation may not lead to a gain of SOC (Farley et al., 2004; Li
et al, 2012; Smal and Olszewska, 2008). The cropland area in
LUH2-GCB2019 experienced an increasing trend before the 1960s but a
decreasing trend thereafter in Europe. However, the LULCC-induced
SOC loss was persistent, implying a legacy effect of LULCC on SOC
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Fig. 8. The relative change of modeled SOC over the study period based on the
six LULCC datasets. The annual relative SOC was calculated as the difference
between SOC in each year and in 1900.

loss. A previous study showed that up to 60% of current LULCC emis-
sions are attributed to the large legacy influence of LULCC in the past
(Goll et al., 2015). Despite the cropland area in MODIS, ESA CCI-LC, and
GLASS-GLC complies the same changing rate as in LUH2-GCB2019, they
differed in their initial cropland map (SI Fig. S2), resulting in different
carbon re-allocation following land conversion and diverse responses of
SOC dynamics to LULCC (Barcena et al., 2014; Houghton et al., 2012;
Poeplau et al., 2011).

4.2. Mechanism for the contribution of LULCC to SOC changes

A change in the fraction of PFT resulting from LULCC would affect
the amount of carbon that flows to vegetation, litter, and soil pools,
leading to changes in NPP and the input of organic material, and thereby
affecting the soil decomposition by controlling the C substrate avail-
ability (Hartley et al., 2017; Jain and Yang, 2005; Tian et al., 2015).
Previous studies have demonstrated NPP is the primary source that
determines the total amount and variation of SOC, implying that dif-
ferences in NPP could account for the divergent modeled soil carbon
stock estimates (Goll et al., 2015; Hartley et al., 2017; Tian et al., 2015;
Xu et al., 2020). Therefore, we investigated the LULCC-induced NPP
changes based on all the LULCC datasets. The correlation analysis
revealed that the LULCC-induced NPP changing rates were closely
related to the LULCC-induced SOC changing rates (R>=0.88), supporting
the hypothesis that the different SOC changes can be attributed to dif-
ferences in NPP (Fig. 11). Generally, changes in NPP can be explained by
the two main counterbalancing effects, including the decrease in NPP
due to deforestation and the increase in NPP due to cropland aban-
donment and the following growth of secondary forests (Jain and Yang,
2005). In our study, the differences in the LULCC-induced NPP changing
rates can be attributed to the varying initial land use maps and land
conversion histories for different LULCC datasets. Changes in the natural
vegetation maps resulting from cultivation or re-vegetation would affect
terrestrial NPP and subsequently impact SOC dynamics (Guo and Gif-
ford, 2002; Vesterdal et al., 2002; Brovkin et al., 2013).

4.3. Uncertainties

4.3.1. The current land use maps

The fractional forest area was found to have a relatively large un-
certainty in Africa, South America, and continental Southeast Asia.
Higher forest coverage was observed in Europe and southeastern China
in MODIS and GLASS-GLC than in SYNMAP (SI Fig. S2). Moreover, large
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Fig. 9. The spatial patterns of modeled SOC stocks driven by different LULCC datasets (left) and their latitudinal distribution (right).

discrepancies in cropland fraction were identified in Europe, India, and
North America (Li et al., 2018). Several reasons may help to explain the
large inconsistency among these LULCC datasets. As the forest area in
FAO is reported by the member countries, the clearance of forest may
still be reported as a forest class in inventory data, whereas it may be
detected as non-vegetated lands from satellite observations (Keenan
et al.,, 2015; Li et al., 2018). In dryland Africa, it is challenging to
distinguish forests from shrublands or savannas using medium- or
coarse-resolution satellite remote sensing. The global dryland forest area
was reported to be underestimated by 40% (Achard et al., 2014; Bastin
et al., 2017). Additionally, different definitions for a particular land use
type can lead to uncertainties. For instance, oil palm plantations and
rubbers in tropical countries are considered as cropland in the FAO
definition, but classified as tree cover in remote sensing datasets (Carl-
son et al., 2013; Liu et al., 2020). Our findings demonstrated that ESA
CCI-LC has the largest cropland area among all the datasets, indicating
that greater discrepancies may exist in other land use types. Another
factor contributing to the uncertainty is the time lag between the
real-time changes captured by remote sensing and the reporting of in-
ventory data by individual countries (Hartley et al., 2017).

The advancement of remote sensing technology over the past few
decades has provided a valuable opportunity to characterize the
spatiotemporal pattern of vegetation distribution under natural and
anthropogenic activities. However, satellite products obtained from
different platforms typically differ in their land cover scheme, spatial
resolution, time coverage, and accuracy, mainly due to the differences in
sensors or validation methods (Bontemps et al., 2012). This uncertainty
in the original satellite images would propagate in producing the
satellite-derived land use products (Bayer et al., 2017; Li et al., 2018).
The performance of the classification methods also contributes to the
overall uncertainties (Hartley et al., 2017). For example, the canopy
cover of forests is defined as >15% in ESA CCI-LC maps according to the
Land Cover Classification System (LCCS) developed by the United Na-
tions (UN) FAO, whereas it is 10% in MODIS land cover products with
PFT classification. This difference may partly explain the higher forest

coverage observed in MODIS than in ESA CCI-LC.

Previous studies demonstrated that the land use maps face difficulty
in separating the spectral signature of subsistence agriculture from
natural vegetation between 15°S-5°N, which leads to a higher hetero-
geneity of mixed vegetation in these regions (Hartley et al., 2017).
Generally, satellite-based land use products have the lowest accuracy in
identifying regions with sub-pixel scales mixtures of plants, such as
cropland/natural vegetation mosaics) (Bontemps et al., 2015; Liu et al.,
2020; Sulla-Menashe et al., 2019). Furthermore, each remotely sensed
product has its own limitations. For example, wetlands are
under-represented in MCD12Q1, and there are misclassifications among
different forest types in Japan, the Pacific Northwest of North America,
Chile, Australia, and parts of South America (Sulla-Menashe and Fried],
2018). Similarly, land conversions between different forest types are not
sufficiently captured in ESA CCI-LC because forest growth is a gradual
process (Goll et al., 2015; Li et al., 2018). In addition, low-intensity of
land use changes, such as shifting cultivation, may not be detectable
using medium- or coarse-resolution satellite imagery, which can lead to
errors in classification (ESA, 2017). The accuracy of these satellite
products is also constrained by the contamination of persistent cloud
cover in some regions, such as the Congo Basin and Insular Southeast
Asia (Houghton et al., 2012). For such areas, the use of high-resolution
satellite images, such as Landsat and Sentinel, can generate more precise
maps of forest coverage. GLASS-GLC is reported to have lower classifi-
cation accuracy in regions such as Africa, eastern and southern South
America, southern Alaska, northern and eastern Australia, and south-
western Indonesia (Liu et al., 2020).

4.3.2. The historical land use maps

Historical land use maps provide a crucial baseline for projecting
future vegetation maps and the atmosphere-land interactions (Brovkin
et al., 2013; Hurtt et al., 2011). The uncertainty of historical LULCC is
also one of the key uncertainties in estimating the terrestrial carbon flux
since carbon flux resulting from LULCC depends on both land use types
and carbon stocks prior- and post-change (Arneth et al., 2017; Bayer
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etal., 2017; Fuchs et al., 2015; Houghton and Nassikas, 2017; Di Vittorio
et al., 2018). As remote sensing products are only available for recent
decades and prone to large uncertainties from various sources, making it
difficult to reconstruct consistent historical land-use maps (Houghton

et al., 2012; Peng et al., 2017). In this study, we did not rely on
country-level statistics, population statistics, or model assumptions due
to the limited available dataset. Instead, we used the change in cropland
area of LUH2-GCB2019 as a reference, all the cropland area in
satellite-based land use maps (i.e., MODIS, ESA CCI-LC, GLASS-GLC)
shared the same changing rate as that in LUH2-GCB2019 between
two-time steps (inter-annual) at a given grid. Consequently, the fraction
area changes of PFTs are all the “net change” rather than “gross change”,
which may underestimate the land use change, and thus, introduce the
uncertainty in the estimation of SOC dynamic during the historical
period (Lawrence et al., 2016; Fuchs et al., 2015).

Also, we did not account for the possible impact of the cross-walking
table (CW) when converting land use types to PFTs. The CW table pre-
scribes the fraction of each PFT that occurs within each land use class
and is subject to the expert interpretation of the description of a given
land use type, making it a potential source of uncertainty in model
simulations (Hartley et al., 2017; Li et al., 2018). Hartley et al (2017)
found that, based on the ESA CCI dataset, the uncertainty of tree fraction
caused by the cross-walking table was particularly significant for
simulating the albedo and ET in northern boreal forests. To minimize the
uncertainty resulting from using different CWs, we assumed that each
grid cell was covered by one “pure” vegetation class across all
satellite-based land use products. Besides, the cohort approach used in
DLEM allows the coexistence of four nature PFTs in a grid cell, ranking
by the relative percentage of PFTs that occupy the total area of natural
vegetation. This feature may help to reduce the uncertainty caused by
CW to some extent. Higher uncertainties are supposed to occur in re-
gions covered by mosaic/mixed vegetation types, which could lead to an
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underestimation of the area of a certain PFT and an overestimation of
another.

The transition rule used in reconstructing the historical land use
maps is another source of uncertainty in estimating the impact of LULCC
on the terrestrial carbon cycle (Di Vittorio et al., 2018). For instance, the
RF dataset used in our study reported a forest decrease of approximately
8.5 million km? from 1901 to 2005, which is slightly lower than the 9.0
million km? reported by HH (Houghton, 2008). However, the global
forest decreased by 5.3 million km? in LUH2-GCB2019 over the same
period. In Dynamic Global Vegetation Models (DGVMs), the estimated
global forest area decreases between 1900 and 2005 ranged from 2.2
million km? to 16.9 million km? in different models, even though they
used the same HYDE cropland and pasture dataset (Peng et al., 2017).
The conversion of forests with high carbon density into agricultural land
by deforestation leads to much higher emissions compared to conversion
to natural grassland. Due to the differences in the initial land use maps,
the reconstructed MODIS, ESA CCI-LC, and GLASS-GLC show different
magnitudes of forest area decrease over the same period, with re-
ductions of 2.57 million, 3.82 million, and 0.91 million km?
respectively.

Generally, modelers tend to use the same time-varying maps of
cropland and pasture, however; however, the land use histories often
vary due to the different rules to account for the expansion or aban-
donment of cropland in TBMs (Peng et al., 2017). Some models,
including DLEM, adopt the rule that the fractional change of cropland
area results in a proportional reduction or expansion of existing natural
PFTs within the same grid (Jain et al., 2013; Meiyappan and Jain, 2012;
Ren et al., 2020). Some other models use a preferential reduction or
expansion of grassland for pasture and a proportional reduction or
expansion of natural PFT for cropland, or the reduction of grassland for
both cropland and pasture (Brovkin et al., 2013; Reick et al., 2013). Asa
result, the use of different allocation rules for the compensation of
cropland inevitably leads to diverse LULCC histories, and consequently,
to different historical LULCC-induced carbon dynamics.

In addition, we use the individual DLEM to estimate the response of
the SOC dynamic to the LULCC uncertainty in the present study. The
number and types of PFTs included in process-based models often differ,
and some modeling groups even generate their own PFT maps required
as input based on different land use products (Hartley et al., 2017; Tian
etal., 2015, Pongratz et al., 2014, Di Vittorio et al., 2020). Therefore, the
outputs of other models are expected to differ from ours in terms of both
quantity and spatial distribution. Tian et al. (2015) used ten different
TBMs and found that the effects of LULCC contributed -20 — 400% to the
net SOC change during the 1901-2010 period, despite using the same
land use maps as input. Our study demonstrated that the variability in
LULCC-induced SOC dynamics resulting from different LULCC datasets
was similar in magnitude to the uncertainty caused by different TBMs.
This large divergence in the contribution of LULCC to SOC stocks calls
for a more accurate representation of SOC dynamics associated with
vegetation changes (e.g., cropland abandonment and afforestation) in
TBMs.

5. Conclusions

The estimation uncertainty of SOC stock and changes stemming from
the multiple LULCC datasets is an imperative uncertainty source when
estimating the global carbon dynamics, which is even comparable to the
uncertainty of environmental forcing to SOC changes by multi-models
using the same land use map as input. This study not only provides in-
sights into the possible range of SOC changes but also highlights the
locations most sensitive to the uncertainty induced by LULCC. More-
over, the uncertainty of current land use maps is highly possible to
propagate when reconstructing the historical land use maps. Therefore,
accurate estimation of the LULCC-induced land carbon budget requires
the precise representation of both present and historical PFTs derived
from land use maps. Future efforts should focus on improving the
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mapping of vegetation distribution in key regions, such as the boreal and
arid regions. Fully reconciling this issue requires a range of approaches,
including incorporating external datasets for specific land use types and
using higher spatial resolution maps to reduce classification uncertainty.
Integration of remotely sensed products is a plausible way for the
modeling communities to better represent the PFTs, and consequently,
the LULCC process.
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