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Abstract Global carbon dioxide (CO,) evasion from inland waters (rivers, lakes, and reservoirs) and carbon
(C) export from land to oceans constitute critical terms in the global C budget. However, the magnitudes,
spatiotemporal patterns, and underlying mechanisms of these fluxes are poorly constrained. Here, we used

a coupled terrestrial-aquatic model to assess how multiple changes in climate, land use, atmospheric CO,
concentration, nitrogen (N) deposition, N fertilizer and manure applications have affected global CO, evasion
and riverine C export along the terrestrial-aquatic continuum. We estimate that terrestrial C loadings, riverine
C export, and CO, evasion in the preindustrial period (1800s) were 1,820 + 507 (mean + standard deviation),
765 + 132, and 841 + 190 Tg C yr~', respectively. During 1800-2019, multifactorial global changes caused

an increase of 25% (461 Tg C yr™') in terrestrial C loadings, reaching 2,281 Tg C yr~! in the 2010s, with

23% (104 Tg C yr™") of this increase exported to the ocean and 59% (273 Tg C yr~') being emitted to the
atmosphere. Our results showed that global inland water recycles and exports nearly half of the net land C

sink into the atmosphere and oceans, highlighting the important role of inland waters in the global C balance,
an amount that should be taken into account in future C budgets. Our analysis supports the view that a major
feature of the global C cycle—the transfer from land to ocean—has undergone a dramatic change over the last two
centuries as a result of human activities.

Plain Language Summary Despite occupying only 1% of the Earth's surface, inland waters (rivers,
lakes, and reservoirs) play a critical role in global carbon (C) cycling by linking two of the Earth's largest C
pools, terrestrial and marine ecosystems, as well as by exchanging CO, with the atmosphere. Inland waters
emit and bury C before it reaches the oceans, with important implications for the global C budget. Although
global estimates of lateral C fluxes have been made previously, much uncertainty exists in their magnitudes,
spatiotemporal patterns, and underlying controls (anthropogenic vs. natural processes). By improving a coupled
terrestrial-aquatic model, we assess how climate, land use, atmospheric CO,, and nitrogen enrichment affected
global CO, evasion and riverine C export along the terrestrial-aquatic continuum since the 1800s. We estimate
a 25% increase in terrestrial C loading since the 1800s, of which 59% was emitted to the atmosphere and 23%
was exported to the ocean. The increased riverine C exports were primarily due to increasing atmospheric

CO, level and nitrogen inputs; additionally, climate and land conversion dominated interannual and decadal
variations in CO, evasion. Our findings indicate that anthropogenic-induced climate change and multiple
environmental stresses since the preindustrial era have resulted in significant increases in terrestrial C export

to oceans and CO, evasion. Global inland water recycles and exports nearly half of the net land C sink into the
atmosphere and ocean, underscoring the importance of inland waters for closing the global carbon budget.
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1. Introduction

Inland waters (streams, rivers, lakes, and reservoirs), though occupying only 1% of the Earth surface, represent a

1Y)

vital link connecting two of the largest active carbon (C) pools, terrestrial, and marine ecosystems. Inland waters,
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also serve as an important conduit for the exchange of CO, with the atmosphere. Terrestrial C cycle changes can<
drastically alter the patterns of C loading (C transfer from land to inland waters), which further influences C dynam-
ics in coastal and marine ecosystems (Butman et al., 2016; Cole et al., 2007; Najjar et al., 2018). Through thisa
biogeochemical pathway, inland waters transport, bury and remove C before it reaches coastal oceans, thereby
significantly altering the global C budget. Globally, inland waters emit about 2.2 Pg C yr~! (0.7-4.2 Pg C yr™!) to thess
atmosphere (Lauerwald et al., 2023a; Raymond et al., 2013), offsetting 75% of the contemporary terrestrial CO, sink z'
(Friedlingstein et al., 2019, 2022; Le Quéré et al., 2018). However, large uncertainties still exist in the magnitude?
and variability of C dynamics along the terrestrial-aquatic continuum. In particular, it is not well understood how
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natural and anthropogenic disturbances have changed terrestrial C loading to inland waters, the burial of C in inland

=

waters, evasion of CO, from inland waters, and C delivery to coastal waters over a century-long time scale, with a
estimated 2-c errors in all of these flux changes at the global scale of between 50% and 100% (Regnier et al., 2022).

~
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Inland water C has three main forms: dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and partic-

ulate organic carbon (POC). Each form responds differently to environmental changes. The long-term changes of C
exports in dissolved forms (DOC and DIC) have been found to be primarily regulated by air temperature (Laudon
etal., 2012; Pastor et al., 2003), while hydrological conditions may explain their short-term variations (Raymond &
Oh, 2007). DIC is also influenced by CO, evasion, which is also affected by climate and land-use change (Lauerwalda
et al., 2015). Land conversions can substantially modify the geomorphologic conditions of the land surface, and
thus alter soil erosion and the loss of POC (Galy et al., 2015). Additionally, other direct and indirect anthropogenic3’
factors, such as elevated atmospheric CO, concentrations, atmospheric nitrogen deposition, and extensive fertilizerc.
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application, can cause notable changes in inland water C fluxes (Findlay, 2005; Houghton, 2010).
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Previous estimates of inland water C fluxes were mostly derived from statistical relationships between observa-
tions and environmental factors (Dai et al., 2012; M. Li et al., 2017; Ludwig et al., 1996) or from bookkeeplng {
methods (Butman et al., 2016). For example, Dai et al. (2012) estimated the magnitude of global riverine DOC°
export to be 0.21 Pg C yr~! based on observations from 118 rivers around the world. However, these methods are
highly dependent on the quality and quantity of field measurements, which limits their use in watersheds withg
scarce data and high spatio-temporal heterogeneity. Therefore, hybrid models integrating empirical, statistical
and mechanistic components, such as the Global Nutrient Export from WaterSheds (Global NEWS) model, have&
been developed to estimate riverine exports of C and nutrients (Seitzinger et al., 2005) and greenhouse gas emis-

sions from inland waters (Hu et al., 2016; Kroeze et al., 2005; Seitzinger et al., 2000). Nevertheless, the wide us
of empirical equations and over-simplified representations of mechanisms for land and aquatic systems in these
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models can undermine their predictive capability as the performance of empirical equations may substantially
decrease under changing environmental conditions (Girardin et al., 2008; Leach & Moore, 2019).
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In contrast, process-based modeling is more general and hence more suitable for both hindcasting and forecasting

dd

under varied conditions. Though several models have been applied in the estimation of inland water C fluxesg
in regional and global studies (Hastie et al., 2019), these models are usually run at a coarse spatial resolution8.
that is unable to capture key water transport processes, such as channel routing in headwater zones, which have
been shown to be hotspots of greenhouse gas emissions (Battin et al., 2008; Butman & Raymond, 2011; Butman
et al., 2016; M. Li et al., 2021; McClain et al., 2003; Raymond et al., 2013). Furthermore, it is difficult for these<’
models to represent the effect of individual land-to-water delivery factors and their interactions within the actual

ouJLu03 9AI1ea.) ||qedl|

ecosystem (Robertson & Saad, 2013). Yet, such processes largely determine how C cycling in aquatic ecosys-
tems is affected by natural and anthropogenic disturbances. The comparison of the current C models (M. Li3
et al., 2019; Marescaux et al., 2020; Mayorga et al., 2010; Nakayama, 2022; Nakhavali et al., 2020; Saccardi &£
Winnick, 2021; H. Zhang et al., 2022) reveals their limited ability to differentiate small stream processes in simu—§
lating riverine C dynamics. The representation of C transport across the river-lake-reservoir continuum remains”
incomplete in these models. Moreover, a subset of these models lacks the inclusion of terrestrial C processes,
thereby hampering the overall coupling of terrestrial and aquatic C dynamics.

Here, we describe refinements of the Terrestrial/Aquatic Continuum module of the Dynamic Land Ecosystem
Model (DLEM-TAC) that improve representations of coupling of terrestrial and aquatic processes of the C,
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nitrogen and water cycles, and their integration across multiple water types (rivers, headwater, lakes and reser-
voirs) (Tian et al., 2015b; Yao et al., 2021). The process-based, high-resolution DLEM-TAC was used to quantify
the magnitude and spatio-temporal patterns of global inland water CO, evasion, C burial in aquatic sediments,
and the riverine exports of POC, DOC, and DIC from land to oceans during 1800-2019. Moreover, factorial
simulations were implemented to attribute changes in global inland water C fluxes to different environmen-
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tal factors, including climate, land-use change, atmospheric CO, concentration, nitrogen deposition, and ferti-=
lizer/manure application. Our findings demonstrate the important roles of both climate-related factors as well as
human activities in alterations in land-ocean-atmosphere C exchanges.

'/(a|!M'A,|e.|q||a

2. Methods

The DLEM-Terrestrial/Aquatic Continuum (DLEM-TAC) is an integrated modeling framework that encapsulates
land and aquatic ecosystem processes (Figure 1). The land component describes terrestrial biophysical char-
acteristics, plant physiological processes, and soil biogeochemistry at a daily time step (Tian et al., 2010); the
aquatic component uses C and nutrient loadings as inputs and simulates the biogeochemical dynamics along the
land-river—ocean continuum, such as CO, evasion, burial, and transport (Yao et al., 2021). Detailed information

ulpuoa—pue—suua;/ujo:)

on the land component can be found in our previous studies (Pan et al., 2021; Tian et al., 2015a). Here, we focus:
on the improvements in the aquatic component.

2.1. The Routing Scheme of Rivers, Lakes, and Reservoirs

As|ip uo (suo

In DLEM-TAC, water transport within the grid cells is separated into three subgrid processes: hillslope routing,
subnetwork routing, and main channel routing. A scale-adaptive and physically based model named Model of3’
Scale-Adaptive River Transport (H. Li et al., 2013) was incorporated into DLEM. The water from surface runoff is
routed across hillslopes first. The water received by the subnetwork channels from hillslope flow and groundwater

.|mq|'| auijup

A

discharge flows into the main channel. Note that the subnetwork channels within a 30 arc-min grid cell represent
the streams from first to fifth orders (Fekete et al., 2001). The main channel receives water from upstream grid
cells and local subnetworks and discharges it to the downstream grid cell. All three sub-grid routing processes
use kinematic wave methods (Chow, 1964), which require several physical parameters (channel length, bank-full
depth, channel slope, and channel roughness) derived from a 15 arc-second resolution hydrological data set (H.-Y.®
Liet al., 2015). To represent the floodplain process, the model assumed that, the channel width increases by five
times when the water level is higher than the bankfull channel depth. In the scale-adaptive water transport scheme,
the length of the subnetwork flow changes with the model grid resolution (H. Li et al., 2013), so the total effectlve
length of small streams (subnetworks) within a grid cell increases with the grid size. Therefore, the parameters

Je s3jd11ie YO 'asn Jo sa|n 1oy
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of the new water transport module only require minor re-calibration when the model is applied at different reso-!
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lutions. This way, the scale-adaptive river routing scheme within DLEM allows a simultaneous representation of'
carbon and nitrogen fluxes on scales from small streams to large rivers within a grid cell (Yao et al., 2020, 2021).

Aq pa

We should note that, dam operations would substantially affect the flow regime, and the associated carbon fluxes
of reservoirs behind them as well as their downstream rivers. Here, we further linked lakes and reservoirs with
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small streams and large rivers in DLEM, forming a stream-river—lake—reservoir corridor (Wollheim et al., 2008).
Specifically, lakes with upstream areas smaller than a grid cell are linked to small streams, while those withS.
upstream areas larger than a grid cell are linked to large rivers. The outflow rates of natural lakes were calculated
based on the prescribed residence time obtained from Messager et al. (2016). The residence times of reservoirs
that linked subnetwork corridor are obtained from the global data databased (Lehner et al., 2011). Reservoirs<’
that are linked to main channels are considered as major reservoirs. The operation rules of major reservoirs were
adopted from existing algorithms (Biemans et al., 2011; Haddeland et al., 2006; Hanasaki et al., 2006), which
require a reference run with reservoir operation turned off to provide natural water flows as model input.

2.2. Aquatic Carbon Dynamics in DLEM-TAC

The aquatic C module in DLEM-TAC consists of lateral C transport, the decomposition of organic C, the burial of
POC, DIC uptake through primary production, and CO, evasion (Figure 1a). The dynamics of different C forms
within a water body (river, lake, or reservoir) follow the mass balance:

A1\4POC —

Al apoc — Rpoc Mpoc — vs As Cpoc + P (1)
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Figure 1. Sources and fates of major carbon species in inland water systems (river, lake, and reservoir) represented in the
DLEM-TAC modeling framework (a) and the representation of small rivers within the concept model of the scale-adaptive
water transport module (b).

AM
A];O_C = Fapoc — Rpoc Mpoc + Rpoc Mpoc
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A?IC = Fupic — P + Rpoc Mpoc — Eco, @
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where AMpo/ Af, AMpo/ At, and AMpy /At (g C d="), are the net changes in the total mass (M) of POC, DOC, and
DIC, respectively; At denotes the time step (day); F, represents the net lateral transport (inflow minus outflow) of
C species through the linked inland water corridor (g C d™"); Ry and Rpo are the decomposition and catabolism
rates of the organic (dissolved and particulate) C species (d™!); v, is the settling velocity of POC (m d™1); Cpoc is
the concentration of POC (g C m™); A, is the area (m?) of the water body surface, P is the primary production
through photosynthesis in the aquatic system (g C d™!), and Eco, is the CO, evasion to the atmosphere (g C d7!).

TIAN ET AL.
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Particulate Inorganic Carbon (PIC) was not considered in our simulation because we assumed that PIC is not
reactively involved in the C cycle of terrestrial and aquatic ecosystems.

diy)

Carbon species (DOC, POC, or DIC) from the land (surface runoff) enter the hillslope and subsurface flows,
and further contribute to the subnetwork flow (Figure 1b). Biogeochemical processes within the hillslope flow<

uo//:s

and subsurface flow were not considered in this work. The advective C fluxes through the subnetwork and3
main-channel are described as

Fa,sub = Fh/c + Fg/c - quhcsub

A
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n
Fa,main = z Qup,iCup,i + qubcsub - Qmaincmain

i=0

—~
)]

where F, , is the C flux (DOC, POC, or DIC) (g C d™") of the subnetwork flow; F, . is the C flux (g C d™")
of the main-channel flow; F), is the C flux (g C d™") of the hillslope flow; F, is the C flux (g C d™') from
the groundwater to the subnetwork; Q_,, is the out flow rate of subnetworks (m? s~!); C_, is the concentration
(g C m~3) of C flux in the subnetworks; 0,, and Q, ;. are the outflow rates of upstream grid cells and the main

are the associated concentrations (g C m 3)
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channel within the grid cell (m? s~'), respectively; and C,pand C

main

of C species associated with 0, and Q respectively.

main®

The first-order decomposition and catabolism rate coefficients are given by

~
N
o

o’

Rpoc = Kpoc (Q10) 10
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Rroc = Kpoc (Q10)” 10 (6b)

where K, and Kpq are the decomposition and catabolism rates (d~!) at the reference temperature T, (20°C);

Jo $3jnJ Joy

0, is the multiplicative factor applied to the respiration rates when the water temperature 7, (°C) increases by
10°C relative to T; and T, is the water temperature (°C), which is calculated based on an empirical relatlonshlp
with air temperature (Mohseni et al., 1998, 1999).

The settling velocity of POC is estimated by a simplified Stokes' law (Thomann & Mueller, 1987):

a2Je s9|dijie yo ‘asn

vy = 0.033634 a (py — puw)d*
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where v, is the settling velocity (m d=!); « represents the effect of the particle shape on the settling velocity; p, and

p,, are the densities of the particle and water (g - cm~2), respectively; and d is the particle diameter (pm). g
3
<

The CO, exchange between water bodies and the atmosphere is explicitly estimated as ;23"
)

Eco, = Kco, - (Cco2 - CCOZEq) Ay (8)2

where Eco, is a net CO, evasion (g C d-"; Kco, is the gas transfer velocity (m d='), which is obtained from
Raymond et al. (2012); Cco, is the dissolved CO, concentration (g C m~?), which is computed from DIC and pHg
(note that pH is a static map interpolated based on the GLORICH data set without temporal variations) at a given
water temperature 7, (Hartmann et al., 2019; Yao et al., 2021), and Cco,.q is the equilibrium surface water CO,
concentration (g C m~3) with respect to atmospheric pCO,.

The gas exchange rate (or refers to piston velocity) Kco, (m d7!) is estimated as:

SCco, \ ™
Kco, = K 9
co, GOOX( 600 ) )
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where SCco, is the Schmidt Number for CO, (unitless), which can be calculated as (Raymond et al., 2012):

SCco, = 1911 = 118.11 X Ty + 3.453 X T\,” — 0.0413 X T, 10)

TIAN ET AL.
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where K, (m d~!) is the gas exchange coefficient.

The K,

00 for streams and rivers was estimated by Raymond et al. (2012):

sdny)

Koo = VS x 2814 4 2.02 (115

~—

|uo//:

In the updated version of DLEM-TAC (Yao et al., 2022), we used different K, for lakes and reservoirs, which=,
was adopted from the work of Tan et al. (2015):

Keoo = 2.778 - 107° X (2.07 + 0.125 - Uyo'”7)

~
=
®
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where U, is the wind speed of 10-m above the ground surface (m s~!). More detailed information about the;
representation of the aquatic C dynamics can be found in our previous publication (e.g., Tian et al., 2015a; Yao
etal., 2021, 2022).

-pue-suwa}/wo

3. Model Input Data and Simulation Protocol
3.1. Model Forcing

A database at a spatial resolution of 0.5°, consisting of climate variables, land-use change, nitrogen deposition,
nitrogen fertilizer, and manure application (Figure S1 in Supporting Information S1), atmospheric CO, concen-
tration, and hydrological data was developed to drive the DLEM-TAC model.

o Aajim Uo (suongpuoa

The climate variables, which consist of daily precipitation, daily mean temperature, daily maximum temperature,
daily minimum temperature, daily wind speed and daily shortwave radiation, were compiled from the CRU-NCEPZ’
data set for 1901-2019 (Viovy, 2018). Climate data of each year during 1800—-1900 were randomly sampled fromz:
the years between 1901 and 1920. The land use data were from HYDE version 3.2 (Klein Goldewijk et al., 2017
and the land cover cohort within a grid cell is composed of four natural vegetation types, one cropland type, an

qr aul

o

o} Kies

other non-vegetation land-use types (Tian et al., 2018). Detailed information on DLEM land-use input data can
be found in M. Liu and Tian (2010).

The annual atmospheric CO, concentration from 1800 to 2019 was obtained from the NOAA GLOBALVIEW-CO, g
data set (https://www.esrl.noaa.gov). The nitrogen deposition data set was obtained from the Atmospheric Chem-

istry and Climate Model Intercomparison Project. The N fertilizer data were obtained from Lu and Tian (2017)
and the spatial manure N application data were adopted from B. Zhang et al. (2017) (Figure S2 in Supporting&

9|d13ue VO ‘asn JO sa|nJ 4

Information S1).

ob ale s

The hydrological input data, covering the flow direction, flow distance, and upstream area, were obtained from
the Dominant River Tracing (DRT) data set (Wu et al., 2012). The bank-full width and bank-full depth data
sets were obtained from the Hydrological Modeling and Analysis Platform (Getirana et al., 2012). The channel

SEIIEY

density and channel slopes of small streams and rivers were derived from the National Hydrography Datase

ayr'Aq

plus v2 data (available at: http://www.horizon-systems.com/NHDPIlus/index.php). Surface area, upstream area,

dde

volume, depth, and averaged residence time for lakes were obtained from the Hydrolakes data set (Messager
et al., 2016). The variables for reservoirs, including built year, height, maximum storage, water surface area
residence time, and upstream area, were obtained from the GRanD database (Lehner et al., 2011).

suowu.log 9AI1ea.) 9|qedl|

3.2. Simulation Protocol

DLEM-TAC simulation covered the globe primarily following three steps (Figure 2): (a) To obtain the initial
climatological or steady state pre-industrial conditions, we conducted the equilibrium simulation for each grid
cell by holding all the driving forces constant in the year 1800 including climate status (we used 1901 climater, =
because CRU-NCEP data before 1901 are not available), land-use conversions, atmospheric CO, concentration,3
and nitrogen additions. When the local C, nitrogen, and water pools of all the grid cells reached a steady state,g
the equilibrium run finished (Thornton & Rosenbloom, 2005). (b) Before moving to the year-to-year normal
simulation, we conducted a 30-year second spin-up run by randomly selecting climate forcings within the 1800s
(Tian et al., 2012). Then we conduct the natural flow simulation with the dam module temporarily disabled,
and all the driving variables changing over time. (c) After the natural flow simulation, we set up a management

flow simulation, with the dam module turned on. We evaluated the simulated flow discharge and C fluxes with

TIAN ET AL.
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1. Model initialization
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Figure 2. The flowchart representing the simulation protocol for the lateral carbon fluxes. g
£
o

observations and calibrated the model parameters, including terrestrial C loadings and aquatic processes. Follow-
ing the model calibration, we conducted the base simulation (S1) by changing all the driving forcing over time to
investigate the spatial and temporal patterns of inland water C fluxes.

oJe s9|dije VO

In order to investigate the responses of inland water C fluxes to multiple environmental changes, six factorial
experiments were conducted by fixing each of the driving forcings (Figure 2). For each of the simulations S2
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through S6, we held climate, land use. atmospheric CO, concentration, nitrogen deposition, fertilizer applications,

po

and manure applications constant at the level of 1800, respectively, while allowing the other variables to track
their historical trajectories. The effects of climate, land use, atmospheric CO, concentration, nitrogen deposition

dde aq; Aq

fertilizer applications, and manure applications on C loading were calculated by subtracting the factorial experi-
ment from the base simulation (i.e., S1-S2, S1-S3, S1-S4, S1-S5, and S1-S6, respectively).

3.3. Model Evaluation

To examine the performance of DLEM-TAC, we compared the simulated terrestrial loading and riverine exportZ
with observations for each C species (at 56 land sites and 47 world major rivers. The detailed data used for
model calibration and validation are shown in Figure S3, Tables S1 and S2 in Supporting Information S1).3
The determination coefficient (R?) and Nash-Sutcliffe efficiencies (NSE, Nash and Sutcliffe (1970)) wereQ
applied to assess the performance of DLEM-TAC. The NSE ranges between —oo and 1. An NSE close to 1E
means a good match of the simulated to the observed data; NSE = 0 means that the simulation is as skillful3
as the average of the observed data (M. Li et al., 2019). Simulated terrestrial loading of DOC, POC, and DICg

agreed well with observations (log transformed, R? > 0.7; Figure 3a—3c). Aquatic module simulations of the

07 aA13eaI) d|qedl|

observed annual mean discharges and the C export to the coast were consistent with those recorded by the
GEMS-GLORI database (Meybeck & Ragu, 2012), with R? values of the log of discharge and export of DOC,
POC, and DIC being 0.8, 0.8, 0.6, and 0.7, respectively (Figures 3d-3g), which can be considered as satis-
factory (Moriasi et al., 2015). Furthermore, the simulated monthly riverine C exports of the major rivers by
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Figure 3. (a—c) Comparisons of simulated carbon loading, (d) river discharge, and (e—g) carbon export with observations. The original units of the carbon loadings,
discharge, and carbon exports were g C m~2 yr~!, 10° m?® yr~!, and Gg C yr~', respectively. All data are plotted in log10 scale. In the subplots (a—c)c, the error bars of
the observations represent the standard deviation; the error bars of the simulation represent the standard deviation of the simulation from 1981 to 2015. The sources
of observed data used to validate carbon loading and carbon exports are provided in Tables S1 and S2 in Supporting Information S1. The red bands in subplot (a—c)

represents the 95% confidence bands.
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DLEM-TAC performed well in representing the seasonal variability (Figure S4 in Supporting Information S1).3 <
We evaluated the simulated performance of seasonal variability on DOC exports at 10 sites, with 3 rivers;
located in the tropical region, 5 rivers in the temperate region, and 2 rivers in the boreal region. Comparisons$
between simulated and database observations had R? higher than 0.5 and NSEs higher than zero at most sites.®
We did not evaluate monthly POC exports due to lack of data availability. Additionally, simulated total organic
carbon exports of 5 temperate rivers and 3 boreal rivers were comparable to observed values with R? values in
most cases higher than 0.4 and NSEs higher than zero. Finally, the DIC exports simulated by DLEM-TAC in
3 tropical rivers and 9 temperate rivers were representative of observations with R? values higher than 0.5 and

higher than zero at most sites.
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Figure 4. The global inland water carbon budget in the 2010s. Note that carbon burial in rivers includes processes within
bankfull channels and floodplains.
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3.4. Uncertainty Analysis

We evaluated two major sources of uncertainty in estimating global inland water C fluxes, namely terrestrial C
loading and water surface area. To evaluate the uncertainty induced by the former, we carried out a literature
survey to collect the observed C loading at the site level. We conducted linear regressions to evaluate the model G
estimated C loadings against the observations (Figure 3). The 95% confidence band of the linear regressions of
DOC, POC, and DIC loadings vary about +20%, +30%, and +40%, respectively, with respect to the 1:1 line. We2
then conducted two model simulations from 1800 to 2019 with the parameters of terrestrial loadings for DOC,

S3J213JE YO ‘@sh 4O S3|NnJ 10}

e
A

POC, and DIC varying +20%, +30%, and +40%, respectively, to represent their minimal and maximal range. Forg 5

water surface area, we did not investigate the uncertainty originating from the areas of lake and reservoirs and%
large rivers, because they can be measured using remotely sensed products, leaving the area of headwater streamsg
as the most uncertain one. We therefore implemented an uncertainty analysis for the river shape parameter (rg
in Text S3 in Supporting Information S1) to represent the global river surface areas varying from 0.89, 0.81,5
0.73, 0.65, and 0.56 (10° km?), which aligns well with previous estimates (Allen & Pavelsky, 2018; Bastvike

et al., 2011; Raymond et al., 2013). We averaged the simulated mean values for two sources of uncertainties an

ﬁ“dd%a
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the best-performing simulation, is presented as the final results in this study. The combined standard deviation
was calculated as the square root of the sum of the squared individual standard deviations corresponding to each
uncertainty source.

4. Results
4.1. The Contemporary Carbon Budget of Global Inland Water Systems

D17 suowwo) aA13eal) a|qed!

The simulated total terrestrial C loading during 2010-2019 was estimated to be 2281 + 640 Tg C yr~! (mean + 1g
standard deviation of the annual average, n = 20, Figure 4), with DIC dominating, followed by DOC and POC.8
More than one third (38%) of the C loading (869 + 151 Tg C yr~!) was exported to the coastal area, of which
DIC accounted for half with DOC and POC occupying a similar share. CO, evasion was 1,113 + 251 Tg C yr~!,
mainly contributed from rivers (777 + 179 Tg C yr~!, of which 640 + 150 Tg C yr~! from headwater streams and
137 + 34 Tg C yr~! from high-order rivers). The C buried in inland waters was 232 + 41 Tg C yr~!, much smaller
than C export and CO, evasion.
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Table 1

Global Carbon Fluxes Along the Land-Aquatic Interface (Tg C yr~!, Uncertainty Ranges With Mean + std)

Carbon species 1800s 1860s 1920s 1980s 2010s ’g
Terrestrial carbon loadings E
DOC 381 + 66 383 + 67 391 + 68 425 +73 428 + 74 _§7
POC 230 230 SVl 258EEHY 294 + 90 376 + 114 %
DIC 1,207 + 82 1,248 + 83 1,325 + 88 1,441 + 89 1,477 + 94 ;—‘3
Total 1,820 + 507 1.863 + 517 1.974 + 544 DIISHEES03 2281 + 640 %
Riverine carbon exports E
DOC 246 + 31 246 + 31 POSEISSD 256132 262 +33 %
POC 114 + 20 114 +20 1627/ a2 1878222 154 + 25 §
DIC 405 + 82 412 + 83 437 + 88 439 + 89 453 +£94 S
Total 765 + 132 ST 818 + 141 832 + 143 869 + 151 g-
Inland water CO, Evasion :‘;
Rivers 595 + 138 617 + 142 660 + 150 750 + 171 T 25 1178) g
Headwater streams 481 + 114 501 + 118 540 + 125 619 + 144 640 + 150 §
High-order rivers 114 + 28 116 +28 120 + 29 [31F=32 137+ 34 %
Lakes 2455653 256 + 54 268 + 56 29178 562 304 + 65 <Q
Reservoirs 0.0 0.8+02 2=l 27+6 33+8 %
Total 841 + 190 874 + 196 931 + 205 1.074 + 238 INEBEED SN

3

4.2. Long-Term Trend in Inland Water Carbon Fluxes Since the 1800s

In the 1800s, the terrestrial C loading was estimated to be 1,820 + 507 Tg C yr~!, and more than half of the load-
ing was composed of DIC (1,207 + 82 Tg C yr~!). An estimated 42% of the C loading was exported from rivers
to the ocean (765 + 132 Tg C yr~!), of which DIC accounted for the largest proportion (404 + 82 Tg C yr~1),™
followed by DOC (246 + 31 Tg C yr~!) and POC (114 + 20 Tg C yr~'). Nearly half of the C loading leaving
inland waters was through CO, evasion (841 + 190 Tg C yr~!) (Table 1).

SN 4O S3|NJ 10}

sapp1Le VO

Model simulations of terrestrial C loading increased gradually from the 1800s (1,820 + 507 Tg C yr~!) to thew
2010s (2281 + 640 Tg C yr~'), at an average rate of 2 Tg C yr~'. Compared with the 1800s, the total terrestrial C%
loading in the 2010s increased by 25%, with the loadings of DIC, DOC, and POC increasing by 22%, 12%, and3
62%, respectively (Table 1). Enhanced terrestrial C loading resulted in an increase of 31% in the inland water C02§
evasion compared with the pre-industrial level, predominantly from headwater streams (Table 1). In addition, due,

a4

qp

ayy A

to climate change and human activities, CO, evasion from inland waters increased significantly after the 1950s,
at a rapid rate of 2 Tg C yr~! (Figures 4 and 5). As a result, the fractional increase in riverine C export (14%) fro
the 1800s to the 2010s was smaller than the corresponding increase in C loading (Figure 5).

ade
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4.3. Spatio-Temporal Patterns of Inland Water Carbon Fluxes

At the global scale, tropical regions and the middle and high latitudes of the Northern Hemisphere were the
hot spots of the terrestrial C loading. From the pre-industrial period to the recent decade, the terrestrial DOC
loading increased in regions of the tropics and high latitudes, such as the Amazon basin, southeastern Asia,
and Europe (Figures 6a—6d). Similarly, POC loading increased in the tropics and the regions around 30-45°

(Figures 6e—6h). At the same time, a small part of the Amazon basin was characterized by a decrease in POCg'

loading. In contrast to organic C loading, the largest increase in DIC loading occurred in regions between 30°N§

7 sUOWWOY) dAeID 3|qedl|

and 60°N, such as eastern North America and Europe (Figures 6i—61).

Consistent with the pattern of C loading, the hot spots of riverine CO, evasion were primarily located in the
middle and high latitudes of the Northern Hemisphere and in the tropics (Figures 7a—7d). Compared with the
pre-industrial period, the contemporary CO, evasion from streams and rivers increased notably around the Equa-
tor and in the temperate regions of the Northern Hemisphere (30°N-60°N). Due to the abundance of lakes,
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(a) the regions around 50°N contributed most of the lacustrine CO, evasion.
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Since the magnitude of riverine C loading was much larger than that of lakes
and reservoirs, the total CO, evasion from inland waters was dominated by

2400 dri Fi 7i-71).
o streams and rivers (Figures 7i—71)
.o-0-0-0-00

e DOC v POC w-+ DIC -@- Total

)

dy

.—.--.—.--Q-.'-Q'.'.'".’.-.—.

_— We analyzed the global inland water C fluxes in the 10 main regions defined

ST S by the REgional Carbon Cycle Assessment and Processes Phase 2 prOJect
(Ciais et al., 2022). In the recent decade, the largest riverine C exports were
800 - from South America, Southeast Asia, North America, and Africa, whichs
MMW accounted for 27%, 17%, 11%, and 11% of the global riverine C exports,z

respectively (Figure 8). Large increases in C exports were found in North{
America, Southeast Asia, East Asia, and Russia, accounting for 21%, 15%,
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(b) 17%, and 18% of the increase in global riverine C exports, respectlvely

1200
st DOC v POC = DIC  -@- Total Regions of North America, Europe, Russia, South America and East Asm""

contributed to most of the CO, evasion from global inland waters (23%, 18%.¢
_.-0“‘—0‘-."" 17%, 12%, and 8%, respectively), and experienced large increases in CO,
evasion since the pre-industrial period (20%, 27%, 27%, 9%, and 5% of theZ
increase in global CO, evasion, respectively) (Figure 8).
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4.4. Environmental Controls Over Inland Water Carbon Fluxes

Riverine carbon export (Tg C - yr %)
.
.
.
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0 L L L 1 L . We quantified the contributions of key environmental drivers to the changes
1800s  1830s 1860s 1890s 1920s 1950s 1980s 2010s

in inland water C fluxes through multiple factorial simulation experlments
() as described in Figure 3. The results showed that, from the pre- industrialS

1e1q] duljuo

1500

A

s Rivers Lakes -~ Reservoirs  -@- Total period to the recent decade, increases in atmospheric CO, concentration
caused increases of 17, 15, and 13 Tg C yr~! in the exports of DOC, POC,
_._..-0'0'." and DIC, respectively (Figure S6 in Supporting Information S1). Nitrogen

-1y

1000
._._‘_..-.--.-0-0-."0'"."'.'. additions from fertilizer and manure application and nitrogen deposition

P T S were associated with increased exports of DOC, POC, and DIC export by
18, 23, and 25 Tg C yr~', respectively, over the same time period (Figurec
S6 in Supporting Information S1). Climate changes primarily influences the
exports of DIC (22 Tg C yr~!), followed by the exports of DOC (12 Tg C yr~ ))&
0 L 7 A i i e and POC (7 Tg C yr~!) (Figure S6 in Supporting Information S1). Land-3
1800s  1830s 1860s 1890s 1920s 1950s 1980s 2010s use change resulted in an increase in POC exports and DIC exports by 203
and 27 Tg C yr~! in the 2010s, but reduced DOC exports by 2 Tg C yr~!

Figure S. The long-term trajectories of decadal averages of (a) terrestrial (Figure S6 in Supporting Information S1). Changes in climate and land-use
carbon loading, (b) riverine exports, and (c) inland water CO, evasion from the
1800s to the 2010s. Note that the vertical scales of the subplots are different.
The shaded areas represent decadal variations with +1 standard deviation.
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were the domlnant factors that increased the CO, evasion, by about 88 and
108 Tg C yr~!, respectively, from the 1800s to the 2010s, while other factors
(elevated atmospheric CO,, nitrogen deposition, and fertilizer and manure

e ayy A

dd

application) contributed 81 Tg C yr~! (Figure 9). Terrestrial C loadingsS.
have similar response patterns to environmental change as riverine C exports (Figure 9). Changes in Climate
and land use were the primary factors contributing to changes in terrestrial DOC and DIC loadings during the
1800s—2010s, respectively (Figure S7 in Supporting Information S1). The impact of climate change on terrestrial
POC loadings was predominant before the 1950s, while anthropogenic disturbances became more influential thang
climate change in increasing POC loading after that period (Figure S7 in Supporting Information S1).

The spatial pattern of the dominant factors affecting terrestrial C loading and inland water CO, evasion also
changed from the early 19th century (1800-1819) to the early 21st century (2000-2019) (Figure 10). In the
early 19th century, climate variables were largely responsible for the change in C loading and CO, evasion. In

95U32[7 SUOWIWOY) A3 3|ged]|

comparison, the changes in small parts of Europe, South Asia, coastal regions in East Asia, and southeastern
regions in North America were dominated by land use (Figures 10a and 10c). As compared to the early 19th
century, the area dominated by land use and nitrogen addition significantly expanded in the early 21st century.
Increasing atmospheric CO, concentration has become an important factor dominating changes in C loading and
CO, evasion in Africa (Figures 10b and 10d).
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The C fluxes estimated by DLEM-TAC fall within the ranges given by previous studies, showing the consistency
of this process-based model with other approaches, which are mostly data-driven (Table 2). DLEM-TAC DOC
export (averaging 262 + 33 Tg C yr~! in the 2010s) is in good agreement with six previous studies, which ranged
from 171 to 246 Tg C yr~! (Table 2). The estimation of global DOC loading of about 280 Tg C yr~' reported by
Dai et al. (2012) and Nakhavali et al. (2020) is consistent with our estimate (averaging about 431 Tg C yr~' in th

2010s) after the C loading from organic soil C is accounted for (around 170 Tg C yr~', as reported by Nakhavali§ &
et al. (2020)). The significant increasing trend of global DOC export from 1950 to 2019 simulated by DLEM-
TAC is consistent with the finding of the Global NEWS model (Seitzinger et al., 2005) but contrasts with the
report by M. Li et al. (2019), who claimed a decreasing trend in global DOC export. Nevertheless, DLEM-TAC
simulations agree well with the results by M. Li et al. (2019) that DOC export showed a statistically significant
increase in tropical regions (see also Lauerwald et al. (2020)). In contrast with the results by M. Li et al. (2019),
DLEM-TAC estimated slight increases in arctic DOC export, which is supported by Bowring et al. (2020). A
possible reason for such a difference is that the representations of impacts of freeze-thaw cycles are different,
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2
which would cause an increase in C loading in recent studies (Rawlins et al., 2021). To address this issue, more§
observations are needed to constrain the models. Similarly, DLEM-TAC POC export (154 + 25 Tg C yr~! in®
the 2010s) and DIC export (453 + 94 Tg C yr~! in the 2010s) are in line with the mean of previous studies
(196 Tg C yr~! for POC and 413 Tg C yr~! for DIC) (Table 2). The significant increase in DIC export from 1960
to 2019 revealed by DLEM-TAC is supported by a previous data synthesis (M. Li et al., 2017). We should note
that, our estimated burial C in rivers is slightly higher than that in lakes and reservoirs, due to the high deposition

rate within river floodplains.

TIAN ET AL.

12 of 24



AGUL ) )
M\I Global Biogeochemical Cycles 10.1029/2023GB007776

ADVANCING EARTH
AND SPACE SCIENCES

Pre-industrial period (1800s) Contemporary period (2010s) Changes from the 1800s to 2010s Laa%l ((ijlfl?ll-(ll l.s.til;lgl:geq?)n
(C)]

@ | ®) ©
b2 L e

: 7 PR
AL S - i X
e = ' )

60° 4

¢
&
g
f
|

TR
o
i
e

300 4

g <
3
\@J
Lt
g
}gf‘iﬁ
5 7/
7
X
/v(
é‘*

> x. S ): & g ) 0°
% ; 7 & : v
-60°

o0 = L 2| |t 2| L= -30°

-180° -120° -60° 0° 60° 120° 180° -180° -120° -60° 0° 60° 120° 180° -180° -120° -60° 0° 60° 120° 180° 5
o i dvers_15005
T T T T rivers_20105

N S S P S S A Q0 B 6 9 0

Rivers & Streams CO; evasion (Gg C - yr“l)
®

feo N s

P e ANy §

TR i

R s IS O T R e,

180° -180° -120° -60° 0° 60° 120° 180° -180° -120°
|

Q & ? \b \o N Ao 9 % 3 6 % \©
Lakes & Reservoirs CO, evasion (Gg C - yr™1)
@

lakes & reservoirs_1800s
—— lakes & reservoirs_2010s

o 3 6 9 12

R |
-180° -120° -60° 0° 60° 120° 180° -180° -120° -60° 0° 60° 120° 180° -180° -120°
—— total_1800s.
T T T _ s
Q W N DD DD D 2 PN Q [ CS 0 \6 | i L ‘:"""m”“
Total CO; evasion (Gg C - yr™1) 0 5 10 15 20

Figure 7. Spatial patterns and latitudinal distribution of riverine CO, (top), lacustrine CO, (middle), and all inland water CO, (bottom) evasion in the preindustrial
period (1800s) and the contemporary period (2010s), and the change from the 1800s to the 2010s (third column). The fourth column shows the latitudinal averages of
the loadings in the 1800s and 2010s (the shading area indicate uncertainty ranges with +1 standard deviation).
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Excluding PIC, the total C export estimated by DLEM-TAC (869 + 151 Tg C yr~! in the 2010s) is close to that
estimated by Bauer et al. (2013) (Table 2). However, DLEM-TAC estimation of total C export is still larger tha
the one given by Resplandy et al. (2018) because their estimate only accounts for part of the river C export that
is outgassed back to the ocean, which does not include the buried fraction (Table 2). The difference may be due

)
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to the C loss in estuaries (burial and outgassing), which occurs between the river outlet and the adjacent coastal
ocean. Although the total terrestrial C loading given by DLEM-TAC (2281 + 640 Tg C yr~! in the 2010s) is
much larger than the estimation provided by Cole et al. (2007) and is lower than those by Battin et al. (2023)
several studies (Battin et al., 2009; Regnier et al., 2013) support our estimation (Table 2). The performances of the=
different methods in the estimation of riverine C exports and loadings need to be further evaluated in the future.

lnﬂ

dde o

Our estimation of riverine CO, evasion was in the range of previous studies (Table 3). The riverine CO, evasion
estimated by DLEM-TAC was around twice as much as the estimate by Cole et al. (2007) (Table 3), probablyZ:
because their study ignored evasion from small rivers, which are now considered to be an important CO, source
(M. Li et al., 2021). Our riverine CO, evasion is much lower than that given by Raymond et al. (2013) and S.
Liu et al. (2022), with the estimated inland water CO, emission reached 2.5 Pg C yr~!. Based on their calcula-3
tion, the global land C loading can be larger than 3.4 Pg C yr~! (inland water CO, emission plus global rlverlneE
export), which is 110% of the estimated C sink by the global terrestrial ecosystem (3.1 Pg C yr™") (Friedlingsteing
(]

lLILUOj 2A1ea) 9|qEDI|

et al., 2022). However, the average fraction of leaching/net ecosystem exchange is about 20% for most of the
observation sites in European sites (Kindler et al., 2011), which implies a potentially significant overestimation
of inland water CO, emissions in the previous studies. The magnitude of lacustrine CO, evasion estimated by
DLEM-TAC was higher than that of Cole et al. (2007), but lower than that of Raymond et al. (2013). The differ-
ences mainly arise from the tropical zone, since most of the observations were collected in the temperate and
boreal regions. Hastie et al. (2018) reported a total CO, evasion of 272 Tg C yr~! from lakes at high latitudes,

TIAN ET AL. 13 of 24
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Figure 8. The temporal patterns of riverine carbon (dissolved organic carbon, particulate organic carbon, and dissolved inorganic carbon) exports and CO, evasion ]
from inland water systems in 10 regions (NA: North America; EU: Europe; WAS: West Asia; RUS: Russia; EAS: East Asia; SEAS: Southeast Asia; OCE: Oceania; zh
SAS: East Asia; AF: Africa; and SA: South America.). Note that the shading areas represent decadal variations with 1 standard deviation. 2

which is almost equal to our estimate for the CO, evasion from global lakes. A reason for such a difference is

that the lake area they used was much larger than that used in our study (Messager et al., 2016). The CO, evasion

Je s9|d11e YO

from reservoirs presented here is similar to the data synthesis estimate from Deemer et al. (2016), but far lower
than that of St. Louis et al. (2000) because of their overestimation of global reservoir surface area (Johnso
etal., 2021).
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The global CO, evasion from inland waters in this study is close to the empirical estimations (Deng et al., 2022).
Our simulated CO, evasion in the 2010s for most 106 river basins is comparable to their empirical estimates.
Nevertheless, our estimates of CO, evasion from the Amazon and Congo Basins are lower than those of Deng
etal. (2022) and Byrne et al. (2023) (Figure S5 in Supporting Information S1). This is because we do not consider:
the CO, evasion from wetlands and floodplains in our estimation, which are considered as the dominant source
of CO, evasion from surface water in these two basins (Borges et al., 2015; Richey et al., 2002). Furthermore,
inland water CO, evasions as well as the riverine C exports from Europe we estimated are much higher than those s

e ay) Aq pautano

11dd

1D 9|qed

1e

presented by H. Zhang et al. (2022). It is worth noting, however, that our estimations regarding European river- g
ine C exports aligned closely with the magnitude documented in another global study (M. Li et al., 2017). Weg
showed much lower CO, evasions in comparison to those by S. Liu et al. (2022). Our study may underestimateg
CO, evasions from rivers in mountainous regions such as the Rocky Mountains, the Andes, and the Himalayas,$
considering the high gas transfer velocity documented in S. Liu et al. (2022)'s study. These differences also%
suggest critical needs to better understand processes controlling C dynamics along the land-aquatic interfaceg
as well as better represent these processes in our model. To enhance the credibility of projections concerning”
inland water C fluxes on a global scale, it is imperative that future projection endeavors to prioritize the harmo-
nization of results obtained from both global and regional studies, particularly within targeted regions. From the
pre-industrial period to the recent decade, our increased rates of terrestrial C loading (25%), riverine C export
(14%), and CO, evasion (32%) are in good agreement with the results reported by Regnier et al. (2022) (26% for

terrestrial C loading, 12% for riverine C export, and 28% for CO, evasion).
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Figure 9. Decomposition of the factors influencing the long-term changes of
(a) terrestrial carbon loading, (b) riverine carbon export, and (c) inland water

CO, evasion from the 1800s to the 2010s.

We observed a notable increase in nitrogen effect on riverine C fluxes, specifically in recent years, in response to
the consistent increasing rates of nitrogen deposition and nitrogen applications. In theory, the nitrogen inputs can
alleviate the vegetation nitrogen limitation of global terrestrial ecosystems (Vitousek & Howarth, 1991), which
contributes to the increased primary production, soil C pools and the associated C loadings from land to inlan

waters.

5.3. Significance of Inland Water Carbon Fluxes to the Global Carbon Budget

Increased evidence indicates that aquatic C fluxes need to be accounted for in revisions of the overall C balance,
of the terrestrial ecosystem (Cole et al., 2007; Friedlingstein et al., 2019). Constrained by fossil fuel emissions,
atmospheric CO, growth rate, and C fluxes within fresh and salt water ecosystems, the global net CO, sink by
terrestrial vegetation was estimated to be 2.2 Pg C yr~!
indicated that inland water recycles and exports nearly half of the net land C sink into the atmosphere and ocean,
highlighting the important role of inland waters in the global land C balance, an amount that should be taken into
account in future C budgets. In addition, riverine C export is likely to provide substantial substrate to support
microbial activity in the ocean and is an important term in the coastal C budget (Barrén & Duarte, 2015).

Based on our reconstruction of historical C fluxes between atmosphere, land, and water, lateral C fluxes in the,
pre-industrial period were found to be considerable. The anthropogenic activity has likely perturbed lateral CS
fluxes in the land-ocean aquatic continuum (LOAC), but this perturbation has been difficult to quantify (Regnier
et al., 2022). Our work has quantified the long-term anthropogenic perturbation of lateral C fluxes and found
a notable increase (25%) of C transfer from land to inland waters since the pre-industrial period, which inten-
sified inland water CO, evasion, and to a lesser extent, export to the ocean. The global C budget of the Global
Carbon Project assumed that the C fluxes in the LOAC have not changed since pre-industrial time (Friedlingstein
et al., 2021). In contrast, we have highlighted the influence of multiple anthropogenic perturbations on lateral C

considerable increase in POC export in the arctic region can be mainly
attributed to the high sensitivity of the ecosystems to climate change (Hilton
etal., 2015) (Figure 9 and Figure S8 in Supporting Information S1).

Overall, nitrogen inputs including nitrogen deposition, nitrogen fertilizer and
manure nitrogen applications are positively correlated with riverine C fluxes. G
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in the recent decade (Regnier et al., 2022). Our study
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Figure 10. The dominant impact factors on terrestrial carbon loading (a, b) and inland water CO, evasion (c, d) in the early 19th century (1800-1819) and the early
21st century (2000-2019). The factor that caused the maximum changes is shown in each grid. Nitrogen addition includes nitrogen deposition and the application of
nitrogen fertilizer and manure nitrogen.
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o
fluxes, which should be considered for a robust quantification of the modern global C cycle and climate changeg )
mitigation (Regnier et al., 2013; Yvon-Durocher et al., 2012). 2

wn

2

o
5.4. Uncertainty and Future Research ‘g

o
A major source of uncertainty in the estimation of inland water C fluxes is associated with the input data. Forg_
instance, the absence of seasonal variations in the spatial distribution of nitrogen inputs, including atmosphericg

Yy A

nitrogen deposition, fertilizer and manure applications, may bias the estimation, as the timing of N inputs has
substantial effects on land C and nitrogen cycles (Scharf et al., 2002). Similarly, the atmospheric CO, concentra-

dde o

tion is fixed throughout the year. In fact, atmospheric CO, is unevenly distributed across the globe and seasons= .
(Keeling et al., 1989). In this study, we used a static global pH map for calculating CO, concentration in aquatic
systems, which may introduce uncertainties by ignoring the temporal changes of pH level over time (Stets
etal., 2014). In this study, we used five simulated river water surface areas as the uncertainty range, where values
(0.73-0.81) close to those of Allen and Pavelsky (2018) can be considered the most robust one. However, the

estimates of river water surface area still suffer great uncertainty due to the limit of spatial resolution of remote

13eas) ajqedi|

sensing products. The alteration of surface water area resulting from climate variability and extensive human

T SUOWIWOD) dA

activities holds considerable implications for inland water CO, evasions. For instance, our estimations reveal aa
contrasting trend in the upward trajectory of inland water CO, evasions in East Asia over recent decades comparedg’
to a previous study (Ran et al., 2021). This disparity can be attributed to the limitations of using static river data§
sets, needing to account for the declining riverine area in China during this period. Therefore, a global dynamic
inland water network should be a critical task for future research. Additionally, other driving forces, including

long-term climate variables and land-use change, are also limited by spatial resolution and data availability.

Uncertainties can also arise from model parameterization and the model structure. Compared to the major compo-
nent of current Earth system models that can be used to simulate C flux in inland waters, DLEM-TAC is the most
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Table 2 f
Comparison of Various Estimates on Global Carbon Exports From Rivers to Oceans o
Carbon exports and references Methods Loadings Exports ’g %U
Dissolved organic carbon % ;I
Cai (2011) Data ensemble 2L %
Dai et al. (2012) Meta-analysis 280 171 % g
M. Lietal. (2017) and P. Li et al. (2017) Empirical model 240 3 g
M. Liet al. (2019) Processed-based 235 %i
Mayorga et al. (2010) Hybrid model® 187 E %
Meybeck (1982) Meta-analysis 216 % -g
Nakhavali et al. (2020) Processed-based 280 § é;
This study Processed-based 428 + 74 262 + 33 g' i
Particulate organic carbon g g
Beusen et al. (2005) Empirical model 197 ;’;E
Cai (2011) Data ensemble a6 32
M. Lietal. (2017) and P. Li et al. (2017) Empirical model 240 S 3
Mayorga et al. (2010) Hybrid model® 146 %5.
Meybeck (1982) Data ensemble 180 :O g
Richey (2004) Data ensemble 400 — 1400 g%’
This study Process-based 376 = 114 154 + 25 g E
Dissolved inorganic carbon 3 g
Cai (2011) Data ensemble 407 €3
Kempe (1979) Data ensemble 454 % i
M. Lietal. (2017) and P. Li et al. (2017) Empirical model 410 9;;
Bauer et al. (2013) Data ensemble 400 _fgq §'
Meybeck (1982) Data ensemble 396 % i
Battin et al. (2023) Meta-analysis 2440 ;“: %
This study Process-based 1477 £ 94 453 +94 g%
Total 2 %
Andersson et al. (2005) Box model 950 % %-
Battin et al. (2009) Data ensemble 1900 i;
Cole et al. (2007) Meta-analysis 900 %E
M. Lietal. (2017) and P. Li et al. (2017) Empirical model 1060° § g
Meybeck (1993) Meta-analysis 960° §_ i
Regnier et al. (2013) Data ensemble 2400 % E’-
Resplandy et al. (2018) Top-down approach® 780 Eé
Bauer et al. (2013) Data ensemble 850 g%
Schlesinger and Melack (1981) Data ensemble 4004 ES
Regnier et al. (2022) Data ensemble 2950 + 550 950 + 150 g §
Battin et al. (2023) Meta-analysis 720¢ g f
Battin et al. (2023) Meta-analysis 3,160 5‘ g_
This study Process-based 2281 + 640 869 + 151 § Z
Note. The unit of the inland water carbon fluxes is Tg C -yr~!. DLEM-TAC estimates were averaged from 2010 to 2019. %
*Global NEWS model is a hybrid of empirical, statistical, and mechanistic components. *Particulate inorganic carbon &
(168 Tg C -yr~!) was included in the estimates of total C exports. “Resplandy et al. (2018) used heat transport to constrain %
riverine carbon exports. Total organic carbon only. The value only encompasses the loading of DOC and POC. §_
g.
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Note. The unit of the inland water CO, evasion is Tg C -yr~

“This study only analyzed evasion from large rivers. *The value includes CO,
evasion from natural lakes and the lakes with dams.
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Table 3 comprehensive model that fully couples aquatic and land processes by incor- &

Comparison of Various Estimates of Global CO, Evasion From Inland porating all the inland water types (river, lake and reservoir) with explicit o

Water Systems representation of small stream and large rivers. DLEM-TAC has the ability in5 §

; : : : =33

Inland water CO, evasion and reference Methods Evasion simulating three carbon species (DOC, DIC and POC) as well as inland waterg ;_s

- CO, evasion (Table S3 in Supporting Information S1). However, the param § 2

Hvers eters relevant to the aquatic biogeochemical reaction rates in inland water ,%%

Aufdenkampe et al. (2011) Data ensemble 360 such as the organic matter decomposition rate, particle deposition rate, and%%

Cole et al. (2007) Meta-analysis 270* CO, air-water exchange velocity, are largely fixed for all river systems in our® =

<

Lauerwald et al. (2015) Statistical model 650 simulation. Although our parameter values fall into the ranges of previouss 3

-

Raymond et al. (2013) ST 1800 studies, the parameters likely vary across river systems. For instance, S. L1u~‘<: g

o c

S. Liu et al. (2022) Datalensemble 2000 et al. .(2022) derr.lonstratedA the substantial seasonal Vz.lrlablhty of gz}s tr.ansferé <

velocity across different climate zones. Moreover, their study also highlightedg &

Lauerwald et al. (2023b) Data ensemble 1223 So

the intricate and non-linear association between gas transfer velocity and3 5

e et Lt el 71D basin conditions, such as terrain and gas exchange patterns. Employing a very$ 3

.. L - 2=

Lakes coarse empirical model for the estimation of CO, gas transfer velocity mayé g

Cole et al. (2007) Meta-analysis 110 introduce significant errors, particularly in streams characterized by steepg_g

Raymond et al. (2013) Sttt mieyk] 292 terrain. More monitoring sites located within headwater zones are needed to §E

Y a

I auorwaldiet al. (20236) Data ensemble 205 better constrain these parameters. In addition, the current model still lackso g

. a full representation of hydrodynamics and C-associated biogeochemistry= <

This study Process-based 304 + 65 = 8—

although much progress has been made. For instance, a better representation= 2.

dizserreis of carbon dynamics in hillslope and groundwater would significantly influ-g

Deemer et al. (2016) Data ensemble 37 ence the ratio of inorganic carbon over organic carbon, especially in rlparlan% E

St. Louis et al. (2000) Data ensemble 1000 and hyporheic zones, which need more observations to support the algorlthm; E

Lauerwald et al. (2023b) D enesniie 191 design and parametrization. Also, we do not consider the vertical stratifi- gg

Thisstudy Process-based 348 cation ot.‘ lakes a.nd reservou@, and the z?ssoc1ated ca}rbon reaction and CH43§

ol flux, which requires systematic observations to quantify the carbon fluxes ofJ 3
t . . c

o multiple interfaces. o o

Aufdenkampe et al. (2011) Data ensemble 1200 o Z

>

Cole et al. (2007) Meta-analysis 7502 6. Conclusion !&q §-

Raymond et al. (2013) Statistical model 2120 ) o )O> 3

. In this study, the DLEM-TAC model, which integrates both land and aquaticy, §

Regnier et al. (2022) Data ensemble 1,850 + 500 3z

C processes, was applied to quantify the global inland water C budget fromz 3

sl ileral. (A1) B Lgis 1800 to 2019. Based on our DLEM -TAC estimates over recent decades, Weg é

This study Process-based 1,113 + 251 o
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exports of DIC, DOC, and POC as well as CO, evasion can be attributed to climate change, land-use change, and
N application. Although uncertainties exist, our results suggest that inland water C dynamics play a critical role in
the global C budget. Our study indicated that inland water recycles and exports nearly half of the net land C sink
into the atmosphere and oceans, highlighting the important role of inland waters in the global land C balance, an
amount that should be taken into account in future C budget assessment. More observations in headwater zones,
arctic regions, and improved process-based modeling tools are needed to better constrain the estimates of inland

water C fluxes.

Data Availability Statement

The CRU-NCEP data are freely available at https://vesg.ipsl.upme.fr. NOAA GLOBALVIEW-CO2
data are available at https://www.esrl.noaa.gov. The required hydrological data are available at http://
files.ntsg.umt.edu/data/DRT/upscaled_global_hydrography/  (Dominant  River  Tracing data  set),
http://www.horizon-systems.com/NHDPlus/index.php (National Hydrography data set plus v2 data),
https://www.hydrosheds.org/products/hydrolakes (HydroLAKES data set), and https://sedac.ciesin.columbia.
edu/data/collection/grand-v1 (GRanD v1.01 database), respectively.

estimate that around 2.3 Pg C yr~! entered inland water ecosystems in the

6

2010s, and a major proportion of C loading was eventually emitted by inland
waters to the atmosphere as CO, (1.1 Pg C yr~!) and exported to the oceans

q pauiano

by rivers (0.9 Pg C yr~!). Under anthropogenic disturbances, a large increase

A

in terrestrial C loading produced a corresponding increase in CO, evasion

eay}

from inland waters from the 1800s to 2010s. A sustained increase in the
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