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Abstract. Prior research has shown that digital games can enhance STEM edu-
cation by providing learners with immersive and authentic scientific experiences.
However, optimizing the learning outcomes of students engaged in game-based
environments requires aligning the game designwith diverse student needs. There-
fore, an in-depth understanding of player behavior is crucial for identifying stu-
dents who need additional support or modifications to the game design. This study
applies an Ordered Network Analysis (ONA)—a specific kind of Epistemic Net-
workAnalysis (ENA)—to examine the game trace log data of student interactions,
to gain insights into how learning gains relate to the different ways that students
move through an open-ended virtual world for learning microbiology. Our find-
ings reveal that differences between students with high and low learning gains
are mediated by their prior knowledge. Specifically, level of prior knowledge is
related to behaviors that resemblewheel-spinning, whichwarrant the development
of future interventions. Results also have implications for discovery with mod-
eling approaches and for enhancing in-game support for learners and improving
game design.

Keywords: STEM Education · Game-based Learning · Ordered Network
Analysis · Epistemic Network Analysis

1 Introduction

Digital games are increasingly prevalent in STEM education [1–3], given their design
affordances for engaging learners in authentic scientific processes and STEM experi-
ences that are not otherwise accessible [4–7]. To maximize these benefits, however,
game experiences should meet (and where possible, adapt to) diverse student needs and
contexts (e.g., prior knowledge). One way to understand such needs is to map student
behavior to learning outcomes, a first step in differentiating between a student who is
persisting productively and one who might be wheel-spinning [8].
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Prior research has explored factors that influence user experiences in virtual environ-
ments such as prior knowledge [9], self-regulation [10], interest in the topic of the game
[11], and digital literacy [12]. Other studies have examined the in-game experiences of
learners throughfiltered time series analyses [13] and graph theory techniques [14],while
comparing students’ pathways with an expert problem-solving trajectory [13]. However,
new techniques for quantifying learners’ trajectories through educational games could
help us to better understand how students who are learning more differ in behavior and
experiences over time from those who learn less.

This work aims to bridge this gap by employing Epistemic Network Analysis (ENA)
[15] to investigate the differences between students’ in-game behaviors and their learning
gains. We do so in the context of a game developed for microbiology education [16],
where rich logfiles of students’ actions are explored in conjunction with measures of
prior knowledge.We specifically employ anOrderedNetworkAnalysis (ONA), amethod
derived from ENA that takes into account the temporal order of connections between
codes [25]. With this approach, we aim to answer two main research questions: (1)
What paths through the game are associated with learning gains? and (2) How does
prior knowledge influence these paths?

2 Related Work

Understanding differences in how actions in an educational game are enacted over time
by those with higher and lower learning gains is an important component of successful
game design. Prior research in this area has applied filtered time series analysis to
students’ log data [13, 17]. This method uses principal component analysis (PCA) [18]
to filter a multivariate time series (defined by a set of constructs coded in the log files
data) to a univariate time series [13]. Using PCA as a filtering strategy allows for context-
specific analyses about timing, but likely eliminates nuance about which actions aremost
useful. This is perhaps evidenced by conflicting results in the literature. Researchers have
shown that higher rates of student actions in virtual worlds are positively associated with
learning in a game-based environment about ecosystems [17], but negatively associated
with learning in a game-based environment for microbiology [13], indicating that a more
nuanced analysis about students’ interactions is required to understand effective learning
strategies.

Previous research has used graph theory analysis to examine the locations students
visited during gameplay in a science learning environment [14]. Trajectories through
virtual locationswere compared usingmetrics of density and similarity among networks.
Their results showed that student explorationof the environmentmight bemorebeneficial
for learning than more efficient pathways focused solely on game completion [14].
However, the employed networks compared transitions completed by at least 50% of
the students in each of the two groups (based on high or low learning gains). While this
approach highlighted variance in student behaviors related to learning gains, it still used
a categorical threshold (transitions done by 50% of students) for defining a binary graph
instead of a weighted graph, overlooking the repetitions or weights of those common
pathways.

The work reported in this paper builds on this previous research by applying a new
method for understanding student trajectories through a virtual world. Specifically, we
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useOrderedNetworkAnalysis [25], amethod derived fromEpistemicNetworkAnalysis
(ENA) [15]. ENA measures the relationships between coded elements by quantifying
their co-occurrences [15], and then representing them in a network diagram that illus-
trates the weights of these connections [19]. Each coded element, or unit, is represented
as a single point on the Cartesian plane, meaning that the diagram’s unit means can be
used to determine statistical differences between them [19]. The ability to quantify the
connections between codes and determine statistical differences makes ENA a valuable
complement to prior methodologies examining learners’ game experiences.

In the context of game-based learning and virtual worlds, ENA was first used in
previous research on language data to investigate identity exploration [20], scientific
practices [21], and student goals [22], but has also been applied to trace data of student
interactions with virtual environments. For example, Karumbaiah et al. [23] applied
ENA to clickstream data to uncover the trajectories that lead to quitting behaviors in
a learning game called Physics Playground. Similarly, Scianna and Knowles [24] used
ENA on player log files to identify how they responded differently to game events during
second playthroughs of a video game, showing improvements in student planning skills.
These initial examples demonstrate the valuable potential of traditional quantitative
ethnographic techniques such as ENA (which typically models patterns in complex
discourse data) with detailed log files of player actions.

Ordered Network Analysis (ONA) [25] uses the same principles as ENA but takes
directionality of connections between codes over time into account. We do so in order
to understand how different trajectories through a virtual game relate to differences in
learning gains. Specifically, we are interested in finding ways to identify students who
are productively exploring the game in ways that improve their learning, as opposed to
those who might be wheel-spinning, a phenomenon that occurs when students become
stuck because they lack the prerequisite knowledge necessary to advance [26, 27].

3 Methods

The goal of this work is to identify potentially productive problem-solving actions in a
game-based learning environment called Crystal Island [16]. We employ Ordered
Network Analysis (ONA) [25], which has been used to offer a more nuanced under-
standing of complex cognition and behavior across contexts (e.g., [25, 28]), and holds
particular promise in problem-solving contexts, particularly those such as Crystal
Island in which the orders of certain actions may contribute to in-game success, learn-
ing, or stagnation. As with ENA, the ONA algorithm uses a moving window to identify
connections between lines in students logfile data (e.g., in-game actions or locations)
within the recent temporal window. However, ONA accounts for the order in which
connections might occur in the data by constructing an asymmetric adjacency matrix for
each unit. That is, it calculates both the strength of associations between students first
completing Action A (e.g., Reading) and then completing Action B (e.g., Moving) as
well as Action B followed by Action A. In this way, the conventional visualization of an
ENA model is expanded to include bi-directional edges between each pair of connected
nodes. These edges denote the strength of these ordered associations, offering a more
nuanced view of students’ problem-solving behaviors within the game environment.
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3.1 Dataset

Weanalyzed data from92 students fromanurban school in the southeasternUnitedStates
(i.e., from [29]) who used an inquiry-based game to learn microbiology. In Crystal
Island [16], players adopt the role of a researcher tasked with diagnosing the cause of
a disease outbreak affecting an island-based research team. To successfully complete
the game, players must explore several locations, interact with non-player characters
(NPCs), collect information from in-game reading materials, and test their hypotheses
using laboratory equipment. Players are provided with a concept matrix to help them
organize the information obtained from the readings, as well as a worksheet to organize
their hypotheses and results. The game interface, including the “golden pathway” (i.e.,
the most efficient path to game completion) proposed by [13], is presented in Fig. 1.

Fig. 1. Overview of Crystal Island with the expert “golden pathway” for game completion
as operationalized by [13].

3.2 Learning Measures

To evaluate students’ knowledge of microbiology, identical pre- and post-tests were
administered.Normalized learning gainswere calculated based on the equation proposed
in [30]. This approach compares differences between post- and pre-test scores with
potential improvements students could achieve based on their initial scores. Data from
26 students with incomplete test responses were excluded, leaving a total of 66 students
for the current analyses.

3.3 Unit Variables and Other Divisions

The unit variables (i.e., the variables that organize the dataset into meaningful groups
for comparison and visualization) for ONA in this study were based on student learning
gains and prior knowledge. Specifically, we segmented and unitized the students into
two groups based on learning gains because the difference models of ONA do not handle
further division. We analyzed the data from students with high and low prior knowledge
separately. Both learning gains and prior knowledge groupings were generated using



22 A. F. Zambrano et al.

median values (Mdne = 8 for pretest or prior knowledge and Mdn = 0.15 for learning
gains).

We present comparative ordered network differencemodels for high and low learning
gain groups for each prior knowledge group to identify potential variations in behaviors
that may lead to differences in learning. We also conducted a correlation analysis (spear-
man) to assess the impact of these behaviors on learning. Table 1 shows the distribution
of students based on learning gains and prior knowledge.

Table 1. Distribution of students based on learning gains and prior knowledge.

Low Learning High Learning Subtotal

Low Prior Knowledge 16 14 30

High Prior Knowledge 18 18 36

Subtotal 34 32 66

3.4 Codes

Two sets of codes were applied to the log files of students used for the analyses in this
study: location codes (N = 7) and actions codes (N = 7). Action codes were selected
based on student behaviors that have proven relevant in previous work [13]. Location
codes correspond to the 7 sites on the virtual island in the game. Both are automatically

Table 2. Definition of codes (Actions).

Code Definition

Movement The action of moving from one location to another is logged if the
student performed an action in the new location or spent at least 10 s
there

NPC Interaction Talking with an NPC. Each message is counted as one action

Reading Observing a book or research article (found in several game locations)
for at least 5 s. Each minute of reading is counted as one action

Concept Matrix Each submission of a concept matrix (where students summarize what
they just read) counts as one action

Object Picking up an object that would be used for testing a hypothesis in the
future. Each object counts as one action

Hypothesis Testing Scanning an object using laboratory equipment to determine if it
contains the virus or bacteria the student hypothesized is affecting the
island. Each scan counts as one action

Diagnosis Worksheet Providing an entry in the game’s worksheet, which helps students to
systematize the hypothesis testing process. Each entry counts as one
action
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recorded in Crystal Islands log files. Given the small number of classifications and their
direct and unambiguous nature, it is unnecessary to report IRR for these codes.

Table 2 provides an overview of the action codes which were extracted from each
line of the interaction logs. Although individual lines of data in the interaction logs do
not account for the duration of each action, many actions have a relatively fixed duration
that is consistent across students. For instance, hypothesis testing in the lab typically
takes around 5 s. For other actions that lack a fixed duration, we employ a repetition
strategy for considering the duration. For example, when students interact with NPCs,
we consider each message they sent as a separate action, rather than grouping the entire
interaction as a single data line. Thus, students who exchange more messages with the
same NPCwill have more lines representing this action. Similarly, in the case of reading
and movement, if the student spends more than a minute on a particular page or moving
between two locations, we duplicate the line to indicate that the student was engaged in
that action for a longer duration.

Table 3 shows the location codes that were extracted from the students’ interaction
logs. In this study, location changes were coded either when the player performed an
action other than “Movement” in the new location or spent at least 10 s there. This
threshold differentiates between locations where the student was actively engaged and
those where the student was simply moving between locations. Similarly, the code “Out-
side” was reserved for students who spent more than 10 consecutive seconds outside,
suggesting deliberation or uncertainty about where to go next.

Table 3. Definition of codes (Locations).

Code Definition

Tutorial Students begin the game at this location (a beach), where they receive
initial instructions, interact with an NPC, learn how to pick up objects, and
are introduced to the concept matrix. They are instructed to go to the
infirmary at the end of the tutorial

Infirmary Students are instructed to go to this location after the tutorial to receive the
only additional instructions in the game. These come from an NPC (the
nurse), but they can also interact with NPC patients. They return later to
provide the suggested treatment for the disease

Laboratory Students bring objects to this location to test them for contamination with a
virtual scanner (i.e., with the virus or bacteria causing the island inhabitants
to get sick). They can also read research articles at this location. Because
they can only carry 3 objects at the same time, students often require
multiple visits to this location to solve the game

Living Quarters In this location, students can acquire information by interacting with NPCs
and reading disciplinary content

(continued)
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Table 3. (continued)

Code Definition

Bryce’s Quarters Students who enter this location can interact with NPCs and read pages and
articles associated with microbiology. This location has more disciplinary
content than any other individual location in the game

Dining Hall Location where students can find most of the objects to scan, including the
one necessary for solving the mystery

Outside This location composes the largest region of the game. All students must
move through this area to get from one location to another, but it contains
no additional information or objects to test. Therefore, it is only analyzed if
the student spends at least 10 s without entering another location

In the current analysis, action codes and location codes are presented in separate
difference models. While actions and locations are meaningfully connected, we took
this approach for two reasons. First, in some cases, actions are bounded by location,
which would artificially inflate the appearance of certain action/location connections.
Second, ordered and epistemic networks become practically and visually overwhelming
with higher numbers of codes present, often necessitating techniques to make existing
models more parsimonious (e.g., [31]). In this case, presenting two separate models of
different code sets avoids both issues and provides two corresponding perspectives on
student experience.

3.5 Segmentation and Stanza Selection

ENA models complex systems by creating a series of adjacency matrices that connect
the codes applied to one line to codes in prior lines (in this case, a moving window).
Conversation variables serve as boundaries for these calculations by grouping data
into stanzas across which associations are not calculated (e.g., all data associated with
student 1 in one stanza and student 2 in separate stanza). For this study, we set student
play sessions as the conversation variable. Extant research using non-linguistic data
has used conversation variables such as game level [23] or complete playthrough [24].
Because the duration of Crystal Island play was short (Avg= 65.1 min, SD = 13.5)
and no natural break points were observed, we refrained from segmentation into more
fine-grained stanzas.

To define the moving window length (which defines how far back codes in one line
are associated with codes applied to prior lines) we drew on previous studies applying
ENA to log files [23, 24]. In these cases, wider moving windows were needed to capture
the contexts of fine-grained log data [32]. In Karumbaiah and colleagues’ [23] work on a
level-based game with a limited action set, authors set the moving window to encompass
approximately 20 s of gameplay that represented how far back a player might routinely
connect a single in-game action to prior actions.

In Crystal Island, the duration of different actions varies widely; reading an
article, for example, may take more time than picking up an object. To account for this,
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we set the moving window width based on the average number of actions performed
by students in two consecutive locations. This approach ensures that the associations in
the networks are based on meaningful stanzas of gameplay, while also accounting for
variations in the length of actions. It also aligns with the design of the game, in which
sets of problem-solving actions are situated in specific in-game locations and students
must choose to move between them in certain orders to access actions that can complete
in-game goals [13, 17].

Students performed an average of 188.3 actions (SD = 45.9) and 22.5 visits to
locations (SD = 8.1) throughout the gameplay. On average, students conducted 8.3
actions (SD = 2.5) during each visit to a given location before moving on to the next.
In line with prior work on this topic [14], we connected the actions performed in one
location to those in the following location, defining a moving window size of two times
this average number of actions during each visit (17). We opted for this choice instead
of the infinite stanza, as the initial actions were similar among all players, and recent
actions are more relevant to current actions than the earlier ones. Moreover, we apply
a threshold at |0.02| in the visualization of connections to ensure interpretability of the
models.

4 Results

As discussed above, we divide the students in these analyses into high and low prior
knowledge groups. We then consider, separately, how trajectories through different
locations, and trajectories through different actions are associated with learning.

4.1 Low Prior Knowledge Students

This work explores differences between students who demonstrated high and low learn-
ing gains in both the high and low prior knowledge groups. For the low prior knowledge
group, Mann-Whitney U tests showed significant differences (alpha = 0.05) between
those with high and low learning gains for both: (1) location patterns (U = 192.00, p <
0.001, r = −0.71) and (2) action patterns (U = 22.00, p < 0.001, r = 0.80). Goodness
of fit, measured using both Pearson and Spearman correlation indexes, was greater than
0.82 for both axes in each model. The ordered networks shown in this study only dis-
play connections with a weight higher than 0.02. We employ this threshold to prevent
the figures from being overloaded with additional connections among codes that do not
correspond to the most substantial differences between the compared groups.

Figure 2a and b displays the difference models between students with high (blue)
and low (red) learning gains for the low prior knowledge group. We have tailored all
the ONA model visualizations in this study to enhance the readability of transitions
between nodes using the visualization software Diagrams.net, and strategically omitted
line weights for visual clarity (see below). While our ONA visualizations deviate from
the formats common to prior studies, the node positioning and arrow line weights are
analogous to the ordered networks generated in R for this data. In these visualizations,
the size of each node signifies the frequency of each action or location, and which group
(high or low learning gains) undertakes that action or visits that location more often.
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a. Location-based difference model. b. Action-based difference model.

Fig. 2. Location-based and action-based difference models between students with high learning
gains (blue) and low learning gains (red) for low prior knowledge students. Line weights below
|0.2| are omitted for visual clarity.

Students with higher learning gains in the low prior knowledge group were observed
to engage in more transitions between testing hypotheses and filling out the worksheet
with the corresponding results of the tests (normalized line weight, lw= 0.048), indicat-
ing a greater emphasis on understanding and framing the test results within the context
of the game’s goal. Additionally, students with higher learning gains were observed to
transition more frequently between movement and hypothesis testing (lw= 0.050). This
pattern of movements might be related to the ultimate goal of discovering the solution
for the game, rather than seemingly undirected movement among locations.

The patterns of locations visited by students in the high learning gain condition also
show similar results. Students with higher learning consecutively visited the laboratory
(the place for hypothesis testing) and infirmary (the place where students receive game
instructions and interact with patients suffering from the disease) more than students
in the low learning group (lw = 0.040). This result aligns with a positive correlation
between the number of hypotheses tested and learning gains for the low prior knowledge
group (rho= 0.404, p= 0.027). Similarly, students with higher learning gains transition
directly from the tutorial to the infirmary, a place where they receive more productive
information.

Students in the high learning group tended to visit the living quarters after visiting
the infirmary more often than the low learning students (lw = 0.028). Overall, learning
gains are positively correlated with the connection between interactions with NPCs and
reading material (rho= 0.340, p= 0.066), which can be completed in the infirmary and
living quarters. These types of actions tend to be performed more often by students who
understand the game’s dynamics. The total number of actions, which are also associated
with a better understanding of the game’s logic, are correlated with learning gains for
the low prior knowledge group (rho = 0.328, p = 0.077). This aligns with the results
shown by the actions-based difference model (Fig. 2b) for this group, where students
who learned more tend to have more connections between actions than their peers in
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the low learning gain condition, explaining why the line omission procedure resulted in
a difference model that only showcases higher learners’ higher rates of action. These
results suggest that students may require the instructions provided in the infirmary to
effectively learn from the disciplinary content taught in the living quarters.

In contrast, students in the low learning gain group tended to move between the
tutorial and outside locations more often compared to their high learning gain peers (lw
= 0.036). Low learning is also associated with Bryce’s Quarters. This seems surprising,
given that this is the location where most of the educational reading materials can be
found. Although, as observed in Fig. 2b, the students with lower learning gains are not
engaging more in the actions that can be conducted in Bryce’s quarters than their peers
who are learning more.

4.2 High Prior Knowledge Students

Statistical differences were also found among the high prior knowledge group, where
a third and fourth Mann-Whitney tests revealed that the behavior of students with high
learning gains (Mdn = −0.10, N = 18) was significantly different from the behavior
of the students in the low learning gain group in terms of the visited locations (Mdn =
0.10, N = 18, U = 288.00, p < 0.001, r = −0.78), and their actions (U = 231.50, p =
0.003, r = −0.43) at the alpha = 0.05 level. The goodness of fit, calculated with both
Pearson and Spearman correlation indexes, was greater than 0.86 for both axes.

Figure 3a and b shows the difference models between students with high (blue) and
low (red) learning gains for the low prior knowledge condition. The behavior of students
with high prior knowledge substantially differs from those with low prior knowledge.
Results from Fig. 3a suggest that the transitions related to the infirmary are conducted

a. Location-based difference model. b. Action-based difference model.

Fig. 3. Location-based and action-based difference models between students with high learning
gains (blue) and low learning gains (red) for high prior knowledge students. Line weights below
|0.2| are omitted for visual clarity.
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more by the high learning group in the high prior knowledge condition. However, transi-
tions having this place as starting point do not suppose a substantial difference between
the two learning groups, as observed in the low prior knowledge case. Although some
students with high prior knowledge and low learning gains tend to return from the infir-
mary to the tutorial (lw = 0.022), this connection is weaker than the observed back and
forth between the tutorial and outside, in the low prior knowledge students.

For the high prior knowledge group, visits to the living quarters from the laboratory
instead of the infirmary were also more common for the low learning gain group (lw =
0.029). Notably, while the laboratory was mainly visited by students in the high learning
gain group for the low prior knowledge condition, the strongest connection observed in
this study appeared between the laboratory (where testing occurs) and the dining hall
(where most of the testable objects are located) for the low learning gain group among
the high prior knowledge learners (lw = 0.082). Some students in this group may be
repeatedlymoving between the laboratory and the dining hall to obtainmore objects, test
more hypotheses, and solve the challenge quickly without engaging in reading or deeper
understanding. This result aligns with a negative significant correlation between learning
gains and the number of objects picked up by students in the high prior knowledge group
(rho = −0.375, p = 0.024).

The ordered network analysis for the high prior knowledge students also reveals a
notable connection starting from hypothesis testing to readings for the low learning gain
group (lw = 0.022), indicating that students in this group tend to read the disciplinary
content after testing the hypothesis. This is the opposite of the desired order of these two
actions and was also observed in the negative significant correlation between learning
gains and the number of transitions from testing a hypothesis to reading (rho= −0.332,
p = 0.048).

Furthermore, as shown in Fig. 3b, students with lower learning gains also show a
stronger connection between readings and interactions with NPCs (the two alternatives
they have in the game to receive disciplinary content; lw= 0.042) than their high-learning
peers. These students might be returning more to these two activities after picking an
object and rejecting a hypothesis in the lab to receive more insights about other possible
solutions. Although they are engaging more in these two activities, this does not imply
that they are reflecting on this information, and therefore, they would not be learning as
much as their peers.

5 Discussion

Understanding the relationship between prior knowledge and students’ in-game behav-
ioral patterns is an important step for developing newways to support struggling learners,
especially in an open-ended learning environment.While it is perhaps not surprising that
studentswith lower prior knowledge likely need different learning experiences than those
who come in with higher domain knowledge, understanding how to quantify those expe-
riences has historically been challenging in such open-ended environments. This study
uses an ordered network analysis (ONA) to better understand the trajectories of students
in a middle-school science game and to gain insight into which behaviors are more likely
to lead to learning (e.g., productive persistence, as opposed to wheel-spinning) even if
they do not reflect the most efficient route through the game.
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Results from this ONA show that overall, students with low prior knowledge require
more location visits and actions in order to learn, while those with high prior knowledge
are the opposite. It seems likely that this might extend to other learning contexts as well
(e.g., [33]). That is, we should expect students with low levels of prior knowledge to
have different questions and to require a higher level of repetition than students who
already know quite a bit about the domain.

Beyond these differences, we also see that the same trajectories can be associated
with the opposite effects on learning among high and low prior knowledge learners.
Such results have important implications for supporting learners, whether through larger
changes to the game design or through detector-driven prompts that are delivered when
a student appears to be struggling.

Game design changes might explore ways to mitigate the ways in which the layout
of the game influences student behavior. For example, ONA suggests that students with
low learning gains may sometimes ignore the instructions to go directly to the infirmary
(which is farther away from the tutorial than some of the other buildings in the game).
While major game changes (e.g., moving the location of the infirmary closer to the
tutorial) might be antithetical to the self-regulation the game is designed to foster, it
might be useful to prompt students who have ignored these instructions a second time.
Likewise, students who are ignoring reading materials in favor of what they think is a
more efficient strategy (e.g., the loop of picking up new objects and testing them) might
be prompted to make better use of the available resources in much the same way that
a resident at a hospital might have a supervising physician suggest they read relevant
articles. Finally, students might also be asked to externalize their hypotheses and their
rationale for selecting the objects to scan before testing to see if they are relying on prior
knowledge or disengaging from the educational material.

Other game design changes might be more subtle. For example, we currently see a
strong pattern among high prior knowledge students with low learning gains. Many of
these students seem to be looping between the dining hall (where most of the testable
objects are) and the laboratory (where tests can be performed). It is possible that a more
even distribution of testable objects and reading material throughout the game, might
increase the chances that a student comes across (and makes use of) these resource
articles. However, we note that this same looping behavior (between the dining hall
and the laboratory) leads to higher learning gains for students with low prior knowledge.
Therefore, any game redesigns should be carefully prioritized and tested among students
with both high and low prior knowledge, which could be operationalized by integrating
the pre-test into the game’s adaptability algorithms.

Another possible solution is to implement wheel-spinning detectors (e.g., [8, 34–
36]), and features based on the results of this ONA might help us to better predict this
construct. For example, features related to multiple trips to the tutorial or excessive
amounts of time wandering outside might be important indicators that a student does not
have the skills to move forward even if they have not fully disengaged from the system.
Likewise, we might develop features related to students who are testing without reading
or reading but not leveraging that information to go to the next most productive location.
Such detectors have been implemented in a range of learning software, but it can be
more challenging to detect unproductive behaviors in less-linear systems. The results
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here, however, suggest a path forward for such research using features discovered with
ONA, akin to the discovery with models approach used in previous research [37].

6 Conclusions and Future Work

We have shown that ONA, a particular derivation of ENA, of student log files illustrates
important patterns in open-ended learning environments, but this work is not without
limitations. A potential limitation of this approach is that an ONA collapses a large
number of student trajectories across time. That is, while ONA offers the advantage
of directionality (compared to more traditional ENA methods) it does not show the
specific moment when these connections occur during the student’s game trajectory.
Future work could work to address this limitation, either through data segmentation that
could provide more nuanced insights into the trajectory of student behavior over time
[38], or by supplementing ONA results with other techniques that examine time-series
data. Future work might also leverage this approach to examine player differences based
on other learner metrics such as content-related interest or in-game affect.

We have also shown that learning trajectories differ considerably among high and
low prior knowledge learners, but future research should consider other student-level
characteristics, since disciplinary content is not the unique factor that influences stu-
dents’ understanding of game dynamics. A few characteristics that may be especially
important include prior game literacy [39] as well as reading skills and visual attention
[40]. Students who are unaccustomed to exploration-based games or who struggle to
comprehend written instructions (and written content in general) may encounter greater
difficulty in engaging with and persisting in the game. Both lines of inquiry have the
potential to yield valuable insights for improving game design, and supporting students’
learning.

In summary, we envision the visualization and quantification capabilities of ONA as
a significant contribution to closing the interpretation loop when examining the interac-
tions between students and open-ended, game-based learning environments. Combining
this analysis with a range of other data on student characteristics and in-game behav-
iors can yield a broad range of insights for game designers and educators to enhance
game-based learning environments. In particular, it would be good to use these insights
as part of a discovery with models approach [37] to better capture potential features for
modeling differences between students who are wheel-spinning versus those that are
persisting productively.
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