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Agricultural soils play a dual role in regulating the Earth's climate by releasing or se-

greenhouse gases (GHGs) such as nitrous oxide (N,0) and methane (CH,). To under-
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1 | INTRODUCTION

Contemporary agriculture is facing multiple challenges such as
feeding a growing world population and mitigating climate change
(Chen et al., 2014; Foley et al., 2011; Pittelkow et al., 2015). By 2050,
global food production may need to increase by 25%-70% (Hunter
et al., 2017), or even double current production levels (Tilman
et al.,, 2011), to meet projected food demands. This would inevita-
bly lead to substantial increases in greenhouse gas (GHG) emissions
due to nitrogen (N) fertilizer use and cropland expansion (Cavigelli
et al., 2012; Molotoks et al., 2018; Thompson et al., 2019; Zabel
etal.,, 2019). To date, agriculture has been a major force in anthropo-
genic global warming, contributing about 25%-30% and 35%-50%
of global land biogenic emissions of nitrous oxide (N,0) and meth-
ane (CH,), respectively (Tian et al., 2016). This constitutes a great
challenge to achieve the Paris climate goal of limiting global warming
to well below 2°C by the end of this century (Tian, Xu, Canadell,
et al., 2020). Therefore, reducing GHG emissions from the agricul-
tural sector is an imminent need for mitigating climate change. Global
croplands account for about 10% of the terrestrial soil organic car-
bon (SOC) stock (IPCC, 2019; Watson et al., 2000) and could poten-
tially sequester 0.90-1.85 Pg Cyear'1 in the top 0.3 m of soils, which
is equivalent to 26%-53% of the soil carbon sequestration target
of 3.5 Pg Cyear'1 established by the 4p1000 Initiative for climate
mitigation (Zomer et al., 2017). Increasing SOC stock is considered
to be the most important countermeasure for GHG mitigation in ag-
riculture (Mosier et al., 2006; Smith et al., 2010). Besides seques-
tering atmospheric CO,, enhancing SOC stocks can also provide
multiple co-benefits, such as reducing soil erosion, strengthening
climate resilience, and improving soil fertility and health (Lal, 2018;
Sohi, 2012). Thus, advancing our understanding of the magnitude
and spatiotemporal variations of net GHG balance (i.e., sum of SOC

sequestration of CO, and emissions of N,O and CH,) in agricultural

net GHG emission rate from agricultural soils was 122.3 + 11.46 Tg COz-eqyear'l,
with the largest contribution from N,O emissions. The sequestered SOC offset ~28%
of the climate-warming effects resulting from non-CO, GHG emissions, and this off-
setting effect increased over time. Increased nitrogen fertilizer use was the domi-
nant factor contributing to the increase in net GHG emissions during 1960-2018,
explaining ~47% of total changes. In contrast, reduced cropland area, the adoption of
agricultural conservation practices (e.g., reduced tillage), and rising atmospheric CO,
levels attenuated net GHG emissions from U.S. croplands. Improving management
practices to mitigate N,O emissions represents the biggest opportunity for achieving
net-zero emissions in U.S. croplands. Our study highlights the importance of concur-
rently quantifying SOC-sequestered CO, and non-CO, GHG emissions for developing

effective agricultural climate change mitigation measures.

agricultural management practices, DLEM, greenhouse gas balance, methane, nitrous oxide,
SOC sequestration, U.S. croplands

soils, as well as drivers of their change, is critical for measuring the
cumulative radiative forcing of non-CO, GHG emissions and CO,
uptake (Robertson & Grace, 2004) and developing effective agri-
cultural climate change mitigation strategies. Meanwhile, improved
understanding could contribute to the achievement of Sustainable
Development Goals including “Climate Action” and “Zero Hunger”.
As one of the mostimportant agricultural producers in the world,
U.S. agriculture contributed a significant portion of global agricul-
tural GHG emissions. Numerous studies have measured and quanti-
fied N,O and CH, emissions and SOC sequestration in U.S. croplands
(Del Grosso et al., 2010; EPA, 2021; Linquist et al., 2018; Lokupitiya
et al., 2012; Lu et al., 2021; Ogle et al., 2010; Penman et al., 2000;
Yu et al., 2018). For example, it is reported that agriculture emitted
~10% of the national total GHG emissions in 2019 in the U.S. and was
the largest source of N,O emissions (~75%; EPA, 2021). Nonetheless,
these estimates are highly uncertain and wide-ranging, largely due
to differences in quantification methods and data sources (Ogle
et al.,, 2010; Tian et al., 2018, 2019; Xu et al., 2012). Specifically,
uncertainty in SOC stock changes in U.S. croplands could range
from — 4.6 Tg Cyear ! to + 4.9 Tg Cyear™ (Ogle et al., 2006, 2010),
and uncertainty in U.S. agricultural soil N,O emissions could range
from—0.07 Tg N year'1 to+0.1Tg N year'1 (Cavigelli et al., 2012;
Del Grosso et al., 2010). In addition, most of these studies have fo-
cused on estimating either individual GHG fluxes or SOC seques-
tration rate, while much less work has been done in quantifying
magnitude and spatiotemporal variations in net soil GHG balance
in U.S. croplands (EPA, 2021). Due to possible trade-offs between
SOC sequestration and GHG emissions under different agricultural
management practices (Guenet et al., 2021; Tian et al., 2011, 2015),
simultaneous quantification of SOC-sequestered CO, and non-CO,
GHG emissions is crucial to accurately assess the overall climate
abatement potential of mitigation measures. Furthermore, whether

SOC sequestration of CO, in U.S. croplands can offset non-CO,
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GHG emissions and how far we are from achieving carbon-neutral
agriculture remains unclear.

Climate-smart agriculture (CSA) management practices (e.g.,
reduced tillage, optimized N fertilizer use, and alternate wet-
ting and drying irrigation) have been advocated to reduce GHG
emissions without compromising crop yield (FAO, 2013; Miralles-
Wilhelm, 2021). Various field investigations and meta-analyses have
explored the effects and efficacy of these practices (Bai et al., 2019;
Gerber et al., 2016; Shang et al., 2021; Sun et al., 2020). However,
most existing work assessing the impact of CSA measures on GHG
emissions has focused on a single management practice and one or
two GHG fluxes (e.g., CO, or N,O) at a time (Huang et al., 2022; Lu
et al., 2022; Yu et al., 2020). Relatively few studies have simulta-
neously quantified the integrated effects of multiple management
practices on net soil GHG balance, especially at large spatial scales
(e.g., national and continental scales). Notably, EPA (2013) and Tian
et al. (2016) comprehensively quantified all three major GHG emis-
sions and the abatement potential of non-CO, GHGs on both na-
tional and global scales. Considering that some CSA management
practices may have antagonistic effects on SOC sequestration and
non-CO, GHG emissions (Guenet et al., 2021), and the resulting
effects of different practices typically have large variations and
may be non-additive (Yue et al., 2019), studies that fail to combine
SOC sequestration and non-CO, GHG emissions (as well as multi-
ple practices together) may lead to inconsistencies when making
comparisons that would not provide effective assessments (Shang
etal., 2021).

Global environmental changes such as climate change, elevated
atmospheric CO, concentration, and N deposition have also sub-
stantially affected agricultural GHG emissions (Ren et al., 2011,
2020). These factors vary over space and time in a highly hetero-
geneous geographical environment (e.g., diverse soil types and
cropping systems) that can affect the effectiveness of CSA prac-
tices (Abdalla et al., 2013; Sun et al., 2020). This means a mitigation
practice that is effective in one location or under certain conditions
may not be effective elsewhere or under other conditions (Shang
etal, 2021). In an example illustrating the importance of considering
interactions between environmental factors and agricultural man-
agement practices, Huang et al. (2018) found that conversion from
conventional tillage to no-tillage reduced GHG emissions in dry but
not in humid climates. However, relatively few studies have quanti-
tatively attributed changes in the net soil GHG balance of U.S. crop-
lands to different drivers (including multiple management practices
and environmental factors) over long-term periods (Moore et al.,
2023), although such factorial contribution analyses are essential for
accurately assessing impacts of these CSA practices and developing
effective climate mitigation measures.

Field experiments provide feasible and reliable means of eluci-
dating complex relationships of agricultural management practices
and net soil GHG balance under multiple environmental changes
(Plaza-Bonilla et al.,, 2018). However, directly extrapolating site-
specific findings to large spatial areas is difficult due to unique

environmental and management conditions of each site (Huang
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et al.,, 2022). Process-based terrestrial biosphere models (TBMs),
with well-represented crop growth processes and agricultural
management practices (e.g., N fertilization, tillage, irrigation, and
rotation), as well as detailed hydrological, biophysical, and biogeo-
chemical processes, can account for effects of spatial and tempo-
ral variations in environmental and management conditions on net
soil GHG balance at large scales (Bondeau et al., 2007; McDermid
et al., 2017; You et al., 2022). However, the simulation performance
of TBMs is largely limited by the availability of high-quality model
forcing datasets (i.e., introducing uncertainties in input data), the
lack of sufficient data for model calibration and validation (i.e., in-
troducing uncertainties in model parameters), and the inadequate
representation of relevant processes in the model (i.e., introduc-
ing uncertainties in model structures; Fisher et al., 2014; Gurung
et al,, 2020; Ogle et al., 2010). In view of respective strengths and
weaknesses of field observations and TBMs simulations, the integra-
tion of model and data would provide promising means to overcome
these bottlenecks (Fer et al., 2021; Peng et al., 2011).

In this study, we quantified the combined effects of multiple
management practices and environmental changes on the magni-
tude and spatiotemporal variations of net soil GHG balance in U.S.
croplands using a model-data integration approach. The model
used here is the Dynamic Land Ecosystem Model v4.0 (DLEM v4.0),
which is a highly integrated process-based TBM. DLEM v4.0 is ca-
pable of simultaneously depicting biosphere-atmosphere exchanges
of CO,, N,O, and CH,, driven by multiple environmental forcings
and management factors across site, regional, and global scales (Pan
etal., 2021; Tian, Xu, Canadell, et al., 2010; Tian, Xu, Pan, et al., 2020;
Yao et al., 2020; You et al., 2022). High-resolution model forcing
datasets were developed to drive the DLEM. Field observations of
SOC sequestration rates and non-CO, GHG emissions under various
management practices and environmental conditions on U.S. crop-
lands were compiled to calibrate, validate, and corroborate model
simulations. The objectives of this work were (1) to estimate the net
soil GHG balance of U.S. croplands as driven by changes in multiple
management practices (e.g., N fertilization, tillage, and irrigation),
climate conditions, historical land use, atmospheric CO, concentra-
tion, and N deposition spanning from 1960 to 2018, (2) to examine
the relative contributions of SOC sequestration of CO, and non-CO,
GHG emissions to the net soil GHG balance of U.S. croplands, and (3)
to quantify factorial contributions of different drivers to the spatial

and temporal variations in net soil GHG balance across the country.

2 | MATERIALS AND METHODS

2.1 | Metadata collection

A comprehensive literature search was conducted to identify peer-
reviewed publications reporting in-situ soil GHG emissions from U.S.
croplands using several databases including Google Scholar, Web of
Science, and Scopus. Search keywords included “cropland or crop

or corn or maize or soybean or wheat or rice”, “the United States or
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America or U.S. or USA”, “soil organic carbon or SOC”, “nitrous oxide
or N,O” “methane or CH,”, and/or “greenhouse gases or GHG". To
ensure the quality of compiled datasets, papers identified were fur-
ther refined by the following criteria: (1) measurements were made
in the field rather than in the laboratory; (2) ancillary information
such as cropping systems, experimental year and duration, and ap-
plied management practices (e.g., N fertilizer use rate, tillage type,
and irrigation) were provided; and (3) replicated field experiments
were performed.

This search identified a total of 576 site-years of data represent-
ing 79 locations from 91 peer-reviewed publications (Figure 1 and
Table S1), including 296 observations of N,O emissions, 198 obser-
vations of CH, emissions, 19 observations of SOC sequestration
rate, and 63 observations of SOC stock. Multiple management prac-
tices were involved in these observations, such as tillage, N fertilizer
use, irrigation, manure application, and cover cropping. In addition,
GetData Graph Digitizer software was used to extract exact values

when data were presented in graphical form.

2.2 | Model descriptions

DLEM v4.0 is a highly integrated TBM that couples major biophysi-
cal, biogeochemical, and hydrological processes to quantify daily,
spatially explicit carbon, water, and nutrient stocks and fluxes in ter-
restrial ecosystems and inland water systems at site, regional, and
global scales (Pan et al., 2021; Tian, Xu, Canadell, et al., 2010; Tian,
Xu, Pan, et al., 2020; You et al., 2022). The simulation of terrestrial
carbon, water, and nutrient dynamics is driven by multiple environ-

mental forcings (e.g., climate change, atmospheric CO, concentra-

tion, and N deposition) and various management factors (e.g., N

fertilizer use rate, irrigation, and manure application). Nutrient load-
ing and export from land to rivers and oceans are coupled with pro-
cesses of leaching, runoff, and sedimentation (Bian et al., 2023; Liu
etal., 2013; Tao et al., 2014). These nutrients are then used as inputs
for the aquatic module of the DLEM to simulate aquatic biogeochem-
ical processes (Tian, Xu, Pan, et al., 2020). For instance, simulated N
loads (including nitrate, ammonium, dissolved organic N, dissolved
inorganic N, and particulate organic N) serve as substrates for nitrifi-
cation and denitrification processes within the aquatic module (Yao
etal., 2020). Subsequently, these N loads are either released into the
atmosphere as N,O or transported to the estuary.

To meet cross-scale agricultural application needs (e.g., man-
agement guidance, agricultural climate change mitigation and ad-
aptation), DLEM v4.0 also includes mechanistic representations of
dynamic crop growth and development processes, such as crop-
specific phenological development, carbon allocation, yield for-
mation, and biological N fixation (You et al., 2022). Additionally,
agricultural management practices such as N fertilizer use, irriga-
tion, tillage, manure application, dynamic crop rotation, cover crop-
ping, and genetic improvements are also included. Regarding tillage
practices, three aspects of tillage impacts on agroecosystems are
represented in DLEM v4.0, including (1) changes in surface residue
coverage and subsequent redistribution of soil organic matter and
nutrients within tilled soil layers due to tillage mixing, (2) changes
in litter interception, bulk density, soil moisture, and other water-
related effects on processes such as nitrification, denitrification,
and leaching, and (3) changes in the soil decomposition rate (You
et al., 2022). The vertical soil profile in DLEM is discretized into 10
layers down to a depth of 3.5m, in which the layer thickness increases
geometrically from top to bottom with values of 0.05, 0.05, 0.1, 0.2,
0.2,0.3,0.3, 0.5, 0.8, and 1m, respectively. The SOC is distributed
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FIGURE 1 Spatial distribution of field sites included in this study. Different colors represent different crop types, in which “others’

represent crop types not listed in the legend (e.g., barley, cotton, and sorghum). Point size represents the number of replications/

observations at each site.
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belowground following an exponential function that characterizes
the specific root density profile for each plant functional type. The
well-represented crop growth processes and management practices
enable DLEM v4.0 to simulate crop state variables (e.g., leaf area
index and tissue biomass) across growth stages and biogeochemical
fluxes and pools of carbon, N, and water related to agroecosystems
(e.g., crop yield, GHG emissions, SOC, and nutrient leaching) across
various spatial and temporal scales. More details about the repre-
sentation of crop growth processes and different agricultural man-
agement practices in DLEM v4.0 are provided in You et al. (2022).

2.3 | Model forcing datasets

Four long-term datasets distributed over the U.S. at 5x5 arc-min
grid spacing were developed to provide forcing conditions for DLEM
v4.0:

1. Agricultural management practices (N fertilizer use rate, crop
rotation, tillage, irrigation, and manure application): The an-
nual crop-specific N fertilizer use rate dataset from 1910 to
2018 was reconstructed using the state-level N fertilizer use
rates from USDA-NASS and the national-level commercial N
fertilizer consumption data from Mehring et al. (1957) and
USDA-ERS (2019) following Cao et al. (2018). The annual
crop rotation dataset from 1910 to 2018 was developed by
combining the USDA Cropland Data Layer (CDL) product and
National Agricultural Statistics Service (NASS) survey of county-
level crop planting areas using the spatialization method of Yu
et al. (2018). The annual tillage intensity map from 1960 to
2018 was reconstructed from the county-level tillage prac-
tices survey data obtained from the National Crop Residue
Management Survey (CRM) of the Conservation Technology
Information Center (https://www.ctic.org/CRM) following You
et al. (2022). Tillage maps for missing years were kept the
same as the nearest years with available data. The original
five tillage practices in the CRM dataset were reorganized into
four types by combining ridge and mulch tillage types to con-
servation tillage. The county-level CRM dataset was combined
with the CDL-derived crop rotation map and the USDA-NASS
crop planting area to estimate historical spatial distributions
of tillage practices. The annual crop-specific irrigation dataset
from 1950 to 2018 was downscaled from the county-level irri-
gation reanalysis (McManamay et al., 2021) and NASS irrigated
cropland area survey, using the MODIS Irrigated Agriculture
Dataset (Brown & Pervez, 2014; Pervez & Brown, 2010) as a
base map. The annual manure N application dataset from 1860
to 2018 was acquired from Bian et al. (2021). The state-level
earliest and latest crop planting dates were obtained from the
NASS survey report (NASS, 2010), which provides planting and
harvesting windows in most historical years.

2. Land use and land cover change (LULC): We developed a spatially
explicit annual LULC dataset at a spatial resolution of 1x1km?

oo, NOTEE

over the contiguous U.S. during 1630-2020 using machine
learning and geospatial modeling approaches (Li et al., 2023).
Multi-source datasets such as satellite-derived land cover maps,
national inventories, topographical data, and model-based land
use change data were used for the reconstruction. Furthermore,
vegetation type datasets during 1860-2020 were derived from
Chen et al. (2006).

3. Natural environmental changes (climate conditions, atmospheric
CO,, and N deposition): The historical daily climate dataset (in-
cluding precipitation, solar radiation, maximum, minimum and
mean temperatures) from 1860 to 2018 was reconstructed from
the North American Land Data Assimilation System product
(Mitchell et al., 2004; Xia et al., 2012), the Climate Research Unit-
National Centers for Environmental Prediction dataset (Mitchell
& Jones, 2005), and the IPSL Climate Model dataset (Boucher
et al., 2020) using the delta downscaling method (Liu et al., 2013).
Monthly atmospheric CO, concentration variations during 1860-
2018 were from the NOAA GLOBALVIEW-CO, dataset derived
from atmospheric and ice core measurements (wWww.esrl.noaa.
gov). Monthly atmospheric N deposition variations during 1860-
2018 were acquired from the International Global Atmospheric
Chemistry (IGAC)/Stratospheric Processes and Their Role in
Climate (SPARC) Chemistry-Climate Model Initiative (CCMI)
(Eyring et al., 2013).

4. Soil properties and other auxiliary information: Soil physical
and chemical properties were obtained from the ISRIC-WISE
Harmonized Global Soil Profile dataset (Batjes, 2008). Other aux-
iliary information such as topography and river network was ob-
tained from our previous studies (Tian, Xu, Canadell, et al., 2010;
Tian, Xu, Pan, et al., 2020).

2.4 | Model calibration, validation, and
sensitivity analysis

DLEM has been widely validated and applied to estimate N,O and
CH, emissions and SOC stocks at multiple sites and in large-scale
regions including the U.S. (Huang et al., 2020; Lu et al., 2021; Tian
et al., 2012; Yu et al., 2018), North America (Tian, Xu, et al., 2010;
Xu et al,, 2012), China (Ren et al., 2011; Zhang et al., 2020), and
across the globe (Friedlingstein et al., 2020; Ren et al., 2020;
Saunois et al., 2020; Tian, Xu, Canadell, et al., 2020). In this study,
we rigorously calibrated and validated DLEM, as driven by the
forcing datasets developed in Section 2.3, to better simulate SOC
stock, and N,O and CH, emissions in U.S. croplands using field
observations compiled by the metadata collection described in
Section 2.1. We calculated SOC sequestration rates as the differ-
ences in SOC stocks between two adjacent years. The changes
in national SOC-sequestered CO, observed in this study can be
attributed to changes in cropland area, natural environmental fac-
tors, and agricultural management activities. Additionally, since
the collected measurements of SOC sequestration rates and

SOC stocks were reported at various soil depths (e.g., 0-20cm or
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0-100cm), we outputted simulation results at the corresponding
soil depths for validation. Several metrics were used to quantify
model performance, including coefficient of determination (R2),
root mean square error (RMSE), and normalized root mean square
error (NRMSE).

In total, 576 site-year measurements representing 79 U.S.
cropland sites covering major cropping systems were used to
calibrate, validate, and corroborate model simulations (Figure 1).
Values of major parameters related to N,O, CH,, and SOC pro-
cesses were determined through model calibration within a
reasonable range of values reported in the literature (Table S2).
Specifically, we first used default parameter values to run the
model, and then we manually tuned the parameters within the
reported ranges to obtain a close match between observed and
simulated values. During the calibration process, we utilized 10, 6,
4, and 6 site-year datasets for N,O, CH,, SOC sequestration rate,
and SOC stock, respectively. We adopted the parameter set that
obtained the minimal bias between the simulated and measured
values across all calibration datasets as the optimal parameters
and used it for the regional simulation. Additionally, apart from
calibrating parameters related to N,O, CH,, and SOC processes,
we calibrated the model with a focus on crop yields using data
collected from the AmeriFlux Network, the Resilient Economic
Agricultural Practices Project, and the United States Department
of Agriculture-National Agricultural Statistics Service (further de-
tails can be found in You et al., 2022). After model calibration, field
observed N,O, CH,, and SOC data (excluding data used for model
calibration) were utilized to evaluate model performance. Overall,
DLEM can well-simulate emissions of N,O and CH,, SOC seques-
tration rates, and SOC stocks compared with field observations
from the metadata collection, in which RMSE (NRMSE) values
were 0.16gNm™ (9.6%), 1.5g Cm™2 (4.4%), 156.9g Cm™2 (19.3%),
and 1929.1gC m2 (17.6%), respectively, and the R? values were :6;
.91, .46, and .64, respectively (Figure 2). Furthermore, given the
significant differences in CH, emissions between rice and non-rice
crops, we also calculated their individual R? values, which were .75
for rice and .54 for non-rice crops.

We also quantified the sensitivity of simulated regional SOC
sequestration rate and N,O and CH, fluxes in U.S. croplands to
variations in model parameters (Tian et al., 2011). Specifically, we
first conducted a variance-based global sensitivity analysis for each
major crop type to quantify the relative importance of model pa-
rameters in simulating SOC sequestration rate and N,O and CH,
emissions using the Sobol’ method (Sobol, 1993). We then identi-
fied parameters having a significant impact on simulated SOC se-
questration rate and N,O and CH, fluxes (Figures S1-S5). Next, we
used the Monte Carlo sampling scheme to generate an ensemble of
100 sets of these sensitive parameters by randomly varying their
values within a 20% range of their calibrated values based on their
respective probability distribution functions (Tian et al., 2011; You
et al., 2022). Finally, we used the generated parameter sets as inputs
for DLEM to simulate regional SOC sequestration rate and N,O and

CH, emissions from U.S. croplands. The sensitivity of simulated SOC

sequestration rate and N,O and CH,, fluxes to model parameter vari-
ations was expressed as + 1 standard deviations (SDs) derived from

these simulations.

2.5 | Model implementation and
experimental design

Implementation of DLEM v4.0 included three major steps: an equi-
librium run, a spin-up run, and a transient run. The equilibrium run
was driven by average annual climate data during the 1860s and
other factors (e.g., vegetation type, atmospheric CO, concentra-
tion, and N deposition) in 1860. The equilibrium state was as-
sumed to be reached when changes in carbon, N, and water pools
between two consecutive 20-year periods were less than 0.5¢g
C m'2year'1, O.SgNm'zyear_l, and 0.5mmyear'1, respectively.
The spin-up run was driven by detrended climate data during the
1860s to eliminate fluctuations due to the transition from equi-
librium run to transient run. Finally, the transient run was driven
by historical data from 1860 to 2018. For model forcing data not
spanning the entire 1860-2018 period, we kept the data for the
missing years the same as those of the nearest available years. For
example, during the transient run, tillage data before 1989 and
after 2011 were assumed to be constant at the levels of 1989 and
2011, respectively. The simulation results from the transient run
are considered to represent actual changes in the real world due
to the comprehensive inclusion of changes in all driving factors
(e.g., LULC, climate conditions, and N fertilizer use). In this study,
we will analyze these results from 1960 to 2018, and the model
run between 1860 and 1959 serves as a spin-up for the slow soil
biogeochemical cycles.

We designed 11 simulation experiments to distinguish fac-
torial contributions of different drivers to spatial and temporal
variations in the net soil GHG balance of U.S. croplands (Table 1).
Attribution factors included N fertilization, tillage, irrigation, ma-
nure application, climate change, atmospheric CO, concentration
and N deposition, and LULC. A reference run (SO) was performed
by keeping all factors at the 1860 level to examine model fluctua-
tions resulting from internal system dynamics. The SO run yielded
background emissions with little human perturbation, utilizing
the vegetation type map derived from the LULC dataset. An all-
combined run (S1) was implemented by driving the model using
all historically varying input forcings during 1860-2018 to rep-
resent the “best estimates” of SOC sequestration rate and N,O
and CH, emissions from U.S. croplands. Net changes in SOC se-
questration rate and N,O and CH, emissions driven by all factors
were calculated as the difference between S1 and SO simulations.
Meanwhile, we performed seven additional simulations (S2-S8)
to investigate individual contributions of changes in each fac-
tor to annual variations in SOC sequestration rate and N,O and
CH, fluxes. Specifically, in each simulation one particular factor
was kept constant at the 1860 level, while all other factors were

set to vary over time, and the factorial contribution of this fixed
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FIGURE 2 Site-scale comparisons of model estimates and field observations of N,O (a), CH, (b), SOC sequestration rate (c), and SOC
stock (d) across different crop types. Dashed line is the regression of observed data and modeled results, and the solid line is the 1:1 line.
Note that the SOC sequestration rates and SOC stocks here were reported by studies at various soil depths (e.g., 0-20cm or 0-30cm),
thus we outputted simulation results at corresponding soil depths for validation. SOC sequestration rates represent SOC stock changes
and are calculated as the differences in SOC stocks between two adjacent years, in which a negative SOC sequestration rate represents a
decrease in SOC stock (indicating decomposition), and a positive SOC sequestration rate represents an increase in SOC stock (indicating
sequestration). “Others” represent all crop types not listed in the legend (e.g., barley, cotton, and sorghum). Additionally, due to the small
amount of N,O and CH, emissions (close to 0) at many sites, these datapoints are stacked near the origin, resulting in the number of
datapoints on the graph appearing to be fewer than the actual number of datapoints involved in the statistical analysis.

factor was obtained by subtracting the simulation from the “all-
combined” simulation (S1). Since LULC is usually accompanied by
changes in the total input of management practices (e.g., manure
and mineral fertilizer application), we calculated the factorial con-
tribution of LULC by keeping all management factors constant at
the 1860 level while varying other environmental factors with
LULC turned on and off (Lu et al., 2021). Thus, the factorial con-
tribution of LULC was calculated as the difference between S9
and S10 (Table 1). In addition, because our analysis focused on
the period 1960-2018, we calculated the factorial contribution of
each factor relative to the average state in the 1950s. That means,

the factorial contribution of each factor from 1960 to 2018 was

calculated by subtracting the average state of the 1950s from its

original factorial contribution.

2.6 | Global warming potential calculation

The global warming potential (GWP) is an index to measure the in-
tegrated radiative forcing from the emission of 1kg of a trace gas
relative to that of CO, (Myhre et al., 2013). In GWP conversions, CO,
is typically considered the reference gas with a GWP constant of 1.
CH, and N,O emissions can be converted to ‘CO,-equivalents’ based

on their respective GWP constants over a specified time horizon. To
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TABLE 1 Factorial experiments to quantify the relative contributions of different drivers to changes in soil organic carbon sequestration rate and nitrous oxide and methane emissions from

U.S. croplands.

Irrigation® Manure Climate! co, Ndep LULC

Tillageb

Nfer?

Scenario

No.

1860 1860 1860 1860 1860 1860 1860

1860

Reference

SO
S1
S2

1860-2018

1860-2018
1860-2018

1860-2018

1860-2018
1860-2018
1860-2018

1860-2018
1860-2018
1860-2018

1860-2018
1860-2018
1860-2018
1860-2018

1860-2018
1860-2018
1860-2018

1860

1860-2018
1860-2018

1860

1860-2018
1860

All combined

1860-2018
1860-2018

Without N fertilization (Nfer)

1860-2018

Without tillage

S8

1860-2018 1860-2018 1860-2018

1860-2018

1860-2018

1860-2018

Without irrigation

S4
S5

1860-2018
1860-2018
1860-2018

1860-2018
1860-2018
1860-2018

1860

1860-2018
1860-2018

1860

1860-2018
1860

1860

1860-2018
1860-2018
1860-2018

1860-2018
1860-2018
1860-2018

1860-2018
1860-2018
1860-2018

Without manure

1860-2018
1860-2018
1860-2018

Without climate
Without CO,,

Sé

1860-2018

S7
S8
S9.

1860-2018

1860-2018

1860-2018

1860-2018 1860-2018

1860-2018

Without N deposition (Ndep)

1860-2018 1860-2018 1860
1860-2018

1860-2018

1860-2018
1860-2018

1860
1860

1860 1860
1860

1860

1860
1860

Climate+CO, +Ndep

YOU et AL.

1860-2018

Climate+CO, +Ndep+LULC

S10

We assumed N fertilization rate before 1910 was kept constant at the 1910 level.

P\We assumed tillage data before 1960 was kept constant at the 1960 level.

“We assumed irrigation data before 1950 was kept constant at the 1950 level.

dClimate data in 1860 was the average climate condition during the 1860s.

obtain a comprehensive assessment of the climatic impact of net soil
GHG balance, we adopted the following equation to calculate the
combined GWPs for SOC sequestration of CO, and N,O and CH,

emissions:

GWP=Fco,_c X s XGWP¢q, +Fn,0-n % s xGWPy,0

1% 12 28
+Fen,—c X 7] XGWP¢,, (1)
Fco,-c = — SOCSR, 2)

where Feo,_¢, Fn,0-n @nd Fey,_c were annual fluxes of CO,, N,O,
and CH,, respectively; SOCSR was SOC sequestration rate; molec-
ular weight conversion fractions 44/12, 44/28, and 16/12 were
used to convert the mass of CO,-C, N,O-N, and CH,-C into CO,,
N,O, and CH,, respectively; GWP¢o , GWPy, o, and GWP¢,, were
GWP constants indicating radiative forcing of CO,, N,O, and CH,
in terms of their CO, equivalents, and this study used the GWP val-
ues integrated over a time horizon of 100years for CO,, N,O, and
CH,, which were 1, 265, and 28, respectively (Myhre et al., 2013).

3 | RESULTS

3.1 | National budget and dynamics of het GHG
balance in U.S. croplands

Our simulations showed that U.S. croplands acted as a net carbon
sink during 1960-2018 with an average SOC sequestration rate
of 13.2+1.16 Tg C year'1 (at a depth of 3.5m), and acted as a net
source of N,O and CH, with average emission rates of 0.39 + 0.02
TgN year'1 and 0.21+0.01TgC year'l, respectively (Figure 3). Both
SOC sequestration and N,O and CH, fluxes in U.S. croplands ex-
hibited large interannual variations during 1960-2018, but showed
overall significant increasing trends (with respective rates of 0.429
TgC year'z, 0.003Tg N year'2, and 0.001 Tg C year'z).

Using the GWP100 metric, sequestered SOC in U.S. agricul-
tural soils reduced national net GHG balance at an average rate
of 484 +4.25Tg COz—eqyear'1 during 1960-2018, whereas N,O
and CH, emissions contributed to the net GHG balance at av-
erage rates of 162.76 + 8.33 Tg CO,-eq year'1 and 8.01+0.37 Tg
CO,-eq year'l, respectively (Figure 4). Thus, non-CO, GHG emis-
sions (i.e., sum of N,O and CH, emissions) from U.S. croplands
surpassed SOC sequestered, indicating that U.S. croplands acted
as a net source of GHGs. Statistically, sequestered SOC offset
~28% of climate-warming effects resulting from non-CO, GHG
emissions during 1960-2018, and the proportion of the offset
increased over time. When considering both SOC sequestration
and non-CO, GHG emissions, the average net GHG balance during
1960-2018 was estimated to be a GHG source of 122.3 + 11.46
Tg COZ—eqyear'1 and exhibited a substantial decadal variability,
increasing from 98.32+7.13 Tg COZ—eqyear'1 in the 1960s to
15528 +11.48 Tg COz—eqyear'1 in the 1980s and gradually de-
creasing to 115.87 + 16.18 Tg CO,-eq year'1 in the 2010s.
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FIGURE 3 Temporal variations in national SOC sequestration
rate (a) and fluxes of N,O (b) and CH,, (c) in U.S. agricultural soils
from 1960 to 2018. Shaded area denotes the sensitivity of SOC

sequestration rate and N,O and CH, fluxes to model parameter

variations (represented by +1SD).

3.2 | Spatial patterns of net GHG balance in
U.S. croplands

With an average SOC sequestration rate of ~10.5g C m'zyear'l, simu-
lation results over the study period indicated that most U.S. croplands
acted as carbon sinks, with the Midwest, Southeast, and Northwest
regions having relatively high SOC sequestration rates (Figure 5). The
spatial pattern of N,O emissions varied substantially across the coun-
try, with hotpots in the Midwest region having peak N,O emission
rates as high as 0.8gN m'2year'1. In contrast, the distribution of CH,
flux was polarized, with a high CH, emission rate of ~13g C m'2year'1
in the Mississippi Delta and the Sacramento Valley regions due to rice

cultivation and rates approaching zero in other areas.

ST e

When simultaneously taking SOC sequestration and non-CO,
GHG emissions into account, we found that the distribution of
net soil GHG balance showed large spatial heterogeneity, with
hotspots in the Midwest and Mississippi Delta regions where peak
net soil GHG emissions were estimated to be higher than 2.5Mg
CO,-eq ha"tyear™ (Figure 6). In contrast, some U.S. croplands (pri-
marily located in Northwest regions) acted as a net sink of GHGs
during the study period (representing ~18% of national cropland
area), suggesting that sequestered SOC in these regions completely
offset non-CO, GHG emissions. The net GHG balance of croplands
varied substantially across different regional hubs of distinct cli-
mate characteristics. The Midwest hub was the largest contributor,
accounting for ~47% of the national total net GHG balance during
1960-2018. The Northern Plains hub had the second largest share
(~21%), followed by the Southern Plains and Southeast climate hubs
(~14% each), while the Northwest, Southwest, and Northeast hubs
accounted for less than 5%. The net GHG balance of the Midwest
hub averaged 57.5 Tg COz—eqyear'1 over the study period, and its
contribution to the national total net GHG balance exhibited large
decadal variations, first increasing and then decreasing. In addition,
simulation results showed that N,O emissions greatly enhanced net
GHG balance in all hubs, while CH, emissions only promoted net
GHG balance in the Southeast and Southwest hubs.

3.3 | Relative contributions of SOC sequestration and
N,O and CH, emissions to net GHG balance

Given that non-CO, GHG emissions have surpassed the amount
of SOC sequestered in U.S. croplands (Figure 4), we conducted a
more comprehensive analysis of the spatial distribution of the rela-
tive contribution of SOC sequestration and N,O and CH, emissions
to the net GHG balance of U.S. croplands (Figure 7). Over the study
period, soil N,O emissions played a dominant role in controlling the
net GHG balance of most croplands (e.g., the Midwest, Northern and
Southern Plains hubs), followed by SOC sequestration, while CH,
emissions only controlled the net GHG balance in the Mississippi Delta
and Sacramento Valley regions, which are major rice growing areas.
Meanwhile, the proportion of U.S. croplands dominated by SOC se-
questration increased over time, indicating an increasing role of SOC
sequestration in controlling the net GHG balance across the country.
For example, most Midwest croplands were dominated by N,O emis-
sions (red color) in the 1960s, but was controlled jointly by N,O emis-

sion and SOC sequestration (yellow and green colors) in the 2010s.

3.4 | Factorial contributions of multi-driver
changes to net GHG balance in U.S. croplands

We further quantified the factorial contributions of key drivers,
including multiple agricultural management practices and envi-
ronmental forcings, to changes in the net soil GHG balance of U.S.

croplands from 1960 to 2018 by setting up a series of simulation
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FIGURE 4 Temporal variations in national net greenhouse gas
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experiments (Table 1). Our results revealed that increased use of N
fertilizer was the dominant factor driving changes in the net GHG
balance of U.S. croplands in comparison to the average state in the
1950s. This increase contributed to a net GHG balance increase
of 799 Tg COz—eqyear'1 and roughly explained 47% of the total
changes (Figure 8). Increased atmospheric N deposition and manure
application also contributed to the increase in net GHG balance,
with average rates of 8.3 Tg CO,-eq year'1 and 2.7 Tg CO,-eq year'l,
respectively. Conversely, LULC resulted in a substantial reduction
in the net GHG balance in U.S. croplands, with an average mitiga-
tion rate of 42.2 Tg CO,-eq year'l, which explained ~23% of the total
changes. Rising atmospheric CO, concentration was the second-
largest mitigator, reducing the net GHG balance at an average rate of
20.1 Tg CO,-eq year'1 and accounting for ~9% of the total changes.
Reduced tillage and increased irrigated area were also effective
in mitigating the net GHG balance in U.S. croplands, with average
mitigation rates of 3.1 Tg (302—eqyear'1 and 1.9 Tg COZ—eqyear'l,
respectively. Additionally, compared to the 1950s, climate change
initially reduced net GHG balance in U.S. croplands by an aver-
age rate of 12.5 Tg CO2—eqyear'1 from the 1960s to the 1990s,
but later increased net GHG balance at an average rate of 36.5 Tg

CO,-eq year'l.

4 | DISCUSSION

4.1 | Comparison with previous studies

We compared our estimates of SOC sequestration rate and N,O
and CH, emissions in U.S. croplands with other regional estimates
published (Table 2). Over the past six decades, our estimated SOC
sequestration rate in U.S. croplands ranged from 4.9+0.66 Tg C
year'1 in the 1960s to 22.2+1.91 Tg C year'1 in the 2010s and fell
within the rate change reported by others (Ogle et al., 2006, 2010;
Pacala et al., 2001; Sleeter et al., 2018; West et al., 2008; Zhang
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FIGURE 5 Spatial patterns of average annual SOC sequestration
rate (a) and fluxes of N,O (b) and CH, (c) in U.S. agricultural

soils from 1960 to 2018. Note that negative values in soil fluxes
represent uptake and positive values represent release. Therefore,
negative soil CO, flux indicates SOC sequestration.

et al., 2015). For instance, Pacala et al. (2001) estimated the range
of SOC sequestration rate in U.S. croplands to be 0-40 Tg C year'l,
Ogle et al. (2010) estimated a net increase in SOC of 17.5+2.9 Tg C
year ! during 1995-2000, and Sleeter et al. (2018) estimated a net
accumulation of SOCin U.S. croplands of 32 Tg C year'1 during 1973-
2010. Our estimated SOC sequestration rate was generally consist-
ent with these studies. In addition, our estimated SOC sequestration
rate showed an increasing trend during 1960-2018, partly due to
the increasing atmospheric CO, concentration (Walker et al., 2021),
improved crop management practices (e.g., N fertilizer use and ir-
rigation; Christopher & Lal, 2007), and advancements in crop tech-
nologies (e.g., genetics and breeding). These factors have resulted in
significant increases in biomass production and grain yield, leading
to greater crop residue inputs into soils. For instance, productions of
major crops such as corn and soybean have nearly tripled to quadru-
pledin the U.S. over the past several decades (USDA, 2018). Despite
the carbon allocation process in DLEM is driven by photosynthetic
carbon supply and subject to multiple environmental stresses (You
et al., 2022), the simulated ratio of yield to whole plant biomass has

remained relatively stable over time, suggesting that the simulated
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FIGURE 6 Spatial pattern of average annual net greenhouse gas balance of U.S. croplands from the 1960s to the 2010s. Note that error
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crop residues would have also significantly increased during the same
period. Although the DLEM have accounted for the removal of a cer-
tain percentage of crop residues from the agroecosystem through
tillage practices (50%, 25%, and 0% for conventional tillage, reduced
tillage, and no tillage, respectively), we acknowledge that large un-
certainties still exist concerning these residue removal percentages,
potentially biasing the simulated residue inputs into soils and SOC
sequestration rate. In terms of N,O emissions, our estimates ranged
from 0.27+0.02 Tg N year ' in the 1960s to 0.45+0.03 Tg N year™*
in the 2010s, which were also comparable to previous studies (Chen
et al., 2016; Del Grosso et al., 2006; EPA, 2018; Griffis et al., 2013;
Lu et al., 2021; Mummey et al., 1998; Tian et al., 2019). For exam-
ple, the direct N,O emissions from U.S. agricultural soils estimated

by the Global N,O Model Inter-comparison Project (NMIP) ranged
from 0.3 Tg N year™ to 0.62 Tg N year ! during 2007-2016 (Tian
etal, 2019; Xu et al., 2021), and our estimate of 0.44 Tg N year'1 fell
well within this range. Additionally, our estimated CH4 emissions (av-
eraged to 0.23 Tg C year'1 over the last two decades) was also close
to previous estimates centered on an annual emission rate of ~0.25
TgC year'1 (EPA, 2015; Sass et al., 1999; Tian et al., 2015).

Overall, our individual estimates of SOC sequestration rate and
N,O and CH, emissions in U.S. croplands were in similar magnitudes
and variation ranges as other regional estimates, but differences still
exist, possibly due to uncertainties in forcing data and differences
in estimation methods. However, unlike previous studies that fo-

cused solely on individual GHGs or SOC, our work quantified both
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FIGURE 7 Spatial distributions of the relative contribution of SOC sequestration and emissions of N,O and CH, to the net greenhouse

gas balance of U.S. croplands from the 1960s to the 2010s.

SOC-sequestered CO, and non-CO, GHG emissions in U.S. crop-
lands simultaneously. In this way, we could gain a more complete
picture of the magnitude and spatiotemporal variations of the net
soil GHG balance in U.S. croplands and uncover new insights. For in-
stance, by disentangling changes in the relative contribution of SOC
sequestration and N,O and CH, emissions in the net GHG balance
of U.S. croplands over the past few decades, we found that N,O
emission and SOC sequestration jointly controlled the net GHG bal-
ance over most croplands in recent decades (Figure 7), highlighting
the importance of considering both non-CO, GHG emissions and
SOC sequestration when developing climate mitigation strategies.
Meanwhile, our results revealed that the proportion of regions dom-
inated by SOC sequestration increased over time. Possible expla-
nations for this trend may include a gradual flattening of soil N,O
emissions due to stabilized N fertilization amounts, as well as in-
creased crop biomass due to improved management practices and

breeding and genetic technologies that in turn enhanced residue

inputs into soils and promoted SOC sequestration. However, given
that meeting growing food demand will inevitably lead to increased
non-CO, GHG emissions due to fertilization (Cavigelli et al., 2012;
Molotoks et al., 2018), and significant increases in crop biomass may
be limited by advances in crop breeding and genetic technologies,
our findings therefore re-emphasize the necessity of concurrently
reducing non-CO, GHG emissions and enhancing SOC seques-
tration to achieve the goal of carbon-neutral agriculture, which is
particularly important since non-CO, GHG emissions have already
surpassed the amount of SOC-sequestered CO, in U.S. croplands.
Additionally, our results showed that the adoption of reduced tillage
practices led to a decrease in net GHG balance, which underscores
the potential of leveraging CSA management practices (e.g., no-
tillage and cover cropping) to mitigate net GHG balance in U.S. crop-
lands (Huggins & Reganold, 2008; Prokopy et al., 2019). Considering
that some CSA practices could have quite different impacts (or even

antagonistic) on SOC sequestration and N,O and CH, emissions

95UdIT suoWWo)) dAneal) a|qedijdde ayy Aq paultanob aue sapilie YO @sn Jo sajnu 1oy Aseiqi] auljuQ A3]ip\ UO (suoipuod-pue-swaal/wodAs|imAielqipuljuo//:sdiy)
SUOIPUOD pue swid 3y} 33S ‘[#202/90/.0] uo Ateiqr suljuo Asim ‘sauelqrl Ausiaaun wingny Ag “60L.L'q26/1LLL 0L/1op/wodAspmAeiqgijpuljuo//:sdny wouy papeojumoq ‘L ‘€202 ‘9872S9¢EL



YOU ET AL. 13 of 20
-lobal Change Biology s\%YA| ]_EYJ—
200
L:D ~~
5] TH 150 ]
- >
2 g — — Ch
= o 1001 — — ange
= o — Nfer
o O
e 504 Manure
2 & o
2 Climate
29 0 mm Co,
=i [ | E LULC
R m .
5 2 -50 1 Irrigation
:Té .‘E’ — I Tillage
g = -100+ N N,
<
B
-150 T T T T T T
1960s 1970s 1980s 1990s 2000s 2010s
Time

FIGURE 8 Factorial contributions of multiple agricultural management practices and environmental forcings to changes in the net
greenhouse gas balance of U.S. croplands from the 1960s to the 2010s, in comparison to the average state in the 1950s. Nfer represents
nitrogen fertilizer use; Ndep represents atmospheric nitrogen deposition; LULC represents land use and land cover change (reflecting
both cropland abandonment and expansion, as well as interannual crop rotation changes); and CO, represents atmospheric carbon dioxide

concentration. Note that the sum of factorial contributions of individual drivers (i.e., stacked bars) does not equal to net changes in the net

greenhouse gas balance (i.e., black line) due to interaction effects.

(Guenet et al., 2021), our estimation of net GHG balance also allows
for more comprehensive and effective mitigation efforts to combat

climate change.

4.2 | Impacts of agricultural management
factors and environmental changes on net
GHG balance

Leveraging agricultural management practices to curb net GHG
emissions from croplands has recently come under sharp focus
due to their large mitigation potential, low cost and accompanying
co-benefits such as improved soil and water quality and biodiver-
sity maintenance (Fargione et al.,, 2018). As seen in other studies
(Christopher & Lal, 2007; Gerber et al., 2016; Lu et al., 2021), our
factorial analysis indicated that N fertilization (including both syn-
thetic N fertilizer use and manure application) contributed sig-
nificantly to net GHG emissions from U.S. croplands (Figure 8).
For instance, Lu et al. (2021) reported that N fertilization was the
dominant driver contributing to N,O emissions from U.S. agricul-
tural soils, which increased N,O emissions by 0.33 Tg N year'1 since
1900. Synthetic N fertilizer use in U.S. croplands increased sub-
stantially (Figures S7a and S8a), from 2.48 Tg N year™ in 1960 to
11.8 Tg N year'1 in 2015, which greatly promoted non-CO, GHG
emissions (especially N,O) and exacerbated global climate warm-
ing. Although N addition could simultaneously stimulate SOC ac-
cumulation in croplands, we found that SOC climate benefits were
largely offset by non-CO, GHG emissions (Figure Séa,b). Therefore,
optimizing N fertilizer use rates is an imminent need for achieving
overall maximum benefits among enhancing SOC sequestration, im-
proving crop yields, and curbing non-CO, GHG emissions (Gerber
et al.,, 2016; Xia et al., 2017). According to CRM's survey data, the

proportion of U.S. croplands adopting no-tillage practices increased
significantly over the past three decades (Figures S7c and S8c). Our
factorial analysis suggested that the tillage intensity reduction sup-
pressed net GHG emissions, which was consistent with other U.S.
studies (Huang et al., 2022; Lu et al., 2022; Yu et al., 2020). For in-
stance, Yu et al. (2020) found that reduced tillage intensity in U.S.
corn-soybean cropping systems contributed to a net SOC accumula-
tion of 1.0 Tg C year™ during 1998-2008. Lu et al. (2022) reported
a reduction rate of -5.5 Tg COZ—eqyear'1 in GHG emissions from
U.S. corn-soybean cropping systems during 1998-2008 as a result
of tillage intensity reduction. Huang et al. (2022) suggested attenu-
ated soil CO, and N,O emissions from Kentucky croplands under
no-tillage compared to conventional tillage. Reduced net GHG emis-
sions were also associated with an increase in irrigated U.S. cropland
acreage over 1960-2018 (Figures S7e and S8e). Irrigation possibly
increased aboveground and belowground biomass and led to higher
soil carbon inputs and SOC content (Bai et al., 2019; Blanco-Canqui
et al.,, 2011). Additionally, we found that LULC reduced net GHG
emissions from U.S. croplands (Figure 8) at an average mitigation
rate of 42.2 Tg CO,-eq year'l, primarily due to the increased national
total amount of SOC-sequestered CO, in recent decades compared
to the average state in the 1950s (Figure S6). Specifically, when com-
pared with the 1950s, there was a decrease in cropland area dur-
ing recent decades (Figure S8b), coinciding with a notable increase
in the SOC sequestration rate. However, it is worth noting that the
national total amount of SOC-sequestered CO, is determined by
the multiplication of cropland area and the average SOC sequestra-
tion rate. Consequently, the recent reduction in cropland area was
counterbalanced by the concurrent increase in SOC sequestration
rate, to the extent that the total amount of CO, sequestrated in U.S.
croplands during recent decades still surpassed that of the 1950s.

This dynamic interplay has ultimately led to a reduction in net GHG
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TABLE 2 Comparisons of SOC sequestration rate and fluxes of N,O and CH, from other studies.

Fluxes Reported value Reported region
SOC 0-40 Entire U.S. croplands
sequestration 13.5+5.3 Entire U.S. croplands
rate (Tg C
year) 14.4 U.S. Midwest croplands
14.6 +3.2 Entire U.S. croplands
17.5+2.9 Entire U.S. croplands
14 U.S. Midwest croplands
32 Entire U.S. croplands
7.4+0.82 Entire U.S. croplands
16.6+1.26 Entire U.S. croplands
23.3+2.01 Entire U.S. croplands
22.2+191 Entire U.S. croplands
N,O (Tg N year™) 0.448~0.478 Entire U.S. croplands
0.439 Entire U.S. croplands
0.42+0.05 U.S. Corn Belt croplands
0.23+0.18 U.S. Corn Belt croplands
0.319+0.184 U.S. Corn Belt croplands
0.471+0.326 U.S. Corn Belt croplands
0.47~0.51 Entire U.S. croplands
0.3+0.2 Entire U.S. croplands
0.51+0.05 Entire U.S. croplands
0.43+0.03 Entire U.S. croplands
0.45+0.03 Entire U.S. croplands
CH,(TgC year™) 0.04~0.47 U.S. rice paddies
0.3 North America croplands
0.276 U.S. rice paddies
0.267 U.S. rice paddies
0.255 U.S. rice paddies
0.279 U.S. rice paddies
0.249 U.S. rice paddies
0.22+0.0026 Entire U.S. croplands
0.24+0.0023 Entire U.S. croplands

emissions due to LULC relative to the average state of the 1950s.
Overall, our factorial analysis of multiple agricultural management
practices indicated large potential for CSA practices (e.g., optimized
N fertilizer use and reduced tillage) to mitigate non-CO, GHG emis-
sions and enhance SOC sequestration in agricultural soils, thereby
leading to an overall reduction in net GHG emissions.

Changes in environmental factors, including elevated atmo-
spheric N deposition and climatic conditions over the past two de-
cades, also contributed significantly to net GHG emissions in U.S.
croplands, while rising atmospheric CO, concentration served to
mitigate GHG emissions (Figure 8). Despite considerable inter-
annual variability, the increase in average surface air temperature
in U.S. croplands over the past two decades compared with the
1950s (Figures S7h and S8h) suggested a positive response of net
GHG emissions to this climate warming. Similar positive responses

were reported in other studies. For example, a meta-analysis by Liu

Time period

Approaches

References

1980-1990 Model+extrapolation Pacala et al. (2001)
1982-1997 Model Ogle et al. (2006)
1991-2000 Statistical approach West et al. (2008)
1990-1995 Process-based model Ogle et al. (2010)
1995-2000 Process-based model Ogle et al. (2010)
2000-2008 Process-based model Zhang et al. (2015)
1973-2010 Integrated model Sleeter et al. (2018)
1980s Process-based model This study

1990s Process-based model This study

2000s Process-based model This study

2010s Process-based model This study

1990s Model +extrapolation Mummey et al. (1998)
1990-2003 Process-based model Del Grosso et al. (2006)
2010 Extrapolation Griffis et al. (2013)
2010 IPCC-based emission factor Griffis et al. (2013)
2010 Atmospheric inversion Chen et al. (2016)
2011 Atmospheric inversion Chen et al. (2016)
1990-2016 IPCC Guidelines EPA (2018)
2007-2016 Model ensemble (NMIP) Tian et al. (2019)
2010s Process-based model Lu et al. (2021)
2000s Process-based model This study

2010s Process-based model This study

- IPCC Guidelines Sass et al. (1999)
1979-2018 Process-based model Tian et al. (2015)
1990 IPCC Guidelines EPA (2015)

2005 IPCC Guidelines EPA (2015)

2011 IPCC Guidelines EPA (2015)

2012 IPCC Guidelines EPA (2015)

2013 IPCC Guidelines EPA (2015)

2000s Process-based model This study

2010s Process-based model This study

et al. (2020) found that a warming of ~1.5°C in rice paddies accel-
erated SOC decomposition by 12.9% and stimulated N,O and CH,
emissions by 35.2% and 23.4%, respectively. Xu et al. (2020) found
that climate warming resulted in a net N,O emission increase of 0.3
Tg N year'1 in global croplands during 2000-2014. Warming can
accelerate SOC decomposition, which enriches soil carbon sub-
strate and N availability to promote soil microbial CO, production,
methanogenesis, and denitrification processes (Carey et al., 2016;
Parn et al., 2018; Weier et al., 1993; Yvon-Durocher et al., 2014).
Our factorial analysis of each individual gas also indicated a posi-
tive response of climate warming on SOC decomposition, and N,O
and CH, emissions (Figure S6). Additionally, the contrasting impacts
of climate change on net GHG balance before and after the 1990s
can be illustrated by the different response of N,O emissions to
climate change (Figure Séb). Positive effects of increased N depo-

sition on net GHG emissions were also reported in other studies
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(Xu et al., 2020; Yang et al., 2021), where increased N availability
can promote nitrification and denitrification processes and thereby
N,O emissions. Similar to findings of others (Ren et al., 2011; van
Groenigen et al., 2011; Xu et al., 2020), our study showed a negative
response to rising atmospheric CO, levels, which can be ascribed to
increased soil carbon inputs from CO, enhanced crop biomass pro-

duction (van Groenigen et al., 2011).

4.3 | Limitation and future work

Although our estimates of the net GHG balance are generally con-
sistent with observations and previous studies, some limitations
remain in this study. These limitations include uncertainties arising
from model forcing datasets, parameters, and structure, the lack of
sufficient SOC-related measurements to constrain model simula-
tions, and the neglect of indirect net GHG emissions due to N leach-
ing in agroecosystems.

First, model forcing datasets could introduce some uncertain-
ties. For example, the crop-specific N fertilization data were re-
constructed based on state-level surveys, which could not reflect
actual spatial variations of fertilizer use in both magnitude and
timing. Tillage intensity data were only available at the county-
level for recent decades, which lacked detailed spatial informa-
tion and would inevitably introduce extrapolation errors in earlier
years. Additionally, the assumption of crop residue removal per-
centage associated with tillage practices could also result in large
uncertainties in the amount of crop residue inputs into soils, as
it may diverge substantially from actual patterns. Therefore, joint
community efforts to further improve model forcing datasets are
needed.

Second, the simplifications or omissions of real-world bio-
physical, biogeochemical, and hydrological processes in the
DLEM, along with the under-representation of individual gas re-
sponses to various environmental factors, may also cause sim-
ulation biases. For example, the current DLEM representation
of groundwater and irrigation practice (i.e., without consider-
ing irrigation amount and frequency) is relatively simple, which
could lead to biased simulated soil moisture that, in turn, could
affect GHG emission predictions. Furthermore, several studies
have shown that soil freezing and thawing events induced non-
negligible amounts of N,O emissions (Del Grosso et al., 2022;
Wagner-Riddle et al., 2017); nevertheless, the effects of soil
freeze-thaw cycles on GHG emissions were not included in our
current simulations and therefore constituted a possible source
of deviation in our results. It is important to acknowledge that
our model structures are inherently incomplete and uncertain,
contributing to the overall uncertainty in model simulations.
Accurately quantifying the uncertainty associated with model
structures is a challenging task. Some studies have proposed
using Bayesian methods to address this issue through condi-
tioning model behavior on measurements (Engeland et al., 2005;

Gurung et al., 2020). A notable example is the work of Gurung

et al. (2020), who applied a Bayesian model analysis framework
incorporating the sampling importance resampling scheme to
assess uncertainties in SOC estimates caused by both model
parameters and structures. However, we concur with Marshall
et al. (2007) that a robust estimation of model structural uncer-
tainty requires the use of multiple models. Initiatives such as the
Coupled Model Intercomparison Project (Eyring et al., 2016) and
the Global N,O Model Intercomparison Project (Tian et al., 2018)
provide valuable templates for this purpose. Therefore, we call
for the initiation of multiple model inter-comparison projects,
with a specific focus on net GHG balance, to comprehensively
quantify uncertainty from model structures.

Third, model parameters may also introduce biases into our
results. Although we have performed a simplified estimation of
parameter-induced uncertainty by assessing the sensitivity of the
simulated net GHG balance to model parameter variations, the
random parameter samples were generated based on their prior
probability distribution functions, which may not accurately reflect
their real distributions and could potentially cause biases (Wang &
Chen, 2012). As such, a more thorough parameter uncertainty analy-
sis is still needed, using random parameter samples generated based
on their real or posterior probability distributions conditioned on
measurements.

Next, the lack of available spatialized and temporal datasets on
SOC sequestration rate to constrain our model simulations over
space and time could also result in significant uncertainty in our
results, as SOC sequestration rates are typically much smaller than
the magnitude of SOC pools. Moreover, most measurements of SOC
sequestration rate are concentrated in shallow soils (e.g., 0-20cm),
while measurements in deeper soil layers remain sparse. Given that
deep soil carbon represents over half of the global SOC stocks and
is becoming more susceptible to climate change and human inter-
ventions (Fontaine et al., 2007), there is a pressing need for future
research to intensify measurements on deep soil carbon and its dy-
namics. Such efforts will provide a more robust foundation for mod-
eling deep soil carbon dynamics accurately.

Finally, our current estimates only include direct GHG emissions
from agricultural soils, while neglecting indirect emissions due to
N leaching in agroecosystems (e.g., stimulated N,O and CH, emis-
sions in aquatic systems). Considering the high anthropogenic nu-
trient loading in stream and river networks caused by N fertilizer
use (Tian, , Xu, Pan, et al. 2020; Yao et al., 2020), future work could
quantify these indirect GHG emissions due to carbon and nutrient
leaching to complement our current net GHG budget. We will ad-
dress these limitations in future studies to provide an overall esti-

mate of both direct and indirect emissions from U.S. croplands.

5 | CONCLUSION

This study quantified the magnitude and spatiotemporal vari-
ations of the net soil GHG balance in U.S. croplands from 1960
to 2018 using a model-data integration approach. We found that
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U.S. croplands acted as a net carbon sink during 1960-2018 with
an average SOC sequestration rate of 13.2+1.16 Tg C year‘1
but a net source of N,O and CH, with average emission rates of
0.39+0.02 Tg N year'1 and 0.21+ 001 Tg C year'1, respectively.
When translated into the GWP100 metric, the simulated na-
tional average net GHG emission rate of U.S. agricultural soils was
122.3 +11.46 Tg CO,-eq year'1 , with the largest contribution from
N,O emissions. Thus, net effort of soil GHG emission during this
study period was a contributor of climate warming. The biggest
opportunity for achieving net-zero emissions in U.S. croplands is to
mitigate N,O emissions through improving management practices.
Sequestered SOC offset ~28% of the climate-warming effects re-
sulting from non-CO, GHG emissions, and the proportion of this
offset increased over time. The Midwest hub contributed ~47%
of the national total net GHG balance, followed by the Northern
Plains hub at ~21%. Our factorial analysis over 1960-2018 indi-
cated that N fertilizer use was the dominant factor promoting net
GHG emissions from U.S. croplands and explained ~47% of the
total changes, while decreased cropland area, reduced tillage, and
rising atmospheric CO, levels attenuated net GHG emissions from
U.S. croplands. Our study emphasizes the need to consider both
SOC sequestration and non-CO, GHG emissions when examining
the role of soils in addressing climate change. It also underscores
the critical role of CSA management practices (e.g., reduced tillage
and optimized N fertilization) in mitigating the net GHG balance
of U.S. croplands. Given the pressing need to curb climate change,
future work could focus on predicting the long-term impacts and
mitigation potential of various CSA management practices on the
net GHG balance and crop production under different climate sce-
narios, with the ultimate goal of achieving carbon neutrality and

sustainable agriculture.
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